DEPARTMENT OF VETERANS AFFAIRS

VA - DES MOINES CENTRALIZED BOILER/CHILLER PLANT

VA Project No. 636A6-12-203

PROJECT MANUAL 100% CD NOT FOR CONSTRUCTION VOLUME 2

Re-submittal - June 2013

Schemmer Project No. 06054.013

VA CENTRAL IOWA HEALTH CARE SYSTEM Construct Centralized Boiler/Chiller Plant 3600 30^{TH} STREET DES MOINES, IOWA 50310

TABLE OF CONTENTS

VOLUME 1

DIVISION 00 - SPECIAL SECTIONS

Section 000115 List of Drawing Sheets

DIVISION 1 - GENERAL REQUIREMENTS

Section	010000	General Requirements
Section	010011	Medical Center Requirements
Section	011000	Lockout-Tagout
Section	012300	Alternates
Section	013216.17	Project Schedules
Section	013323	Shop Drawings, Product Data, and Samples
Section	013324	Electronic Submittal Procedures
Section	013514	Sustainability Requirements
Section	014219	Reference Standards
Section	014529	Testing Laboratory Services
Section	015719	Temporary Environmental Controls
Section	017329	Cutting and Patching
Section	017419	Construction Waste Management
Section	017823	Operations and Maintenance Manuals
Section	017900	Demonstration and Training
Section	019100	General Commissioning Requirements

DIVISION 2 - EXISTING CONDITIONS

Section 024100 Demolition Section 028213.19 Class II Asbestos Floor Tile and Mastic and Miscellaneous Materials Abatement

DIVISION 3 - CONCRETE

Section 033000 Cast-in-Place Concrete Section 034500 Precast Architectural Concrete

DIVISION 4 - MASONRY

Section	040513	Masonry Mortaring
Section	042000	Unit Masonry
Section	047200	Cast Stone Masonry

Section	051200	Structural Steel Framing
Section	053100	Steel Decking
Section	054400	Cold-Formed Metal Trusses
Section	055000	Metal Fabrications
Section	055100	Metal Stairs

DIVISION 6 - WOOD, PLASTIC, AND COMPOSITES

Section 061000 Rough Carpentry Section 066400 Plastic Paneling

DIVISION 7 - THERMAL AND MOISTURE PROTECTION

Section	070150.19	Preparation for Re-roofing
Section	071352	Modified Bituminous Sheet Waterproofing
Section	071353	Elastomeric Sheet Waterproofing
Section	072113	Thermal Insulation
Section	072123	Loose-Fill Insulation
Section	072200	Roof and Deck Insulation
Section	074000	Roofing and Siding Panels
Section	075323	Ethylene-Propylene-Diene-Monomer Roofing
Section	076000	Flashing and Sheet Metal
Section	076114	Steel Standing Seam Roofing
Section	077100	Roof Specialties
Section	077200	Roof Accessories
Section	078400	Firestopping
Section	079200	Joint Sealants
Section	079513	Expansion Joint Assemblies

DIVISION 8 - OPENINGS

Section	081113	Hollow Metal Doors and Frames
Section	083100	Access Doors and Frames
Section	083300	Coiling Doors and Grilles
Section	087100	Door Hardware
Section	089520	Insulated Translucent Fiberglass Sandwich Panel Wall/Roof Systems

DIVISION 9 - FINISHES

Section 090600 Schedule for Finishes Section 092216 Non-Structural Metal Framing Section 092900 Gypsum Board Section 096723.60 Resinous (Urethane and Epoxy Mortar) Flooring Section 099100 Painting

DIVISION 10 - SPECIALTIES

Section 101400 Signage Section 104413 Fire Extinguisher Cabinets

DIVISION 11 - EQUIPMENT

NOT USED

DIVISION 12 - FURNISHINGS

NOT USED

DIVISION 13 - SPECIAL CONSTRUCTION

NOT USED

DIVISION 14 - CONVEYING EQUIPMENT

NOT USED

VOLUME 2

DIVISION 21 - FIRE SUPPRESSION

Section	210511	Common W	ork F	Resul	ts f	or	Fire	Suppression
Section	210800	Commissi	oning	g of	Fire	Su	ppres	sion
Section	211000	Water-Ba	sed H	Fire-	Supp	res	sion	Systems

DIVISION 22 - PLUMBING

Section	220511	Common Work Results for Plumbing
Section	220711	Plumbing Insulation
Section	220800	Commissioning of Plumbing

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

Section	230511	Common Work Results for HVAC
Section	230512	General Motor Requirements for HVAC and Steam Generation
		Equipment
Section	230541	Noise and Vibration Control for HVAC Piping and Equipment
Section	230593	Testing, Adjusting, and Balancing for HVAC
Section	230711	HVAC and Boiler Plant Insulation
Section	230800	Commissioning of HVAC Systems
Section	230923	Direct-Digital Control System for HVAC
Section	232113	Hydronic Piping
Section	232123	Hydronic Pumps
Section	232213	Steam and Condensate Heating Piping
Section	232500	HVAC Water Treatment
Section	233100	HVAC Ducts and Casings
Section	233400	HVAC Fans
Section	236400	Packaged Water Chillers
Section	236500	Cooling Towers
Section	238200	Convection Heating Units

DIVISION 25 - INTEGRATED AUTOMATION

Not Used

DIVISION 26 - ELECTRICAL

Section	260511	Requirements for Electrical Installations
Section	260513	Medium-Voltage Cables
Section	260521	Low-Voltage Electrical Power Conductors and Cables
Section	260526	Grounding and Bonding for Electrical Systems
Section	260533	Raceway and Boxes for Electrical Systems
Section	260541	Underground Electrical Construction
Section	260571	Electrical System Protective Device Study
Section	260923	Lighting Controls
Section	261219	Pad-Mounted, Liquid-Filled, Medium-Voltage Transformers
Section	261313	Generator Paralleling Controls
Section	262200	Low-Voltage Transformers
Section	262416	Panelboards
Section	262911	Motor Controllers
Section	262921	Disconnect Switches
Section	263213	Engine Generators
Section	263623	Automatic Transfer Switches
Section	264100	Facility Lightning Protection
Section	265100	Interior Lighting

DIVISION 27 - COMMUNICATIONS

Section 270511Requirements for Communications InstallationsSection 270526Grounding and Bonding for Communications SystemsSection 270533Raceways and Boxes for Communications Systems

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

Section 280528.33 Conduits and Backboxes for Electronic Safety and Security Section 283100 Fire Detection and Alarm

DIVISION 31 - EARTHWORK

Section 312011 Earth Moving

DIVISION 32 - EXTERIOR IMPROVEMENTS

Section 320523 Cement and Concrete for Exterior Improvements Section 323413 Fabricated Pedestrian Bridges Section 329000 Planting

DIVISION 33 - UTILITIES

Section 331000 Water Utilities Section 334000 Storm Sewer Utilities

DIVISION 34 - TRANSPORTATION

NOT USED

SECTION 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Concrete and Grout: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Building Components for Attachment of Hangers: Section 05 31 00, STEEL DECKING.
- E. Section 05 50 00, METAL FABRICATIONS.
- F. Section 07 84 00, FIRESTOPPING.
- G. Flashing for Wall and Roof Penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- H. Section 07 92 00, JOINT SEALANTS.
- I. Section 09 91 00, PAINTING.
- J. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.
 - Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site.
 - Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
 - Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.

- 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- C. Guaranty: In GENERAL CONDITIONS.
- D. Supports for sprinkler piping shall be in conformance with NFPA 13.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire-stopping materials.
 - 3. Hangers, inserts, supports and bracing.
 - 4. Wall, floor, and ceiling plates.
- C. Coordination Drawings: Provide details of the following.
 - 1. Hangers, inserts, supports, and bracing.
- D. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.

21 05 11 - 2

- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Valve Tags and Lists:
 - 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve.

2.2 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.3 PIPE PENETRATIONS

- A. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of Resident Engineer.
- B. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- C. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- D. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- E. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.4 TOOLS AND LUBRICANTS

A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.5 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment.
- C. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position

gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

- D. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- E. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.3 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 21 08 00 COMMISSIONING OF FIRE SUPPRESSION

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Description
- B. Responsibilities
- C. Related Work
- D. Test Equipment

1.2 DESCRIPTION

- A. The purpose of this section is to specify Division 21 responsibilities in the commissioning process.
- B. The systems to be commissioned are listed in the Commissioning Plan (Cx Plan). Refer to specification section 01 91 00.
- C. Commissioning requires the participation of Division 21 to ensure that all systems are operating in a manner consistent with the Contract Documents. The general commissioning requirements and coordination are detailed in Section 01 91 00. Division 21 Contractor shall be familiar with all parts of Section 01 91 00 and the commissioning plan issued by the CxA, and shall execute all commissioning responsibilities assigned to them in the Contract Documents.

1.3 RESPONSIBILITIES

- A. Refer to the Cx Plan in the appendix of specification section 01 91 00.
- 1.4 RELATED WORK
 - A. Specific commissioning requirements are given in the following sections of these specifications. All of the following sections apply to the Work of this section.

1. Commissioning Plan (Cx Plan)

- 2. Section 01 78 23 Operations and Maintenance
- 3. Section 01 79 00 Demonstration and Training
- 4. Section 22 08 00 Commissioning of Plumbing
- 5. Section 23 08 00 Commissioning of HVAC
- 6. Section 26 08 00 Commissioning of Electrical

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- The Contractor shall provide all test equipment necessary to Α. fulfill the testing requirements of this Division. This equipment includes, but is not limited to, the following:
 - 1. Analog pressure gauge and associated tubing.
- в. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the related specifications. If not otherwise noted, the following minimum requirements apply:
 - Pressure sensors shall have an accuracy of +/- 2.0% of the 1. value range being measured (not full range of meter) and have been calibrated within the last year.
 - 2. All equipment shall be calibrated according to the manufacturer's recommended intervals and when dropped or damaged. Calibration tags shall be affixed or certificates readily available.
- Refer to Section 01 91 00 for additional Division 21 C. requirements.
- PART 3 EXECUTION
 - A. Refer to the Cx Plan in the appendix of specification section 01 91 00.

- - - E N D - - -

SECTION 21 10 00 WATER-BASED FIRE-SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The design and installation of a hydraulically calculated automatic fire sprinkler system complete and ready for operation, for area shown on drawings.
- B. Modification of the existing sprinkler system as indicated on the drawings.
- C. Existing piping to be reused, replaced or removed as indicated on the drawings. Removal of piping to include all valves, flow switches, supervisory devices, hangers, supports, and associated fire alarm system conduit and wire, where shown on the drawings.
- D. Painting of exposed piping and supports to follow Section 09 91 00, PAINTING.

1.2 RELATED WORK

- A. Treatment of penetrations through rated enclosures: Section 07 84 00, FIRESTOPPING.
- B. Painting of exposed pipe: Section 09 91 00, PAINTING.
- C. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION.
- D. Alarm Supervision: Section 28 31 00, FIRE DETECTION AND ALARM.
- E. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 DESIGN CRITERIA

- A. The design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system shall be in accordance with the required advisory provisions of NFPA 13.
- B. Base system design hydraulic calculations using the area/density method on the following criteria and in accordance with NFPA 13 latest edition.
 - 1. Sprinkler Protection: Offices, locker rooms, restrooms
 - a. Light hazard, (0.10 gpm/sq. ft.) over the hydraulically most remote 140 \textrm{m}^2 (1500 sq. ft.).
 - b. Boiler plants: Ordinary Group 2, 8.1 L/minute/m² (0.20 gpm/sq. ft.) over the hydraulically most remote 181.5 m² (1950 sq. ft.).
 - c. Provide sprinklers in accessible shafts per NFPA 13 latest edition.
 - d. Provide sprinklers in gravity type metal chutes per NFPA 82.

21 10 00 - 1

- 3. Hydraulic Calculations: The calculated demand including hose stream requirements shall fall no less than 10 percent below the available supply curve.
- 4. Water Supply:
 - a. Elevation of static and elevation of residual test gage: 600 mm(2 ft.) above site grade
 - b. Static pressure: 58 (psi)
 - c. Residual pressure: 42 (psi)
 - d. Flow: 1034 (gpm)
 - e. Date: June 17, 2012 Time: 1:30 PM
- C. For each sprinkler zone provide a control valve, flow switch, selfcontained test, drain assembly and pressure gage.
- D. Provide a guard for each sprinkler in the janitors' closets, the elevator machine room and sprinklers within 2100 mm (7 ft.) of the floor and other areas as required by NFPA 13.

1.4 QUALIFICATIONS:

- A. Designer's Qualifications: Design work and shop drawings shall be prepared by a licensed engineer practicing in the field of Fire Protection Engineering or a NICET (National Institute for Certification in Engineering Technologies) Level III sprinkler technician.
- B. Installer's Qualifications: The installer shall possess a valid State fire protection contractor's license. The installer shall provide documentation of having successfully completed three projects of similar size and scope.
- C. On-site emergency service within four hours notification.

1.5 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sprinkler design shall be done by a certified professional. All plans shall be stamped by qualified P.E.
- C. Emergency service point of contact name and 24 hour emergency telephone number.
- D. Manufacturer's Literature and Data:
 - 1. Pipe and fittings.
 - 2. Valves

- 3. Drips
- 4. Sprinklers-each type, temperature and model
- 5. Inspectors Test Alarm Modules
- 6. Sprinkler Cabinets
- 7. Pressure Gages
- 8. Pipe Hangers and Supports
- 9. Water Flow Switches
- 10. Valve Tamper Switches
- 11. Double Check Valve Assembly
- E. Detailed drawings in accordance with NFPA 13 the latest edition. Drawings shall be prepared using CADD software stamped by fire protection professional engineer and include all new and existing sprinklers and piping. Use format in use at the VA medical center. Drawings are subject to change during the bidding and construction periods. Any wall and ceiling changes occurring prior to the submittal of contractors shop drawings shall be incorporated into the contractors detailed design at no additional contract cost.
- F. Hydraulic calculations for each sprinkler system in accordance with NFPA 13 latest edition.
- G. Operation and Maintenance Data:
 - 1. Indicating Valves
 - 2. Water Flow and valve tamper switches
 - 3. Alarm Valves
 - 4. Copy of NFPA 25
- H. Recommended preventive maintenance schedule.

1.6 AS-BUILT DOCUMENTATION

- A. A as-built drawing and two blueline copies shall be provided for each drawing. One copy of final CADD drawing files shall also be provided electronically, for each drawing.
- B. Four sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- C. Four sets of hydraulic calculations for each sprinkler system updated to include submittal review comments and any changes to the installation which affect the calculations including one electronic set in PDF format.
- D. Four copies of the hydrostatic report and NFPA 13 material and test certificate for each sprinkler system.

- E. Four sets of operation and maintenance data updated to include submittal review comments and any equipment substitutions including one copy of NFPA 25.
- F. Manufacturers literature, hydraulic calculations, reports and operation and maintenance data shall be in a labeled 3-ring binder.

1.7 WARRANTY

- A. All work performed and materials and equipment furnished under this contract shall be free from defects for a period of one year from date of acceptance by the government.
- B. All new piping and equipment incorporated into the new system shall be hydrostatically tested and warranted as new.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA) 13-2010.....Installation of Sprinkler Systems 25-2011....Inspection, Testing and Maintenance of water Based Fire Protection Systems 72-2010....National Fire Alarm and Signaling Code 291-2010.....Fire Flow Testing and Marking of Hydrants
- C. Underwriters Laboratories Inc. (UL) 2012......Fire Protection Equipment Directory
- D. Factory Mutual Engineering Corporation (FM) 2012.....Approval Guide
- E. American Society of Sanitary Engineering (ASSE) 1015-2009.....Double Check Backflow Prevention Assembly
- F. Complete maintenance and inspection service the sprinkler system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of one year after acceptance of the entire installation by the government.
- G. Contractor shall provide all necessary test equipment, parts and labor to perform required maintenance.
- H. All inspections, testing and maintenance work required by NFPA 25, , NFPA 13 and recommended by the equipment manufacturer shall be provided. Work shall include operation of sprinkler system alarm and supervisory devices.

- I. Maintenance and testing shall be performed on a quarterly basis. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment, and cleaning of all equipment.
- J. Non-included Work: Maintenance service shall not include the performance of any work due to improper use, accidents or negligence for what the contractor is not responsible.
- K. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of work performed and parts replaced shall be provided.
- L. Emergency Service:
 - 1. Normal and overtime emergency call-back service shall consist of an on-site response to calls within four hours of notification.
 - 2. Overtime emergency call-back service shall be limited to minor adjustments and repairs to affect the integrity of the system.
 - 3. The sprinkler system must be operational before the responding service person leaves the facility.

PART 2 - PRODUCTS

2.1 GENERAL

All devices and equipment shall be Underwriters Laboratories Inc. listed for their intended purpose. All sprinklers shall be Factory Mutual approved.

2.2 PIPING AND FITTINGS

- A. Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Fire Protection water supply within the building up to sprinkler system isolation valves shall be per NFPA 13 C. Sprinkler piping downstream of the isolation valve on wet-pipe systems shall be black steel, schedule 10 minimum with CRR greater than 1.
- C. Threaded or flanged fittings shall be ANSIB1 6.3 cast iron, class 125 minimum. Threaded fittings are not permitted on pipe with wall thickness less than schedule 40.

- E. Piping Materials Standards:
 - 1. Ferrous piping follow ASTM A 795 Standard
 - 2. Welded and seamless steel pipe follow ANSI/ASTM A 53
 - 3. Wrought steel pipe follow ANSI/ASME B36.10M
 - 4. Electric resistance welded steel pipe follow ASTM A 135
 - 5. Brazing filler metal follow AWS A5.8
 - 6. Solder metal, 95-5 follow ASTM B 32
 - 7. Alloy material follow ASTM B 446
- F. Fitting Materials Standards:
 - 1. Cast iron threaded fitting, Class 125 and 250 follow ASME B16.4
 - 2. Cast iron pipe flanges and flanged fittings follow ASME B16.1
 - Malleable iron threaded fittings, Class 150 and 300 steel follow ASME B16.3
 - 4. Factory made wrought steel buttweld fittings follow ASME B16.9
 - 5. Buttwelding ends for pipe, valves, flanges, and fitting follow ASME B16.25
- G. Pipe Identification All pipe, including specially listed pipe allowed by NFPA 13, shall be marked continuously along its length by the manufacturer in such a way as to properly identify the type of pipe. Pipe identification shall include the manufacturer's name, model designation, or schedule.

2.3 VALVES

- A. Listed Indicating Valves:
 - 1. Gate: OS&Y, 2400 kPa (350 psi)Water Working Pressure (WWP) .
 - Ball (inspectors test and drain only): iron body, stainless steel trim, for 2050 kPa (300 psi) service, indicating type.
- B. Check Valves: Swing type, rubber faced or wafer type spring loaded butterfly check valve, 2400 kPa (350 lb.) water working pressure (WWP).
- C. Drain Valves: Threaded bronze angle, globe, ball or butterfly, 4100 kPa (600 psi), Water or gas (WOG) equipped with reducer and hose connection with cap or connected to a drain line.
- D. Self-contained Test and Drain Valve:
 - Ductile iron body with bronze "Drain" and "Test" bonnets. Acrylic sight glass for viewing test flow. Various sized orifice inserts to simulate flow through 14 mm (17/32 in.), 13 mm (1/2 in.), 12 mm (7/16 in.), and 10 mm (3/8 in.) diameter sprinklers, 32 mm

 $(1 \ 1/4 \ in.)$ female threaded outlets or $32 \ mm$ $(1 \ 1/4 \ in.)$ one-quarter turn locking lug outlets for plain end pipe (end preparation to be in accordance with manufacturer's recommendation).

- 2. Bronze body, with chrome plated bronze ball, brass stem, steel handle, Teflon seat and sight glasses. Provide valve with three position indicator plate (off, test, and drain), 6 mm (1/4 in.) tapping for pressure gage and various other orifice inserts to simulate flow through 10 mm (3/8 in.), 12 mm (7/16 in.), 13 mm (1/2 in.), and 14 mm (17/32 in.) diameter sprinklers.
- E. Double Check Backflow Prevention Assembly: Provide two independent check valves with OS&Y shut off valves, ball type test cocks. Maximum friction loss through assembly shall not exceed 35 kPa (5 psi) at design flow. Unit shall be functional in vertical or horizontal position, rated for 1200 kPa (175 psi) working pressure. Check valve assembly shall be in accordance with AWWA Class D. Double check backflow prevention assembly shall be FM approved, ASSE approved and UL listed.

2.4 AUTOMATIC BALL DRIPS

Cast brass 20 mm (3/4 in.) in line automatic ball drip with both ends threaded with iron pipe threads.

2.5 SPRINKLERS

A. Quick response sprinklers shall be standard type except as noted below. The maximum distance from the deflector to finished ceiling shall be 50 mm (2 in.) for pendent sprinklers. Pendent sprinklers in finished areas shall be provided with semi-recessed adjustable screwed escutcheons and installed within the center one-third of their adjustment. The sprinkler shall be installed in the flush position with the element exposed below the ceiling line. At the specified locations, provide the following type of sprinklers. Provide quick response sprinklers in all areas, except where specifically prohibited by their listing or approval, and the following:

LOCATION	TYPE
Mechanical Equipment Rooms, Electrical & Electrical Switch Gear Rooms	Quick Response, Upright or Telephone Closets, Transformer Vaults Pendent Brass [93 °C (200 °F)]
Elevator Shafts, Dumbwaiter Shafts, Elevator Machine Rooms, Elevator Pits	Standard Upright or Sidewall Brass [93 °C (200 °F)]
Gravity Type Linen & Trash Chutes	Standard Upright or Pendent Brass [66-74 °C (150-165 °F)]
Warehouse [Storage under 3600 mm (12 ft.)]	Quick Response, Pendent or Upright, Brass [77-74 °C (150- 165 °F)]
Warehouse [Storage over 3600 mm (12 ft.)]	See NFPA 13
Cold rooms, Freezers, Controlled Temperature Rooms and Unheated Areas	Standard Pendent, Dry Type [66- 74 °C (150-165 °F)]
Kitchen Hoods, Exhaust Ducts & Duct Collars	Standard Pendent or Upright (Extra High Temperature [163-191 °C (325- 375 °F.)]
Generator Rooms	Standard Pendent or Upright [141 °C (286 °F)]
Mental Health and Behavioral Unit: Nursing Bedroom, Toilets and all areas with plaster/ dry wall ceilings within the area	Institutional Quick Response; Chrome plated with 85 lb. breakaway, Pendent, Horizontal Sidewall [66-74 °C (150-165 °F)]
Patient Sleeping, Patient Bathrooms, and Corridors within a Patient Ward	Residential, Quick Response, Recessed Pendent, Chrome Plated, [66-74 °C (150-165 °F)]
All Patient Treatment, Elevator Lobbies and Corridors	Quick Response, Recessed Pendent, Chrome Plated [66-74 °C [150- 165 °F)]
Operating Rooms, Radiology Rooms, Nuclear Medicine Rooms	Quick Response, Recessed Pendent, Chrome Plated, Sidewall [66-74 °C (150-165 °F)]
All Areas Not Listed Above	Quick Response, Recessed Pendent, Sidewall, Chrome Plated [66-74 °C (150-165 °F)]

B. Sprinklers to be installed as per NFPA 13.

2.6 TOOLS AND REPLACEMENT PARTS

- A. Sprinkler Cabinet:
 - Provide a minimum 5 percent spare sprinklers with escutcheons with a minimum of two of each type/or as required by NFPA-13, whichever is more demanding.
 - 2. Provide a minimum of two of each type sprinkler wrenches used.
 - 3. Install cabinets in each building where directed by the Resident Engineer.
 - 4. Spare sprinklers shall be kept in a cabinet where ambient temperatures do not exceed 100 Deg F.
- B. Sprinkler system water flow switch: one of each size provided.
- C. Sprinkler system valve tamper switch: one of each type provided.
- D. Provide two sprinkler plugs attached to multi-section extension poles 2400 mm (8 ft.) minimum.

2.7 IDENTIFICATION SIGNS

Provide for all new and existing sectional valves, riser control valves, system control valves, drain valves, test and drain connections and alarm devices with securely attached identification signs (enamel on metal) in accordance with NFPA 13.

2.8 WATERFLOW SWITCHES

- A. Integral, mechanical, non-coded, non-accumulative retard type, with two sets of SPDT auxiliary contacts and adjustable from 0 to 90 seconds. Set flow switches at an initial setting between 30 and 45 seconds.
- B. All conduit and wiring connected thereto shall be provided in Section 28 31 00, FIRE DETECTION AND ALARM.

2.9 VALVE SUPERVISORY SWITCHES

- A. Provide each indicating sprinkler, valve with adequate means for mounting a valve supervisory switch.
- B. Mount switch so as not to interfere with normal operation of the valve and adjust to operate within two revolutions toward the closed position of the valve control, or when the stem is moved no more than one fifth of the distance from its normal position.
- C. The mechanism shall be contained in a weatherproof die cast aluminum housing, which shall provide a 20 mm (3/4 in.) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
- D. Switch housing to be finished in red baked enamel.
- E. All conduit and wiring connected thereto shall be provided in Section 28 31 00, FIRE DETECTION AND ALARM.

2.10 WALL, FLOOR AND CEILING PLATES

- A. Exposed piping passing through walls, floors or ceilings shall be provided with chrome colored escutcheon plates.
- B. Comply with NFPA 101 Fire Barrier Penetration codes.

2.11 PRESSURE GAUGE

A. Provide a 690 kPa (100 psi) pressure gauge at each flow alarm switch location, at the top of each sprinkler riser and at each main drain connection.

2.12 HANGERS

- A. Hangers shall be designed to support five times the weight of the water filled pipe plus 250 Lb (114Kg) at each point of piping support.
- B. These points of support shall be adequate to support the system.
- C. The spacing between hangers shall not exceed the value given for the type of pipe as indicated in NFPA 13 tables.
- D. Hanger components shall be ferrous.
- E. Detailed calculations shall be submitted, when required by the reviewing Authority, showing stress developed in hangers, piping, fittings and safety factors allowed.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Supervisory Switches: For each indicating control valve, provide a supervisory switch that is connected to the fire alarm system. test and drain valves shall not be provided with supervisory switches.
- B. Waterflow Switches: where indicated on drawings, provide a waterflow switch. Install waterflow switch and adjacent valves in easily accessible locations.
- C. Piping connections:
- D. Drains, Test Pipes and Accessories:
 - Provide a drain at base of risers, drain connection on valved sections, and drains at other locations for complete drainage of the system. Provide valve in drain lines and connect to the central drain riser. Discharge riser outside over splash block, indirectly over standpipe drain connected to storm sewer, or as indicated. The main drain shall be capable of full discharge test without allowing water to flow onto the floor.
 - Provide test pipes in accordance with NFPA 13. Test pipes shall be valved and piped to discharge through proper orifice as specified above for drains.

- F. Conceal all piping, except in pipe basements, stairwells and rooms without ceilings.
- G. Install new piping and sprinklers aligned with natural building and other sprinklers lines.
- H. Locate piping in stairways as near ceiling as possible to prevent tampering by unauthorized personnel. Provide a minimum headroom of 2250 mm (7 ft.-6 in.) for all piping.
- Piping arrangement shall avoid contact with other piping and equipment and allow clear access to other equipment or devices requiring access or maintenance.
- J. For each new or existing fire department connection, locate the symbolic sign given in NFPA 170 a distance of 2400 to 3000 mm (8 to 10 ft.) above each connection location. The sign shall be 450 x 450 mm (18 x 18 in.) with symbol at least 350 x 350 mm (14 x 14 in.).
- K. Firestopping shall comply with Section 07 84 00, FIRESTOPPING. All holes through stairways, smoke barrier walls, and fire walls shall be sealed on a daily basis.

3.2. PROVIDE HYDRAULIC DESIGN INFORMATION SIGNAGE AS REQUIRED BY NFPA 13 3.2 TEST

A. Automatic Sprinkler System: NFPA 13 and 25.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two four-hour periods for instructing personnel in the operation and maintenance of the sprinkler system, on the dates requested by the COTR.

- - - END - - -

21 10 00 - 11

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- D. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- E. Section 05 31 00, STEEL DECKING,
- F. Section 05 50 00, METAL FABRICATIONS.
- G. Section 07 84 00, FIRESTOPPING.
- H. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- I. Section 07 92 00, JOINT SEALANTS.
- J. Section 09 91 00, PAINTING.
- K. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- L. Section 23 09 23, DIRECT DIGITAL CONTROLS FOR HVAC.
- M. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- N. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- O. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
 - Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These

3 JUNE 2013

organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Resident Engineer (RE)/Contracting Officers Technical Representative (COTR).
- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".

- 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the RE/COTR for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the RE/COTR at least two weeks prior to commencing installation of any item.
 - 2. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved.
- E. Plumbing Systems: IPC, International Plumbing Code.

1.4 SUBMITTALS

- A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMNON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

JUNE 2013

- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Fire stopping materials.
 - Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.

- I. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided.
 - 3. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - 2. Damaged equipment shall be replaced with an identical unit as determined and directed by the RE/COTR. Such replacement shall be at no additional cost to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): SEC IX-2007.....Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications. C. American Society for Testing and Materials (ASTM): A36/A36M-2008.....Standard Specification for Carbon Structural Steel A575-96 (R 2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002) E84-2005.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-2008a.....Standard Test Methods for Fire Tests of Building Construction and Materials D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-02.....Pipe Hangers and Supports-Materials, Design and Manufacture SP 69-2003 (R 2004).....Pipe Hangers and Supports-Selection and Application E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007...Motors and Generators F. International Code Council, (ICC): IBC-06, (R 2007) International Building Code IPC-06, (R 2007).....International Plumbing Code PART 2 - PRODUCTS

FARI Z = FRODUCIS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.

- 3. Components shall be compatible with each other and with the total assembly for intended service.
- Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4-inch bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

2.4 LIFTING ATTACHMENTS

Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.

- B. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 160° F shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.
 - 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1, Part 31.4.4.2.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act of 1992 (EPACT). Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.
- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC).

VA PROJECT NO. 636A6-12-203

- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. A time delay (20 seconds minimum) relay shall be provided for switching from high to low speed.
- F. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 104° F; minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.6 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications.
- B. The combination of controller and motor shall be provided by the respective pump manufacturer, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficient type, "invertor duty", and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.

2.7 EOUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 3/16-inch high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 3/16-inch high riveted or bolted to the equipment.

- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 1/2-inch high for number designation, and not less than 1/4-inch for service designation on 19 gage, 1-1/2 inches round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 8-1/2 inches by 11 inches shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling.

2.8 FIRE STOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for pipe insulation.

2.9 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.10 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- B. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 4 inches thick when approved by the Resident Engineer for each job condition.

22 05 11 - 10
- 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 4 inches thick when approved by the Resident Engineer for each job condition.
- C. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8-inch) outside diameter.
- D. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING.
- E. For Attachment to Wood Construction: Wood screws or lag bolts.
- F. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- G. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- H. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.

- f. Turnbuckle: Types 13 or 15.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping):
 - Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- I. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.

- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of one inch past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.11 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.

- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel Sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.12 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.13 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3 inch) pipe, 0.89 mm (0.035-inch) for larger pipe.

VA PROJECT NO. 636A6-12-203

C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.14 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - 1. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by RE/COTR where working area space is limited.
 - 2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and

drilling done only after approval by RE/COTR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to RE/COTR for approval.

- Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- J. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control

devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.

- K. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and section 23 09 23 DIRECT DIGITAL CONTROLS FOR HVAC
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- M. Work in Animal Research Areas: Seal all pipe penetrations with silicone sealant to prevent entrance of insects.
- N. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.
- O. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- P. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All

22 05 11 - 17

piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury

can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 shall apply.

C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to RE/COTR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the Resident Engineer.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents

06054.013

use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided.

- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to RE/COTR in unopened containers that are properly identified as to application.

- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the RE/COTR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

VA PROJECT NO. 636A6-12-203

- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to RE/COTR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material And Equipment shall NOT be painted::
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint obtained from manufacturer or computer matched.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer

- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

A. Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to RE/COTR not less than 30 days prior to completion of a phase or final inspection.
- B. All new and temporary equipment and all elements of each assembly shall be included.
- C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- E. Lubrication instructions, type and quantity of lubricant shall be included.
- F. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- G. Set points of all interlock devices shall be listed.
- H. Trouble-shooting guide for the control system troubleshooting guide shall be inserted into the Operations and Maintenance Manual.
- The combustion control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- J. Emergency procedures.

3.12 INSTRUCTIONS TO VA PERSONNEL

Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. Plumbing piping and equipment.
 - Re-insulation of plumbing piping and equipment after asbestos abatement.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: Plumbing equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per square meter (BTU per hour per linear foot).
 - 10. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 11. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

22 07 11 - 1

- 12. R: Pump recirculation.
- 13. CW: Cold water.
- 14. SW: Soft water.
- 15. HW: Hot water.

16. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- B. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- D. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING and Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- E. Section 26 32 13, ENGINE GENERATORS: Exhaust stacks and muffler.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, unless otherwise provided for in <u>4.3.3.1.12</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.3 Pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.10.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.10.2.6.7 Smoke detectors shall not be required to meet the provisions of this section.

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)-91.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
 C. Military Specifications (Mil. Spec.):

MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation
MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic
Thermal Insulation

MIL-C-19565C (1)-88....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):

A167-04Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

- C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation
 - C449-07..... Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement
 - C533-09..... Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

VAMC I CENTRA	DES MOINES ALIZED BOILER/CHILLER PL	VA PROJECT NO. 636A6-12-203 JUNE 2013 ANT SCHEMMER NO. 06054.013
	C534-08	.Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-07	.Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-10	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
	-04.10	and Treated) for Roofing and Waterproofing
	E84-10	.Standard Test Method for Surface Burning
		Characteristics of Building
	E110 00C	Materials
	E119-09C	.standard Test Method for Fire Tests of Building
	E136-00 b	Standard Test Methods for Pohavier of Materials
	E130-09 D	in a Vertical Tube Eurnace at 750 degrees C
		(1380 F)
E.	National Fire Protectio	n Association (NFPA):
	101-09	.Life Safety Code
	251-06	.Standard methods of Tests of Fire Endurance of
		Building Construction Materials
	255-06	.Standard Method of tests of Surface Burning
		Characteristics of Building Materials
F.	Underwriters Laboratori	es, Inc (UL):
	723	.UL Standard for Safety Test for Surface Burning
		Characteristics of Building Materials with
		Revision of 08/03

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2002.....Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F)
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F)with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 Mineral wool or refractory fiber

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C

22 07 11 - 6

(300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.

B. Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics							
ITEMS	TYPE I	TYPE II					
Temperature, maximum degrees C	649 (1200)	927 (1700)					
(degrees F)							
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)					
Thermal conductivity:							
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078					
mean temperature of 93 degrees C	(0.41)	(0.540)					
(200 degrees F)							
Surface burning characteristics:							
Flame spread Index, Maximum	0	0					
Smoke Density index, Maximum	0	0					

2.8 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing. VAMC DES MOINES

VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450

mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)						
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)					
Up through 125 (5)	150 (6) long					
150 (6)	150 (6) long					
200 (8), 250 (10), 300 (12)	225 (9) long					
350 (14), 400 (16)	300 (12) long					
450 through 600 (18 through 24)	350 (14) long					

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.

- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.13 FIRESTOPPING MATERIAL

Other than pipe insulation, refer to Section 07 84 00 FIRESTOPPING.

2.14 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.

- I. Plumbing work not to be insulated:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - Small horizontal cold water branch runs in partitions to individual fixtures may be without insulation for maximum distance of 900 mm (3 feet).
 - 5. Distilled water piping.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights.Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- M. Freeze protection of above grade outdoor piping (over heat tracing tape): 20 mm (0.75) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(linch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up where indicated on the drawings as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- N. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. All interior piping conveying fluids below ambient air temperature.
- O. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.

3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
 - Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
 a. Water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
 - 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 - a. Domestic water heaters and hot water storage tanks (not factory insulated).
 - b. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - Fit insulation to pipe, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples

protection insulation over heating cable.

may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze

2. Contractor's options for fitting, flange and valve insulation:

- a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
- b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
- c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- C. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.

22 07 11 - 14

- Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. Plumbing piping as follows:
 - Body of roof and overflow drains horizontal runs and offsets (including elbows) of interior downspout piping in all areas above pipe basement.
 - 2) Waste piping from electric water coolers and icemakers to drainage system.
 - 3) Waste piping located above basement floor from ice making and film developing equipment and air handling units, from equipment(including trap) to main vertical waste pipe.
 - 4) MRI quench vent piping.
 - 5) Bedpan sanitizer atmospheric vent
 - 6) Reagent grade water piping.
 - 7) Cold water piping.
- D. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground Piping Other than or in lieu of that Specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregant4ed glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the Resident Engineer as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
 - f. Sand bed and backfill: Minimum 75 mm (3 inches) all around Insulated pipe or tank, applied after coating has dried.
 - 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.

- E. Flexible Elastomeric Cellular Thermal Insulation:
 - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- F. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified below for piping other than in boiler plant.

Nominal Thickness Of Calcium Silicate Insulation								
(Non-Boiler Plant)								
Nominal Pipe Size	Thru 25	32 to 75	100-200	Over 200				
Millimeters (Inches)	(1)	(1-1/4 to	(4 to 6)	(6)				
		3)						
93-260 degrees C(200-	100(4)	125(5)	150(6)	150(6)				
500 degrees F)(HPS,								
HPR)								

2. MRI Quench Vent Insulation: Type I, class D, 150 mm (6 inch) nominal thickness.

$22 \ 07 \ 11 \ - \ 16$

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)							
		Nominal	Pipe Size	Millimeters	(Inches)		
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 14)	38 - 75 (1½ - 3)	100 (4) and Above		
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)		
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Rigid Cellular Phenolic Foam (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)		
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)				
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)				
4-16 degrees C (40-60 degrees F)	Rigid Cellular Phenolic Foam (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)		
4-16 degrees C (40-60 degrees F)	Polyiso- cyanurate Closed-Cell Rigid(Exterior Locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)		
(4-16 degrees C (40-60 degrees F)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)		

- - - E N D - - -

SECTION 22 08 00 COMMISSIONING OF PLUMBING

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Description
- Responsibilities в.
- Related Work C.
- D. Test Equipment

1.2 DESCRIPTION

- The purpose of this section is to specify Division 22 A. responsibilities in the commissioning process.
- в. The systems to be commissioned are listed in the Commissioning Plan (Cx Plan). Refer to specification section 01 91 00.
- c. Commissioning requires the participation of Division 22 to ensure that all systems are operating in a manner consistent with the Contract Documents. The general commissioning requirements and coordination are detailed in Section 01 91 00. Division 22 Contractor shall be familiar with all parts of Section 01 91 00 and the commissioning plan issued by the CxA, and shall execute all commissioning responsibilities assigned to them in the Contract Documents.

1.3 RESPONSIBILITIES

- Refer to the Cx Plan in the appendix of specification section 01 Α. 91 00.
- 1.4 RELATED WORK
 - Specific commissioning requirements are given in the following Α. sections of these specifications. All of the following sections apply to the Work of this section.
 - 1. Commissioning Plan (Cx Plan)
 - Section 01 78 23 Operations and Maintenance 2.
 - 3. Section 01 79 00 - Demonstration and Training
 - 4. Section 21 08 00 - Commissioning of Fire Suppression
 - 5. Section 23 08 00 - Commissioning of HVAC
 - Section 26 08 00 Commissioning of Electrical 6.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- The Contractor shall provide all test equipment necessary to Α. fulfill the testing requirements of this Division. This equipment includes, but is not limited to, the following:
 - 1. Handheld temperature and relative humidity meter.
 - 2. Infrared thermometer gun.
 - 3. Analog differential pressure gauge and associated tubing.
 - 4. Portable computer with access to the Building Automation System.
- в. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the related specifications. If not otherwise noted, the following minimum requirements apply:
 - Temperature sensors and digital thermometers shall have a 1. certified calibration within the past year to an accuracy of 0.5°F and a resolution of +/- 0.1°F.
 - Pressure sensors shall have an accuracy of +/- 2.0% of the 2. value range being measured (not full range of meter) and have been calibrated within the last year.
 - 3. All equipment shall be calibrated according to the manufacturer's recommended intervals and when dropped or damaged. Calibration tags shall be affixed or certificates readily available.
- Refer to Section 01 91 00 for additional Division 22 c. requirements.

PART 3 - EXECUTION

Refer to the Cx Plan in the appendix of specification section 01 Α. 91 00.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT
- D. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout
- E. Section 05 31 00, STEEL DECKING, I. Section 05 50 00, METAL FABRICATIONS
- F. Section 07 84 00, FIRESTOPPING
- G. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations
- H. Section 07 92 00, JOINT SEALANTS
- I. Section 09 91 00, PAINTING
- J. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- K. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- L. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- M. Section 23 07 11, HVAC, PLUMBING, and Boiler Plant Insulation
- N. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- O. Section 23 21 13, HYDRONIC PIPING
- P. Section 23 21 23, HYDRONIC PUMPS
- Q. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- R. Section 23 25 00, HVAC WATER TREATMENT
- S. Section 23 31 00, HVAC DUCTS and CASINGS $% \left({{\left({{{\left({{{\left({{{}} \right)}} \right.}} \right)}} \right)} \right)$
- T. Section 23 34 00, HVAC FANS
- U. Section 23 64 00, PACKAGED WATER CHILLERS
- V. Section 23 65 00, COOLING TOWERS
- W. Section 23 82 00, CONVECTION HEATING and COOLING UNITS
- X. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- Y. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.
 - Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Layout Drawings:
 - Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - In addition, for HVAC systems, provide details of the following:
 a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.

- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- H. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2007.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA): IP-20-2007......Specifications for Drives Using Classical

```
V-Belts and Sheaves
```

IP-21-2009.....Specifications for Drives Using Double-V

(Hexagonal) Belts

E. Air Movement and Control Association (AMCA):

410-96..... Recommended Safety Practices for Air Moving Devices

F. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): Section I-2007.....Power Boilers Section IX-2007......Welding and Brazing Qualifications Code for Pressure Piping: B31.1-2007.....Power Piping G. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application I. National Electrical Manufacturers Association (NEMA): MG-1-2009..... Motors and Generators J. National Fire Protection Association (NFPA): 31-06..... of Oil-Burning Equipment 54-09.....National Fuel Gas Code 70-08.....National Electrical Code 85-07.....Boiler and Combustion Systems Hazards Code 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 101-09....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.

 Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.

- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the Resident Engineer during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the Resident Engineer.
- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to

brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.

F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

1.8 TEMPORARY FACILITIES: REFER TO ARTICLE, TEMPORARY PIPING AND EQUIPMENT IN THIS SECTION.

1.9 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.

D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 5000 feet per minute.
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4-inch bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. Oneinch diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: One inch diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications.

- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be quaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 25,000 AIC. Provide AC input filters on incoming power line. Provide output line reactors on line between drive and motor for motors over 50 HP.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING. B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 3/16-inch high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- B. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 3/16-inch high riveted or bolted to the equipment.
- C. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - 1. HVAC and Boiler Plant: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 1/2-inch high for number designation, and not less than 1/4-inch for

service designation on 19 gage 1-1/2 inches round brass disc, attached with brass "S" hook or brass chain.

- 3. Valve lists: Typed or printed plastic coated card(s), sized 8-1/2 inches by 11 inches showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.9 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.10 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 18 gauge, with integral baseplate, continuous welded corner seams, factory installed 2 by 4 treated wood nailer, 18 gauge galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 11 inches. For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than four inches thick when approved by the Resident Engineer for each job condition.

- Power-driven fasteners: Permitted in existing concrete or masonry not less than four inches thick when approved by the Resident Engineer for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 7/8-inch outside diameter.
- F. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING
- G. Attachment to existing structure: Support from existing floor/roof frame.
- H. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 1-1/2 inches minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 1-5/8 inches by 1-5/8 inches, No. 12 gage, designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 200 pounds.
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 1/4-inch U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 1/2-inch galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.

- f. Turnbuckle: Types 13 or 15. Preinsulate.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 2 inches and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.
- K. Pre-insulated Calcium Silicate Shields:
 - 1. Provide 360 degree water resistant high density 140 psi compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 600 psi compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve one inch above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 1-1/2 inch angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 1-1/2 inch angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.13 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.14 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- E. Lubricants: A minimum of one quart of oil, and one pound of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.15 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 3/32-inch for floor plates. For wall and ceiling plates, not less than 0.025-inch for up to 3-inch pipe, 0.035inch for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.16 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and

23 05 11 - 16

VA PROJECT NO. 636A6-12-203

equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's

published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - 1. Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and shrink compensating grout 3000 psi minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth

of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).

- N. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.

- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 1/2-inch clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 6-inch pipe, 30 feet long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces

under operating and seismic conditions (if applicable) without excessive displacement or structural failure.

- 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 2 inch excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 6 inches on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered.

Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.

- Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 100 degrees F on insulation jacket surface and 250 degrees F on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.

C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and one pound of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.

- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.11 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.
- D. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.12 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS, and Section 23 08 11, DEMONSTRATIONS AND TESTS FOR BOILER PLANT.

3.13 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
- B. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection for motors.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 21 23, HYDRONIC PUMPS.
- E. Section 23 34 00, HVAC FANS.
- F. Section 23 64 00, PACKAGED WATER CHILLERS.
- G. Section 23 65 00, COOLING TOWERS.

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 ..Motors and Generators MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric
 - Motors and Generators
- C. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code (NEC)
- D. Institute of Electrical and Electronics Engineers (IEEE):
 112-04.....Standard Test Procedure for Polyphase Induction
 Motors and Generators
- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2007.....Energy Standard for Buildings Except Low-Rise

Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.

- c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
- 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 40°C (104°F) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 40°C (104°F), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.

- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 160 degreesF shall be stranded copper with Teflon FEP insulation with jacket.This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open τ drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions

of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	Efficie	ncies	Minimum Premium Efficiencies								
	Open Drip	o-Proof		Totally Enclosed Fan-Cooled								
Rating	1200	1800	3600	Rating	1200	1800	3600					
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM					
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%					
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%					
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%					
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%					
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%					
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%					
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%					
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%					
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%					
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%					
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%					
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%					
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%					
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%					
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%					
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%					
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%					
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%					
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%					

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.

C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units. - - - E N D - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete inertia bases.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Requirements for flexible pipe connectors to reciprocating and rotating mechanical equipment.
- D. Section 23 31 00, HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- E. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
- F. SECTION 23 21 23, HYDRONIC PUMPS: vibration isolation requirements for pumps.
- G. SECTION 23 34 00, HVAC FANS: sound and vibration isolation requirements for fans.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
 - 2. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after

occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

3. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Vibration
- C. American Society for Testing and Materials (ASTM):

A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness

D. Manufacturers Standardization (MSS): SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):
 ASCE 7-10Minimum Design Loads for Buildings and Other

Structures.

G. International Code Council (ICC): 2009 IBC.....International Building Code.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.

- 3. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
- 4. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.3 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 4 inches. Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than four inches.
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 1/2-inch reinforcing bars welded in place on minimum of eight inch centers running both ways in a layer 1-1/2

VA PROJECT NO. 636A6-12-203 SCHEMMER NO. 06054.013

inches above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 1/16 inch.

D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 1/4 inch clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
 - Provide heat shields where elastomers are subject to temperatures over 100 degrees F.
 - Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
 - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust,

repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

- - - E N D - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT		ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN		
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
REFRIGERATION MACHINES																
ALL			D	0.3		SP	0.8	R	SP	2.0	R	SP	2.5	R	SP	3.5
PUMPS																
CLOSE COUPLED	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W	
	2 HP & OVER				I	S	0.8	I	S	1.5	I	S	1.5	I	S	2.0
	UP TO 10 HP					D,L, W			D,L, W			D,L, W			D,L, W	
BASE MOUNTED	15 HP THRU 40 HP	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.0	I	S	2.0
	50 HP & OVER	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.5	I	S	2.5
CENTRIFUGAL FANS																
UP TO 50 HP:																
UP TO 200	RPM	В	Ν	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5

EQUIPMENT	ON GRADE		20FT FLOOR SPAN		30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN				
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
201 - 300 RPM	В	Ν	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500 RPM	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM & OVER	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5
COOLING TOWERS															
UP TO 500 RPM					SP	2.5		SP	2.5		SP	2.5		SP	3.5
501 RPM & OVER		[]		'	SP	0.75		SP	0.75		SP	1.5		SP	2.5
PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes chilled water, condenser water
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- C. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Piping and Equipment Insulation.
- D. Section 23 64 00, PACKAGED WATER CHILLERS: Testing Refrigeration Equipment.
- E. Section 23 65 00, COOLING TOWERS: Cooling Tower Performance Testing.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.

- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- H. Section 23 34 00, HVAC FANS
- I. Section 23 21 23, HYDRONIC PUMPS
- J. Section 23 21 13, HYDRONIC PIPING
- K. Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five

years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance

during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air handling unit and all other fans, cubic feet per minute: Minus 0 percent to plus 10 percent.
- g. Chilled water and condenser water pumps: Minus 0 percent to plus
 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows: a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): 2007HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter

47, Sound and Vibration Control

C. Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

- 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

 $3^{\rm rd}$ Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

23 05 93 - 5

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct.

3.4 SYSTEM READINESS REPORT

- A. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- B. Verify that all items such as piping, ports, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.5 TAB REPORTS

- A. Submit an intermediate report for 25 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.

D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.6 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 30 calendar days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - Coordinate water chiller flow balancing with Section 23 64 00, PACKAGED WATER CHILLERS.
 - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 3. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.7 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.8 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - Take readings in rooms, approximately three percent of all rooms. The Resident Engineer may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 16 meters (50 feet) for sound level location.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.9 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.10 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.11 PHASING

A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of

the project all areas shall have been tested and balanced per the contract documents.

B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.12 FUNCTIONAL PERFORMANCE TESTS

A. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.13 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, Boiler Plant and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F); Boiler Plant breechings and stack temperature range 150-370 degrees C(300-700 degrees F) and piping media and equipment 32 to 230 degrees C(90 to 450 degrees F).
 - 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psiq].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return..
- 22. FWPD: Feedwater pump discharge.
- 23. FWPS: Feedwater pump suction.
- 24. CTPD: Condensate transfer pump discharge.
- 25. CTPS: Condensate transfer pump suction.
- 26. VR: Vacuum condensate return.
- 27. CPD: Condensate pump discharge.
- 28. R: Pump recirculation.
- 29. FOS: Fuel oil supply.
- 30. FOR: Fuel oil return.
- 31. CW: Cold water.
- 32. SW: Soft water.
- 33. HW: Hot water.
- 34. CH: Chilled water supply.
- 35. CHR: Chilled water return.
- 36. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.

VAMC DES MOINES

VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- D. Section 23 21 23, HYDRONIC PUMPS
- E. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- F. Section 23 64 00, PACKAGED WATER CHILLERS: Compressor, evaporator and piping.
- G. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Piping and equipment.
- H. Section 23 21 13, HYDRONIC PIPING: Chilled water.
- I. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2., shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1)UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

2. Test methods: ASTM E84, UL 723, or NFPA 255.

VAMC DES MOINES V CENTRALIZED BOILER/CHILLER PLANT

- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

в.	Federal Specifications	(Fed. Spec.):
	L-P-535E (2)- 99	.Plastic Sheet (Sheeting): Plastic Strip; Poly
		(Vinyl Chloride) and Poly (Vinyl Chloride -
		Vinyl Acetate), Rigid.
с.	Military Specifications	(Mil. Spec.):
	MIL-A-3316C (2)-90	Adhesives, Fire-Resistant, Thermal Insulation
	MIL-A-24179A (1)-87	Adhesive, Flexible Unicellular-Plastic
		Thermal Insulation
	MIL-C-19565C (1)-88	Coating Compounds, Thermal Insulation, Fire-and
		Water-Resistant, Vapor-Barrier
	MIL-C-20079H-87	.Cloth, Glass; Tape, Textile Glass; and Thread,
		Glass and Wire-Reinforced Glass
D.	American Society for Tes	sting and Materials (ASTM):
	A167-99(2004)	Standard Specification for Stainless and
		Heat-Resisting Chromium-Nickel Steel Plate,
		Sheet, and Strip
	B209-07	Standard Specification for Aluminum and
		Aluminum-Alloy Sheet and Plate
	C411-05	Standard test method for Hot-Surface
		Performance of High-Temperature Thermal
		Insulation
	C449-07	Standard Specification for Mineral Fiber
		Hydraulic-Setting Thermal Insulating and
		Finishing Cement
	C533-09	Standard Specification for Calcium Silicate
		Block and Pipe Thermal Insulation
	C534-08	Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-07	Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	Standard Specification for Cellular Glass
		Thermal Insulation

VAMC E CENTRA	DES MOINES ALIZED BOILER/CHILLER PL	VA PROJECT NO. 636A6-12-203 JUNE 2013 ANT SCHEMMER NO. 06054.013
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-04	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-10	.Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-09c	.Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-09b	.Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
E.	National Fire Protectio	n Association (NFPA):
	90A-09	.Standard for the Installation of Air
		Conditioning and Ventilating Systems
	101-09	Life Safety Code
	251-06	.Standard methods of Tests of Fire Endurance of
	255-06	Standard Mothod of tosts of Surface Purning
	233-00	Characteristics of Building Materials
F.	Underwriters Laboratori	es, Inc (UL):
	723	.UL Standard for Safety Test for Surface Burning
		Characteristics of Building Materials with
		Revision of 09/08
G.	Manufacturer's Standard	ization Society of the Valve and Fitting
	Industry (MSS):	
	SP58-2009	.Pipe Hangers and Supports Materials, Design,
		and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Г

Insulation Characteristics							
ITEMS	TYPE I	TYPE II					
Temperature, maximum degrees C	649 (1200)	927 (1700)					
(degrees F)							
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)					
Thermal conductivity:							
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078					
mean temperature of 93 degrees C	(0.41)	(0.540)					
(200 degrees F)							
Surface burning characteristics:							
Flame spread Index, Maximum	0	0					
Smoke Density index, Maximum	0	0					

2.7 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK)

or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.8 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.

VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- 2. Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
- 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
- 4. Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- C. Boiler Plant Pipe supports: MSS SP58, Type 39. Apply at all pipe support points, except where MSS SP58, Type 3 pipe clamps provided as part of the support system.

2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.

- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.13 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.14 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.

- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Insulate PRVs, flow meters, and steam traps.
- J. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. Equipment: Expansion tanks, flash tanks, hot water pumps, steam condensate pumps.
 - 5. In hot piping: Unions, flexible connectors, control valves, PRVs, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions

- N. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(1inch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- O. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity areas.
- P. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

- Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
- 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter

per liter (12 to 15 square feet per gallon) over the entire fabric surface.

- d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

- C. Rigid Cellular Phenolic Foam:
 - 1. Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - 6. Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
 - 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- D. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.
- E. Flexible Elastomeric Cellular Thermal Insulation:
 - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 - c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
- F. Calcium Silicate:
 - 1. MINIMUM THICKNESS IN MILLIMETER (INCHES) SPECIFIED IN THE SCHEDULE AT THE END OF THIS SECTION FOR PIPING OTHER THAN IN BOILER PLANT.

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)						
		Nominal	Pipe Size	Millimeters	(Inches)	
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 14)	38 - 75 (1½ - 3)	100 (4) and Above	
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)	
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)	
100-121 degrees C (212-250 degrees F)	Mineral Fiber (Above ground	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)	

VAMC DES MOINESVA PROJECT NO. 636A6-12-203JUNE 2013CENTRALIZED BOILER/CHILLER PLANTSCHEMMER NO. 06054.013JUNE 2013

<pre>(HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks) 100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)</pre>	piping only) Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
39-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Rıgid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)

VAMC DES MOINES VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

<pre>4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)</pre>	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC and GCR (where underground)	Polyiso- cyanurate Closed-Cell Rigid	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 08 00 COMMISSIONING OF HVAC

PART 1 - GENERAL

- 1.1 SECTION INCLUDES
 - Α. Description
 - в. Responsibilities
 - Related Work C.
 - Test Equipment D.
- DESCRIPTION 1.2
 - Α. The purpose of this section is to specify Division 23 responsibilities in the commissioning process.
 - в. The systems to be commissioned are listed in the Commissioning Plan (Cx Plan). Refer to specification section 01 91 00.
 - C. Commissioning requires the participation of Division 23 to ensure that all systems are operating in a manner consistent with the Contract Documents. The general commissioning requirements and coordination are detailed in Section 01 91 00. Division 23 Contractor shall be familiar with all parts of Section 01 91 00 and the commissioning plan issued by the CxA, and shall execute all commissioning responsibilities assigned to them in the Contract Documents.

RESPONSIBILITIES 1.3

Refer to the Cx Plan in the appendix of specification Α. section 01 91 00.

RELATED WORK 1.4

- Specific commissioning requirements are given in the Α. following sections of these specifications. All of the following sections apply to the Work of this section.
 - 1. Commissioning Plan (Cx Plan)
 - 2. Section 01 78 23 - Operations and Maintenance
 - 3. Section 01 79 00 - Demonstration and Training
 - 4. Section 21 08 00 - Commissioning of Fire Suppression
 - 5. Section 22 08 00 - Commissioning of Plumbing
 - 6. Section 26 08 00 - Commissioning of Electrical

VAMC DES MOINES VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- 7. Section 23 05 11 Common Work Results for HVAC
- Section 23 05 93 Testing, Adjusting, and Balancing for HVAC
- 9. Section 23 09 23 Direct-Digital Control System for HVAC
- 10. Section 23 21 23 Hydronic Pumps
- 11. Section 23 25 00 HVAC Water Treatment
- 12. Section 23 34 00 HVAC Fans
- 13. Section 23 64 00 Packaged Water Chillers
- 14. Section 23 65 00 Cooling Towers
- 15. Section 23 82 00 Convection Heating Units

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all test equipment necessary to fulfill the testing requirements of this Division. This equipment includes, but is not limited to, the following:
 - 1. Handheld temperature and relative humidity meter.
 - 2. Infrared thermometer gun.
 - 3. Analog differential pressure gauge and associated tubing.
 - 4. Portable computer with access to the Building Automation System.
- B. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the related specifications. If not otherwise noted, the following minimum requirements apply:
 - 1. Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5°F and a resolution of +/- 0.1°F.
 - Pressure sensors shall have an accuracy of +/- 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year.
 - All equipment shall be calibrated according to the manufacturer's recommended intervals and when dropped or damaged. Calibration tags shall be affixed or certificates readily available.
- C. Refer to Section 01 91 00 for additional Division 23 requirements.

PART 3 - EXECUTION

A. Refer to the Cx Plan in the appendix of specification section 01 91 00.

- - - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. All new controllers, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - 1. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - 2. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
- B. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
- C. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- D. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:

23 09 23 - 1

- 1. Control valves.
- 2. Flow switches.
- 3. Flow meters.
- 4. Sensor wells and sockets in piping.
- 5. Terminal unit controllers.
- E. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Refrigerant leak detection system.
 - 2. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- F. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - Chiller controls. These controls, if not native BACnet, will require a BACnet Gateway.
 - Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- G. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
VA PROJECT NO. 636A6-12-203 JUNE 2013

Work/Item/System	Furnish	Install	Low Voltage	Line Power
			wiring	
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Interface with chiller controls	23 09 23	23 09 23	23 09 23	26
Chiller controls interface with control system	23	23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Chiller/starter interlock wiring	N/A	N/A	26	26
Chiller Flow Switches	23	23	23	N/A
Water treatment system	23	23	23	26
VFDs	23 09 23	26	23 09 23	26
Cooling Tower makeup water control devices	23	23	23 09 23	23 09 23
Starters, HOA switches	23	23	N/A	26

H. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance

to the contractor administered by this Section of the technical specification in its commissioning/verification work.

- The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
- 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.

Item/Task	Section	Control	VA
	23 09 23	system	
	contactor	integrator	
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	Х		
and equipment			
Point addressing: all hardware and	Х		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	X		

4. Responsibility Table:

VAMC DES MOINES V CENTRALIZED BOILER/CHILLER PLANT

VA PROJECT NO. 636A6-12-203 SCHEMMER NO. 06054.013

I. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 21 05 11, Common Work Results for Fire Suppression.
- B. Section 21 10 00, Water-Based Fire-Suppression Systems.
- C. Section 23 22 13, Steam and Condensate Heating Piping.
- D. Section 23 31 00, HVAC Ducts and Casings.
- E. Section 23 64 00, Packaged Water Chillers.
- F. Section 25 10 10, Advanced Utility Metering System.
- G. Section 26 05 11, Requirements for Electrical Installations.
- H. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- I. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- J. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- K. Section 26 09 23, Lighting Controls.
- L. Section 26 27 26, Wiring Devices.
- M. Section 26 29 11, Motor Starters.
- N. Section 26 32 13, Engine Generators.
- O. Section 27 15 00, Communications Horizontal Cabling
- P. Section 28 31 00, Fire Detection and Alarm.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.

JUNE 2013

- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.

- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.

23 09 23 - 7

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.

- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- NN. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- OO. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- PP. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- QQ. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- SS. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- TT. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- UU. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- VV. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.

- WW. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- XX. Repeater: A network component that connects two or more physical segments at the physical layer.
- YY. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- ZZ. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- AAA. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - 4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems

JUNE 2013

similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disgualification of the supplier.

- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - 1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.

- 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	$\pm 10\%$ of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the

construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.

- 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 11. Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.

- 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 32 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.

- 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 32 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
- D. American Society of Testing Materials (ASTM): B32-08.....Standard Specification for Solder Metal

в88-09	.Standard Specifications for Seamless Copper
	Water Tube
в88м-09	.Standard Specification for Seamless Copper
	Water Tube (Metric)
B280-08	.Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	.Standard Specification for Polyethylene (PE)
	Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11.....National Electric Code 90A-09.....Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10.....Access Control System Units 486A/486B-10.....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10.....Energy Management Equipment 1076-10.....Proprietary Burglar Alarm Units and Systems

1.11 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture:
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.

JUNE 2013

23 09 23 - 19

- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
 - 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
 - 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator

interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.

- 1. The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical

configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.

- 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances:
 - 1. BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and

= 00-99, this allows up to 100 devices per network. b. DD

- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the

"Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.5 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - 1. BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.6 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.

- The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
- 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%

nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
 - 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
 - Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.

- All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
- 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or

via a portable operator's terminal, when it is necessary, to access directly the programmable unit.

- a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality.
- b. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature falls below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
- c. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler

unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.

- d. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.
- e. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- f. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- g. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits.

JUNE 2013

A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.7 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - 2) Psychiatric patient room sensor: sensor shall be flush with wall, shall not include an override switch, numerical temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless steel cover plate with an insulated back and security screws.

d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.

- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
 - 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
 - Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.

VAMC DES MOINES VA PI CENTRALIZED BOILER/CHILLER PLANT SC

VA PROJECT NO. 636A6-12-203 SCHEMMER NO. 06054.013

- E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100% humidity.
 - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.
 - d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet).
 - e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
 - f. Ambient temperature effects, less than 0.005 percent calibrated span per °C (°F) temperature change.
 - g. RFI effect flow meter shall not be affected by RFI.
 - h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
- F. Steam Flow Sensor/Transmitter:
 - Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.
 - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F).
 - b. Process conditions, 900 kPa (125 psig) saturated steam.
 - c. Turn down ratio, 20 to 1.
 - d. Output signal, 4-20 ma DC.

23 09 23 - 31

- 1) Ambient conditions, -20°C to 50°C (0°F-120°F), 0 95 percent noncondensing RH.
- 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
- Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.
- f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source.
- G. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - Paddle-type switches (liquid service only) shall be UL Listed,
 SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.8 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.

- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - 1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.9 THERMOSTATS AND HUMIDISTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:

- 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.10 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.

23 09 23 - 34

- Leakage: maximum leakage in closed position shall not exceed 15 CFM differential pressure for outside air and exhaust dampers and 40 CFM/sq. ft. at 2 inches differential pressure for other dampers.
- Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
- 3. Blades shall be galvanized steel or aluminum, 8 inch maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 1000 fpm.
 - b. Duct mounted damper: 2000 fpm.
 - c. Maximum static pressure loss: 0.20 inches water gage.
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 125 psig.
 - 2. Valves 2 inches and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 2 1/2 inches and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 210 degrees F, which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.

- b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
- c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - 3. See drawings for required control operation.

2.11 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.

- B. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
 - 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
 - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
 - c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
 - 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.

- b. Electronics Panel shall be A/C powered 120 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45° C to 70° C (-50° F to 160° F).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	
<=1	2	
>1 to <4	4	
4 to <8	6	
8 to <12	8	
12 to <16	12	
>=16	16	

a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
C. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:

- Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
- 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
- 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
- 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- D. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.
- E. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to

JUNE 2013

provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.

2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
- Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide

plastic end sleeves at all conduit terminations to protect wiring from burrs.

- Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.

- Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 - g. All pipe mounted temperature sensors shall be installed in wells.
 - h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 - i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
 - 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.

- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.

- Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

- C. Demonstration
 - 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
 - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
 - i. Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

3.3 FUNCTIONAL PERFORMANCE TESTS

A. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.4 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- F. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Piping insulation.
- G. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. For mechanical pressed sealed fittings, only tools of fitting manufacturer shall be used.
- D. Mechanical pressed fittings shall be installed by factory trained workers.
- E. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Grooved joint couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gages.
 - 15. Thermometers and test wells.
- C. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.

VAMC DES MOINES VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-06.....Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings B40.100-05.....Pressure Gauges and Gauge Attachments C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI): 70-2-2006.....Control Valve Seat Leakage D. American Society of Mechanical Engineers (ASME): B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-2006......Malleable Iron Threaded Fittings: Class 150 and 300 B16.4-2006.....Gray Iron Threaded Fittings: (Class 125 and 250) B16.5-2003.....Pipe Flanges and Flanged Fittings: NPS ½ through NPS 24 Metric/Inch Standard B16.9-07.....Factory Made Wrought Butt Welding Fittings B16.11-05.....Forged Fittings, Socket Welding and Threaded B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-01......Wrought Copper and Bronze Solder Joint Pressure Fittings. B16.24-06.....Cast Copper Alloy Pipe Flanges and Flanged Fittings B16.39-06.....Malleable Iron Threaded Pipe Unions B16.42-06.....Ductile Iron Pipe Flanges and Flanged Fittings B31.1-08.....Power Piping E. American Society for Testing and Materials (ASTM): A47/A47M-99 (2004) Ferritic Malleable Iron Castings A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLA	VA PROJECT NO. 636A6-12-203 JUNE 2013 ANT SCHEMMER NO. 06054.013
A126-04	.Standard Specification for Gray Iron Castings
	for Valves, Flanges, and Pipe Fittings
A183-03	Standard Specification for Carbon Steel Track
	Bolts and Nuts
A216/A216M-08	Standard Specification for Steel Castings,
	Carbon, Suitable for Fusion Welding, for High
	Temperature Service
A234/A234M-07	Piping Fittings of Wrought Carbon Steel and
	Alloy Steel for Moderate and High Temperature
	Service
A307-07	Standard Specification for Carbon Steel Bolts
	and Studs, 60,000 PSI Tensile Strength
A536-84 (2004)	Standard Specification for Ductile Iron Castings
A615/A615M-08	Deformed and Plain Carbon Steel Bars for
	Concrete Reinforcement
A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy Coated (Galvannealed) By the Hot-Dip
	Process
В32-08	Standard Specification for Solder Metal
B62-02	Standard Specification for Composition Bronze or
	Ounce Metal Castings
B88-03	Standard Specification for Seamless Copper Water
	Tube
B209-07	Aluminum and Aluminum Alloy Sheet and Plate
C177-04	Standard Test Method for Steady State Heat Flux
	Measurements and Thermal Transmission Properties
	by Means of the Guarded Hot Plate Apparatus
C478-09	Precast Reinforced Concrete Manhole Sections
C533-07	Calcium Silicate Block and Pipe Thermal
	Insulation
C552-07	Cellular Glass Thermal Insulation
D3350-08	Polyethylene Plastics Pipe and Fittings
	Materials
C591-08	Unfaced Preformed Rigid Cellular
	Polyisocyanurate Thermal Insulation
D1784-08	Rigid Poly (Vinyl Chloride) (PVC) Compounds and
	Chlorinated Poly (Vinyl Chloride) (CPVC)
	Compound

VA PROJECT NO. 636A6-12-203 VAMC DES MOINES JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 D1785-06 Poly (Vinyl Chloride0 (PVC) Plastic Pipe, Schedules 40, 80 and 120 D2241-05 Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe (SDR Series) F439-06 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-02 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 F477-08 Elastomeric Seals Gaskets) for Joining Plastic Pipe F. American Water Works Association (AWWA): C110-08..... Ductile Iron and Grey Iron Fittings for Water C203-02.....Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied G. American Welding Society (AWS): B2.1-02.....Standard Welding Procedure Specification H. Copper Development Association, Inc. (CDA): CDA A4015-06.....Copper Tube Handbook I. Expansion Joint Manufacturer's Association, Inc. (EJMA): EMJA-2003..... Expansion Joint Manufacturer's Association Standards, Ninth Edition J. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-02a.....Butterfly Valves SP-70-06.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-05.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-08.....Bronze Gate, Globe, Angle and Check Valves SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-96.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-00.....Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves

K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI):

14-06.....Plastic Piping System Components and Related Materials

- 50-2009a.....Equipment for Swimming Pools, Spas, Hot Tubs and other Recreational Water Facilities – Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities 61-2008.....Drinking Water System Components - Health
- Effects

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

1.7 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Chilled Water, Condenser Water and Vent Piping:
 - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

- A. 2 inches and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.

- 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
- 4. Unions: ASME B16.39.
- 5. Water hose connection adapter: Brass, pipe thread to 3/4 inch garden hose thread, with hose cap nut.
- B. 2-1/2 inches and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 1/8 inch thick full face neoprene gasket suitable for 220 degrees F.
 - 1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.
- D. Grooved Mechanical Pipe Couplings and Fittings (Contractor's Option): Grooved Mechanical Pipe Couplings and Fittings may be used, with cut or roll grooved pipe, in water service up to 230 degrees F in lieu of welded, screwed or flanged connections. All joints must be rigid type.
 - Grooved mechanical couplings: Malleable iron, ASTM A47 or ductile iron, ASTM A536, fabricated in two or more parts, securely held together by two or more track-head, square, or oval-neck bolts, ASTM A449 and A183.
 - 2. Gaskets: Rubber product recommended by the coupling manufacturer for the intended service.
 - 3. Grooved end fittings: Malleable iron, ASTM A47; ductile iron, ASTM A536; or steel, ASTM A53 or A106, designed to accept grooved mechanical couplings. Tap-in type branch connections are acceptable.

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - Contractor's Option: Mechanical press sealed fittings, double pressed type, NSF 50/61 approved, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements for up 2-1/2 inch and below are optional for above ground water piping only.
 - 3. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 2 inches and Smaller: Threaded dielectric union, ASME B16.39.
- C. 2 1/2 inches and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 210 degrees F.
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.

- C. Provide chain operators for valves 6 inches and larger when the centerline is located 8 feet or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 400 psig600 psig working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 2 inches of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 175 psig working pressure at 200 degrees F. Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
 - c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - 1) Valves 6 inches and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 8 inches and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) 3. Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves):
 - a) 2 inches and smaller: MSS-SP 80, Bronze, 150 psig, wedge disc, rising stem, union bonnet.

b) 2 1/2 inches and larger: Flanged, outside screw and yoke.MSS-SP 70, iron body, bronze mounted, 125 psig wedge disc.

E. Globe and Angle Valves

- 1. Globe Valves
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Globe valves shall be union bonnet with metal plug type disc.
 - b. 2 1/2 inches and larger: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
- 2. Angle Valves:
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Angle valves shall be union bonnet with metal plug type disc.
 - b. 2 1/2 inches and larger: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for angle.
- F. Check Valves
 - 1. Swing Check Valves:
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb., 45 degree swing disc.
 - b. 2 1/2 inches and larger: 125 psig, flanged, iron body, bronze trim, MSS-SP-71 for check valves.
 - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball or Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.

- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - Gray iron (ASTM A126) or brass body rated 175 psig at 200 degrees F, with stainless steel piston and spring.
 - Brass or ferrous body designed for 300 psig service at 250 degrees F, with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
 - 4. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.
- I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.
- D. Self-Averaging Annular Sensor Type: Brass or stainless steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in gpm.

- G. Portable Water Flow Indicating Meters:
 - Minimum 6 inch diameter dial, forged brass body, beryllium-copper bellows, designed for 175 psig working pressure at 250 degrees F.
 - 2. Bleed and equalizing valves.
 - Vent and drain hose and two 10 feet lengths of hose with quick disconnect connections.
 - Factory fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 - 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.
- H. Permanently Mounted Water Flow Indicating Meters: Minimum 6 inch diameter, or 18 inch long scale, for 120 percent of design flow rate, direct reading in gpm, with three valve manifold and two shut-off valves.

2.9 STRAINERS

- А. У Туре.
 - Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 0.045 inch diameter perforations for 4 inches and larger: 0.125 inch diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.10 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 2 inches to 4 inches, 165psig at 250 degrees F.
 - b. Connector sizes 5 inches to 12 inches, 140 psig at 250 degrees F.
 - 3. Provide ductile iron retaining rings and control units.
- B. Mechanical Pipe Couplings:

See other fittings specified under Part 2, PRODUCTS.

2.11 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 50 psig.
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.
 - 6. Threaded connection at bottom, one inch minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint (Contractor's Option): 350 psig maximum working pressure, steel pipe fitting consisting of telescoping body and slippipe sections, PTFE modified polyphenylene sulfide coated slide section, with grooved ends, suitable for axial end movement to 3 inch.

- G. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
- I. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.12 WATER FILTERS AND POT CHEMICAL FEEDERS

See section 23 25 00, HVAC WATER TREATMENT, Article 2.2, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.13 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 4-1/2 inches in diameter, 1/4 inch NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 1/4 inch MPT by 3 inches long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
- B. Provide one each of the following test items to the Resident Engineer:
 1. 1/4 inch FPT by 1/8 inch diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.

- 3-1/2 inch diameter, one percent accuracy, compound gage, --30 inches Hg to 100 psig range.
- 220 degrees F pocket thermometer one-half degree accuracy, one inch dial, 5 inch long stainless steel stem, plastic case.

2.15 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 6 inch brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 9 inches, range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water: 0-38 degrees C (32-100 degrees F).

2.16 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.

- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide one inch minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than one inch in 40 feet. Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally locate value stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end values. Control values usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly values with the value open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 2-1/2 inches and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- E. Solvent Welded Joints: As recommended by the manufacturer.

3.3 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.4 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment

VA PROJECT NO. 636A6-12-203

unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 6 feet per second, if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer.

- 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 6 feet per second. Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.5 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.

D. Utilize this activity, by arrangement with the Resident Engineer, for instructing VA operating personnel.

3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.
- C. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

- - - E N D - - -

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Hydronic pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- G. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
 - 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at

design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.

- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- C. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI): AISI 1045.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI): ANSI B15.1-00(R2008)..... Safety Standard for Mechanical Power Transmission Apparatus ANSI B16.1-05.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800
- D. American Society for Testing and Materials (ASTM): A48-03 (2008).....Standard Specification for Gray Iron Castings B62-2009.....Standard Specification for Composition Bronze or Ounce Metal Castings

23 21 23 - 2

E. Maintenance and Operating Manuals in accordance with Section 01 00 00, General Requirements.

1.6 DEFINITIONS

- A. Capacity: Gallons per minute (GPM) of the fluid pumped.
- B. Head: Total dynamic head in feet of the fluid pumped.
- C. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.

1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the Resident Engineer.

1.8 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A. General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1¹/₂ times the designed pressure.
 - 3. Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMNTS FOR HVAC and STEAM GENERATION EQUIPMENT. Motors shall be Open Drip Proof and operate at 1750 rpm unless noted otherwise.
 - d. Heating pumps shall be suitable for handling water to 225°F.
 - e. Provide coupling guards that meet ANSI B15.1, Section 8 and OSHA requirements.

- f. Pump Connections: Flanged.
- g. Pump shall be factory tested.
- h. Performance: As scheduled on the Contract Drawings.
- 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip-proof motor.
 - b. Variable Speed Motor Controllers: Refer to Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION paragraph, Variable Speed Motor Controllers. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.
- B. In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 850 kPa (125 psig), ANSI B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - 5. Casing Drain and Gage Taps: 1/2-inch plugged connections minimum size.
 - 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, AISI Type 1045 or stainless steel.
 - Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
 - 11. Base Mounted Pumps:
 - a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - b. Impeller Wear Rings: Bronze.
 - c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, ANSI B15.1, bolted to the baseplate.
 - d. Bearings (Double-Suction pumps): Regreaseable ball or roller type. Provide lip seal and slinger outboard of each bearing.
 - e. Base: Cast iron or fabricated steel for common mounting to a concrete base.
 - 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:

23 21 23 - 4

- a. Body: Cast iron with steel inlet vanes and combination diffuser-strainer-orifice cylinder with 5 mm (3/16-inch) diameter openings for pump protection. Provide taps for strainer blowdown and gage connections.
- b. Provide adjustable foot support for suction piping.
- c. Strainer free area: Not less than five times the suction piping.
- d. Provide disposable start-up strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- B. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- C. Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Lubricate pumps before start-up.
- C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- F. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- G. After several days of operation, replace the disposable start-up strainer with a regular strainer in the suction diffuser.
- H. Major equipment and system startup and operational tests shall be scheduled and documented in accordance with Section 01 91 00 Commissioning.

3.3 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

23 21 23 - 5

3.4 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings. 1.2 RELATED WORK
- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Piping insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- C. Water treatment for open and closed systems: Section 23 25 00, HVAC WATER TREATMENT.
- D. Temperature and pressure sensors and valve operators: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.2 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gages.
 - 13. Thermometers and test wells.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
- D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

- E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI):
 B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch)

B16.4-2006.....Gray Iron Threaded Fittings

C. American Society of Mechanical Engineers (ASME):

B16.1-2005.....Gray Iron Pipe Flanges and Flanged Fittings B16.3-2006.....Malleable Iron Threaded Fittings B16.9-2007.....Factory-Made Wrought Buttwelding Fittings B16.11-2005.....Forged Fittings, Socket-Welding and Threaded B16.14-91....Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads

- B16.22-2001.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings
- B16.23-2002.....Cast Copper Alloy Solder Joint Drainage Fittings B16.24-2006....Cast Copper Alloy Pipe Flanges and Flanged
 - Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500
- B16.39-98.....Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300
- B31.1-2007.....Power Piping

B31.9-2008.....Building Services Piping

B40.100-2005.....Pressure Gauges and Gauge Attachments

- Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1
- D. American Society for Testing and Materials (ASTM):

A47-99.....Ferritic Malleable Iron Castings

A53-2007.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

A106-2008.....Seamless Carbon Steel Pipe for High-Temperature Service
VAMC DES MOINES VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 A126-2004.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A181-2006.....Carbon Steel Forgings, for General-Purpose Piping A183-2003 Carbon Steel Track Bolts and Nuts A216-2008 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A285-01 Pressure Vessel Plates, Carbon Steel, Low-and-Intermediate-Tensile Strength A307-2007 Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A516-2006 Pressure Vessel Plates, Carbon Steel, for Moderate-and- Lower Temperature Service A536-84(2004)e1 Standard Specification for Ductile Iron Castings B32-2008 Solder Metal B61-2008 Steam or Valve Bronze Castings B62-2009 Composition Bronze or Ounce Metal Castings B88-2003 Seamless Copper Water Tube F439-06 Socket-Type Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441-02(2008) Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 E. American Welding Society (AWS): A5.8-2004......Filler Metals for Brazing and Braze Welding F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-95.....Butterfly Valves SP-70-98.....Cast Iron Gate Valves, Flanged and Threaded Ends SP-71-97.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-78-98.....Cast Iron Plug Valves, Flanged and Threaded Ends SP-80-97.....Bronze Gate, Globe, Angle and Check Valves SP-85-94.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends G. Military Specifications (Mil. Spec.): MIL-S-901D-1989......Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems

- H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping:
 - Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
 - All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 2 inches and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 1/2 inch ID hose. No integral shut-off is required.
- B. 2-1/2 inches and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.

- 2. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 2 inches and Smaller: Threaded dielectric union, ASME B16.39.
- C. 2 1/2 inches and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 250 degrees F for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 6 inches and larger when the centerline is located 7 feet or more above the floor or operating platform.

- D. Shut-Off Valves
 - 1. Gate Valves:
 - a. 2 inches and smaller: MSS-SP80, Bronze, 150 lb., wedge disc, rising stem, union bonnet.
 - b. 2 1/2 inches and larger: Flanged, outside screw and yoke.
 - High pressure steam 60 psig and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 1 inch factory installed bypass with globe valve on valves 4 inches and larger.
 - 2) All other services: MSS-SP 70, iron body, bronze mounted, 125 psig wedge disc.

E. Globe and Angle Valves:

- 1. Globe Valves:
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Globe valves shall be union bonnet with metal plug type disc.
 - b. 2 1/2 inches and larger:
 - Globe valves for high pressure steam 60 psig and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
- 2. Angle Valves
 - a. 2 inches and smaller: MSS-SP 80, bronze, 150 lb. Angle valves shall be union bonnet with metal plug type disc.
 - b. 2 1/2 inches and larger:
 - Angle valves for high pressure steam 60 psig and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 125 psig, flanged, iron body, bronze trim, MSS-SP-85 for angle valves.
- F. Swing Check Valves
 - 1. 2 inches and smaller: MSS-SP 80, bronze, 150 psig, 45 degree swing disc.
 - 2. 2-1/2 inches and Larger:
 - a Check valves for high pressure steam 60 psig and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 150 psig at 500 degrees F, 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.

23 22 13 - 6

- b. All other services: 125 psig, flanged, iron body, bronze trim, MSS-SP-71 for check valves.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 150 psig saturated steam.
 - 2 inches and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections 250 psig.
 - 2. 2-1/2 inches and larger: Flanged cast steel or 250 psig cast iron.
- C. All Other Services: Rated 125 psig saturated steam.
 - 1. 2 inches and smaller: Cast iron or bronze.
 - 2. 2-1/2 inches and larger: Flanged, iron body.
- D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 3 inches and smaller: 20 mesh for steam and 0.045 inch diameter perforations for liquids.
 - 4 inches and larger: 0.045 inch diameter perforations for steam and
 0.125 inch diameter perforations for liquids.

2.9 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.10 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 5-30 psig: Rated 50 psig at 298 degrees F.
 - b. Steam Service 31-125 psig: Rated 150 psig at 366 degrees F.
 - c. Condensate Service: Rated 100 psig at 310 degrees F.
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - Movement: As shown on drawings plus recommended safety factor of manufacturer.

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

VA PROJECT NO. 636A6-12-203

- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 50 psig.
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.
 - 6. Threaded connection at bottom, one inch minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.11 FLEXIBLE BALL JOINTS

- A. Design and Fabrication: One piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 250 psig and a temperature of 450 degrees F. Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 1/4 inch to 6 inch inclusive, and 15 degrees for sizes 2-1/2 inches to 30 inches. Joints through 14 inches shall have forged pressure retaining members; while size 16 inches through 30 inches shall be of one piece construction.
- B. Material:
 - 1. Cast or forged steel pressure containing parts and bolting in accordance with Section II of the ASME Boiler Code or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME Section II SA 515, Grade 70.

- 2. Gaskets: Steam pressure molded composition design for a temperature range of from minus 50 degrees F to plus 525 degrees F.
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - 1. Low pressure leakage test: 6psig saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 500 psig saturated steam.
 - 3. Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
 - Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
 - 5. Vibration: 170 hours on each of three mutually perpendicular axis at 25 to 125 Hz; 0.05 inch to 0.1 inch double amplitude on a single ball joint and 3 ball joint off set.

2.12 STEAM SYSTEM COMPONENTS

- A. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 200 feet intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1/4 psig, based on a condensate leg of 12 inches at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be 5. Mechanism: Brass, stainless steel or corrosion resistant alloy. rated for the pressure upstream of the PRV supplying the system.
 - 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
 - 4. Valves and seats: Suitable hardened corrosion resistant alloy.
 - 5. Floats: Stainless steel.
 - 6. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.

23 22 13 - 9

2.13 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide one inch minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than one inch in 40 feet. Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.

- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 12 inches above the roof or through the wall minimum 8 feet above grade with down turned elbow.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.

D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 25 pounds independently of connecting piping.

3.5 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.7 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Chemical treatment for open loop systems.

1.2 RELATED WORK

- A. Test requirements and instructions on use of equipment/system: Section 01 00 00, GENERAL REQUIREMENTS.
- B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Piping and valves: Section 23 21 13, HYDRONIC PIPING.
- D. Cooling Towers: Section 23 65 00, COOLING TOWERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - Chemical treatment for closed systems, including installation and operating instructions.
- C. Water analysis verification.

23 25 00 - 1

- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2008.....National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02 (2008) Standard Specification for Chlorinated Poly Vinyl Chloride (CPVC) Plastic Pipe, Schedules 40 and 80

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.

- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 250 degrees F and 125 degrees Fahrenheit respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.
- D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be five gallon minimum capacity at 125 psigminimum working pressure.
- E. Side stream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with polypropylene core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 2 psig at design flow rate when clean, and maximum pressure drop of 25 psig when dirty. A constant flow rate valve shall be provided in the piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.3 CHEMICAL TREATMENT FOR OPEN LOOP SYSTEM(S)

- A. General: Provide the following:
 - A factory-fabricated and tested packaged, self-contained, chemical feed/blow-down monitoring, controlling and alarming system, containing all except specified or indicated remote components, and requiring only terminal sample stream and chemical piping/tubing connections, remote component electrical connection and power supply.
 - 2. System shall be suitable for a broad spectrum make-up water supply and chemical treatment program. Components, except those specified

or indicated otherwise, shall be housed in one or more joined or divided steel enclosures.

- B. System Functions:
 - 1. Automatically maintain a predetermined, selectable, total dissolved solids concentration through a continuously monitoring conductivity controller, maintain a predetermined, selectable, scale/corrosion inhibitor and dispersant residual, through a continuously make-up monitoring meter/counter/timer and inhibitor/dispersant ratio controller; achieve a predetermined, selectable, peak concentration of one or two microbiocides as needed on an alternating basis, through a programmable timer controller. De-energize controller or stagger feed chemicals that would degrade or could be incompatible if fed simultaneously.
 - 2. Automatically maintain a predetermined, selectable, pH level through a continuously monitoring pH controller. For systems with make up water alkalinity in excess of 125 PPM or hardness above 300 PPM, provide acid feed limit timer and audible/visual alarm actuated on low pH.
- C. Main control panel and accessories:
 - 1. Housed in a NEMA Type 4X enclosure:
 - a. Hinged key lock door with viewing window.
 - b. Hard wire connected to power source.
 - c. Provide minimum of three (3) 115V, 1 Ph, 60 Hz receptacles located on enclosure for electrical connection and control of chemical pumps.
 - d. Prewired for ease of installation.
 - 2. Provide an external combination mounted flow switch with transparent sight tube.
 - a. Disable control outputs upon loss of water flow to prevent chemical feeding.
 - b. Provide complete with 3/4 IN connections and combination conductivity and temperature electrode.
 - Keypad or remote control: Access all measurements and set points through chemical resistant key pad or remote.
 - a. Security code to prevent unauthorized access.
 - 4. Utilize microprocessor technology.
 - 5. Menu driver programs.
 - 6. Liquid crystal display (LCD).

 $23 \ 25 \ 00 \ - \ 4$

 Provide temperature corrected measurements by reading water temperature and adjusting conductivity values according to known temperature curve.

a. Range: 0-100 degC (32-212 degF) with an adjustable high alarm.

- 8. Provide real-time clock.
- 9. Conductivity monitor:
 - a. Provide linear measurements of full range.
 - b. Provide two scales for selection of high and low in field to assure accurate measurements.
 - c. Provide increments of 1 microohm/cm with adjustable hysteresis.
 - d. Provide bleed-off control in following manner:
 - Standard operation-controller actuates a bleed off solenoid valve when dissolved solids level is exceeded by trip point.
 - 2) Provide an adjustable bleed limit timer to prevent excessive bleed off.
 - 3) An alarm contact shall close when timer has timed out.
- 10. Biocide operation:
 - a. Provide a programmable 28 day biocide timer for accurate addition of algaecide.
 - b. Provide a secondary bleed off timer to lower conductivity in system prior to biocide feed.
 - c. Lock out cooling water bleed-off during biocide feed period.
- 11. Chemical feed control: Provide three timers that are capable of operating in one of following field programmable modes.
 - a. Counter-timer-chemical feed proportioned to make-up water rate.
 - Controller shall send low voltage signal to a contacting head water meter.
 - 2) Low voltage signal will ensure long contact life.
 - 3) Water meter shall read in gallons.
- 12. Alarms:
 - a. Provide alarm LEDs with silence button for high and low conductivity, 10-60 minute bleed-off, chemical feed limit timers, and chemical drum level. Provide remote output relay to indicate alarm condition to Building Control System specified under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- 13. Controller operating data history:
 - a. Retain in memory all operating data for following parameters:

- 1) Standard memory shall allow acquisition and storage of all analog inputs for a one-week period.
- 2) A three (3) hour minimum, maximum average of all conditions shall be stored for a one-week period.
- 3) A minute-by-minute account of operating conditions shall be available for latest three-hour period.
- 14. Electrode: Combination temperature and conductivity type.
 - a. Quick disconnect.
 - b. Supplied in flow switch assembly.
- 15. Ph monitor:
 - a. Sensor for monitoring purposes only.
 - b. Acid shall not be used to control pH.
- 16. Remote communication: Provide open protocol BACnet/IP interface to perform the following functions:
 - a. Access Real-time system values.
 - b. Change operating parameters.
 - c. Controller diagnostics.
 - d. Obtain history files.
 - e. Alarm condition notification.
- D. Impulse water meter:
 - 1. General:
 - a. Measure in gallons.
 - b. Sized to meter peak make up rates.
 - c. Equipped with an electrical contacting register.
 - d. Totalize flow at main control panel.
 - 2. Provide at following locations:
 - a. Cooling tower make up line.
 - b. Cooling tower bleed off line.
- E. Provide CPVC injection nozzles, ASTM F441 with corporation stop to inject chemical into main circulating water line.
 - 1. Pressure rating: 700kPa (100 PSI)
 - 2. Size: DN20 (3/4 IN) NPT.
 - 3. Quantity: Three (3).
- F. Provide chemical feed pumps operated by a 115V, 60 cycle, single PH motor.
 - 1. Provide separate stroke and stroke frequency setting capabilities.
 - 2. Positive displacement type pump

- a. Provide with anti-siphon/pressure relief valve installed on pump head which provides anti-siphon protection and aids in priming under pressure.
- b. Capacity: As determined by Water Treatment Vendor.
- c. Complete with discharge check valves, foot valves, polyethylene suction and discharge tubing.
- 3. Quantity: Provide one pump for each chemical provided.
- G. Bleed-off piping assembly:
 - 1. Inlet shut-off valve.
 - 2. Wye strainer.
 - 3. Strainer blowdown valve.
 - 4. Throttling valve.
 - 5. Brass solenoid valve compatible with main control panel.
 - 6. Assembly shall be sized by Water Treatment Vendor.
- H. Secondary containment spill pallets for chemical drums:
 - 1. Material: Polyethylene.
 - 2. Capacity: 250 L (66 GAL) each.
 - 3. Dimensions each: DN135 (53 IN) length x DN74 (29 IN) wide X DN43 (17 IN) high.
 - 4. Provide each pallet with grating and drain plug.
 - 5. Provide one portable loading ramp.
 - 6. Quantity: Two (2).
- I. Provide liquid level switch assemblies with a CPVC bung hole adapter, ASTM F441, to mount directly into 200 L (55 GAL) chemical drum bung hole.
 - 1. Interface with main control panel.
 - 2. Quantity: Three (3).
- J. Corrosion monitor rack:
 - 1. Materials: Corrosion resistant.
 - 2. Construction: ASME specifications.
 - 3. Number of coupons: four (4).
 - 4. Coupon holders: quick disconnect type.
- K. Provide test kits for monitoring inhibitor levels, total dissolved solids, chlorides, alkalinity and closed system inhibitors.
- L. Provide one (1) year's supply of chemical treatment including quantity of chemicals necessary to chemically treat system to control scale, corrosion and biological fouling. Provide water treatment products that perform the following:

- 1. Inhibitor to protect against corrosion and scale formation.
- 2. Two liquid biocides for prevention of slime, bacteria and algae.
- 3. Chromate based chemical are unacceptable.
- 4. Water treatment chemicals to remain stable throughout operating temperature range.
- 5. Are compatible with pump seals and other elements in the systems.
- M. Chemicals: Provide sufficient chemicals for start-up and testing and twelve months operation from date of project acceptance.
 - Scale/corrosion inhibitor: Provide a concentrated liquid organic corrosion/scale/ fouling inhibiting formation without phosphates, chromates, zinc and other materials in excess of allowable, local, effluent limits. Feed automatically. Maintain residual as determined by water treatment laboratory.
 - Dispersant: Provide a concentrated liquid organic/polyelectrolyte formulation. Feed automatically. Maintain residual as determined by water treatment laboratory.
 - 3. pH Control: Depending upon local water conditions, provide 60 or 66 degree Baume technical grade, concentrated sulfuric acid for acidic treatment or sodium hydroxide (NaOH) for basic treatment to maintain pH in the range of 7.0 to 8.0 automatically. Provide one initial 47 L (12.5 gallon) carboy of acid or base and one spare carboy of acid or base, if required.
 - 4. Microbiocides: Provide two different, one oxidizing and one nonoxidizing, concentrated algaecide-biocide formations containing no heavy metals and which are effective at maximum encountered pH. Alternate solutions as needed to effectuate selective kill without build-up of immunity. Period treatment with a chlorine releasing agent is permissible within allowable, local, effluent limits. Feed automatically. Develop peak concentration and maintain for minimum period as determined by water treatment laboratory.
 - 5. All chemicals to be acceptable for discharge to sanitary sewer.
- N. Water Analysis: Confirm raw water analysis or provide analysis if none is furnished:
 - Description Year (Avg.) Silica (SiO2) _____ Iron & Aluminum _____ Calcium (Ca) _____
 - Magnesium (Mg) _____

Sodium (Na) & Potassium (K)
Carbonate (CO3)
Bicarbonate (HC03)
Sulfate (SO4)
Chloride (C1)
Nitrate (NO3)
Turbidity
рн
Residual Chlorine
Total Alkalinity
Non Carbonate Hardness
Total Hardness
Dissolved Solids

- Conduct performance test to prove capacity and performance of treatment system.
 - 1. Raw water total hardness, PPM
 - 2. Concentration cycles
 - 3. Raw water, pH
 - 4. System water, pH
 - 5. Chemical solution used
 - 6. Acid solution used
 - 7. Quantity or chemical solution injected into system per cycle
 - 8. Quantity of acid injected into system per cycle
 - 9. Make up water required
 - 10. Waste to drain requirement

P. Centrifugal Solid Separator:

- Material: The separator shall be fabricated of carbon steel with shell material and head material of 0.135 inch wall or heavier. Maximum operating pressure shall be 10.3 bar (150 psi), unless specified otherwise.
- 2. Finish: Paint coating shall be acrylic urethane, spray-on, and royal blue.
- 3. Performance: The removal of solids from a pumped/pressurized liquid system shall be accomplished with a centrifugal-action vortex separator. Solids removal efficiency is principally predicated on the difference in specific gravity between the solids and the liquid. Single pass test performance shall be less than 95% removal of solids 74 microns and larger. Pressure loss shall be between 0.3 0.8 Bar (5-12 psi).

- 4. Purging: Evacuation of separated solids shall be accomplished automatically, employing a timer-activated motorized ball valve. Straight-through valve design, with bronze valve body and stainless steel ball in a Teflon seat. NEMA 4 housing for indoor and outdoor installation. Valve size: 50 mm (2").
- 5. Provide a differential pressure sensor interface with DDC system.
- Q. Chemical Treatment System Piping and Valves
 - Schedule 80 CPVC and fittings. Pipe size shall be 25 mm (1 inch) unless otherwise shown.
 - 2. BALL VALVES: CPVC TYPE.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - Provide piping for the flow assembly piping to the main control panel and accessories.
 - a. The inlet piping shall connect to the discharge side of the circulating water pump.
 - b. The outlet piping shall connect to the water piping serving the cooling tower downstream of the heat source.
 - c. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.

- 4. Install injection nozzles with corporation stops in the water piping serving the cooling tower downstream of the heat source.
- 5. Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.
- 6. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REOUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

3.2 FUNCTIONAL PERFORMANCE TESTS

A. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.3 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:1. Exhaust systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room,

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- F. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Sealants and gaskets.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Sealants and gaskets.
 - c. Installation instructions.
 - 3. Upper hanger attachments.
 - 4. Flexible connections.
 - 5. COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures C. American Society for Testing and Materials (ASTM): A167-99(2009) Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A653-09.......Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-09a.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength B209-07.....for Aluminum and Aluminum-Alloy Sheet and Plate E84-09a.....Standard Test Method for Surface Burning Characteristics of Building Materials

VAMC DES MOINES VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 D. National Fire Protection Association (NFPA): 90A-09..... of Air Conditioning and Ventilating Systems E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 2nd Edition - 2005.....HVAC Duct Construction Standards, Metal and Flexible 1st Edition - 1985.....HVAC Air Duct Leakage Test Manual F. Underwriters Laboratories, Inc. (UL): 555-06Standard for Fire Dampers 555S-06Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- C. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 2 inch
 - > 2 inch to 3 inch
 - > 3 inch to 4 inch

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 3 through 8 inches shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
 - 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- E. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

2.4 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- E. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during

VA PROJECT NO. 636A6-12-203

construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.
- 3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.

- H. Corrosion Protection:
 - Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 3. Power wall ventilators.
 - 6. Propeller fans.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Belt guards.
- F. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- G. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-86.....Standards Handbook 210-06....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-09....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-08....Reverberant Room Method for Sound Testing of Fans

C. American Society for Testing and Materials (ASTM): B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-08....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-08....Standard Test Methods for Measuring Adhesion by Tape Test G152-06....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-04....Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials

D. Underwriters Laboratories, Inc. (UL): 181-2005......Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

1.7 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 POWER WALL VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades.
- C. Construction: Steel or aluminum, completely weatherproof, for wall mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.

2.2 PROPELLER FANS

A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.

- B. Belt-driven or direct-driven fans as indicated on drawings.
- C. Square steel panel, deep drawn venturi, arc welded to support arms and fan/motor support brackets, baked enamel finish. Provide wall collar for thru-wall installations.
- D. Motor, Motor Base and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Motor shall be totally enclosed type.
- E. Wall Shutter: Fan manufacturer's standard, steel frame, aluminum blades, heavy duty stall type electric damper motor, spring closed.
- F. Wire Safety Guards: Provide on exposed inlet and outlet.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- D. Major equipment and system startup and operational tests shall be scheduled and documented in accordance with Section 01 91 00 Commissioning.

3.4 FUNCTIONAL PERFORMANCE TESTS

A. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance

23 34 00 - 4

testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.5 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 23 64 00 PACKAGED WATER CHILLERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Centrifugal water-cooled chillers, complete with accessories.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. Section 23 21 23, HYDRONIC PUMPS.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 21 13, HYDRONIC PIPING.
- H. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- I. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 DEFINITION

- A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135.
- C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- D. FTT-10: Echelon Transmitter-Free Topology Transceiver.

1.4 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, and comply with the following.
- B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance.
- C. Comply with AHRI requirements for testing and certification of the chillers.
- D. Refer to paragraph, WARRANTY, Section 00 72 00, GENERAL CONDITIONS, except as noted below:
 - 1. Provide a 5-year motor, and compressor warranty to include materials, parts and labor.
- E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard

F. Refer to ASHRAE Standard 15, Safety Standard for Refrigeration System, for refrigerant vapor detectors and monitor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 370-01.....Sound Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment
 - 495-1999 (R2002).....Refrigerant Liquid Receivers
 - 550/590-03.....Standard for Water Chilling Packages Using the Vapor Compression Cycle
 - 560-00.....Absorption Water Chilling and Water Heating Packages
 - 575-94..... Methods for Measuring Machinery Sound within Equipment Space
- C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):
 - ANSI/ASHRASE-15-2007....Safety Standard for Mechanical Refrigeration Systems
 - GDL 3-1996.....Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems
- D. American Society of Mechanical Engineers (ASME):
- E. American Society of Testing Materials (ASTM): C 534/ C 534M-2008.....Preformed, Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form
 - C 612-04......Mineral-fiber Block and Board Thermal Insulation
- F. National Electrical Manufacturing Association (NEMA): 250-2008.....Enclosures for Electrical Equipment (1000 Volts Maximum)
- G. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code
- H. Underwriters Laboratories, Inc. (UL): 1995-2005..... Heating and Cooling Equipment

1.6 SUBMITTALS

A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data.
 - Centrifugal water chillers, including motor starters, control panels, and vibration isolators, and remote condenser data shall include the following:
 - a. Rated capacity.
 - b. Pressure drop.
 - c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard.
 - d. Refrigerant
 - e. Accessories.
 - f. Installation instructions.
 - g. Start up procedures.
 - h. Wiring diagrams, including factor-installed and field-installed wiring.
 - Sound/Noise data report. Manufacturer shall provide sound ratings.
 Noise warning labels shall be posted on equipment.
 - j. Refrigerant vapor detectors and monitors.
- C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- D. Run test report for all chillers.
- E. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests.

1.7 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL WATER-COOLED WATER CHILLERS

A. General: Chiller shall be factory-assembled and-tested, complete with evaporator, condenser, marine water boxes for condenser and evaporator, compressor, motor, starter, and cooler, economizer or intercooler, purge system (if required), refrigerant piping, instrumentation and control piping, operating and safety controls mounted on the chiller, and other auxiliaries necessary for safe and proper operation of the unit. Chiller operation shall be fully automatic. Make provision for space and design piping layout to suit the marine water boxes.

- B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings.
- C. Capacity of a single water-cooled chiller shall not exceed 1,250 Tons (Standard AHRI Conditions).
- D. Applicable Standard: Chillers shall be rated and certified in accordance with AHRI Standard 550/590. Chillers shall be AHRI stamped. Chiller efficiency shall comply with FEMP (Federal Energy Management Progress) requirements.
- E. Hermetic or open: Chillers shall be open or hermetically sealed, using one of the following refrigerants: HCFC-123, HFC-134a or HCFC-410A.
- F. Compressors: The unit shall utilize a magnetic bearing, oil-free, semihermetic centrifugal compressor. The levitated shaft position shall be digitally controlled and shall be monitored by X-axis position sensor, Y-axis position sensor, and Z-axis position sensor. The compressor drive train shall be capable of coming to a controlled, safe stop in the event of a power failure by diverting stored power to the magnetic bearing controls system.
 - The motor shall be of the semi-hermetic type, of sufficient size to efficiently fulfill compressor horsepower requirements. It shall be liquid refrigerant cooled with internal thermal sensing devices in the stator windings. The motor shall be compatible with variable frequency drive operation.
 - 2. If unit contains an atmospheric shaft seal, the manufacturer shall provide the following at no additional charge:
 - a. 20 year refrigerant replacement warranty for any loss of refrigerant that can be directly attributable to the failure of the atmospheric shaft seal.
 - 3. If the compressor drive motor is an open design the chiller manufacturer shall provide the following at no additional charge:
 - a. A self contained air conditioning system in the mechanical space sized to handle the maximum heat output the open drive motor. The energy required to operate this air conditioning system shall be added to the chiller power at all rating points for energy evaluation purposes.
 - 4. If the compressor drive motor uses any form of antifriction bearings (roller, ball, etc) the chiller manufacturer shall provide the following at no additional charge:
 - a. A 20 year motor bearing warranty and all preventative maintenance, including lubrication, required to maintain the bearings as

specified in the manufacturer's operating and maintenance instructions

- b. At start up a three axis vibration analysis and written report which establishes a baseline of motor bearing condition.
- c. An annual three axis vibration analysis and written report to indicate the trend of bearing wear.
- 5. The chiller shall be equipped with an integrated Variable Frequency Drive (VFD) to automatically regulate compressor speed in response to cooling load and the compressor pressure lift requirement. Movable inlet guide vanes and variable compressor speed acting together, shall provide unloading. The chiller controls shall coordinate compressor speed and guide vane position to optimize chiller efficiency.
- The compressor circuit shall be equipped with a 5% impedance line reactor to help protect against incoming power surges and help reduce harmonic distortion.
- The compressor shall be vibration tested and not exceed a level of 0.14 IPS.
- G. Evaporator: Shell-and-tube type, constructed and tested and stamped in accordance with Section VIII D1 of ASME Boiler and Pressure Vessel Code where applicable for working pressure produced by refrigerant used and water system installed, but not less than 1035 kPa (150 psig) waterside working pressure. Shell shall be fabricated of carbon steel and shall have carbon steel tube sheets; drilled and reamed to accommodate the tubes. Tubes shall be externally and internally enhanced individually replaceable and shall be expanded full diameter into tube sheets, providing a leak proof seal. Intermediate tube supports sheets shall be provided as recommended by the manufacturer to minimize tube vibration, stress, and wear. Performance shall be based on a water velocity not less than 1 m/s (3 fps) nor more then 4 m/s (12 fps), and fouling factor of 0.0000176 m² degrees C (0.0001 hr. sq. ft. degrees F/Btu). Removable marine water box shall be constructed of steel. Design working pressure shall be 1035 kPa (150 psig); pressure tested at 130 percent of working pressure. Water nozzle connections shall be flanged.
- H. Condenser: Shell-and-tube type, constructed, tested, and stamped in accordance with applicable portions of Section VIII D1 of the ASME Boiler and Pressure Vessel Code, where applicable for working pressure produced by the refrigerant used and water system installed, but not less than 1035 kPa (150 psig). Shell shall be fabricated of carbon steel and shall have carbon steel tube sheets; drilled and reamed to accommodate the tubes. Tubes shall be nonferrous metal, externally

enhanced, and internally enhanced, individually replaceable, and shall be expanded full diameter into tube sheets, providing a leak proof seal. Intermediate tube support sheets shall be provided as recommended by the manufacturer to minimize tube vibration, stress and wear. Tubes shall fit tightly in the supports to prevent chafing due to vibration or pulsation. Performance of condenser shall be based on a water velocity not less than 1 m/s (3 fps) nor more than 4 m/s (12 fps), and a fouling factor of 0.000044 m² degrees C (0.00025 hr. sq. ft.) degrees F/Btu. Removable marine water box shall be constructed of steel. Design working pressure shall be 1035 kPa (150 psig) ; pressure tested at 130 percent of working pressure. Water nozzle connections shall be flanged.

- I. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 40 mm (1.5 inch) minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534.
- J. Economizer: Provide if required by manufacturer. Flash gas shall be piped from economizer to inlet of intermediate stage impeller wheel. In case of rotary compressor flash gas shall be piped from economizer to the intermediate compressor point. Provide a refrigerant flow control system (float valve or variable/multiple orifice system) to automatically regulate flow of liquid refrigerant through economizer. If external-type economizer is used, such economizer shall be constructed and tested in accordance with Section 8 of ASME Boiler and Pressure Vessel Code for working pressures produced by refrigerant used, unless exempt by Section U-1 of the code.
- K. Motor Load Limiter: Provide a sensing and control system, which will limit maximum load current of compressor motor to a manually selectable percentage of 40 percent to 100 percent of full load current. System shall sense compressor motor current and limit it by modulating inlet guide vanes at the compressor, overriding other controls in their ability to increase loading, but not overriding their ability to reduce loading.
- L. Purge System: Chillers utilizing HCFC-123 and chillers using refrigerants with vapor pressure less than 100 kPa (14.7 psig) shall be supplied with Purge System. Purge unit shall be factory-mounted, complete with necessary, piping, operating and safety controls and refrigerant service valves to isolate the unit from the chilling unit. Purge unit shall be air, water, or refrigerant cooled. When in operation, purge system shall function automatically to remove, water vapor, and condensable gases from refrigerant present therein. Purge

system shall be manually or automatically started and stopped, and shall be assembled as a compact unit. As an option, a fully automatic purge system that operates continuously while main unit is operating may be furnished. Such purge system shall provide a means to signal operator of occurrence of excessive purging indicating abnormal air leakage into unit. The purge system shall be of high efficiency in recapturing the refrigerant at all load and head conditions and with capability to operate when the chiller is off. The purge unit shall be UL listed.

- M. Isolation Pads: Manufacturers standard.
- N. Refrigerant:
 - Provide sufficient volume of dehydrated refrigerant to permit maximum unit capacity operation before and during tests. Refrigerant charge lost during the warranty period due to equipment failure shall be replaced without cost to the Government.
 - The manufacturer shall certify that chiller components, such as seals, o-ring, motor windings, etc, are fully compatible with the specified refrigerants.
- O. Chillers utilizing HCFC-123 shall be supplied with a vacuum prevention system to maintain the chiller at positive pressure during non-operational cycles.
- P. Chillers using refrigerants HFC-134a shall be supplied with single or multiple reseating type, spring-loaded relief valve.
- Q. Service valves shall be provided to facilitate refrigerant reclaim/removal required during maintenance.
- R. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 1 enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.
 - 1. Following functions shall display as a minimum:
 - a. Date and Time.
 - b. Outdoor air temperature.
 - c. Operating set point temperature and pressure.
 - d. Operating hours.
 - e. Operating or alarm status.
 - f. Chilled water temperature-entering and leaving.
 - g. Condenser water temperature-entering and leaving.
 - h. Refrigerant pressure-condenser and evaporator.
 - k. Chiller diagnostic codes.
 - 1. Current limit set point.

23 64 00 - 7

- m. Number of compressor starts.
- n. Purge suction temperature, if refrigerant HCFC-123 is used.
- o. Purge elapsed time, if refrigerant HCFC-123 is used.
- 2. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Control set points for entering and leaving chilled temperatures.
 - c. Condenser water temperature.
 - d. Current/demand limit.
 - e. Motor load limit.
- 3. Safety Controls: Following conditions shall shut down the chiller and require manual reset to start:
 - a. High condenser pressure.
 - b. Loss of flow-condenser or chilled water.
 - c. Low chilled water temperature.
 - d. Low evaporator refrigerant temperature.
 - e. Sensor malfunctions.
 - f. Power fault.
 - g. Extended compressor surge.
 - h. Communication loss between the chiller and its control panel. A signal must be transmitted to Energy Control Center, if provided, for this communication loss and for any abnormal.
- 4. The chiller control panel shall provide a relay output to initiate system changeover to free cooling. This relay shall be energized upon initiation of free cooling at the chiller control panel.
- Leaving chilled water temperature reset, where specified in the control sequence, shall be based on signal from a building automation system.
- 6. Chillers shall be pre-wired to terminal strips for interlocked to other equipment.
- 7. Provide contacts for remote start/stop, alarm for abnormal operation or shut down, and for Engineering Control Center (ECC) interface.
- 8. Chiller control panel shall reside on the "BACnet network", and provide data using open protocol network variable types and configuration properties, BACnet interworking using ARCNET or MS/TP physical data link layer protocol for communication with building automation control system.
- Auxiliary hydronic system and the chiller(s) shall be electronically interlocked to provide time delay and starting sequence as indicated on control drawings.

10. The chiller control panel shall utilize the following components to automatically take action to prevent unit shutdown due to abnormal operating conditions which will perform as follows.

- a. High pressure switch that is set to 20 psig (adjustable setting) lower than factory pressure switch that will automatically unload the compressor to help prevent a high pressure condenser control trip. One switch is required for each compressor and indicating light shall also be provided.
- b. Motor surge pressure that is set at 95% of compressor RLA that will automatically unload the compressor to prevent an over current trip. One protector is required for each compressor and indicating light shall also be provided.
- c. Low pressure switch that is set at 5 PSIG above the factory low pressure switch that will automatically unload the compressor to help prevent a low evaporator temperature trip. One switch is required for each compressor and indicating light shall also be provided.
- d. In all the above cases, the chiller will continue to run, in an unloaded state and will continue to produce some chilled water in an attempt to meet the cooling load. However, if the chiller reaches the trip-out limits, the chiller controls will take the chiller off line for protection, and a manual reset is required. Once the "near trip" condition is corrected, the chiller will return to normal operation and can then produce full load cooling.
- 11. With variation of +/-10% of design flow per minute, chiller shall be able to maintain +/-0.5 degrees F leaving water temperature control. The chiller must be able to withstand a +/- 30% change in flow rate per minute without unit trip. Variations in the primary flow allow for optimal system efficiency, but the chiller must be able to maintain temperature control to help ensure occupant comfort.
- 12. The chiller control panel shall provide +/-0.5 degrees F leaving water temperature control during normal operation. The chiller shall provide multiple steps leaving chilled water temperature controller to minimize part load energy use and optimize leaving chilled water temperature control. If manufacturer is unable to provide at least several steps of unloading, hot gas bypass shall be required to minimize loss of leaving water temperature control.
- 13. The chiller control panel shall provide a 2-minute stop-to-start and 5 minute start-to-start solid state timer. If the anti-recycle timers are longer than 5 minutes, then hot-gas bypass shall be provided to limit loss of leaving chilled water temperature control in low-load conditions.
- S. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Compressor motor furnished with the chiller shall be in

accordance with the chiller manufacturer and the electrical specification Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT. Starting torque of the motor shall be suitable for the driven chiller machine.

- T. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Variable frequency drive type starter integral to unit. Provide starter with the following features in addition to the ones specified in Electrical Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - Starter shall include incoming line provision for the number and size cables shown on the drawings. Incoming line lugs shall be copper mechanical type.
 - 2. Terminals connection pads shall be provided to which customers supply lugs can be attached.
 - 3. Starters shall be coordinated with chiller packages(s) making certain all terminals are properly marked according to the chiller manufacturer's wiring diagram.
 - 4. Contactors shall be sized per NEMA requirements to the chillers for full load currents.
 - 5. Ammeter(s) shall be provided, capable of displaying current to all three phases. Ammeter shall be calibrated so that inrush current can be indicated.
 - 6. Chiller starter shall include an advanced motor protection system incorporating electronic three phase overloads and current transformers. This electronic motor protection system shall monitor and protect against the following conditions:
 - a. Three phase loss with under and over voltage protection.
 - b. Phase imbalance.
 - c. Phase reversal.
 - d. Motor overload.
 - e. Motor overload protection incorrectly set.
 - f. Momentary power loss protection with auto restart consisting of three phase current sensing device that monitor the status of the current.
 - g. Starter contactor fault protection.
 - h. Starter transition failure.
 - i. Distribution fault protection.
 - 7. The starter shall be equipped with pilot relays to initiate the start sequence of compressor. These relays shall be a self-monitoring safety circuit, which shall indicate improper operation (slow operation, welding of contacts, etc) and shall cause the chiller unit

to be shut down and a fault trip indicator be displayed. The "starter circuit fault" indicator shall be located in the door of the enclosure and shall require manual reset.

- 8. A lockout transition safety circuit shall be provided to prevent damage from prolonged energization due to malfunction of the transistor contactor. Malfunction shall cause the chiller unit to shut down and the "starter circuit fault" indicator be displayed.
- 9. A permanent nameplate shall be provided and mounted on the starter panel. It shall identify the manufacturer, serial or model number identifying the date of manufacturing and component replacement parts, and all current and voltage rating, and as built wiring schematic showing all items provided.

2.2 REFRIGERANT MONITORING AND SAFETY EQUIPMENT

- A. General: Provide refrigerant monitoring sensor/alarm system and safety equipment as specified here. Refrigerant sensor and alarm system shall comply with ASHRAE Standard 15. The refrigerant monitoring system will be provided by the chiller manufacturer and shall be interfaced with the DDC control system.
- B. Refrigerant monitor shall continuously display the specific gas (refrigerant used) concentration; shall be capable of indicating, alarming and shutting down equipment; and automatically activating ventilation system. On leak detection by refrigerant sensor(s), the following shall occur:
 - 1. Activate machinery (chiller) room ventilation.
 - Activate visual and audio alarm inside and outside of machinery room, with beacon light(s) and horn sounds equipment room and outside equipment room door(s). Shut down combustion process where combustion equipment is employed in the machinery room.
 - 3. Notify Engineering Control Center (ECC) of the alarm condition.
- C. Refrigerant monitor shall be capable of detecting concentration of 1 part per million (ppm) for low-level detection and for insuring the safety of operators. It shall be supplied factory-calibrated for the apparent refrigerant.
- D. Monitor design and construction shall be compatible with temperature, humidity, barometric pressure, and voltage fluctuations of the machinery room operating environment.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect

chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation.

3.2 EQUIPMENT INSTALLATION

- A. Install chiller raised concrete floor of chiller plant with isolation pads or vibration isolators.
 - Vibration isolator types and installation requirements are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
 - 2. Anchor chiller to raised concrete floor of chiller plant according to manufacturer's written instructions.
 - 3. Charge the chiller with refrigerant, if not factory charged.
 - 4. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements.
 - 5. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc.
- B. Install refrigerant monitoring and safety equipment in accordance with ASHRAE Standard 15.
- C. Install refrigerant piping as specified in Section 23 23 00, REFRIGERANT PIPING and ASHRAE Standard 15.
- D. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings.
- E. Piping Connections:
 - Make piping connections to the chiller for chilled water, condenser water, and and other connections as necessary for proper operation and maintenance of the equipment.
 - 2. Make equipment connections with flanges and couplings for easy removal and replacement of equipment from the equipment room.
 - 3. Extend vent piping from the relief valve and purge system to the outside.

3.3 STARTUP AND TESTING

- A. Engage manufacturer's factory-trained representative to perform startup and testing service.
- B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections.
- C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the VA that the equipment operate and perform as intended.

- 1. Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak.
- 2. Verify proper motor rotation.
- 3. Verify pumps associated with chillers are installed and operational.
- 4. Verify thermometers and gages are installed.
- 5. Verify purge system, if installed, is functional and relief piping is routed outdoor.
- 6. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance.
- 7. Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller.
- 8. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment.
- 9. Prepare a written report outlining the results of tests and inspections, and submit it to the VA.
- D. Engage manufacturer's certified factory trained representative to provide training for 16 hours for the VA maintenance and operational personnel to adjust, operate and maintain equipment, including selfcontained breathing apparatus.
- E. Major equipment and system startup and operational tests shall be scheduled and documented in accordance with Section 01 91 00 Commissioning.

3.4 FUNCTIONAL PERFORMANCE TESTS

A. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.5 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 23 65 00 COOLING TOWERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Packaged, induced draft open circuit cooling tower complete with fill, fan, and associated accessories and equipment.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one item.
- B. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Requirements for vibration isolation.
- D. Section 23 21 13, HYDRONIC PIPING: Requirements for water piping and fittings.
- E. Section 23 25 00, HVAC WATER TREATMENT: Requirements for condenser water treatment.
- F. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Design Criteria:
 - 1. Design to withstand _____Pa (___ psf) wind load.
 - 2. Free water drift loss shall not be greater than five hundredths of one percent (0.005) of the water circulated to tower.
 - 3. Sound levels at 1.5 meters (5 feet) and 17 meters (55 feet) in any direction from the tower shall not exceed _____dB (A) and ____dB (A), respectively. Select "low Noise" model cooling towers, where available. Provide sound attenuators if necessary to meet the noise criteria.
- C. Performance Criteria:
 - Manufacturer shall certify that performance of cooling towers will meet contract requirements, stating entering air wet bulb temperature, entering and leaving condenser water temperatures, water flow rates, fan kW (horsepower) . Certification shall be made at the time of submittal.
 - 2. Cooling Technology Institute (CTI) Certified Towers: These towers shall have been tested, rated, and certified in accordance with Cooling Technology Institute (CTI) Standard 201, and shall bear the CTI certification label, and shall be listed in the CTI directory of certified cooling towers.

23 65 00-1

3. The alignment and balancing of the fans, motors and drive shaft as installed shall operate within the vibration tolerance specified in specification Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include rated capacities, pressure drop, fan performance and rating curves, dimensions, weights, mounting details, front view, side view, equipment and device arrangement.
 - 3. Include electrical rating, detail wiring for power, signals and controls.
 - 4. Sound curves and characteristics of sound attenuators if required to meet the noise criteria.
- C. Certification:
 - Submit four copies of performance curves, for CTI certified cooling towers, showing compliance with actual conditions specified, to the Resident Engineer two weeks prior to delivery of the equipment.
 - Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
 - a. Certification by the manufacturer that the cooling towers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the cooling towers have been installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI/ASSE) A10.18-2007.....Safety Requirements for Temporary Floors, Holes, Wall Openings, Stairways and Other Unprotected Edges in Construction and Demolition Operations
- C. American Society of Mechanical Engineers (ASME): PTC 23-03.....Performance Test Codes on Atmospheric Water Cooling Equipment
- D. American Society for Testing Materials (ASTM): A385-08.....Standard Practice for Providing High-Quality Zinc Coatings (Hot-Dip)

B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus B209-07..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate E84-08a.....Standard Test Method for Surface Burning Characteristics of Building Materials E. Cooling Technology Institute (CTI): ATC-105-00.....Acceptance Test Code for Water-Cooling Towers (CTI Code Tower Standard Specifications) ATC-105S-Rev. July 2004. Acceptance Test Code for Closed Circuit Cooling Towers (CTI Code Tower Standard Specifications) 201-02 (Rev. 04).....Standard for Certification of Water Cooling Tower Thermal Performance (CTI Code Tower Standard Specifications) F. National Electrical Manufacturers Association (NEMA): MG 1-2006 Includes..... Motors and Generators (ANSI) Maximum) G. National Fire Protection Association (NFPA): 70-08.....National Electrical Code

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 INDUCED DRAFT OPEN CIRCUIT COOLING TOWER:

- A. Cooling tower shall be a factory assembled, induced draft, cross-flow type with a vertical discharge configuration.
- B. Casing: Heavy gage (minimum 16 gage) Galvanized Steel.
 - Galvanized Steel: Hot-dip galvanized steel complying with ASTM A653/A653M, and having G235 (Z700) coating.
 - Fasteners: Zinc or cadmium coated bolts or tapping screws for assembly. Use stainless steel washers with neoprene backing where required for preventing leaks.
 - 3. Joints and Seams: Sealed watertight.
 - 4. Welded connections: Continuous and watertight.
- C. Framing: Rolled structural steel shapes, hot-dip galvanized after fabrication or structural shapes cold formed from galvanized steel sheets or plates, complying with ASTM A653/A653M, and having G235 (Z700) coating.

- D. Louvers:
 - Spaced to minimize air resistance and prevent splash out. Louver materials shall be similar to the casings or may be polyvinyl chloride (PVC) if formed integral with the fill material.
 - 25 mm (1 inch) inlet screen, hot dipped galvanized steel or copper . Attach the screen securely to air intakes.
- E. Fill: PVC resistant to rot, decay and biological attack; with a maximum flame spread rating of five per ASTM E84 and fabricated, formed and installed by manufacturer to ensure that water breaks up into droplets.
- F. Drift Eliminators: Same as fill material. Effectively trap water droplets entrained in discharge air stream and limit drift loss to less than 0.005 percent of the total water circulated. Sections shall be assembled into easily removable racks of the same material as the casing. Eliminators can be PVC neoprene honeycomb type.
- G. Hot Water Distribution System: Open basin, flume and troughs, or a pipe system with nozzles spaced for even distribution of water over fill material. Provide access door. System shall be self-draining and non-clogging. Spray nozzles, if used, shall be cleanable stainless steel, bronze or high impact plastic, non-clog, removable type properly spaced for even distribution. Provide cover for entire nozzle area or flume/trough area. Provide manufacturer's standard pre-strainer assembly and butterfly or globe valve, for cross flow tower, to balance the water flow to each basin.
- H. Cold Water Collection Basin: Heavy gauge, zinc-coated or hot-dip galvanized steel, same as the casing . Overflow, drain not less than DN (Deutsches Normung) 50 (NPS (Nominal Pipe Size) 2), and a 304 stainless steel strainer assembly with openings smaller than nozzle orifices and with built-in vortex baffling to prevent cavitation and air entrainment in the water basin circulating pump.
- I. Accessories: Make-up water, overflow and drain connections; Equalizer connection (multiple cooling tower systems).
- J. Collection Basin Water Level Control: Electronic operated with slow closing 120V solenoid valve and NEMA MG 1, Type 4x enclosure. Solid state controls with stainless steel electrode probes and relays factory wired to a terminal strip to provide control of makeup valve, low and high level alarms and output for shutoff of pump on low level.
- K. Fans: Heavy duty axial flow type, gear driven and balanced at the factory after assembly, with cast aluminum or aluminum alloy blades. Fans shall be driven by variable speed motor. The fan drive and moving parts shall be completely enclosed by removable hot-dip galvanized screens and panels complying with OSHA regulations. Fan shaft bearings

JUNE 2013

of the self aligning, grease-lubricated ball or roller bearings with moisture proof seals and premium, moisture-resistant grease suitable for temperatures between minus 29 and 149 degrees C (minus 20 and plus 300 degrees F). Bearings designed for an L-10 life of 50,000 hours and with extended lubrication lines to an easily accessible location outside of the wet air stream. Provide access doors for inspection and cleaning.

- L. Motors and drives:
 - The alignment and balancing of the fans, motors and drive shaft as installed shall operate within the vibration limits specified in specification Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - 2. In addition to the requirements of specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, the following shall apply:
 - a. Motors: Totally enclosed or epoxy encapsulated NEMA MG 1. Protect fan, bearings, and appurtenances from damage by weather, corrosion, water spray and grit. Provide motors with severe duty rating with the rotor and stator protected with corrosioninhibiting epoxy resin, double shielded, vacuum-degassed bearings lubricated with premium moisture-resistant grease suitable for temperatures between minus 29 and plus 149 degrees C (minus 20 and plus 300 degrees F), and an internal heater automatically energized when motor is de-energized. Provide an adjustable motor base or other suitable provision for adjusting belt tension.
 - b. Fans for towers of 350 kW (100 tons) and less shall be belt driven. For towers larger than 350 kW (100 tons), fan shall be driven through a gear reducer, or driven by a V belt.
 - Gear reducer drive: Specially designed for cooling tower operation, with dynamically balanced drive shaft assembly or shock absorbent flexible coupling requiring no lubrication, cast iron case with readily accessible oil drum and fill, and self-contained oil reservoir sealed against water entrance.
 - 2) V Belt Drive: Fan shall be driven by a one-piece, multi-groove, neoprene/polyester belt, where this is the manufacturer's standard. Belt drives shall be "V" type as specified in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Belt driven fan and motor shafts shall have taper-lock sheaves fabricated from corrosion resistant material.
 - c. Motor Controllers: Provide variable speed motors and controllers, if shown on drawings for cooling tower fans. See specification

Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- d. Lubrication fittings shall be readily accessible outside the wet air stream. Provide access doors for inspection and cleaning.
- e. The alignment and balancing of the fans, motors and drive shaft as installed shall operate within the vibration tolerance specified in specification Section 23-05-41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- M. Fans over 1500 mm (60 inches) in diameter include a vibration cutout switch located in a protected position to effectively monitor fan vibration. Vibration switch shall be solid-state with adjustable time delay in NEMA 250, Type 4 enclosure. It shall stop fan motor under excessive fan vibration. Interface the vibration cut-out switch with the DDC control system to provide an alarm in the event the fans stop due to excessive vibration.
- N. Safety: Provide fan guards, ladders, handrails and platform in conformance with the ANSI A10.18 as follows:
 - Fan Guard: Removable fan discharge with a rigid framed screen guard, installed over the fan cylinder.
 - 2. Ladders: Vertical hot-dip galvanized steel or aluminum ladder for each tower located outdoors. Ladders higher than 3.6 meters (12 feet) shall have safety cage. Ladders shall extend to within 300 mm (one foot) of the grade or the roof deck surface.
 - 3. Hand Railing: Steel or aluminum hand railings not less than 1070 mm (42 inches) high around perimeter of each fan-deck, or working surface 3.6 meters (12 feet) or more above ground, roof or other supporting construction. Handrails shall meet OSHA Standards.
 - 4. Platform: Galvanized steel with a bar grating floor.
- O. Electric Basin Heater: Furnish stainless steel electric immersion heater installed in a threaded coupling on the side of the basin and with watertight junction boxes mounted in the basin with sufficient capacity to maintain plus 4 degrees C (40 degrees F) water in the basin at _-29degrees C (-20degrees F) ambient. Provide a NEMA 250, Type 3R mounted on the side of each cooling tower cell with magnetic contactors controlled by a temperature sensor/controller to maintain collection basin water-temperature set point. Provide a water-level probe to monitor cooling tower water level and de-energize the heater when the water reaches low-level set point. Provide a control-circuit transformer with primary and secondary side fuses, terminal blocks with numbered and color-coded wiring to match wiring diagram, Single-point, field-power connection to a fused disconnect switch and heater branch circuiting

complying with NFPA 70. Provide a Metal raceway for factory-installed wiring outside of enclosures, except make connections to each electric basin heater with liquid tight conduit.

P. Electric Heat Tracing: Provide in specification Section 23 21 13, HYDRONIC PIPING.

2.2 CONTROL PANEL

- A. Provide factory furnished control panel for each cooling tower.
- B. Control panel shall be a field installed/wired NEMA 250 Type 3 Dripproof type enclosure, containing:
 - 1. Unfused disconnect switch.
 - 2. Fan motor variable speed drives/motor starters.
 - 3. Interlocks and relays.
 - 4. Pilot lights and push buttons.
 - 5. Provide contacts for remote start/stop and for Engineering Control Center (ECC) interface.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cooling tower according to equipment manufacturer's written instruction.
- B. Install cooling towers plumb, level and anchored on structure provided. Coordinate steel structure with cooling tower mounting requirements. If installed on concrete base, refer to Division 3 of specification for concrete materials and installation requirements.
- C. Install vibration controls according to manufacturer's recommendations.
- D. Install anchor bolts to elevations required for proper attachment to supported equipment.
- E. Maintain manufacturer's recommended clearances for service and maintenance.
- F. Piping:
 - Install piping, including flanges or union adjacent to cooling towers to allow for service and maintenance.
 - Install flexible pipe connectors at connections to cooling towers mounted on vibration isolators.
 - 3. Install shutoff/balancing valves at cooling tower inlet connections.
 - Install piping adjacent to cooling towers to allow service and maintenance.
 - 5. Provide drain piping with valve at cooling tower drain connections and at low points in piping.
 - Connect cooling tower overflows and drains, and piping drains to sanitary sewage system.

- Domestic Water Piping: Comply with applicable requirements in Section 22 11 00, FACILITY WATER DISTRIBUTION. Connect to water-level control with shutoff valve and union, flange, or mechanical coupling at each connection.
- 8. Supply and Return Piping: Comply with applicable requirements in Section 23 21 13, HYDRONIC PIPING. Connect to entering cooling tower connections with shutoff valve, balancing valve, thermometer, plugged tee with pressure gage, flow meter and drain connection with valve. Connect to leaving cooling tower connection with shutoff valve. Make connections to cooling tower with a union, flange, or mechanical coupling.
- 9. Equalizer Piping: Piping requirements to match supply and return piping. Connect an equalizer pipe, full size of cooling tower connection, between tower cells. Connect to cooling tower with shutoff valve.
- G. Electrical Wiring: Install electrical devices, components and accessories furnished loose by manufacturer, including remote flow switches and variable frequency drives.

3.2 FIELD QUALITY CONTROL

- A. Provide the services of an independent testing and inspection agency to perform the field tests and inspections of non-CTI certified cooling towers, 700 kW (200 tons) and larger, according to Cooling Technology Institute ATC-105 for Cooling Towers. Submit qualification of the independent testing agency to the Resident Engineer two weeks prior to the inspection for approval.
- B. If the cooling tower does not meet the specified performance, the Contractor shall make the tower corrections necessary to bring the tower into compliance with the specified performance including replacing the tower if necessary. Additional tests will be required until the tower meets the specified performance. Costs for the tower corrections or replacement, and tests shall be borne by the Contractor. However, the VA will pay for the initial test, when requested, if the cooling tower of less than 200 tons meets the specified performance.

3.3 STARTUP AND TESTING

- A. Provide the services of a factory-authorized and qualified representative to perform start up service.
- B. Clean entire unit including basin.
- C. Inspect field-assembled components and equipment installation, including piping and electrical connections.
- D. Verify that accessories are properly installed.
- E. Obtain and review performance curves and tables.

- F. Perform startup checks, according to manufacturer's written instructions, and as noted below:
 - 1. Check clearances for airflow and tower servicing.
 - 2. Check for vibration isolation and structural support.
 - Verify fan rotation for correct direction and for vibration or binding and correct problems.
 - 4. Adjust belts to proper alignment and tension.
 - 5. Lubricate rotating parts and bearings.
 - 6. Verify proper oil level in gear-drive housing. Fill with oil to proper level.
 - 7. Operate variable-speed fans through entire operating range and check for harmonic vibration imbalance. Set motor controller to skip speeds resulting in abnormal vibration.
 - 8. Check vibration switch setting. Verify operation.
 - 9. Verify operation of basin heater and control.
 - 10. Operate equipment controls and safeties.
 - Verify that tower discharge is high enough and it does not recirculate into HVAC air intakes. Recommend corrective action.
- G. Adjust water level for operating level and balance condenser water flow to each tower inlet.
- H. Check water treatment water system, including blow down for proper operation of the tower. Check makeup water-level control and valve.
- Start cooling tower, including condenser water pumps and verify the tower operation.
- J. Prepare and submit a written report of startup and inspection service to the Resident Engineer.
- K Replace defective and malfunctioning units.
- L. Major equipment and system startup and operational tests shall be scheduled and documented in accordance with Section 01 91 00 Commissioning.

3.4 FUNCTIONAL PERFORMANCE TESTS

A. System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.5 DEMONSTRATION AND TRAINING:

A. Furnish the services of a competent, factory-trained engineer or technician for a 2-hour period for instructing VA personnel in operation and maintenance of the equipment, including review of the operation and maintenance manual, on a date requested by the Resident Engineer. Coordinate this training with that of the chiller, if furnished together. B. Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Convectors and finned-tube radiation

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- C. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- E. Section 23 82 16, AIR COILS: Additional coil requirements.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Convectors.
 - 2. Finned-tube radiation.
- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI): 440-08......Performance Rating of Room Fan Coils National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 70-11....National Electrical Code

C. Underwriters Laboratories, Inc. (UL): 181-08......Standard for Factory-Made Air Ducts and Air

Connectors

1995-05..... Heating and Cooling Equipment

1.6 GUARANTY

In accordance with FAR clause 52.246-21

1.7 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 ELECTRIC RADIATION

- A. Enclosures: 1.6 mm (16 gage) steel, sloping top, designed for wall mounting. Provide baked enamel finish in standard manufacturer's colors as selected by the Architect. The front panel which is the radiating surface shall be of extruded aluminum, coated with "high temperature" rated textured powder coat paint to achieve a high radiating efficiency. The backside of the front panel shall have a formed section to hold the heating element. The backside is to include the crossover wires at the bottom of the extrusion to be able to wire the heater from either end.. The housing shall be formed of 24 gauge plated steel and be able to spring into place without hardware. The heater shall be open on top and bottom to permit maximum convection heating of room air..
- B. Electric Heating Elements: The heating element wire shall consist of high resistance nickel-chrome alloy wire, embedded in high purity magnesium oxide and encased in a metal sheath for maximum strength and corrosion resistance. Units shall be UL approved

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.

23 82 00 - 2

3.2 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.3 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 26 05 11

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the utility's system shall conform to the utility's requirements. Coordinate fuses, circuit breakers and relays with the utility's system, and obtain utility approval for sizes and settings of these devices.
- D. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as NEMA, or ANSI. Evidence of compliance shall include certified test reports and definitive shop drawings.

VAMC DES MOINES

VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- B. Definitions:
 - 1. Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified; equipment or product which:
 - a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory.
 - c. Bears a label, tag, or other record of certification.
 - 4. Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Oualification:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within fourhours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.7 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with Section 00 72 00, GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods. VAMC DES MOINES VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

1.8 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to switchgear, switchboards, panelboards, transformers, motor control centers, motor controllers, uninterruptible power systems, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories.
 - During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart K, NETA ATS-2011 or applicable testing standards required by the VA, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
 - 2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E.

- -203 JUNE 2013
- 3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used and exit pathways.
- 4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer.
- D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interferences.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working spaces shall not be less than specified in the NEC for all voltages specified.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers (starters), fused and unfused safety switches, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment. VAMC DES MOINES VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 1/2 inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm²), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION ".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.

26 05 11 - 6

- Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
- 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers and replacement frequencies.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.

- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

The contractor shall hire the service of an independent NETA certified testing agency to fulfill the Field Quality Testing requirements of the project."

1.15 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

1.16 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

1.17 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 26 05 13

MEDIUM VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of medium voltage cables, splices, and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirement and items that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium voltage cables.
- E. Section 31 20 00, EARTH MOVING: Bedding of conduits.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

Medium voltage cables shall be thoroughly tested at the factory per NEMA WC 74 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include product and installation information for cables, splices, terminations, and fireproofing tape.
- C. Resident Engineer/ CORD. Certifications:
 - Factory Test Reports: Prior to installation of the cables, deliver four copies of the manufacturers certified NEMA WC 71 or WC 74 standard factory test reports to the Resident Engineer/ COR. Certified copies of test data shall show conformance with the

referenced standards and shall be approved prior to delivery of cable.

- Compatibility: Provide certification from the cable manufacturer that the splices and terminations are approved for use with the cable.
- 3. Field Test Reports: Test reports shall comply with the paragraph entitled "Acceptance Checks and Tests." After testing, submit four certified copies to the Resident Engineer/ COR of each of the graphs specified under field testing.
- 4. After splices and terminations have been installed and tested, deliver four copies of a certificate by the contractor to the Resident Engineer/ COR which includes the following:
 - a. A statement that the materials, detail drawings, and printed instructions used are those contained in the kits approved for this contract.
 - b. A statement that each splice and each termination was completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
 - c. A statement that field-made splices and terminations conform to the following requirements:
 - 1) Pencil the cable insulation precisely.
 - 2) Connector installations:
 - a) Use tools that are designed for the connectors being installed.
 - b) Round and smooth the installed connectors to minimize localized voltage stressing of the insulating materials.
 - Remove contaminants from all surfaces within the splices and terminations before installing the insulating materials.
 - Solder block throughout stranded grounding wires that might penetrate the splicing and terminating materials.
 - 5) Use mirrors to observe the installation of materials on the backsides of the splices and terminations.
 - 6) Eliminate air voids throughout the splices and terminations.
 - 7) Stretch each layer of tape properly during installation.
 - d. List all the materials purchased and installed for the splices and terminations for this contract, including the material descriptions, manufacturers' names, catalog numbers, and total quantities.
D. Installer Approval:

- Employees who install splices and terminations and test the cables shall have not fewer than five years of experience splicing and terminating cables equivalent to those being spliced and terminated, including experience with the materials in the kits.
- 2. Furnish satisfactory proof of such experience for each employee who splices or terminates the cables.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only: American Society for Testing and Materials (ASTM): B3-01 (R2007).....Standard Specification for Soft or Annealed

Copper Wire

- B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 386-95 (R2001).....Separable Insulated Connector Systems for Power Distribution Systems above 600 V 400-01.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems 400.2-05.....Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) 400.3-06.....Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment 404-00.....Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500-500,000 Volts C. National Electrical Manufacturers Association (NEMA): WC 71-99......Standard for Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electrical Energy (ICEA S-96-659) WC 74-06.....5-46 KV Shielded Power Cable for Use in the Transmission and Distribution of Electrical Energy (ICEA S-93-969) D. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC) E. Underwriters Laboratories (UL):
 - 1072-06 Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

- A. Cable shall be shipped on reels such that it is protected from mechanical injury. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

1.8 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 MEDIUM VOLTAGE CABLE

- A. Medium voltage cable shall be in accordance with the NEC and NEMA WC 71, WC 74, and UL 1072.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:

15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.

- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, CCLP: Polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically crosslinked.
 - c. In wet locations, anti-tree CCLP or EPR shall be used.
 - d. Cable type abbreviation, XLPE: cross-linked polyethylene insulated shielded shall be thermosetting, light and heat stabilized and chemically cross-linked.
- E. Conductors and insulation shall be wrapped separately with semiconducting tape.
- F. Insulation shall be wrapped with non-magnetic, metallic shielding tape, helically-applied over semi-conducting insulation shield.

- G. Heavy duty, overall protective jacket of chlorosulphonated polyethylene or polyvinyl chloride shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. The materials shall be compatible with the cables.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and handholes, the splices shall be submersible.
- C. Where the Government determines that unsatisfactory splices and terminations have been installed, the contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.
- D. Splices and Terminations:
 - Materials shall be designed for the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.
 - 2. Splices:
 - a. Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
 - b. Heat-shrink splice: Uniform cross-section, polymeric splicing kit with outer heat-shrink jacket.
 - 3. Terminations:
 - a. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - b. Class 3 terminations for outdoor use: Kit with stress cone and compression-type connector.

2.3 FIREPROOFING TAPE

Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arcproof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 7 mils [0.18 mm] thick, and 0.75 in [19 mm] wide.

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and per cable manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade. All cables of a feeder shall be pulled simultaneously.
- C. Splice the cables only in manholes and accessible pullboxes.
- D. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- E. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the cable manufacturer.
- F. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- G. Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 6 in [150 mm] above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of trained personnel and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.

- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. No splices shall be pulled in ducts. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be accomplished by qualified personnel trained to accomplish medium voltage equipment installations. All manufacturer's instructions shall be followed precisely.
- C. Splices in manholes shall be located midway between cable racks on walls of manholes, and supported with cable arms at approximately the same elevation as the enclosing duct.

3.5 FIREPROOFING

A. Cover all cable segments exposed in manholes and pull-boxes with fireproofing tape.

- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 1 in [25 mm] into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

In each manhole and pullbox, install permanent tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. Include the following visual and electrical inspections.
- B. Test equipment and labor and technical personnel shall be provided as necessary to perform the acceptance tests. Arrangements shall be made to have tests witnessed by the Resident Engineer/ COR.
- C. Visual Inspection:
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.
 - Verify that visible cable bends meet manufacturer's minimum published bending radius.
 - 4. Verify installation of fireproofing tape and identification tags.
- D. Electrical Tests:
 - Acceptance tests shall be performed on new and service-aged cables as specified herein.
 - 2. Test new cable after installation, splices, and terminations have been made, but before connection to equipment and existing cable.
- E. Service-Aged Cable Tests:
 - Maintenance tests shall be performed on service-aged cable interconnected to new cable.
 - After new cable test and connection to an existing cable, test the interconnected cable. Disconnect cable from all equipment that could be damaged by the test.
- F. Insulation-Resistance Test: Test all new and service-aged cables with respect to ground and adjacent conductors.
 - Test data shall include megohm readings and leakage current readings. Cable shall not be energized until insulation-resistance

test results have been approved by the Resident Engineer/ COR. Test voltages and minimum acceptable resistance values shall be:

Voltage Class	Test Voltage	Min. Insulation Resistance
15kV	2,500 VDC	5,000 megohms

- 2. Provide a comprehensive report that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and identifies the insulation resistance and leakage current results for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- G. Online Partial Discharge Test: Comply with IEEE 400 and 400.3. Test all new and service-aged cables. Perform tests after cables have passed the insulation-resistance test, and after successful energization.
 - 1. Testing shall use a time or frequency domain detection process, incorporating radio frequency current transformer sensors with a partial discharge detection range of 10 kHz to 300 MHz.
 - 2. Provide a comprehensive report that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and numerically and graphically identifies the magnitude of partial discharge detected for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- H. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be energized until recorded test data have been approved by the Resident Engineer/ COR. Final test reports shall be provided to the Resident Engineer/ COR
- 3.8 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

- - - E N D - - -

SECTION 26 05 21

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW)

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of the low voltage power and lighting wiring.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of low-voltage conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

Low voltage cables shall be thoroughly tested at the factory per NEMA WC-70 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- 1. Manufacturer's Literature and Data: Showing each cable type and rating.
- 2. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer/ COR:
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only. VAMC DES MOINES VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 B. American Society of Testing Material (ASTM): D2301-04..... Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC) D. National Electrical Manufacturers Association (NEMA): WC 70-09..... Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy E. Underwriters Laboratories, Inc. (UL): 44-05..... Thermoset-Insulated Wires and Cables 83-08..... Thermoplastic-Insulated Wires and Cables 467-071.....Electrical Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05.....Sealed Wire Connector Systems 486E-94..... Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Conduit, Tubing, and Cable Fittings 1479-03.....Fire Tests of Through-Penetration Fire Stops PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA WC-70 and as specified herein.
- B. Single Conductor:
 - 1. Shall be annealed copper.
 - Shall be stranded for sizes No. 8 AWG and larger, solid for sizes No. 10 AWG and smaller.
 - Shall be minimum size No. 12 AWG, except where smaller sizes are allowed herein.
- C. Insulation:
 - 1. XHHW-2 or THHN-THWN shall be in accordance with NEMA WC-70, UL 44, and UL 83.
- D. Color Code:
 - Secondary service feeder and branch circuit conductors shall be color-coded as follows:

208/120 volt	Phase	480/277 volt
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

- a. Lighting circuit "switch legs" and 3-way switch "traveling wires" shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Resident Engineer/ COR/.
- Use solid color insulation or solid color coating for No. 12 AWG and No. 10 AWG branch circuit phase, neutral, and ground conductors.
- 3. Conductors No. 8 AWG and larger shall be color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified above.
 - c. Color as specified using 0.75 in [19 mm] wide tape. Apply tape in half-overlapping turns for a minimum of 3 in [75 mm] for terminal points, and in junction boxes, pull-boxes, troughs, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

2.2 SPLICES AND JOINTS

- A. In accordance with UL 486A, C, D, E, and NEC.
- B. Aboveground Circuits (No. 10 AWG and smaller):
 - Connectors: Solderless, screw-on, reusable pressure cable type, rated 600 V, 220° F [105° C], with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped wires.
 - The number, size, and combination of conductors, as listed on the manufacturer's packaging, shall be strictly followed.

- C. Aboveground Circuits (No. 8 AWG and larger):
 - Connectors shall be indent, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Field-installed compression connectors for cable sizes 250 kcmil and larger shall have not fewer than two clamping elements or compression indents per wire.
 - 3. Insulate splices and joints with materials approved for the particular use, location, voltage, and temperature. Splice and joint insulation level shall be not less than the insulation level of the conductors being joined.
 - 4. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.
- D. Underground Branch Circuits and Feeders:
 - 1. Submersible connectors in accordance with UL 486D, rated 600 V, 190° F [90° C], with integral insulation.

2.3 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified for power and lighting wiring, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.4 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install in accordance with the NEC, and as specified.
- B. Install all wiring in raceway systems.
- C. Splice cables and wires only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Wires of different systems (e.g., 120 V, 277 V) shall not be installed in the same conduit or junction box system.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. For panel boards, cabinets, wireways, switches, and equipment assemblies, neatly form, train, and tie the cables in individual circuits.

$26 \ 05 \ 21 \ - \ 4$

- G. Seal cable and wire entering a building from underground between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- H. Wire Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables. Use lubricants approved for the cable.
 - 2. Use nonmetallic ropes for pulling feeders.
 - Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer/ COR.
 - 4. All cables in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- No more than three single-phase branch circuits shall be installed in any one conduit.

3.2 SPLICE INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure.
- B. Tighten electrical connectors and terminals according to manufacturer's published torque values.
- C. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

3.3 FEEDER IDENTIFICATION

- A. In each interior pull-box and junction box, install metal tags on all circuit cables and wires to clearly designate their circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties.
- B. In each manhole and handhole, provide tags of the embossed brass type, showing the circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties.

3.4 EXISTING WIRING

Unless specifically indicated on the plans, existing wiring shall not be reused for a new installation.

3.5 CONTROL AND SIGNAL WIRING INSTALLATION

A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.

- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.

3.6 CONTROL AND SIGNAL SYSTEM WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each handhole, install embossed brass tags to identify the system served and function.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Feeders and branch circuits shall have their insulation tested after installation and before connection to utilization devices, such as fixtures, motors, or appliances. Test each conductor with respect to adjacent conductors and to ground. Existing conductors to be reused shall also be tested.
- B. Applied voltage shall be 500VDC for 300-volt rated cable, and 1000VDC for 600-volt rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300-volt rated cable and 100 megohms for 600-volt rated cable.
- C. Perform phase rotation test on all three-phase circuits.
- D. The contractor shall furnish the instruments, materials, and labor for all tests.

- - - E N D - - -

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the general grounding and bonding requirements for electrical equipment and operations to provide a low impedance path for possible ground fault currents.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low Voltage power and lighting wiring.
- C. Section 26 13 13, GENERATOR PARALLELING CONTROLS: Generator paralleling controls.
- D. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low voltage transformers.
- E. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low voltage switchgear.
- F. Section 26 24 11, DISTRIBUTION SWITCHBOARDS: Low voltage distribution switchboards.
- G. Section 26 24 16, PANELBOARDS: Low voltage panelboards.
- H. Section 26 32 13, ENGINE-GENERATORS: Engine-generators.
- I. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.
- J. Section 26 41 00, FACILITY LIGHTNING PROTECTION: Requirements for lightning protection.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Shop Drawings:

- 1. Clearly present enough information to determine compliance with drawings and specifications.
- Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer/ COR
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

A. American Society for Testing and Materials (ASTM):

B1-07.....for Hard-Drawn Copper Wire

- B3-07.....Standard Specification for Soft or Annealed Copper Wire
- B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

of a Ground System

C2-07..... National Electrical Safety Code

C. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

- 99-2005.....Health Care Facilities
- D. Underwriters Laboratories, Inc. (UL): 44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 44 or UL 83 insulated stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG [25 mm²] and larger shall be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be ASTM B1 solid bare copper wire.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.

2.2 GROUND RODS

- A. Steel or copper clad steel, 0.75 in [19 mm] diameter by 10 ft [30 M] long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance, as shown on the drawings.

2.3 CONCRETE ENCASED ELECTRODE

Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 MEDIUM VOLTAGE SPLICES AND TERMINATIONS

Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.5 GROUND CONNECTIONS

- A. Below Grade: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.

2.6 EQUIPMENT RACK AND CABINET GROUND BARS

Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 0.375 in [4 mm] thick x 0.75 in [19 mm] wide.

2.7 GROUND TERMINAL BLOCKS

At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.8 GROUNDING BUS

Pre-drilled rectangular copper bar with stand-off insulators, minimum 0.25 in [6.3 mm] thick x 4 in [100 mm] high in cross-section, length as shown on drawings, with 0.281 in [7.1 mm] holes spaced 1.125 in [28 mm] apart.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

Make grounding connections, which are normally buried or otherwise inaccessible (except connections for which access for periodic testing is required), by exothermic weld.

3.3 MEDIUM VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium voltage conductors, sized per NEC except that minimum size shall be 2 AWG [25 mm²]. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole hardware and ground rods, to the cable shielding grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.

- C. Pad-Mounted Transformers:
 - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building steel, and supplemental or made electrodes. Provide jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.
 - 2. Provide a supplemental ground electrode and bond to the grounding electrode system.
- C. Service Disconnect (Separate Individual Enclosure): Provide a ground bar bolted to the enclosure with lugs for connecting the various grounding conductors.
- D. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers and Panelboards, Engine-Generators, and Automatic Transfer Switches:
 - Connect the various feeder equipment grounding conductors to the ground bus in the enclosure with suitable pressure connectors.
 - 2. For service entrance equipment, connect the grounding electrode conductor to the ground bus.
 - 3. Provide ground bars, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
 - Connect metallic conduits that terminate without mechanical connection to the housing, by grounding bushings and grounding conductor to the equipment ground bus.
- E. Transformers:
 - Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.
 - Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the ground bar at the service equipment.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a bare grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - 1. Bond the metallic structures of wireway to provide 100% electrical continuity throughout the wireway system, by connecting a No. 6 AWG [16 mm²] bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - 2. Install insulated No. 6 AWG [16 mm²] bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 50 ft [16 M].
 - 3. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.

- 4. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 49 ft [15 M].
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.6 CORROSION INHIBITORS

When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.7 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the gases and suction piping at the outlets directly to the room or patient ground bus.

3.8 LIGHTNING PROTECTION SYSTEM

Bond the lightning protection system to the electrical grounding electrode system.

3.9 ELECTRICAL ROOM GROUNDING

Building Earth Ground Busbars: Provide ground busbar and mounting hardware at each electrical room and connect to pigtail extensions of the building grounding ring.

3.10 EXTERIOR LIGHT POLES

Provide 20 ft [6.1 M] of No. 4 bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the Resident Engineer/ COR prior to backfilling. The contractor shall notify the Resident Engineer/ COR 24 hours before the connections are ready for inspection.

3.12 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 24 in [609 mm] below final grade.
- B. For indoor installations, leave 4 in [100 mm] of rod exposed.
- C. Where permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressure-type ground connectors.
- D. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

3.13 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

- - - E N D - - -

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- H. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- I. Section 31 20 00, EARTH MOVING: Bedding of conduits.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.

- B. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull-boxes.
 - 3. Layout of required conduit penetrations through structural elements.
- C. Certifications:
 - Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer/ COR:
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05....Steel Electrical Metal Tubing C80.6-05....Electrical Intermediate Metal Conduit
- C. National Fire Protection Association (NFPA):
 - 70-08..... National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

```
1-05.....Flexible Metal Conduit
  5-04.....Surface Metal Raceway and Fittings
  6-07.....Electrical Rigid Metal Conduit - Steel
  50-95..... Enclosures for Electrical Equipment
  360-093.....Liquid-Tight Flexible Steel Conduit
  467-07.....Grounding and Bonding Equipment
  514A-04.....Metallic Outlet Boxes
  514B-04.....Conduit, Tubing, and Cable Fittings
  514C-96..... Nonmetallic Outlet Boxes, Flush-Device Boxes and
                     Covers
  651-05.....Schedule 40 and 80 Rigid PVC Conduit and
                     Fittings
  651A-00.....Type EB and A Rigid PVC Conduit and HDPE Conduit
  797-07.....Electrical Metallic Tubing
  1242-06.....Electrical Intermediate Metal Conduit - Steel
E. National Electrical Manufacturers Association (NEMA):
  TC-2-03.....Electrical Polyvinyl Chloride (PVC) Tubing and
                     Conduit
```

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
 - 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
 - 4. Flexible galvanized steel conduit: Shall conform to UL 1.
 - 5. Liquid-tight flexible metal conduit: Shall conform to UL 360.
 - Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
 - 7. Surface metal raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.

- f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct burial plastic conduit fittings:

Fittings shall meet the requirements of UL 514C and NEMA TC3.

- 6. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer/ COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the Resident Engineer/ COR as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut square, ream, remove burrs, and draw up tight.
 - Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
 - Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.

- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/ COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/ COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Conduit for conductors 600 V and below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 6 ft [1.8 M] of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- G. Surface metal raceways: Use only where shown.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

3.5 DIRECT BURIAL INSTALLATION

Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel or IMC.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere,

water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.8 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.
- C. Install expansion and deflection couplings where shown.

3.9 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.

VAMC DES MOINES

- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.10 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- G. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of precast manholes and pullboxes with ducts to form a complete underground raceway system.
- B. "Duct" and "conduit," and "rigid metal conduit" and "rigid steel conduit" are used interchangeably in this specification.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings and boxes for raceway systems.
- E. Section 31 20 11, EARTH MOVING (SHORT FORM): Trenching, backfill and compaction.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, pullboxes, and pull-boxes with final arrangement of other utilities, site grading, and surface features, as determined in the field.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include manholes, pullboxes, duct materials, and hardware. Submit plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories and details.
 - 3. Proposed deviations from details on the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes or

pullboxes at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit four copies to the Resident Engineer/ COR for approval prior to construction.

- C. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer/ COR:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI):
 - Building Code Requirements for Structural Concrete

318/318M-05.....Building Code Requirements for Structural Concrete & Commentary

SP-66-04.....ACI Detailing Manual

C. American National Standards Institute (ANSI):

77-07.....Underground Enclosure Integrity

D. American Society for Testing and Materials (ASTM):

C478-09.....Standard Specification for Precast Reinforced Concrete Manhole Sections

C858-09.....Underground Precast Concrete Utility Structures

C990-09.....Standard Specification for Joints for Concrete Pipe, Manholes and Precast Box Sections Using

- Preformed Flexible Joint Sealants.
- E. Institute of Electrical and Electronic Engineers (IEEE):

C2-07National Electrical Safety Code

- F. National Electrical Manufacturers Association (NEMA):
 - TC 2-03.....Electrical Polyvinyl Chloride (PVC) Tubing And Conduit

TC 3-2004.....PVC Fittings for Use With Rigid PVC Conduit And Tubing

TC 6 & 8 2003.....PVC Plastic Utilities Duct For Underground Installations

VA PROJECT NO. 636A6-12-203 VAMC DES MOINES JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 TC 9-2004.....Fittings For PVC Plastic Utilities Duct For Underground Installation G. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC) H. Underwriters Laboratories, Inc. (UL): 6-07.....Electrical Rigid Metal Conduit-Steel 467-07.....Grounding and Bonding Equipment 651-05.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-00.....Type EB and A Rigid PVC Conduit and HDPE Conduit 651B-07.....Continuous Length HDPE Conduit I. U.S. General Services Administration (GSA): A-A-60005-1998.....Frames, Covers, Gratings, Steps, Sump and Catch

Basin, Manhole

1.6 STORAGE

Lift and support pre-cast concrete structures only at designated lifting or supporting points.

PART 2 - PRODUCTS

2.1 PULLBOXES

- A. General: Size as indicated on drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI/SCTE 77 Tier 5 loading. Provide pulling irons, 0.875 in [22 mm] diameter galvanized steel bar with exposed triangularshaped opening.
- B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom.

2.2 DUCTS

- A. Number and sizes shall be as shown on drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. UL 651 and 651A Schedule 40 PVC.
 - b. Duct shall be suitable for use with 194 $^{\circ}$ F [90 $^{\circ}$ C] rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.

- C. Ducts (direct-burial):
 - 1. Plastic duct:
 - a. NEMA TC2 and TC3
 - b. UL 651, 651A, and 651B, Schedule 40 PVC or HDPE.
 - c. Duct shall be suitable for use with 167° F [75° C] rated conductors.
 - 2. Rigid metal conduit: UL6 and NEMA RN1 galvanized rigid steel, threaded type, half-lapped with 10 mil PVC tape.

2.3 GROUNDING

- A. Rods: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. Ground Wire: Stranded bare copper 6 AWG [16 mm²] minimum.

2.4 WARNING TAPE

Standard 4-mil polyethylene 3 in [76 mm] wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.5 PULL ROPE FOR SPARE DUCTS

Plastic with 200 lb [890 N] minimum tensile strength.

PART 3 - EXECUTION

3.1 MANHOLE AND PULLBOX INSTALLATION

- A. Assembly and installation shall follow the printed instructions and recommendations of the manufacturer. Install manholes and pullboxes level and plumb.
 - Units shall be installed on a 12 in [300 mm] level bed of 90% compacted granular fill, well-graded from the 1 in [25 mm] sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
 - 2. Seal duct terminations so they are watertight.
- B. Access: Ensure the top of frames and covers are flush with finished grade.

3.2 TRENCHING

- A. Refer to Section 31 20 11 EARTH MOVING (SHORT FORM) for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, the Ground Penetrating Radar Survey shall be carefully performed by certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, cables, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 4 ft [1.2 M] intervals to establish the grade and route of the duct bank.
 - Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place. Conduits shall be heavy wall rigid steel.

3.3 DUCT INSTALLATION

- A. General Requirements:
 - Ducts shall be in accordance with the NEC and IEEE C2, as shown on the drawings, and as specified.
 - Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 4 in [100 mm] in 100 ft [30 M].
 - 3. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be taped galvanized rigid steel, and shall extend a minimum of 5 ft [1.5 M] outside the building foundation. Tops of conduits below building slab shall be minimum 24 in [610 mm] below bottom of slab.
 - 4. Stub-ups, sweeps, and risers to equipment mounted on outdoor concrete slabs shall be taped galvanized rigid steel, and shall extend a minimum of 5 ft [1.5 M] away from the edge of slab.
 - 5. Install insulated grounding bushings on the terminations.
 - Radius for turns of direction shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter. Use manufactured long sweep bends.

- Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
- 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 3 in [75 mm] above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 5 ft [1.5 M]. Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during pouring of concrete. Tie wires shall not act as substitute for spacers.
- 9. Duct lines shall be installed no less than 12 in [300 mm] from other utility systems, such as water, sewer, and chilled water.
- 10. Clearances between individual ducts:
 - a. For like services, not less than 3 in [75 mm].
 - b. For power and signal services, not less than 6 in [150 mm].
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Seal conduits, including spare conduits, at building entrances and at outdoor equipment terminations with a suitable compound to prevent entrance of moisture and gases.
- B. Concrete-Encased Ducts and Conduits:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct lines shall consist of single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 24 in [600 mm] and not less than shown on the drawings, below finished grade.
 - b. Not less than 30 in [750 mm] and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Conduits crossing under grade slab construction joints shall be installed a minimum of 4 ft [1.2 M] below slab.

- Extend the concrete envelope encasing the ducts not less than 3 in [75 mm] beyond the outside walls of the outer ducts and conduits.
- 5. Within 10 ft [3 M] of building manhole and pullbox wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
- Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
- 7. Where new ducts, conduits, and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, conduits, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
- Conduit joints in concrete may be placed side by side horizontally, but shall be staggered at least 6 in [150 mm] vertically.
- 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 0.75 in [19 mm] reinforcing rod dowels extending 18 in [450 mm] into concrete on both sides of joint near corners of envelope.
- Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by Resident Engineer/ COR.
- C. Duct Bank Markers:
 - 1. Duct bank markers, where required and shown on plans, shall be located at the ends of duct banks except at manholes or pullboxes at approximately every 200 ft [60 M] along the duct run and at each change in direction of the duct run. Markers shall be placed 2 ft [0.6 M] to the right of the duct bank, facing the longitudinal axis of the run in the direction of the electrical load.
 - 2. The letter "D" with two arrows shall be impressed or cast on top of the marker. One arrow shall be located below the letter and shall point toward the ducts. The second arrow shall be located adjacent to the letter and shall point in a direction parallel to the ducts. The letter and arrow adjacent to it shall each be approximately 2 in [75 mm] long. The letter and arrows shall be V-shaped, and shall have a width of stroke at least 0.75 in [6 mm] at the top and a depth of 0.25 in [6 mm].

- 3. In paved areas, the top of the duct markers shall be flush with the finished surface of the paving.
- 4. Where the duct bank changes direction, the arrow located adjacent to the letter shall be cast or impressed with an angle in the arrow equivalent to the angular change of the duct bank.
- Direct-Burial Duct and Conduits: D.
 - 1. Install direct-burial ducts and conduits only where shown on the drawings. Provide direct-burial ducts only for low-voltage systems.
 - 2. Join and terminate ducts and conduits with fittings recommended by the conduit manufacturer.
 - 3. Tops of ducts and conduits shall be:
 - a. Not less than 24 in [600 mm] and not less than shown on the drawings, below finished grade.
 - b. Not less than 30 in [750 mm] and not less than shown on the drawings, below roads and other paved surfaces.
 - 4. Do not kink the ducts or conduits. Compaction shall not deform the ducts.
 - E. Concrete-Encased Duct and Conduit Identification: Place continuous strip of warning tape approximately 12 in [300 mm] above ducts or conduits before backfilling trenches. Warning tape shall be preprinted with proper identification.
 - F. Spare Ducts and Conduits: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
 - G. Duct and Conduit Cleaning:
 - 1. Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct. The mandrel shall be not less than 12 in [3600 mm] long, and shall have a diameter not less than 0.5 in [13 mm] less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 2. Mandrel pulls shall be witnessed by the Resident Engineer/ COR.
 - H. Duct and Conduit Sealing: Seal the ducts and conduits at building entrances, and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of moisture and gases.

VAMC DES MOINES

VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- I. Connections to Manholes: Ducts connecting to manholes shall be flared to have an enlarged cross-section to provide additional shear strength. Dimensions of the flared cross-section shall be larger than the corresponding manhole opening dimensions by no less than 12 in [300 mm] in each direction. Perimeter of the duct bank opening in the underground structure shall be flared toward the inside or keyed to provide a positive interlock between the duct and the wall of the manhole. Use vibrators when this portion of the encasement is poured to ensure a seal between the envelope and the wall of the structure.
- J. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.
- K. Connections to Existing Ducts: Where connections to existing duct banks are indicated, excavate around the duct banks as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- L. Partially-Completed Duct Banks: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable conduit plugs. Fit concrete envelope of a partially completed duct bank with reinforcing steel extending a minimum of 2 ft [0.6 M] back into the envelope and a minimum of 2 ft [0.6 M] beyond the end of the envelope. Provide one No. 4 bar in each corner, 3 in [75 mm] from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 12 in [300 mm] apart. Restrain reinforcing assembly from moving during pouring of concrete.

- - - E N D - - -

SECTION 26 05 71 ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements of the Electrical System Protective Device Study (herein, "the study").
- B. A short-circuit and selective coordination study shall be prepared for the electrical overcurrent devices to be installed under this project.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low voltage switchgear.
- C. Section 26 24 11, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- D. Section 26 24 16, PANEL BOARDS: Low-voltage panelboards.
- E. Section 26 32 13, ENGINE-GENERATORS: Engine-generators.
- F. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The protective device study shall be prepared by the equipment manufacturer's qualified engineers or an approved consultant. The contractor is responsible for providing all pertinent information required by the preparers to complete the study.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by timecurrent drawings.
- C. Complete short-circuit and coordination study as described in paragraph 1.6.
- D. Protective equipment shop drawings shall be submitted simultaneously with or after the protective device study. Protective equipment shop drawings will not be accepted prior to protective device study.
- E. Certification: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer/ COR: Certification by the contractor that the protective devices have been adjusted and set in accordance with the approved protective device study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 242-01.....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems

399-97.....Recommended Practice for Power Systems Analysis 1584a-04.....Guide for Performing Arc-Flash Hazard Calculations

1.6 REQUIREMENTS

- A. The complete study shall include a system one line diagram, shortcircuit and ground fault analysis, and protective coordination plots for ALL overcurrent protective devices.
- B. One Line Diagram:
 - 1. On the one line diagram, show all electrical equipment and wiring to be protected by the overcurrent devices installed under this project.
 - 2. On the one line diagram, also show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Breaker and fuse ratings.
 - c. Generator kW and Transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the construction drawings.
 - f. Conduit, cable, and busway material and sizes, length, and $\ensuremath{\mathsf{X/R}}$ ratios.
- C. Short-Circuit Study:
 - Systematically calculate the fault impedance to determine the available short-circuit and ground fault currents at each bus. Incorporate the motor contribution in determining the momentary and interrupting ratings of the protective devices.
 - The study shall be calculated by means of a computer program. Pertinent data and the rationale employed in developing the calculations shall be incorporated in the introductory remarks of the study.
 - Present the data conclusions of the short-circuit study in a table format. Include the following:

- a. Device identification.
- b. Operating voltage.
- c. Protective device.
- d. Device rating.
- e. Calculated short-circuit current.
- D. Coordination Curves:
 - Prepare the coordination curves to determine the required settings of protective devices to ensure selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between series devices, including the utility company upstream device. Plot the specific time-current characteristics of each protective device in such a manner that all upstream devices are clearly depicted on one sheet.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Voltage and current ratio for curves.
 - c. 3-phase and 1-phase ANSI damage points for each transformer.
 - d. No-damage, melting, and clearing curves for fuses.
 - e. Cable damage curves.
 - f. Transformer in-rush points.
 - g. Maximum short-circuit cutoff point.
 - 3. Develop a table to summarize the settings selected for the protective devices. Include the following in the table:
 - a. Device identification.
 - b. Relay CT ratios, tap, time dial, and instantaneous pickup.
 - c. Circuit breaker sensor rating, long-time, short-time, and instantaneous settings, and time bands.
 - d. Fuse rating and type.
 - e. Ground fault pickup and time delay.
- E. Arc Flash Calculations shall be provided and displayed as Arc Flash labels at each panel, switchboard, switchgear, ATS, disconnect.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose approaches to effectively protect the underrated equipment. Provide minor modifications to conform with the study (examples of minor modifications are trip sizes within the same frame, the time-current curve characteristics of induction relays, CT ranges, etc.). B. After developing the coordination curves, highlight areas lacking coordination. Present a technical evaluation with a discussion of the logical compromises for best coordination.

1.8 ADJUSTMENTS, SETTINGS AND MODIFICATIONS

- A. Necessary final field adjustments, settings, and modifications shall be made to conform with the study without additional cost to the Government. Modifications shall be presented to the engineer on record prior to shop drawing submittal and final approval shall be made by the engineer.
- B. All final circuit breaker insulation types, frame sizes, withstand ratings, and relay settings and fuse sizes shall be made in accordance with the recommendations of the study.

- - - E N D - - -

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Interface of lighting controls with HVAC control systems.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 24 26 16, PANELBOARDS: panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting control, submit the following information.
 - 1. Manufacturer's catalog data.
 - 2. Wiring schematic and connection diagram.
 - 3. Installation details.
- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer.
- D. Certifications:
 - 1. Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

VAMC DES MOINESVA PROJECT NO. 636A6-12-203JUNE 2013CENTRALIZED BOILER/CHILLER PLANTSCHEMMER NO. 06054.013		
1.5 AI	PPLICABLE PUBLICATIONS	
Α.	Publications listed below (including amendments, addenda, revisions,	
	supplements, and errata) form a part of this specification to the extent	
	referenced. Publications are referenced in the text by designation only.	
в.	Green Seal (GS):	
	GC-12Occupancy Sensors	
с.	C. Illuminating Engineering Society of North America (IESNA):	
	IESNA LM-48 Guide for Calibration of Photoelectric Control	
	Devices	
D.	D. National Electrical Manufacturer's Association (NEMA)	
	C136.10 American National Standard for Roadway Lighting	
	Equipment-Locking-Type Photocontrol Devices	
	and Mating Receptacles - Physical and	
	Electrical Interchangeability and Testing	
	ICS-1 Standard for Industrial Control and Systems	
	General Requirements	
	ICS-2 Standard for Industrial Control and Systems:	
	Controllers, Contractors, and Overload Relays	
	Rated Not More than 2000 Volts AC or 750 Volts	
	DC: Part 8 - Disconnect Devices for Use in	
	Industrial Control Equipment	
	ICS-6 Standard for Industrial Controls and Systems	
	Enclosures	
Ε.	Underwriters Laboratories, Inc. (UL):	

20.....Standard for General-Use Snap Switches 773..... Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting 773ANonindustrial Photoelectric Switches for Lighting Control

98.....Enclosed and Dead-Front Switches

917.....Clock Operated Switches

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Solid state, with SPST dry contacts rated for 1800 VA tungsten or 1000 VA inductive, complying with UL 773A.
 - 1. Light-Level Monitoring Range: 1.5 to 10 fc [16.14 to 108 lx], with adjustable turn-on and turn-off levels.
 - 2. Time Delay: 15-second minimum.
 - 3. Surge Protection: Metal-oxide varistor.
 - 4. Mounting: Twist lock, with base-and-stem mounting or stem-and-swivel mounting accessories as required.

2.2 CEILING-MOUNTED PHOTOELECTRIC SWITCHES

- A. Solid-state, light-level sensor unit, with separate relay unit.
 - Sensor Output: Contacts rated to operate the associated relay. Sensor shall be powered from the relay unit.
 - Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
 - 3. Monitoring Range: 10 to 200 fc [108 to 2152 lx] with an adjustment for turn-on and turn-off levels.
 - 4. Time Delay: Adjustable from 5 to 300 seconds, with deadband adjustment.
 - 5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

2.3 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off, set to 10 min.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.

- 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc [21.5 to 2152 lx]; keep lighting off when selected lighting level is present.
- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch [150mm] minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. [232 sq. cm], and detect a person of average size and weight moving not less than 12 inches [305 mm] in either a horizontal or a vertical manner at an approximate speed of 12 inches/s [305 mm/s].
 - 3. Detection Coverage: as scheduled on drawings.

2.4 LIGHTING CONTROL PANEL - RELAY TYPE

- A. Controller: Comply with UL 508; programmable, solid-state, astronomic 365-day control unit with non-volatile memory, mounted in preassembled relay panel with low-voltage-controlled, latching-type, single-pole lighting circuit relays. Controller shall be capable of receiving inputs from sensors and other sources, and capable of timed overrides and/or blink-warning on a per-circuit basis. Controller communication protocol shall be compatible with the building automation system specified in SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Where indicated, a limited number of digital or analog, low-voltage control-circuit outputs shall be supported by control unit and circuit boards associated with relays.
- B. Cabinet: Steel with hinged, locking door. Barriers separate lowvoltage and line-voltage components.
- C. Directory: Identifies each relay as to load controlled.
- D. Control Power Supply: Transformer and full-wave rectifier with filtered dc output.
- E. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentary-pulsed type, rated 20 A, 125-V ac for tungsten filaments and 20 A, 277-V ac for ballasts, 50,000 cycles at rated capacity.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.

- B. Aim outdoor photocell switch according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle photocell turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.
- E. Locate light level sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the scheduled light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.
- E. Program lighting control panels per schedule on drawings.
- F. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory-authorized technician who will verify all adjustments and sensor placements.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function.

3.4 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.5 DEMONSTRATION AND TESTING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 26 12 19

PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of pad-mounted transformers.
- B. Pad-mounted transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and weatherproof, with liquid-immersed transformers.

1.2 RELATED WORK

- A. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for electrical equipment.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- C. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground currents.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pullboxes, and duct lines for underground raceway systems.
- F. Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY: Shortcircuit and coordination study.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per UL and ANSI Standards. Factory tests shall be certified. The following tests shall be performed:

- Perform insulation-resistance tests, winding-to-winding and each winding-to-ground.
- 2. Perform turns-ratio tests at all tap positions.

1.5 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.

- Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
- Complete nameplate data, including manufacturer's name and catalog number.
- C. Manuals:
 - When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - a. Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
 - b. Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
 - c. Approvals will be based on complete submissions of manuals, together with shop drawings.
 - Two weeks prior to the final inspection, submit four copies of the final up-dated maintenance and operation manuals to the Resident Engineer/ COR.
 - a. Update the manual to include any information necessitated by shop drawing approval.
 - b. Show all terminal identification.
 - c. Include information for testing, repair, trouble-shooting, assembly, disassembly, and recommended maintenance intervals.
 - d. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
 - e. Furnish manuals in loose-leaf binder or manufacturer's standard binder.
- D. Certifications:

Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer/ COR:

- 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
- 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI): 318-05.....Building Code Requirements for Structural Concrete
- C. American National Standards Institute (ANSI): C37.47-00.....High Voltage Current-Limiting Type Distribution Class Fuses and Fuse Disconnecting Switches C57.12.00-00.....General Requirements for Liquid-Immersed Distribution, Power and Regulating Transformers C57.12.25-90.....Transformers-Pad-Mounted, Compartmental-Type, Self Cooled, Single-Phase Distribution Transformers with Separable Insulated High Voltage Connectors; High Voltage, 34500 Grd Y/19920 Volts and Below; Low-Voltage 240/120 Volts; 167 kVA and Smaller Requirements C57.12.28-05.....Pad-Mounted Equipment Enclosure Integrity C57.12.29-99.....Pad-Mounted Equipment - Enclosure Integrity for Coastal Environments C57.12.34-04.....Pad-Mounted, Compartmental-Type, Self Cooled, Three-Phase Distribution Transformers, 2500kVA and Smaller - High Voltage 34500 Grd Y/19920 Volts and Below; Low-Voltage 480 Volts and Below D. American Society for Testing and Materials (ASTM): D3487-08..... Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus E. Institute of Electrical and Electronic Engineers (IEEE): C2-07.....National Electrical Safety Code C62.11-99.....Metal-Oxide Surge Arresters for Alternating Current Power Circuits 48-09.....Test Procedures and Requirements for Alternating Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5kV Through 765kV or Extruded Insulation Rated 2.5kV Through 500kV 386-06.....Standard for Separable Insulated Connector Systems for Power Distribution Systems Above 600V 592-96.....Standard for Exposed Semiconducting Shields on High Voltage Cable Joints and Separable

Insulated Connectors

- F. National Electrical Manufacturers Association (NEMA): C57.12.26-87.....Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers for Use with Separable Insulated High-Voltage Connectors, High-Voltage, 34500 Grd Y/19920 Volts and Below; 2500 kVA and Smaller LA1-92.....Surge Arresters TP1-02.....Guide for Determining Energy Efficiency for Distribution Transformers TR1-00.....Transformers, Regulators, and Reactors
- G. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

H. Underwriters Laboratories Inc. (UL):

467-07.....Grounding and Bonding Equipment

1.7 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 EQUIPMENT, GENERAL

- A. Equipment shall be in accordance with ANSI, ASTM, IEEE, NEMA, NFPA, UL, as shown on the drawings, and as specified herein. The transformer shall be assembled as an integral unit by a single manufacturer.
- B. Ratings shall not be less than shown on the drawings.
- C. Provide transformers designed to withstand the mechanical stresses caused by rough handling during shipment in addition to the electrical and mechanical stresses that may occur during operation.
- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the job site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat, except where a different color is specified in Section 09 06 00, SCHEDULE FOR FINISHES. All surfaces of the unit that will be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.

2.2 COMPARTMENTS

- A. Construction:
 - 1. Enclosures shall be in accordance with ANSI C57.12.28.

- The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.
- 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing, reinforcing gussets, and jig-welding to ensure rectangular rigidity.
- 4. Use cadmium or zinc plated bolts, nuts, and washers.
- 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
- 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration, impedance, date of manufacture, and serial number shall be shown on the nameplate.

B. Doors:

- Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
- 2. The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.

2.3 BIL RATING

15 kV class equipment shall have a minimum 95 kV BIL rating.

2.4 TRANSFORMER FUSE ASSEMBLY

The primary fuse assembly shall be load-break combination fuse and dry-well fuse holder rated for system voltage, rated for 10 load makes and 10 load breaks, with rated 200 amp load current at 75% power factor, 10,000 symmetrical A close-in on fault duty, and 95 kV BIL. The entire fuse assembly shall be removable through the use of hot stick.

- The fuses shall be concealed, hot stick removable, 50,000 A symmetrical interrupting, non-expulsion, current-limiting primary distribution type, of the size and voltage class as shown on the drawings. The fuses shall operate within the fuse holder as a unit disconnecting means. Fuses shall be in accordance with ANSI C37.47.
- 2. Transformers shall not have internal "weak link" fuses that require transformer tank cover removal for replacement.
- 3. For units above 500 kVA using fusing above the 50 A 15 kV and 100 A 5 kV application, a clip-mounted arrangement of the current limiting fuses (i.e., live-front configuration) is required.

2.5 PRIMARY CONNECTIONS

A. Primary connections shall be 600 A dead break.

2.6 MEDIUM-VOLTAGE SWITCH

- A. Where a loop-feed operation (sectionalizing switch) is shown on the drawings, provide a four-position configuration arrangement, oilimmersed, gang-operated, rotary, loadbreak switch. The switch mechanism shall be spring-loaded and the operation shall be independent of operator speed. The switch shall have the following ratings:
 - Continuous current 200 A. A built-in switch with maximum phase-tophase voltage 35 kV, maximum phase-to-ground voltage 21.1 kV. Momentary 10,000 A for 10 cycles symmetrical.

2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium voltage cables in the primary compartment with loadbreak premolded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a minimum of 0.125 in [3 mm] semi-conductive shield material covering the housing. The separable connector system shall include the loadbreak elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Loadbreak elbow and bushing insert shall be from the same manufacturer. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands. Elbow connectors shall be rated as follows:
 - 1. Voltage: 15kV phase-to-phase.
 - 2. Continuous current: 200 A RMS.
 - B. Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
 - C. Provide insulated cable supports to relieve any strain imposed by cable weight or movement.

2.8 LOW-VOLTAGE EQUIPMENT

- A. Mount the low voltage bushings, and hot stick in the low voltage compartment.
- B. The low-voltage leads shall be brought out of the tank by epoxy pressure tight bushings, and shall be standard arrangement per ANSI.
- C. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the neutral and ground pad.

2.9 TRANSFORMERS

A. Transformers shall be three-phase, liquid-immersed, isolated winding, and self-cooled by natural convection.

- B. The kVA ratings shown on the drawings are for continuous duty without the use of cooling fans.
- C. Temperature rises shall not exceed the NEMA TR1 standards of 149° F [65°C] by resistance, and 180° F [80° C] hotspot at rated kVA.
- D. Transformer insulating material shall be less flammable, edible-seed-oil based, and UL listed as complying with NFPA 70 requirements for fire point of not less than 600° F [300 C] when tested according to ASTM D 92. Liquid shall be biodegradable and nontoxic.
- E. Transformer impedance shall be not less than 4.5% for sizes 150 kVA and larger. Impedance shall be as shown on the drawings.
- F. Sound levels shall conform to NEMA TR1 standards.
- G. Primary and Secondary Windings for Three-Phase Transformers:
 - 1. Primary windings shall be delta-connected.
 - Secondary windings shall be wye-connected, except where otherwise indicated on the drawings. Provide isolated neutral bushings for secondary wye-connected transformers.
 - 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- H. Primary windings shall have four 2.55 full-capacity voltage taps; two taps above and two taps below rated voltage.
- I. Core and Coil Assemblies:
 - Cores shall be grain-oriented, non-aging, and silicon steel to minimize losses.
 - Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
 - Coils shall be continuous-winding type without splices except for taps. Material shall be copper.
 - 4. Coil and core losses shall be optimum for efficient operation.
 - 5. Primary, secondary, and tap connections shall be brazed or pressure type.
 - 6. Provide end fillers or tiedowns for coil windings.
- J. The transformer tank, cover, and radiator gauge thickness shall not be less than that outlined in ANSI.
- K. Accessories:
 - 1. Provide standard NEMA features, accessories, and the following:
 - a. No-load tap changer (Provide warning sign).
 - b. Lifting, pulling, and jacking facilities.
 - c. Globe-type valve for oil filtering and draining, including sampling device.
 - d. Pressure relief valve.

26 12 19 - 7

- e. Liquid level gauge and filling plug.
- f. A grounding pad in the medium- and low-voltage compartments.
- g. A diagrammatic nameplate and operating instructions enclosed by a transparent cover located in the low-voltage compartment.
- h. Dial-type liquid thermometer with a maximum reading pointer and an external reset.
- i. Hot stick. Securely fasten hot stick within low-voltage compartment.
- 2. The accessories shall be made accessible within the compartments without disassembling trims and covers.
- L. Transformers shall meet the minimum energy efficiency values per NEMA TP1:

KVA	(%)
75	98.1
112.5	98.3
150	99.0
225	99.0
300	99.0
500	99.1
750	99.2
1000	99.2
1500	99.3
2000	99.4
2500	99.4

2.10 CABLE FAULT INDICATORS (LOOP SYSTEM ONLY):

- A. Provide each incoming and outgoing cable within the medium-voltage compartment with a single-phase cable fault indicator with in-rush restraint. Mount the indicator on the cable support member.
 - The sensor assembly shall have a split-core for easy installation over the incoming and outgoing cable. The core shall be laminated, grain-oriented silicon steel, and encapsulated. Provide a clamp to secure the two coil halves around the cable.
 - Select the coil to the pick-up at the current setting shown on the drawings.
 - a. The coil setting shall be accurate to within 10% of the pick-up.
 - b. The coil current-time curve shall coordinate with the primary current-limiting fuse.

B. Upon restoration of the system to normal operating conditions, the cable fault indicator shall automatically reset to normal and be ready to operate.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install transformers as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.
- B. Foundation:
 - 1. Provide foundation of reinforced concrete, Type C, 21mPa (3000 psi minimum, 28 day compressive strength), complying with the ACI 318.
 - Locate the top of foundation pads 6 in [150 mm] above the adjacent finished grade, unless otherwise shown on the drawings. Refer to drawings for size, location, and structural steel reinforcing required.
 - 3. Grade the adjacent terrain so that surface water will flow away from the foundation.
 - 4. Anchor transformers with cadmium- or zinc-plated bolts, nuts, and washers. Bolts shall not be less than 0.5 in [12 mm] diameter.
- C. Grounding:
 - Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.
 - Connect the ground rod to the ground pads in the medium- and lowvoltage compartments, and to the secondary neutral with not less than a No. 2/0 AWG bare copper conductor.
 - 3. Independently connect cable shield grounding devices ground wires to ground with sufficient slack to permit elbow connector operation. Connect elbow connectors with a No. 14 AWG bare copper drain wire from its grounding eye to the related cable shield grounding device ground wire. Do not connect drain wires in any manner that could permit circulating currents, or cable fault currents, to pass through them.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections.
- B. Transformers:
 - 1. Compare equipment nameplate data with specifications and approved shop drawings.
 - 2. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.

- 3. Verify that control and alarm settings on temperature indicators are as specified.
- 4. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections, or perform thermographic survey after energization under load.
- 5. Verify correct liquid level in transformer tank.
- 6. Perform specific inspections and mechanical tests as recommended by manufacturer.
- 7. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 8. Verify the presence of transformer surge arresters, if provided.
- 9. Verify that the tap-changer is set at specified ratio.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 SPARE PARTS

Deliver the following spare parts for the project to the Resident Engineer/ COR two weeks prior to final inspection:

- 1. Six stand-off insulators.
- 2. Six insulated protective caps.
- 3. One spare set of medium-voltage fuses for each size fuse used in the project.

3.5 INSTRUCTIONS

The contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the Resident Engineer/ COR.

3.6 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.7 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 26 13 13 GENERATOR PARALLELING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of LOW-VOLTAGE indoor switchgear control components for paralleling Standby Electrical System generators. The generator paralleling control components shall be integral to the switchgear and be products of the same manufacturer.
- B. For generator paralleling switchgear power components, including enclosures, bussing, and circuit breakers, see related specification sections.
- C. The switchgear shall be constructed to UL 891 standards front access termination only. It shall be rate 3200Amps, 480Vac, 3Phase, 4wire, 65Kaic. All breakers shall be Power Circuit Breakers, electrically operated, drawout design with electronic trips. The switchgear shall be provided with a top mounted breaker lift device for removal and installation of drawout circuit breakers. See section 26 23 00

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.
- C. Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY: Coordination study of overcurrent protection devices.
- D. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: For low-voltage enclosures, bussing, and circuit breakers for generator paralleling switchgear.
- E. Section 26 32 13, ENGINE-GENERATORS: Requirements for power generation.
- F. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Requirement for automatic transfer switches.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Generator paralleling controls shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects. Refer to related specification sections for tests. Tests shall be conducted as per UL and ANSI standards. Factory tests shall be certified.

B. Furnish four copies of certified manufacturer's factory test reports to the Resident Engineer/ COR prior to shipment of the generator paralleling switchgear to ensure that the switchgear has been successfully tested as specified.

1.5 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Per the requirements of Section 26 23 00, LOW-VOLTAGE SWITCHGEAR.
 - 2. Include sequences of operation and interconnecting controls diagrams, showing connections to generators, automatic transfer switches, remote annunciators, network block diagrams and controls.
- C. Manuals:
 - 1. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - a. The terminals of wiring diagrams shall be identified to facilitate installation, maintenance, and operation.
 - b. Wiring diagrams shall indicate internal wiring for each piece of equipment and the interconnection between the pieces of equipment.
 - c. Provide a clear and concise description of operation, including detailed information required to properly operate the equipment.
 - d. Approvals shall be based on complete submissions of manuals together with shop drawings.
 - 2. Two weeks prior to final inspection, deliver four copies of the final updated maintenance and operating manuals to the Resident Engineer/ COR.
 - a. The manuals shall be updated to include any information necessitated by shop drawing approval.
 - b. Complete "As Installed" wiring and schematic diagrams shall be included, showing all pieces of equipment and their interconnecting wiring.
 - c. Show all terminal identification.

- d. Include information for testing, repair, trouble-shooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
- e. Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
- f. Furnish manuals in loose-leaf binder or manufacturer's standard binder.
- D. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer/ COR:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

Per the requirements of related specification sections.

1.7 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 MASTER CONTROL CUBICLE

- A. Shall contain all system-totalizing controls for the integrated system operation as specified below:
 - 1. Bus Metering provided on 19" (minimum) color HMI
 - a. AC ammeter.
 - b. AC voltmeter.
 - c. Frequency meter 55-65 Hz Scale.
 - d. Watt/Var meter.
 - e. Power Factor Meter
 - e. Ammeter/Voltmeter phase selector switches with current and potential transformers and proper fuses.
 - 2. Bus and Generator Protection shall be provided including: Industrial Grade Functions: Device 27/59 Under/over voltage Device 32 reverse power
 - Device 40 Loss of excitation

$26 \ 13 \ 13 \ - \ 3$

Device 25 Synchronizing Check Device 15 Auto Synchronizer Device 65 Governor Load Sharing - Soft Load Control Device 90 Var/PF and cross current Compensation Control Load Shed Moving Master 100Mhz Ethernet Network

- 3. Synchronizing Module: A solid-state generator-synchronizing Module shall sense voltage, frequency, and phase angle of the generator to be paralleled. The Module shall compare the voltage of the bus with that of the unit to be paralleled and initiate corrective action to cause the voltage difference to be reduced to less than 5% of nominal. Voltage adjustment shall be achieved by a Digital voltage adjusting potentiometer, as furnished by the engine-generator manufacturer. The Module shall compare the frequency of the bus with that of the unit to be paralleled, and shall control the governor to cause the frequency of the unit to be paralleled to match within 0.2 Hz. The Synchronizer shall also compare the phase angle of the bus with that of the unit to be paralleled and reduce the phase angle of the unit to be paralleled to a maximum of five electrical degrees at the instant the connection is made to the bus. Upon achievement of the appropriate phase angle, the generator circuit breaker shall close to parallel the unit. The module shall be mounted remotely in the control cabinet. Solid-state circuitry shall be used for all sensing and control functions. Interface circuits for control of voltage adjustment and circuit breaker closing shall be through I/O from PLC logic.
- 4. Synchroscope:
 - a. Furnish with a selector switch and manual means of paralleling engine-generator sets for override of the automatic Digital system thru the use of the HMI and manual voltage and frequency adjustments
- 5. Load Demand Feature:

load demand logic shall sense the load connected to the bus, and establish the proper number of engine-generators to operate and maintain the connected load with a minimum on-line reserve generating capacity of 10% of the rating of a single enginegenerator. The load Demand Logic shall also disconnect a generator VA PROJECT NO. 636A6-12-203 SCHEMMER NO. 06054.013

from the bus whenever the on-line reserve capacity exceeds 110% of a single generator set. load demand shall be adjustable to initiate the addition and removal of a generator from the main bus. load Demand mode shall maximize fuel economy while maintaining sufficient capacity to sustain the load.

6. Frequency sensing Monitor:

A frequency sensing monitor with integral time delay shall initiate load dumping upon a reduction of the bus frequency to 58 Hz or less for a period of two seconds or more. Upon sensing a bus underfrequency, the system shall automatically shed the lowest priority load connected. This shed circuit shall override any manual load add activity and lock out the manual load add circuitry. Visual and audible alarms shall be energized upon sensing of bus underfrequency load dump.

- 7. Automatic Transfer Switch Interface:
 - a. For each transfer switch, incorporate red and green lamps, indicating the position of the transfer switch.
 - b. For each transfer switch, incorporate a two-position contact switch. Label switch positions, "TEST" and "AUTOMATIC." The TEST position shall simulate an outage of normal power at the transfer switch. The AUTOMATIC position shall place the transfer switch in normal operation. All of these features shall be displayed on the color HMI.
- 8. Alarms:

Provide individual visual signals plus a common audible alarm and silencing circuitry. Provide a test switch which will momentarily actuate the visual and audible alarms. The following conditions shall be monitored on the HMI Screen

- a. Low Fuel Level Main Storage Tank shall be energized when the fuel oil level decreases to less than one-third of total capacity.
- b. Under-frequency failure.
- c. Controls not in automatic mode.
- d. Load shed circuit activation.
- B. Control Logic:
 - The control logic shall be distributed between the Master Control Cubicle and each Engine-Generator Control Cubicle such that each engine-generator is capable of starting and being manually paralled

to the bus in the event of receipt of a start signal from any automatic transfer switch and failure of the HMI $% \left({{{\rm{S}}_{{\rm{B}}}} \right)$.

C. Control Power:

Control power for the paralleling controls shall be derived from a best battery supply module utilizing a 24 VDC station battery with charger and Generator Batteries wired to the Master Cubicle. The system shall monitor the best DC source supply to maintain a constant control voltage for operation. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR.

D. Interconnecting Communications Protocol and Media: The paralleling switchgear shall be interconnected to the automatic transfer switches and the remote annunciator(s) by a dedicated fiber optic network, where required, via ethernet, per the requirements of Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING. Provide all necessary fiber optic media, raceways, hardware, software, and programming necessary to establish interconnection between the paralleling switchgear and automatic transfer switches and the remote annunciator and control system. All equipment shall share a common open communications protocol via Modbus and/or Ethernet

2.2. ENGINE-GENERATOR CONTROL PANEL SHALL BE GNERATOR MOUNTED:

- A. Starting and Stopping Controls:
 - A three-position, maintained-contact type selector switch with positions marked "AUTOMATIC," "OFF," and "MANUAL". Provide flashing amber light for the OFF and MANUAL positions.
 - 2. A momentary contact push-button switch with positions marked "MANUAL START" and "MANUAL STOP."
 - 3. Selector switch in AUTOMATIC position shall cause the engine to start automatically when a single pole contact in a remote device closes. When the generator's output voltage increases to not less than 90% of its rated voltage, and its frequency increases to not less than 58 Hz, the remote devices shall transfer the load to the generator. An adjustable time delay relay, 0 to 15 minute range, shall cause the engine-generator to continue operating without any load after completion of the period of operation with load. Upon completion of the additional 0 to 15 minute (adjustable) period, the engine-generator shall stop.
 - 4. Selector switch in OFF position shall prevent the engine from starting either automatically or manually. Selector switch in MANUAL

position shall cause the engine to start when the manual start pushbutton is depressed momentarily.

- 5. With selector switch in MANUAL position, depressing the MANUAL STOP push-button momentarily shall stop the engine after a cool down period.
- 6. A maintained contact, red mushroom-head push-button switch marked "EMERGENCY STOP" will cause the engine to stop without a cool down period, independent of the position of the selector switch.
- B. Engine Cranking Controls:
 - The cranking cycles shall be controlled by timer that will be independent of the battery voltage fluctuations.
 - The cranking controls shall crank the engine through one complete cranking cycle, consisting of four starting attempts of 10 seconds each with 10 seconds between each attempt.
 - Total actual cranking time for the complete cranking cycle shall be
 40 seconds during a 70-second interval.
 - 4. Cranking shall terminate when the engine starts so that the starting system will not be damaged. Termination of the cranking shall be controlled by a self-contained, speed-sensitive switch. The switch shall prevent re-cranking of the engine until after the engine stops.

5. After the engine has stopped, the cranking control shall reset.

- C. Supervisory Controls
 - 1. Overcrank:
 - a. When the cranking control system completes one cranking cycle, four starting attempts without starting the engine, the OVERCRANK signal light and the audible alarm shall be energized.
 - b. The cranking control system shall lock-out, requiring a manual reset.
 - 2. Coolant Temperature:
 - a. When the temperature rises to the predetermined first stage level, the HIGH COOLANT TEMPERATURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - b. When the temperature rises to the predetermined second stage level, which shall be low enough to prevent any damage to the engine and high enough to avoid unnecessary engine shutdowns, the HIGH COOLANT TEMPERATURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.

c. Difference between the first and second stage temperature settings shall be approximately 10 $^{\circ}$ F [-12 $^{\circ}$ C].

- d. Permanently indicate the temperature settings near the associated signal light.
- e. When the coolant temperature drops below 70° F [21° C], the LOW COOLANT TEMPERATURE signal light and the audible alarm shall be energized.
- 3. Low Coolant Level: When the coolant level falls below the minimum level recommended by the manufacturer, the LOW COOLANT LEVEL signal light and audible alarm shall be energized.
- 4. Lubricating Oil Pressure:
 - a. When the pressure falls to the predetermined first stage level, the OIL PRESSURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - b. When the pressure falls to the predetermined second stage level, which shall be high enough to prevent damage to the engine and low enough to avoid unnecessary engine shutdowns, the OIL PRESSURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - c. The difference between the first and second stage pressure settings shall be approximately 15% of the oil pressure.
 - d. Permanently indicate the pressure settings near the associated signal light.
- 5. Overspeed:
 - a. When the engine RPM exceeds the maximum RPM recommended by the manufacturer of the engine, the engine shall stop.
 - b. Simultaneously, the OVERSPEED signal light and the audible alarm shall be energized.
- 6. Low Fuel Level Day Tank:

When the fuel oil level in the day tank decreases to less than the level at which the fuel oil transfer pump starts to refill the tank, the LOW FUEL DAY TANK light and the audible alarm shall be energized.

7. Low Fuel Level - Main Storage Tank:

When the fuel oil level in the storage tank decreases to less than one-third of total tank capacity, the LOW FUEL-MAIN STORAGE TANK signal light and audible alarm shall be energized.

8. Reset Alarms and Signals all per NFPA-110 w/ event logs included:

VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

JUNE 2013

Overcrank, Coolant Temperature, Coolant Level, Oil Pressure, Overspeed, and Low Fuel signal lights and the associated audible alarms shall require manual reset. A momentary-contact silencing switch and push-button shall silence the audible alarm by using relays of solid state devices to seal in the audible alarm in the de-energized condition. Elimination of the alarm condition shall automatically release the sealed-in circuit for the audible alarm so that it will be automatically energized again when the next alarm condition occurs. The signal lights shall require manual reset after elimination of the condition which caused them to be energized. Install the audible alarm just outside the generator room in a location as directed by the Resident Engineer/ COR. The audible alarm shall be rated for 85 dB at 10 ft [3 M].

- 9. Generator Breaker position Lights on switchgear:
 - a. A green light shall be energized when the generator circuit breaker is in the OPEN or TRIPPED position. A Red light when the breaker is closed
 - b. Simultaneously, an alarm will sound upon tripping.
- 10. The system shall include a Data Table Interface enabling the communications inherent to the Paralleling System to communicate with the building automation system (SCADA). This DTI shall be open protocol via Modbus TCP/IP and /or Ethernet.
- 11. The supplier of the Paralleling Switchgear and controls shall provide a Remote PC for monitoring and operation of the system from a designated location. This shall include the following:
 - a) Desk Top IBM Computer
 - b) 24 Inch color screen
 - c) Keyboard
 - d) Mouse
 - e) Printer
 - f) Software to be compatible to owners system
- D. Monitoring Devices:
 - 1. Electric type gauges for the cooling water temperatures and lubricating oil pressures. These gauges may be engine-mounted with proper vibration isolation.
 - 2. A running time indicator, totaling not fewer than 9,999 hours, heavy duty, and an electric-type tachometer.

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT

- 3. Voltmeter, ammeter, frequency meter, kilowatt meter, Power Factor Meter, Kvar and KWH meters. Manual adjusting knob for the output voltage, and the other items shown on the drawings shall be mounted on the front of the generator control panels.
- 4. Install potential and current transformers as required.
- 5. Individual signal lights:
 - a. OVER-CRANK
 - b. HIGH COOLANT TEMPERATURE FIRST STAGE
 - c. HIGH COOLANT TEMPERATURE SECOND STAGE
 - d. LOW COOLANT TEMPERATURE
 - e. OIL PRESSURE FIRST STAGE
 - f. OIL PRESSURE SECOND STAGE
 - g. LOW COOLANT LEVEL
 - h. GENERATOR BREAKER
 - i. OVERSPEED
 - j. LOW FUEL LEVEL DAY TANK
 - k. LOW FUEL LEVEL MAIN STORAGE TANK
- 6. Lamp Test: The Lamp Test momentary contact switch shall momentarily actuate the alarm buzzer and all the indicating lamps.
- E. Automatic Digital Voltage Regulator:
 - 1. Shall correct voltage fluctuations rapidly and restore the output voltage to the predetermined level with a minimum amount of hunting.
 - 2. Shall include voltage level rheostat located inside the control cubicle.
 - 3. Provide a 3-phase automatic voltage regulator immune to waveform distortion.

2.3 PARALLELING OPERATION

- A. Emergency Mode:
 - 1. Upon initiation of the automatic sequence, all engine-generators shall start. The first engine-generator to achieve 90% of nominal voltage and frequency shall be connected to the bus. All first priority loads shall be transferred to the bus upon sensing availability of power on the bus. As the remaining engine-generators start, their respective synchronizers shall initiate control of voltage and frequency of the oncoming set with the bus. Upon synchronizing with the bus, the oncoming set shall be paralleled on the bus. Each time an additional engine-generator is added to the bus, the remaining loads shall be transferred in priority sequence,
until all loads are connected to the bus. Circuitry shall prevent the automatic transfer of loads to the bus until there is sufficient

capacity to carry these loads. Provision shall be made to manually override the load addition circuits for supervised operation.

- 2. Load demand sensing shall be furnished to ensure that sufficient generating capacity is connected to the bus to carry the load. The load demand sensing shall also ensure that not more than the required capacity plus a limited reserve is connected to the bus at any time. The system in conjunction with the load demand shall ensure maximum efficiency in the utilization of engine-generator sets to ensure maximum fuel economy.
- 3. Load demand sensing shall ensure that the on-line reserve capacity does not fall to less than 10% or exceed more than 110% of a single engine-generator. Upon sensing if the connected load exceeds the present limit for an established period of time, the next enginegenerator will be started and paralleled. If upon sensing, the connected load is determined to be less than the preset limit for an established period of time, the last engine-generator to be paralleled will be disconnected and shut down. Its controls will be automatically reset so that the engine-generator will be ready for next operation.
- 4. While one engine-generator is connected to the bus, and if the connected load exceeds the capacity of the bus, resulting in a decrease in system frequency to 58 Hz or less, load dumping will be initiated to reduce the connected load within the capacity of the bus. Similarly, with increased loading, the remaining enginegenerator will be signaled to start and be paralleled to the enginegenerator already connected to the bus, and the load dump signal will be automatically cancelled. Upon restoration of the normal source of power supply, as defined in the automatic transfer switches for an adjustable period of 0 to 15 minutes, the loads shall be transferred back to the normal power source. Subsequently, the engine-generator shall be disconnected from the bus, run for an adjustable period of time up to 15 minutes maximum for cool down, and then shut down. All controls associated with operation of the engine-generator shall automatically reset for the next automatic operation.

- B. Manual Mode: The engine-generators and automatic transfer switch(es) can be operated manually from the HMI screen display.
- C. Exercising Mode: Incorporate controls so as to allow automatic and manual testing of each engine-generator and remotely located transfer switch.

PART 3 - EXECUTION

3.1 INSTALLATION

Per the requirements of Section 26 23 00, LOW-VOLTAGE SWITCHGEAR.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections:
 - Compare equipment nameplate data with specifications and approved shop drawings. Include Certified Factory Test Reports .
 - Inspect physical, electrical, and mechanical condition. Operate the system in auto and manual modes, demonstrating the Generator Sets in single operation and paralleled operation.
 - 3. Verify appropriate anchorage, required area clearances, and correct alignment. Include seismic certification of switchgear construction.
 - 4. Verify the correct operation of all sensing devices, alarms, and indicating devices by adjusting each module out of its pre-set range to demonstrate starting, paralleling, load shedding and operation in a load demand condition.
- B. Perform all acceptance checks and tests specified in Section 26 23 00, LOW-VOLTAGE SWITCHGEAR, Section 26 32 13, ENGINE GENERATORS, and Section 26 36 23, AUTOMATIC TRANSFER SWITCHES.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall certify that the paralleling switchgear is in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

Furnish the services of a factory-certified instructor for three 4-hour periods (not necessarily in succession) to instruct personnel in the operation and maintenance of the switchgear and related equipment on the date requested by the Resident Engineer/ COR.

3.5 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance

26 13 13 - 12

testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.6 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of dry-type general-purpose transformers.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include electrical ratings, impedance, dimensions, weight, mounting details, decibel rating, terminations, temperature rise, no load and full load losses, and connection diagrams.
 - Complete nameplate data, including manufacturer's name and catalog number.
- C. Manuals:
 - When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.
 - 2. If changes have been made to the maintenance and operating manuals originally submitted, then submit four copies of the updated maintenance and operating manuals to the Resident Engineer/ COR two weeks prior to final inspection.

VAMC DES MOINES

- D. Certifications: Two weeks prior to the final inspection, submit four copies of the following to the Resident Engineer/ COR:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC)
- C. National Electrical Manufacturers Association (NEMA): ST20-92..... Dry-Type Transformers for General Applications TP1-02.....Guide for Determining Energy Efficiency for Distribution Transformers

TR1-00..... and Reactors

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 GENERAL PURPOSE DRY-TYPE TRANSFORMERS

- A. Unless otherwise specified, dry-type transformers shall be in accordance with NEMA, NEC, and as shown on the drawings. Transformers shall be ULlisted and labeled.
- B. Dry-type transformers shall have the following features:
 - 1. Transformers shall be self-cooled by natural convection, isolating windings, indoor dry-type. Autotransformers will not be accepted.
 - 2. Rating and winding connections shall be as shown on the drawings.
 - 3. Transformers shall have copper windings.
 - 4. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
 - 5. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220°C system with an average maximum rise by resistance of 150 ° C in a maximum ambient of 40 $^{\circ}$ C.

- b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 ° C system with an average maximum rise by resistance of 115 ° C in a maximum ambient of 40 ° C.
- 6. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.
 - b. Cores shall be grain-oriented, non-aging, and silicon steel.
 - c. Coils shall be continuous windings without splices except for taps.
 - d. Coil loss and core loss shall be minimized for efficient operation.
 - e. Primary and secondary tap connections shall be brazed or pressure type.
 - f. Coil windings shall have end filters or tie-downs for maximum strength.
- Certified sound levels determined in accordance with NEMA, shall not exceed the following:

Transformer Rating	Sound Level Rating
0 – 9 KVA	40 dB
10 - 50 KVA	45 dB
51 - 150 KVA	50 dB
151 - 300 KVA	55 dB
301 - 500 KVA	60 dB

- If not shown on drawings, nominal impedance shall be as permitted by NEMA.
- 9. Single phase transformers rated 15 kVA through 25 kVA shall have two 5% full capacity taps below normal rated primary voltage. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage.
- 10. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.
- 11. Enclosures:
 - a. Comprised of not less than code gauge steel.
 - b. Outdoor enclosures shall be NEMA 3R.
 - c. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service.

- d. Ventilation openings shall prevent accidental access to live components.
- e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.
- 12. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated on it.
- 13. Dimensions and configurations shall conform to the spaces designated for their installations.
- 14. Transformers shall meet the minimum energy efficiency values per NEMA TP1 as listed below:

kVA Rating	Output efficiency (%)
15	97
30	97.5
45	97.7
75	98
112.5	98.2
150	98.3
225	98.5
300	98.6
500	98.7
750	98.8

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.
- B. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 6 in [150 mm].
- C. Install transformers on vibration pads designed to suppress transformer noise and vibrations.
- D. Use flexible metal conduit to enclose the conductors from the transformer to the raceway systems.

3.2 ACCEPTANCE CHECKS AND TESTS

Perform tests in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections.

 Compare equipment nameplate data with specifications and approved shop drawings.

- 2. Inspect physical and mechanical condition.
- Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
- 4. Perform specific inspections and mechanical tests as recommended by manufacturer.
- 5. Verify correct equipment grounding.
- 6. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.5 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Identification and painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.
- F. Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY: Requirements for installing the over-current protective devices to ensure proper equipment and personnel protection.
- G. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, shall be clearly presented to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting details, materials, wiring diagrams, accessories, and weights of equipment. Complete nameplate data, including manufacturer's name and catalog number.

- C. Manuals:
 - 1. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.
 - 2. If changes have been made to the maintenance and operating manuals that were originally submitted, then submit four copies of updated maintenance and operating manuals to the Resident Engineer/ COR two weeks prior to final inspection.
- D. Certification: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer/ COR:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA): PB-1-06.....Panelboards 250-08..... Enclosures for Electrical Equipment (1000V

Maximum)

C. National Fire Protection Association (NFPA): 70-2005National Electrical Code (NEC) 70E-2004.....Standard for Electrical Life Safety in the

Workplace

D. Underwriters Laboratories, Inc. (UL): 50-95..... Enclosures for Electrical Equipment 67-09....Panelboards 489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

 $26\ 24\ 16\ -\ 2$

PART 2 - PRODUCTS

2.1 PANELBOARDS

- A. Panelboards shall be in accordance with UL, NEMA, NEC, and as shown on the drawings.
- B. Panelboards shall be standard manufactured products.
- C. All panelboards shall be hinged "door in door" type with:
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - Outer hinged door shall be securely mounted to the panelboard box with factory bolts, screws, clips, or other fasteners, requiring a tool for entry. Hand-operated latches are not acceptable.
 - 3. Push inner and outer doors shall open left to right.
- D. All panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories, and as scheduled on the drawings or specified herein. Include one-piece removable, inner dead front cover, independent of the panelboard cover.
- E. Panelboards shall have main breaker or main lugs, bus size, voltage, phase, top or bottom feed, and flush or surface mounting as scheduled on the drawings.
- F. Panelboards shall conform to NEMA PB-1, NEMA AB-1, and UL 67 and have the following features:
 - Non-reduced size copper bus bars with current ratings as shown on the panel schedules, rigidly supported on molded insulators.
 - Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
 - 3. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys of sizes suitable for the conductors to which they will be connected.
 - 4. Neutral bus shall be 100% rated, mounted on insulated supports.
 - 5. Grounding bus bar shall be equipped with screws or lugs for the connection of grounding wires.
 - 6. Buses shall be braced for the available short-circuit current. Bracing shall not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.

- Branch circuit panelboards shall have buses fabricated for bolt-on type circuit breakers.
- 8. Protective devices shall be designed so that they can easily be replaced.
- 9. Where designated on panel schedule "spaces," include all necessary bussing, device support, and connections. Provide blank cover for each space.
- 10. In two section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have cable connections to the second section. Panelboard sections with tapped bus or crossover bus are not acceptable.
- 11. Series-rated panelboards are not permitted.

2.2 CABINETS AND TRIMS

- A. Cabinets:
 - Provide galvanized steel cabinets to house panelboards. Cabinets for outdoor panelboards shall be factory primed and suitably treated with a corrosion-resisting paint finish meeting UL 50 and UL 67.
 - 2. Cabinet enclosure shall not have ventilating openings.
 - Cabinets for panelboards may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.

2.3 MOLDED CASE CIRCUIT BREAKERS FOR PANELBOARDS

- A. Circuit breakers shall be per UL 489, in accordance with the NEC, as shown on the drawings, and as specified.
- B. Circuit breakers in panelboards shall be bolt-on type.
- C. Molded case circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Molded case circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for 100 A frame or lower. Magnetic trip shall be adjustable from 3x to 10x for breakers with 600 A frames and higher. Breaker trip setting shall be set in the field, based on the approved protective device study as

specified in Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY.

- E. Breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates ON, TRIPPED, and OFF positions.
 - 8. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where indicated.
 - 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SEPARATELY ENCLOSED MOLDED CASE CIRCUIT BREAKERS

- A. Where separately enclosed molded case circuit breakers are shown on the drawings, provide circuit breakers in accordance with the applicable requirements of those specified for panelboards.
- B. Enclosures are to be of the NEMA types shown on the drawings. Where the types are not shown, they are to be the NEMA type most suitable for the environmental conditions where the circuit breakers are being installed.

2.5 FUSIBLE BRANCH CIRCUIT PANELBOARDS

- A. Fusible Branch Circuit Panelboards shall be Cooper Bussmann Quik-Spec Coordination Panelboards type QSCP with Low-Peak Class J or Class CF fuses or equal. Fuses upstream of branch circuit panelboards shall be Cooper Bussmann Low-Peak fuses or equal.
- B. PANELBOARD RATINGS AND CONSTRUCTION
 - 1. Panelboards shall be UL Listed with a labeled short-circuit current rating equal to or greater than that indicated on the associated schedules or drawings.

 $26\ 24\ 16\ -\ 5$

- Panelboards shall be rated 600Vac/125Vdc but marked for actual system voltage.
- Provide Main lug only, main fused switch or main non-fused switch as indicated in the associated schedules or drawings.
- 4. Provide branch circuits as indicated in the associated schedules or drawings.
- 5. Panelboard branch circuits shall incorporate overcurrent protection and branch-circuit rated disconnecting means into a single integrated component that prevents removal of the fuse while energized, provides open fuse indication, and fuse ampere rating rejection feature at 15A, 20A, 30A, 40A, 50A, 60A, 70A, 90A, and 100A. Provide open fuse indication on the branch circuit fuses where indicated in the associated schedules or drawings.
- Provide <Time-Delay> < Fast-Acting> Class CF fuses for branch circuits.
- 7. Bus bars shall be tin-plated copper
- Neutral and equipment ground bar (isolated or non-isolated) shall be provided where indicated in the associated schedules or drawings.
- 9. Panelboard trim shall be type as specified in the associated schedules or drawings.
- 10. Panelboard enclosure shall be of type indicated in the associated schedules or drawings.
- 11. Boxes shall be a nominal 20 inches wide and 5-34 inches deep
- 12. Panelboard shall be equipped with a spare branch circuit fuse holder and spare fuses (10% of fuse for each ampacity installed in branch circuits).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Resident Engineer/ COR. Schedules shall be printed on the panelboard directory cards, installed in the appropriate panelboards, and incorporate all applicable contract changes. Information shall indicate outlets, lights, devices, or other equipment controlled by each circuit, and the final room numbers served by each circuit.

- D. Mount the fully-aligned panelboard such that the maximum height of the top circuit breaker above the finished floor shall not exceed 78 in [1980 mm]. Mount panelboards that are too high such that the bottom of the cabinets will not be less than 6 in [150 mm] above the finished floor.
- E. Rust and scale shall be removed from the inside of existing backboxes where new panelboards are to be installed. Paint inside of backboxes with rust-preventive paint before the new panelboard interior is installed. Provide new trim and doors for these panelboards. Covers shall fit tight to the box with no gaps between the cover and the box.

3.2 ACCEPTANCE CHECKS AND TESTS

Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:

- 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Clean panelboard.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

3.4 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

- - - E N D - - -

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.

26 29 11 - 1

- Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
- Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
- Elementary schematic diagrams shall be provided for clarity of operation.
- Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-92.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1-02....Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
- C. International Code Council (ICC):

IBC-12.....International Building Code

D. National Electrical Manufacturers Association (NEMA):

ICS 1-08.....Industrial Control and Systems: General Requirements

ICS 1.1-09.....Safety Guidelines for the Application,

Installation and Maintenance of Solid State Control

VA PROJECT NO. 636A6-12-203 JUNE 2013 VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 ICS 2-05.....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-05.....Industrial Control and Systems: Terminal Blocks ICS 6-06.....Industrial Control and Systems: Enclosures ICS 7-06.....Industrial Control and Systems: Adjustable-Speed Drives ICS 7.1-06..... Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems MG 1 Part 31.....Inverter Fed Polyphase Motor Standards E. National Fire Protection Association (NFPA): 70-11..... National Electrical Code (NEC) F. Underwriters Laboratories Inc. (UL):

508A-07.....Industrial Control Panels 508C-07.....Power Conversion Equipment UL 1449-06.....Surge Protective Devices

1.6 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with circuit breaker disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
 - 1. Circuit Breakers:
 - a. Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.

- b. Equipped with automatic, trip free, non-adjustable, inverse-time, and instantaneous magnetic trips for less than 400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.
- c. Additional features shall be as follows:
 - 1) A rugged, integral housing of molded insulating material.
 - 2) Silver alloy contacts.
 - 3) Arc quenchers and phase barriers for each pole.
 - 4) Quick-make, quick-break, operating mechanisms.
 - 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Thermaltype. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.

- 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - Units shall include thermal overload relays, on-off operator, red pilot light, normally open auxiliary contacts.
- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.

- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 REDUCED VOLTAGE MOTOR CONTROLLERS

- A. Shall be in accordance with applicable portions of 2.1 above.
- B. Shall have closed circuit transition.
- C. Shall limit inrush currents to not more than 70 percent of the locked rotor current.
- D. Provide phase loss protection for each motor controller, with contacts to de-energize the motor controller upon loss of any phase.

2.5 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.

- H. Operating and Design Conditions:
 - 1. Elevation: 800 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +90°F Minimum -10°F
 - 3. Relative Humidity: 95%
 - 4. VSMC Location: Air conditioned space
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
 - Provide automatic shutdown upon receiving a power transfer warning signal from an automatic transfer switch. VSMC shall automatically restart motor after the power transfer.

- 9. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- 10. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- 11. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.

- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMArated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Install manual motor controllers in flush enclosures in finished areas.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.

$26\ 29\ 11\ -\ 9$

VAMC DES MOINES VA PROJ. CENTRALIZED BOILER/CHILLER PLANT SCHEM

VA PROJECT NO. 636A6-12-203 SCHEMMER NO. 06054.013

- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify Resident Engineer/ COR before increasing settings.
- F. Set the taps on reduced-voltage autotransformer controllers at 50percent of line voltage.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions. 3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the Resident Engineer/ COR.

3.6 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.7 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

---END---

SECTION 26 29 21 DISCONNECT SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of low voltage disconnect switches.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES 600 VOLTS AND BELOW: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.
- E. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Motor rated toggle switches.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - 2. Include electrical ratings, dimensions, mounting details, materials, enclosure types, and fuse types and classes.
 - 3. Show the specific switch and fuse proposed for each specific piece of equipment or circuit.
- C. Manuals:
 - Provide complete maintenance and operating manuals for disconnect switches, including technical data sheets, wiring diagrams, and information for ordering replacement parts. Deliver four copies to the Resident Engineer/ COR two weeks prior to final inspection.
 - Terminals on wiring diagrams shall be identified to facilitate maintenance and operation.
 - 3. Wiring diagrams shall indicate internal wiring and any interlocking.

VAMC DES MOINES V CENTRALIZED BOILER/CHILLER PLANT

VA PROJECT NO. 636A6-12-203 SCHEMMER NO. 06054.013

- D. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer/ COR:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA): FU 1-07.....Low Voltage Cartridge Fuses KS 1-06....Enclosed and Miscellaneous Distribution

Equipment Switches (600 Volts Maximum)

- C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL): 98-04.....Enclosed and Dead-Front Switches 248-00....Low Voltage Fuses 977-94.....Fused Power-Circuit Devices

PART 2 - PRODUCTS

2.1 LOW VOLTAGE FUSIBLE SWITCHES RATED 600 AMPERES AND LESS

- A. In accordance with UL 98, NEMA KS1, and NEC.
- B. Shall have NEMA classification General Duty (GD) for 240 V switches and NEMA classification Heavy Duty (HD) for 480 V switches.
- C. Shall be HP rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the OFF position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate ON and OFF position and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the OFF position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Electrically operated switches shall only be installed where shown on the drawings.
 - Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 9. Ground lugs for each ground conductor.

26 29 21 - 2

10. Enclosures:

- a. Shall be the NEMA types shown on the drawings for the switches.
- b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions. Unless otherwise indicated on the plans, all outdoor switches shall be NEMA 3R.
- c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel (for the type of enclosure required).
- 2.2 LOW VOLTAGE UNFUSED SWITCHES RATED 600 AMPERES AND LESS

Shall be the same as Low Voltage Fusible Switches Rated 600 Amperes and Less, but without provisions for fuses.

2.3 LOW VOLTAGE FUSIBLE SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES Shall be the same as Low Voltage Fusible Switches Rated 600 Amperes and Less, except for the minimum duty rating which shall be NEMA classification Heavy Duty (HD). These switches shall also be HP rated.

2.4 MOTOR RATED TOGGLE SWITCHES

Refer to Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

2.5 LOW VOLTAGE CARTRIDGE FUSES

- A. In accordance with NEMA FU1.
- B. Service Entrance: Class L, time delay.
- C. Feeders: Class L, time delay.
- D. Motor Branch Circuits: Class RK5, time delay.
- E. Other Branch Circuits: Class RK5, time delay.
- F. Control Circuits: Class CC, time delay.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install disconnect switches in accordance with the NEC and as shown on the drawings.
- B. Fusible disconnect switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuse.

3.2 SPARE PARTS

Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fusible disconnect switch installed on the project. Deliver the spare fuses to the Resident Engineer/ COR.

- - - E N D - - -

SECTION 26 32 13 ENGINE-GENERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and testing of the low-voltage engine-generator system. This includes, but is not limited to: air filtration, starting system, generator controls, paralleling switchgear, instrumentation, lubrication, fuel system, cooling system, and exhaust system.
- B. The engine-generator system shall be fully automatic and shall constitute a unified and coordinated system ready for operation.

1.2 RELATED WORK

- A. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Requirements for pipe and equipment support and noise control.
- B. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Requirements for hot piping and equipment insulation.
- C. Section 23 10 00, FACILITY FUEL SYSTEMS: Fuel supply and storage requirements.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items common to more than one section of Division 26.
- E. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage conductors.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- G. Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY: Requirements for protective coordination of a standby and/or essential electrical system.
- H. Section 26 13 13, GENERATOR PARALLELING CONTROLS: Requirements for generator paralleling.
- I. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Requirements for secondary distribution switchgear.
- J. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Requirements for automatic transfer switches for use with engine-generators.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 QUALITY ASSURANCE

- A. The supplier of the engine-generator shall be responsible for satisfactory total operation of the system and its certification. This supplier shall have had experience with three or more installations of systems of comparable size and complexity. Each of these installations shall have been in successful operation for three or more years. Prior to review of submittals, the Government reserves the right to:
 - 1. Have the manufacturer submit a list of locations with similar installations.
 - 2. Inspect any of these installations and question the user concerning the installations without the presence of the supplier.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 2 hours maximum of notification.

1.5 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings: Scaled drawings, showing plan views, side views, elevations, and crosssections.
- C. Diagrams:

Control system diagrams, elementary diagrams, control sequence diagrams or tables, wiring diagrams, interconnections diagrams (between local control cubicles, remote annunciator panels, remote derangement panels, remote monitoring panels, remote exercising panel, automatic transfer switches, paralleling switchgear, and fuel storage tanks, as applicable), illustrative diagrams, flow diagrams, and other like items.

- D. Technical Data:
 - Published ratings, catalog cuts, pictures, and manufacturers' specifications for engine-generator, governor, voltage regulator, radiator, muffler, dampers, day tank, pumps, fuel tank, batteries and charger, jacket heaters, torsional vibration, and control and supervisory equipment.
 - 2. Description of operation.
 - 3. Short-circuit current capacity and subtransient reactance.
 - 4. Sound power level data.
- E. Calculations:

Detailed engineering calculations with all equations, graphs, assumptions, and approximations shown and data sources referenced. Include any calculated performance derations appropriate to installed environment.
- F. Manuals:
 - When submitting the shop drawings, submit complete maintenance and operating manuals of the engine-generator and auxiliaries, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the updated maintenance and operating manual to the Resident Engineer/ COR:
 - a. Include complete "As Installed" diagrams, which indicate all items of equipment and their interconnecting wiring.
 - b. Include complete diagrams of the internal wiring for each of the pieces of equipment, including "As Installed" revisions of the diagrams.
 - c. The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
 - d. Include complete lists of spare parts and special tools recommended for two years of normal operation of the complete system.
- G. Certifications:
 - Prior to fabrication of the engine-generator, submit the following to the Resident Engineer/ COR for approval:
 - a. A certification in writing that an engine-generator of the same model and configuration, with the same bore, stroke, number of cylinders, and equal or higher kW/kVA ratings as the proposed engine-generator, has been operating satisfactorily with connected loads of not less than 75% of the specified kW/kVA rating, for not fewer than 2,000 hours without any failure of a crankshaft, camshaft, piston, valve, injector, or governor system.
 - b. A certification in writing that devices and circuits will be incorporated to protect the voltage regulator and other components of the engine-generator during operation at speeds other than the rated RPM while performing maintenance. Submit thorough descriptions of any precautions necessary to protect the voltage regulator and other components of the system during operation of the engine-generator at speeds other than the rated RPM.
 - c. A certification from the engine manufacturer stating that the engine exhaust emissions meet the federal, state, and local regulations and restrictions specified, for Tier 2, Emergency Stationary use only At a minimum, this certification shall include emission factors for criteria pollutants including nitrogen

oxides, carbon monoxide, particulate matter, sulfur dioxide, nonmethane hydrocarbon, and hazardous air pollutants (HPAs).

- d. A certification from the engine manufacture stating that the engine used for this project is factory tested at 0.8pF. A copy of the test report will be included in the operation and maintenance manuals.
- Prior to installation of the engine-generator at the job site, submit four copies of certified factory test data to the Resident Engineer/ COR.
- 3. Two weeks prior to the final inspection, submit four copies of the following to the Resident Engineer/ COR:
 - a. Certification by the engine-generator manufacturer that the equipment conforms to the requirements of the drawings and specifications.
 - b. A certified report of field tests from the contractor that the engine-generator has been properly installed, adjusted, and tested.

1.6 STORAGE AND HANDLING

- A. Equipment shall withstand shipping and handling stresses in addition to the electrical and mechanical stresses which occur during operation of the system. Protect radiator core with wood sheet.
- B. Store the equipment in a location approved by the Resident Engineer/ COR.

1.7 JOB CONDITIONS

Shall conform to the arrangements and details shown on the drawings. The dimensions, enclosures, and arrangements of the engine-generator system shall permit the operating personnel to safely and conveniently operate and maintain the system in the space designated for installation.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):
 - C37.50-00.....Low-Voltage AC Power Circuit Breakers Used In Enclosures-Test Procedures
 - C39.1-81 (R1992)Requirements for Electrical Analog Indicating Instruments
- C. American Society of Testing Materials (ASTM): A53/A53M-07.....Standard Specification for Pipe, Steel, Black, and Hot-Dipped, Zinc Coated Welded and Seamless. B88-03.....Specification for Seamless Copper Water Tube

VAMC DES MOINES VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 B88M-03.....Specification for Seamless Copper water Tube (Metric) D975-09b.....Diesel Fuel Oils D. Institute of Electrical and Electronic Engineers (IEEE): C37.13-08..... Low Voltage AC Power Circuit Breakers Used In Enclosures C37.90.1-02.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus E. National Electrical Manufacturers Association (NEMA): ICS 6-06.....Enclosures ICS 4-05.....Terminal Blocks MG 1-07.....Motor and Generators MG 2-01.....Safety Standard and Guide for Selection, Installation and Use of Electric Motors and Generators PB 2-06..... Dead-Front Distribution Switchboards Maximum) F. National Fire Protection Association (NFPA): 30-08......Flammable and Combustible Liquids Code 37-06..... Installations and Use of Stationary Combustion Engine and Gas Turbines 70-08.....National Electrical Code (NEC) 99-05.....Health Care Facilities 110-10.....Standard for Emergency and Standby Power Systems G. Underwriters Laboratories, Inc. (UL): 50-95..... Enclosures for Electrical Equipment 142-06.....Steel Aboveground Tanks for Flammable and Combustible Liquids 2085-97..... Insulated Aboveground Tanks for Flammable and Combustible Liquids 2200-98..... Assemblies 1236-06.....Battery Chargers for Charging Engine-Starter Batteries 467-07.....Grounding and Bonding Equipment 489-09..... Molded-Case Circuit Breakers, Molded-Case Switches and Circuit-Breaker Enclosures 508-99..... Industrial Control Equipment 891-05.....Switchboards 1446..... Shall be UL2200 listed

1.9 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to Section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 ENGINE-GENERATOR

- A. The engine-generator system shall be in accordance with NFPA, UL, NEMA and ANSI, and as specified herein. All information required by these specifications shall shown on the drawings.
- B. Provide a factory-assembled, wired (except for field connections), complete, fully automatic engine-generator system.
- C. Engine-Generator Parameter Schedule:

Power Rating: Emergency Standby Voltage: 277/480V Service Load: 600kW/750 kVA (maximum)standby Motor Starting kVA (Max.): 2304 skVA at a 30% instantaneous voltage dip. Generator supplier shall provide supporting evidence the generator shall meet instantaneous voltage dip. Sustained voltage dip information shall not be acceptable. Power Factor: 0.8 lagging Engine-Generator Application: parallel with other generators on an isolated bus Fuel: diesel Maximum Speed: 1800 RPM Frequency Bandwidth (steady state): + 0.2Hz Voltage Regulation: +/- 0.25% no load to full load(steady state) Frequency: 60 Hz Phases: 3 Phase, Wye Minimum Generator Subtransient Reactance: 12% Max Step Load Increase: 100% of service load at 1.0 PF Transient Recovery Time with Step Load Increase (Voltage): <3 seconds Transient Recovery Time with Step Load Increase (Frequency): <3 seconds Maximum Frequency Deviation with 100% Step Load Increase: 21.9% % of rated frequency Max Step Load Decrease (without shutdown): 100% of service load at 1.0 PF Max Time to Start and be Ready to Assume Load: 10seconds

Max Allowable Heat Transferred To Engine-Generator Space at Rated Output Capacity: 34.9kW MBTU/hr Max Summer Outdoor Temp (Ambient): 110° Min Winter Outdoor Temp (Ambient): -20° Installation Elevation: 800 feet above sea level

- D. Assemble, connect, and wire the equipment at the factory so that only the external connections need to be made at the construction site.
- E. Unit shall be factory-painted with manufacturer's primer and standard finishes.
- F. Connections between components of the system shall conform to the recommendations of the manufacturer.
- G. Couplings, shafts, and other moving parts shall be enclosed and guarded. Guards shall be metal, ruggedly constructed, rigidly fastened, and readily removable for convenient servicing of the equipment without disassembling any pipes and fittings.
- H. Engine-generator shall have the following features:
 - 1. Factory-mounted on a common, rigid, welded, structural steel base.
 - 2. Engine-generator shall be statically and dynamically balanced so that the maximum vibration in the horizontal, vertical, and axial directions shall be limited to 0.0059 in [0.15 mm], with an overall velocity limit of 0.866 in/sec [24 mm/sec] RMS, for all speeds.
 - The isolators shall be constrained with restraints capable of withstanding static forces in any direction equal to twice the weight of the supported equipment.
 - 4. Shall be capable of operating satisfactorily as specified for not fewer than 10,000 hours between major overhauls.
- I. Each engine-generator specified for parallel operation shall be configured for automatic parallel operation. Each engine-generator shall be capable of parallel operation with one or more engine-generators on an isolated bus.
- J. Each engine-generator specified for parallel operation shall be configured to automatically load-share with other engine-generators by proportional loading. Proportional loading shall load each enginegenerator to within 5% of its fair share. A fair share is its nameplaterated capacity times the total load, divided by the sum of all nameplate-rated capacities of on-line engine-generators. Load sharing shall incorporate both the real and reactive components of the load.

2.2 ENGINE

- A. Coupled directly to a generator.
- B. Minimum four cylinders.

- C. The engine shall be able to start in a 40 $^{\circ}$ F [4.5 $^{\circ}$ C] () ambient temperature while using No. 2 diesel fuel oil without the use of starting aids such as glow plugs and ether injections.
- D. Fuel oil consumption of the engine rate shall not exceed the following values:

Size Range Net kW	% of Rated Output capacity	Fuel Usage kg/kWH (lbs/kWH)
100 -299	75 and 100	0.272 (0.600)
	50	0.292 (0.643)
300 - 999	75 and 100	0.261 (0.575)
	50	0.272 (0.600)
1000 -2500	75 and 100	0.243 (0.536)
	50	0.260 (0.573)
600kW	100%	42.7 GPH
	75%	34.3 GPH
	50%	24.2 GPH

- E. Equipped with electric heater for maintaining the coolant temperature between 90-100° F [32-38° C]), or as recommended by the manufacturer.
 - 1. Install thermostatic controls, contactors, and circuit breakerprotected circuits for the heaters.
 - 2. The heaters shall operate continuously except while the engine is operating or the water temperature is at the predetermined level.

2.3 GOVERNOR

- A. Isochronous, electronic type.
- B. Steady-state speed band at 60 Hz shall be +/- 0.2Hz
- C. While the engine is running, manual speed adjustments may be made.

2.4 LUBRICATION OIL SYSTEM

- A. Pressurized type.
- B. Positive-displacement pump driven by engine crankshaft.
- C. Full-flow strainer and full-flow or by-pass filters.
- D. Filters shall be cleanable or replaceable type and shall remove particles as small as 3 microns without removing the additives in the oil. For by-pass filters, flow shall be diverted without flow interruption.
- E. Extend lube oil sump drain line out through the skid base and terminate it with a drain valve and plug.

2.5 FUEL SYSTEM

A. Existing Main fuel storage tank is located near existing boiler plant. Coordinate existing conditions and requirements with Resident Engineer/ COR.

- B. Shall comply with NFPA 37 and NFPA 30, and have the following features:
 - 1. Injection pump(s) and nozzles.
 - Plungers shall be carefully lapped for precision fit and shall not require any packing.
 - 3. Filters or screens that require periodic cleaning or replacement shall not be permitted in the injection system assemblies.
 - Return surplus oil from the injectors to the existing main storage tank by gravity or a pump.
 - 5. Filter System:
 - a. Dual primary filters shall be located between the existing main fuel oil storage and sub-base tank.
 - b. Secondary filters (engine-mounted) shall be located such that the oil will be thoroughly filtered before it reaches the injection system assemblies.
 - c. Filters shall be cleanable or replaceable type and shall entrap and remove water from oil as recommended by the engine manufacturer.
- C. Sub-base Tank:
 - Each engine-generator shall be provided with a welded steel integral, UL 142 listed, sub-base fuel oil-day tank.
 - 2. The sub-base tank shall have capacity to supply fuel to the engine for a 12-hour period at 100% rated load without being refilled. This tank shall be re-filled from the existing main fuel storage tank located on site by the boiler plant. Provide fuel pumps, piping, connections, control wiring, metering, etc. for a complete system. Coordinate metering and alarm requirements with Resident Engineer/ COR prior to shop drawing submittal. Provide alarm contact points at generator as required by Resident Engineer/ COR.
 - 3. Secure, pipe, and connect the tank adequately for maximum protection from fire hazards, including oil leaks.
 - 4. Incorporate a float switch on the sub-base tank to control the fuel oil transfer pump and to actuate an alarm in the engine-generator control HMI interface when the oil level in the tank drops below the level at which the transfer pump should start to refill the tank.
 - a. The float switch contacts controlling the fuel oil transfer pump shall be set to energize the pump when the liquid level in the tank reaches one-third of the total volume of the tank.
 - b. The float switch contacts that actuate the low fuel oil sub-base tank alarm device shall be set to alarm and energize the second fuel transfer pump when the liquid level in the tank reaches onequarter of the total volume of the tank.

- 5. Sub-base tank and engine supply line elevations shall be below the elevation of the injector return outlet on the engine.
- D. Fuel Transfer Pump Existing Main Storage Tank to sub-base Tank(s):
 - Electric motor-driven, duplex arrangement, close-coupled, single-stage, positive-displacement type with built-in pressure relief valves. When the fuel is used for cooling components of the fuel injection system, the engine's fuel return line shall be returned to the existing main storage tank, rather than the sub-base tank.
 - 2. Include a heavy-duty automatic alternator and H-O-A switch to alternate sequence of pumps. Pumps shall be controlled with the float switch on the sub-base tank and H-O-A selector switch such that the sub-base tank will be refilled automatically when the oil level lowers to the low limit for the float switch. The H-O-A selector switches shall enable the pumps to be operated manually at any time.
 - 3. For all engines, the related transfer pump and its electrical and plumbing connections shall be sized to provide a flow rate of at least four times the engine's fuel pumping rate.
 - 4. Provide a manually-operated, rotary-type transfer pump connected in parallel with the electric motor-driven transfer pumps so that oil can be pumped to the sub-base tank while the electric motor-driven pumps are inoperative.
- E. Piping System: Black steel standard weight ASTM A-53 pipe and necessary valves and pressure gauges between:
 - The engine shall come assembled with stainless steel hoses between the sub-base fuel day-tank and the engine.
 - 2. The sub-base tank and the supply and return connections at the existing underground storage tank as shown on the mechanical drawings. Connections at the engine shall be made with flexible piping suitable for the fuel furnished.

2.6 COOLING SYSTEM

- A. Liquid-cooled, closed loop, with fin-tube radiator mounted on the engine-generator, as shown on the drawings.
- B. Cooling capacity shall not be less than the cooling requirements of the engine-generator and its lubricating oil while operating continuously at 110% of its specified rating.
- C. Coolant shall be extended-life antifreeze solution, 50% ethylene glycol and 50% soft water, with corrosion inhibitor additive as recommended by the manufacturer.
- D. Fan shall be driven by multiple belts from engine shaft.
- E. Coolant hoses shall be flexible, per manufacturer's recommendation.

F. Self-contained thermostatic-control valve shall modulate coolant flow to maintain optimum constant coolant temperature, as recommended by the engine manufacturer.

2.7 AIR INTAKE AND EXHAUST SYSTEMS

A. Air Intake:

Provide an engine-mounted air cleaner with replaceable dry filter and dirty filter indicator.

- B. Exhaust System:
 - 1. Exhaust Muffler:

Shall be critical grade type and capable of the following noise attenuation:

Octave Band Hertz (Mid Frequency)	Minimum db Attenuation (.0002 Microbar Reference)
31	5
63	10
125	27
500	37
1000	31
2000	26
4000	25
8000	26

- Pressure drop in the complete exhaust system shall be small enough for satisfactory operation of the engine-generator while it is delivering 110% of its specified rating.
- 3. Exhaust pipe size from the engine to the muffler shall be as recommended by the engine manufacturer. Pipe size from muffler to air discharge shall be two pipe sizes larger than engine exhaust pipe.
- Connections at the engine exhaust outlet shall be made with a flexible exhaust pipe. Provide bolted type pipe flanges welded to each end of the flexible section.
- C. Condensate drain at muffler shall be made with schedule 40 black steel pipe through a petcock.
- D. Exhaust Piping and Supports: Black steel pipe, ASTM A-53 standard weight with welded fittings. Spring type hangers, as specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, shall support the pipe.
- E. Insulation for Exhaust Pipe and Muffler:1. Calcium silicate minimum 3 in [75 mm] thick.

- 2. Insulation shall be as specified in Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- 3. The installed insulation shall be covered with aluminum jacket 0.016 in [0.4 mm] thick. The jacket is to be held in place by bands of 0.015 in [0.38 mm] thick by 0.5 in [15 mm] wide aluminum.
- 4. Insulation and jacket are not required on flexible exhaust sections.
- F. Vertical exhaust piping shall be provided with a hinged, gravityoperated, self-closing rain cover.
- G. Coordinate final exhaust piping height with mechanical engineer to comply with NFPA 54 requirements. Provide all piping, structural components, etc. for a complete exhaust system.

2.8 ENGINE STARTING SYSTEM

- A. Shall start the engine at any position of the flywheel.
- B. Electric cranking motor:
 - 1. Shall be engine-mounted.
 - 2. Shall crank the engine via a gear drive.
 - 3. Rating shall be adequate for cranking the cold engine at the voltage provided by the battery system, and at the required RPM during five consecutive starting attempts of 10 seconds cranking each at 10-second intervals, for a total of 50 seconds of actual cranking without damage (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
- C. Batteries shall be lead-acid high discharge rate type.
 - 1. Each battery cell shall have minimum and maximum electrolyte level indicators and a flip-top flame arrestor vent cap.
 - Batteries shall have connector covers for protection against external short circuits.
 - 3. With the charger disconnected, the batteries shall have sufficient capacity so that the total system voltage does not fall below 85% of the nominal system voltage with the following demands: Five consecutive starting attempts of 10 seconds cranking at 10second intervals for a total of 50 seconds of actual cranking (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
 - 4. Battery racks shall be metal with an alkali-resistant finish and thermal insulation, and secured to the floor.
- D. Battery Charger:
 - A current-limiting battery charger, conforming to UL 1236, shall be provided and shall automatically recharge the batteries. The charger shall be capable of an equalize-charging rate for recharging fully depleted batteries within 24 hours and a floating charge rate for

maintaining the batteries at fully charged condition, and be rated a minimum of 20 amperes.

2. An ammeter shall be provided to indicate charging rate. A voltmeter shall be provided to indicate charging voltage.

2.9 JACKET COOLANT HEATERS

Provide a thermostatically-controlled electric heater mounted in the engine coolant jacketing to automatically maintain the coolant within plus or minus 3° F [1.7° C] of the temperature recommended by the engine manufacturer to meet the starting time specified at the minimum winter outdoor temperature.

2.10 GENERATOR

- A. Synchronous, amortisseur windings, bracket-bearing, self-venting, rotating-field type connected directly to the engine.
- B. Lifting lugs designed for convenient connection to and removal from the engine.
- C. Integral poles and spider, or individual poles dove-tailed to the spider.
- D. Designed for sustained short-circuit currents in conformance with NEMA Standards.
- E. Designed for sustained operation at 125% of the RPM specified for the engine-generator without damage.
- F. Telephone influence factor shall conform to NEMA Standards.
- G. Furnished with permament magnet excitation.
- H. Nameplates attached to the generator and exciter shall show the manufacturer's name, equipment identification, serial number, voltage ratings, field current ratings, kW/kVA output ratings, power factor rating, time rating, temperature rise ratings, RPM ratings, full load current rating, number of phases and frequency, and date of manufacture.
- I. The grounded (neutral) conductor shall be electrically isolated from equipment ground and terminated in the same junction box as the phase conductors.

2.11 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Generator circuit breaker shall be molded-case, electronic-trip type, and 100% rated, complying with UL 489. Tripping characteristics shall be adjustable long-time and short-time delay and instantaneous. Provide shunt trip-to-trip breaker when engine-generator is shut down by other protective devices.
- B. Integrate ground-fault indication with other engine-generator alarm indications.

2.12 CONTROLS

- A. Shall include Engine Generator Control Cubicle(s) and Remote Annunciator Panel.
- B. General:
 - 1. Control Equipment shall be in accordance with UL 508, NEMA ICS-4, ICS-6, and ANSI C37.90.1.
 - 2. Panels shall be in accordance with UL 50.
 - 3. Cubicles shall be in accordance with UL 891.
 - 4. Coordinate controls with the automatic transfer switches shown on the drawings so that the systems will operate as specified.
 - 5. Cubicles:
 - a. Code gauge steel: manufacturer's recommended heavy gauge steel with factory primer and light gray finish.
 - b. Doors shall be gasketed, attached with concealed or semi-concealed hinges, and shall have a permanent means of latching in closed position.
 - c. Panels shall be wall-mounted or incorporated in other equipment as indicated on the drawings or as specified.
 - d. Door locks for panels and cubicles shall be keyed identically to operate from a single key.
 - 6. Wiring: Insulated, rated at 600 V.
 - Install the wiring in vertical and horizontal runs, neatly harnessed.
 - b. Terminate all external wiring at heavy duty, pressure-type, terminal blocks.
 - 7. The equipment, wiring terminals, and wires shall be clearly and permanently labeled.
 - 8. The appropriate wiring diagrams shall be laminated or mounted under plexiglass within the frame on the inside of the cubicles and panels.
 - 9. All indicating lamps and switches shall be accessible and mounted on the cubicle doors.
 - 10. The manufacturer shall coordinate the interfacing of the control systems with all related equipment supplied in accordance with other sections of the project specification.
- C. Engine-Generator Control Cubicle:
 - 1. Starting and Stopping Controls:
 - a. A three-position, maintained-contact type selector switch with positions marked "AUTOMATIC," "OFF," and "MANUAL." Provide flashing amber light for OFF and MANUAL positions.
 - b. A momentary contact push-button switch with positions marked "MANUAL START" and "MANUAL STOP."

- c. Selector switch in AUTOMATIC position shall cause the engine to start automatically when a single pole contact in a remote device closes. When the generator's output voltage increases to not less than 90% of its rated voltage, and its frequency increases to not less than 58 Hz, the remote devices shall transfer the load to the generator. An adjustable time delay relay, in the 0 to 15 minute range, shall cause the engine-generator to continue operating without any load after completion of the period of operation with load. Upon completion of the additional 0 to 15 minute (adjustable) period, the engine-generator shall stop.
- d. Selector switch in OFF position shall prevent the engine from starting either automatically or manually. Selector switch in MANUAL position shall also cause the engine to start when the manual start push-button is depressed momentarily.
- e. With selector switch is in MANUAL position, depressing the MANUAL STOP push-button momentarily shall stop the engine after a cooldown period.
- f. A maintained-contact, red mushroom-head push-button switch marked "EMERGENCY STOP" will cause the engine to stop without a cool down period, independent of the position of the selector switch.
- 2. Engine Cranking Controls:
 - a. The cranking cycles shall be controlled by a timer that will be independent of the battery voltage fluctuations.
 - b. The controls shall crank the engine through one complete cranking cycle, consisting of four starting attempts of 10 seconds each and 10 seconds between each attempt.
 - c. Total actual cranking time for the complete cranking cycle shall be 40 seconds during a 70-second interval.
 - d. Cranking shall terminate when the engine starts so that the starting system will not be damaged. Termination of the cranking shall be controlled by self-contained, speed-sensitive switch. The switch shall prevent re-cranking of the engine until after the engine stops.
 - e. After the engine has stopped, the cranking control shall reset.
- 3. Supervisory Controls:
 - a. Overcrank:
 - When the cranking control system completes one cranking cycle (four starting attempts), without starting the engine, the OVERCRANK signal light and the audible alarm shall be energized.

- The cranking control system shall lock-out, and shall require a manual reset.
- b. Coolant Temperature:
 - When the temperature rises to the predetermined first stage level, the HIGH COOLANT TEMPERATURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the temperature rises to the predetermined second stage level, which shall be low enough to prevent any damage to the engine and high enough to avoid unnecessary engine shutdowns, the HIGH COOLANT TEMPERATURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage temperature settings shall be approximately $10\degree$ F [-12° C].
 - Permanently indicate the temperature settings near the associated signal light.
 - 5) When the coolant temperature drops to below 70° F [21° C], the "LOW COOLANT TEMPERATURE" signal light and the audible alarm shall be energized.
- c. Low Coolant Level: When the coolant level falls below the minimum level recommended by the manufacturer, the LOW COOLANT LEVEL signal light and audible alarm shall be energized.
- d. Lubricating Oil Pressure:
 - When the pressure falls to the predetermined first stage level, the OIL PRESSURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the pressure falls to the predetermined second stage level, which shall be high enough to prevent damage to the engine and low enough to avoid unnecessary engine shutdowns, the OIL PRESSURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage pressure settings shall be approximately 15% of the oil pressure.
 - 4) The pressure settings near the associated signal light shall be permanently displayed so that the running oil pressure can be compared to the target (setpoint) value.
- e. Overspeed:
 - When the engine RPM exceeds the maximum RPM recommended by the manufacturer of the engine, the engine shall stop.
 - 2) Simultaneously, the OVERSPEED signal light and the audible alarm shall be energized.

- f. Low Fuel Day Sub-base Tank: When the fuel oil level in the day tank decreases below a predetermined level, the LOW FUEL DAY TANK light and the audible alarm shall be energized.
- g. No main storage tank
- h. Reset Alarms and Signals:

Overcrank, Coolant Temperature, Coolant Level, Oil Pressure, Overspeed, and Low Fuel signal lights and the associated audible alarms shall require manual reset. A momentary-contact silencing switch and push-button shall silence the audible alarm by using relays of solid state devices to seal in the audible alarm in the de-energized condition. Elimination of the alarm condition shall automatically release the sealed-in circuit for the audible so that it will be automatically energized again when the next alarm condition occurs. The signal lights shall require manual reset after elimination of the condition which caused them to be energized. Install the audible alarm just outside the generator room in a location as directed by the Resident Engineer/ COR. The audible alarm shall be rated for 85 dB at 10 ft [3 M].

- i. Generator Breaker Signal Light:
 - 1) A flashing green light shall be energized when the generator circuit breaker is in the OPEN or TRIPPED position.
 - 2) Simultaneously, the audible alarm shall be energized.
- 4. Monitoring Devices:
 - a. Electric type gauges for the cooling water temperatures and lubricating oil pressures. These gauges may be engine mounted with proper vibration isolation.
 - b. A running time indicator, totalizing not fewer than 9,999 hours, and an electric type tachometer.
 - c. A voltmeter (L-L, L-N), ammeter, frequency meter, kilowatt meter, kVAR, kVA, pF, kW-hr, kVar-hr, manual adjusting knob for the output voltage, and the other items shown on the drawings shall be mounted on the front of the generator control panels.
 - d. Install potential and current transformers as required.
 - e. Individual signal lights:
 - 1) OVER-CRANK
 - 2) HIGH COOLANT TEMPERATURE FIRST STAGE
 - 3) HIGH COOLANT TEMPERATURE SECOND STAGE
 - 4) LOW COOLANT TEMPERATURE
 - 5) OIL PRESSURE FIRST STAGE
 - 6) OIL PRESSURE SECOND STAGE

26 32 13 - 17

- 7) LOW COOLANT LEVEL
- 8) GENERATOR BREAKER
- 9) OVERSPEED
- 10) Over/Under Voltage
- 11) Over/Under Frequency
- 12) Reverse Power
- 13) Overcurrent
- 10) LOW FUEL Sub-base TANK
- f. Lamp Test: The LAMP TEST momentary contact switch shall

momentarily actuate the alarm buzzer and all the indicating lamps.

- 5. Automatic Voltage Regulator:
 - a. Shall correct voltage fluctuations rapidly and restore the output voltage to the predetermined level with a minimum amount of hunting.
 - b. Shall include voltage level rheostat located on the engine control panel.
 - c. Provide a 3-phase automatic voltage regulator immune to waveform distortion.

2.13 REMOTE ANNUNCIATOR PANEL

- A. A remote annunciator panel shall be installed at the Engineering Control Center in the boiler plant, location as shown on the drawings.
- B. The annunciator shall indicate alarm conditions of the engine-generator as follows:
 - 1. Individual visual signals shall indicate generator run.
 - Individual visual signals plus a common audible alarm shall warn of the following:
 - a. LOW LUBRICATING OIL PRESSURE
 - b. LOW COOLANT
 - c. HIGH COOLANT TEMPERATURE
 - d. LOW FUEL DAY TANK
 - f. FAILURE TO START
 - g. OVERSPEED
 - Gen Breaker Open
- C. The annunciator shall also have the following features:
 - 1. Lamp test momentary contact switch which will momentarily actuate the alarm buzzer and all indicating lamps.
 - 2. Audible Alarm: There shall be an audible alarm, rated for 85 dB at 10 feet, which shall become actuated whenever an alarm condition occurs. A momentary-contact acknowledge push-button shall silence the audible alarm, but not clear the alarm lamp. Elimination of the alarm condition shall automatically release the seal-in circuit for the audible alarm and extinguish the alarm lamp.

D. Include control wiring between the remote annunciator panel and the engine-generator. Wiring shall be as required by the manufacturer.

2.14 SOUND-ATTENUATED ENCLOSURE

- A. The engine-generator and related equipment shall be housed in an outdoor weatherproof enclosure.
- B. The enclosure shall be provided with a factory-installed and factorywired panelboard, 20A 120V receptacles, and compact fluorescent light fixtures with guards and switches.
- C. Enclosure shall be sound-attenuated (maximum 85 dBA at 5 ft [1525 mm] from any side, top and bottom to no more than 75 dBA when measured at 50 ft [15 m] horizontally from any part of the enclosure). Sound ratings shall be based on full load condition of engine-generator in a single unit operation condition.
- D. Airflow configuration shall be intake through rear of unit, and discharge air vertically up. Enclosure shall be suitable for winds up to 90 (factory enclosure rating) mph [193 kmh] roof load shall be equal to or greater than 40 lbs/sq ft [200 kg/sq m]. Non-distributed loading as required.
- E. The enclosure shall meet the following requirements:
 - Radiator exhaust outlet shall be ducted through the end of the enclosure.
 - 2. All exterior surfaces shall be factory-painted with industrial enamel.
 - Unit shall have sufficient guards to prevent entrance by small animals.
 - 4. Batteries shall fit inside enclosure and alongside the enginegenerator. Batteries under the generator are not acceptable.
 - 5. The muffler shall be mounted and thermally-insulated inside the enclosure.

2.15 SPARE PARTS

- A. For each engine generator:
 - 1. Six lubricating oil filters.
 - 2. Two primary fuel oil filters.
 - 3. Two secondary fuel oil filters.
 - 4. Two intake air filters.
- B. For each battery charger:Three complete sets of fuses.
- C. For each control panel: Three complete sets of fuses.

26 32 13 - 19

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install concrete bases of dimensions shown on the drawings.
- B. Installation of the engine-generator shall comply with manufacturer's written instructions and with NFPA 110.
- C. Mounting:
 - 1. Isolators shall be pre-assembled between the engine-generator and the fuel tank base.
 - All connections between the engine-generator and exterior systems, such as fuel lines, electrical connections, and engine exhaust system and air exhaust shroud, shall be flexible.
- D. Balance:

The vibration velocity in the horizontal, vertical, and axial directions shall not exceed 0.65 in [16.25 mm] per second peak at any specific frequency. These limits apply to main structural components such as the engine block and the generator frame at the bearings.

- E. Connect all components of the generator system so that they will continue to be energized during failure of the normal electrical power supply system.
- F. Install piping between engine-generator and remote components of cooling, fuel, and exhaust systems.
- G. Flexible connection between radiator and exhaust shroud at the wall damper:
 - Install noncombustible flexible connections made of 20-oz neoprene-coated fiberglass fabric approximately 6 in [150 mm] wide.
 - Crimp and fasten the fabric to the sheet metal with screws 2 in [50 mm] on center. The fabric shall not be stressed, except by the air pressure.
- H. Exhaust System Insulation:
 - Adhesive and insulation materials shall be applied on clean, dry surfaces from which loose scale and construction debris has been removed by wire brushing.
 - Fill all cracks, voids, and joints of applied insulation material with high temperature 2000° F [1093° C] insulating cement before applying the outer covering.
 - 3. The installation shall be clean and free of debris, thermally and structurally tight without sag, neatly finished at all hangers or other penetrations, and shall provide a smooth finish surface.
 - 4. Insulation and jacket shall terminate hard and tight at all anchor points.
 - 5. Insulate completely from engine exhaust flexible connection through roof or wall construction, including muffler.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Provide the services of a factory-authorized, factory-trained representative of the engine-generator manufacturer to inspect fieldassembled components, and equipment installation and supervise the field tests.
- B. When the complete engine-generator system has been installed and prior to the final inspection, test all components of the system in the presence of the Resident Engineer/ COR for proper operation of the individual components and the complete system and to eliminate electrical and mechanical defects.
- C. Furnish fuel oil, lubricating oil, anti-freeze liquid, water treatment, and rust-inhibitor and resistive (1.0pF) load bank for load testing the generator to 100%.
- D. Visual Inspection: Visually verify proper installation of enginegenerator and all components per manufacturer's pre-start installation checklist.
- E. Set relays per this specification. Set engine-generator circuit breaker protective functions per Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY.
- F. Field Tests:
 - 1. Perform manufacturer's after-starting checks and inspections.
 - 2. Test the engine-generator for two hours of continuous operation as follows:
 - a. The engine-generator shall be tested while delivering 100% of its specified kW rating.
 - c. If during the 2-hour continuous test, a failure occurs, either the diesel engine shuts down or the full kW rating of the resistive load bank is not achieved, the test is null and void. The test(s) shall be repeated at no additional cost to the Government until satisfactory results are attained.
 - 3. Record the following test data at 15-minute intervals:
 - a. Time of day, as well as reading of running time indicator.
 - b. kW.
 - c. Voltage on each phase.
 - d. Amperes on each phase.
 - e. Engine RPM.
 - f. Frequency.
 - g. Engine water temperature.
 - h. Fuel pressure.
 - i. Oil pressure.
 - j. Outdoor temperature.
 - k. Average ambient temperature in the vicinity of the enginegenerator.

- Demonstrate that the engine-generator will attain proper voltage, frequency, and will accept the specified block load within the specified time limit from a cold start after the closing of a single contact.
- 5. Furnish a resistance-type load for the testing of the enginegenerator. Test loads shall always include adequate resistance to assure stability of the loads and equipment during all of the testing operations. The test load kW rating shall not be less than 100% of the specified kW rating of the engine-generator.
- G. Starting System Test:
 - Demonstrate that the batteries and cranking motor are capable of five starting attempts of 10 seconds cranking each at 10-second intervals with the battery charger turned off.
- H. Remote Annunciator Panel Tests:

Simulate conditions to verify proper operation of each indicating lamp, alarm device, meter, interconnecting hardware and software, and reset button.

- I. Fuel systems shall be flushed and tested per Section 23 10 00, FACILITY FUEL SYSTEMS: Fuel supply and storage requirements.
- J. Automatic Operation Tests:

Test the engine-generator to demonstrate automatic starting, loading and unloading. The load for this test shall utilize both load banks and actual loads to be served. Initiate loss of normal source and verify the specified sequence of operation. Restore the normal power source and verify the specified sequence of operation. Verify resetting of controls to normal.

- K. At the completion of the field tests, contractor shall fill the main storage tank to replace only the fuel used during tests. Fill all engine fluids to levels as recommended by manufacturer.
- L. When any defects are detected during the tests, correct all the deficiencies and repeat all or part of the 2-hour continuous test as requested by the Resident Engineer/ COR, at no additional cost to the Government.
- M. Provide test and inspection results in writing to the Resident Engineer/ COR.
- N. Major equipment and system startup and operational tests shall be scheduled and documented in accordance with Section 01 91 00 Commissioning.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the engine-generator(s) and control and annunciation components are in good operating condition and properly performing the intended function.

26 32 13 - 22

3.4 INSTRUCTIONS AND FINAL INSPECTIONS

- A. Laminate or mount under acrylic resin a set of operating instructions for the system and install instructions within a frame mounted on the wall near the engine-generator at a location per the Resident Engineer/ COR.
- B. Furnish the services of a competent, factory-trained technician for two 2-hour periods for instructions to VA personnel in operation and maintenance of the equipment, on the dates requested by the Resident Engineer/ COR.

3.5 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the Commissioning Process as specified in Section 01 91 00. Functional performance testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.

3.6 DEMONSTRATION AND TRAINING

Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for contractor training requirements. Refer to Section 01 91 00 and the Commissioning Plan for further contractor training requirements.

- - - E N D - - -

SECTION 26 36 23 AUTOMATIC TRANSFER SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, connection, and testing of open-transition automatic transfer switches with bypass isolation.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section in Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personal safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS: Raceways for power and control wiring.
- E. Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY: Requirements for a coordinated electrical system.
- F. Section 26 13 13, GENERATOR PARALLELING CONTROLS: Paralleling controls for multiple generators.
- G. Section 26 32 13, ENGINE-GENERATORS: Requirements for normal and emergency power generation.
- H. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General communications requirements that are common to more than one section in Division 27.
- I. Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATION SYSTEMS: Raceways for communications cabling.
- J. SECTION 27 15 00, COMMUNICATIONS HORIZONTAL CABLING: Communications media for interconnecting automatic transfer switches and remote control and annunciation components.

1.3 QUALITY ASSURANCE

- A. QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall maintain a service center capable of providing emergency maintenance and repair services at the project site within a 8 hour maximum response time.
- C. Automatic transfer switch, bypass/isolation switch, and annunciation control panels shall be products of same manufacturer.
- D. Comply with OSHA 29 CFR 1910.7 for the qualifications of the testing agency.

26 36 23 - 1

1.4 FACTORY TESTS

- A. Automatic transfer switches shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted per UL standards. Factory tests shall be certified. The following factory tests shall be performed:
 - 1. Visual inspection to verify that each ATS is as specified.
 - Mechanical test to verify that ATS sections are free of mechanical hindrances.
 - Insulation resistance test to ensure integrity and continuity of entire system.
 - 4. Main switch contact resistance test.
 - 5. Electrical tests to verify complete system electrical operation and to set up time delays and voltage sensing settings.

1.5 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include electrical ratings (including withstand), dimensions, weights, mounting details, conduit entry provisions front view, side view, equipment and device arrangement, elementary and interconnection wiring diagrams, factory relay settings, and accessories.
 - 3. For automatic transfer switches that are networked together to a common means of annunciation and/or control, submit interconnection diagrams and site and building plans, showing connections for normal and emergency sources of power, load, control and annunciation components, and interconnecting communications paths. Equipment locations on the diagrams and plans shall match the site, building, and room designations on the construction drawings.
 - Complete nameplate data, including manufacturer's name and catalog number.
 - 5. A copy of the markings that are to appear on the transfer switches when installed.
- C. Manuals:
 - When submitting the shop drawings, submit companion copies of complete maintenance and operating and maintenance manuals, including technical data sheets, wiring diagrams and information, such as telephone number, fax number and web sites, for ordering replacement parts.

- Two weeks prior to final inspection, submit four copies of a final updated maintenance and operating manual to the Resident Engineer/ COR.
 - a. Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
 - b. Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
 - c. The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
- D. Certifications:
 - When submitting the shop drawings, submit a certified test report from a recognized independent testing laboratory that a representative sample has passed UL 1008 prototype testing.
 - Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer/ COR:
 - a. Certification that no design changes have been made to the switch or its components since last certified by UL or tested by an independent laboratory.
 - b. Certification by the manufacturer that the equipment conforms to the requirements of the drawings and specifications.
 - c. Certification that the withstand current rating has been coordinated with upstream protective devices.
 - d. Certification by the contractor that the equipment has been properly installed, adjusted, and tested.
 - e. A certified test report from an independent laboratory that a representative sample has passed the ANSI surges withstand test for transfer switches which incorporate solid-state components.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only:
- B. Institute of Electrical and Electronic Engineers (IEEE): 446-95......Recommended Practice for Design and Maintenance of Emergency and Standby Power Systems C37.90.1-02.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C62.41.1-02.....Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits C62.41.2....Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits

26 36 23 - 3

C. National Electrical Manufacturers Association (NEMA): 250-03......Enclosure for Electrical Equipment (1000 Volts

Maximum)

```
ICS 6-06.....Enclosures
```

IC3 4-05.....Industrial Control and Systems: Terminal Blocks

- MG 1-07.....Motors and Generators
- D. National Fire Protection Association (NFPA): 70-08......National Electrical Code (NEC) 99-05.....Health Care Facilities 110-10.....Emergency and Standby Power Systems
- E. Underwriters Laboratories, Inc. (UL): 50-95.....Enclosures for Electrical Equipment 508-99....Industrial Control Equipment 891-05....Dead-Front Switchboards 1008-96....Transfer Switch Equipment

1.7 COMMISSIONING

This section specifies a system or a component of a system being commissioned as defined in Section 01 91 00 Commissioning. Testing of these systems is required, in cooperation with the Owner and the Commissioning Authority. Refer to section 01 91 00 Commissioning for detailed commissioning requirements.

PART 2 - PRODUCTS

2.1 OPEN-TRANSITION AUTOMATIC TRANSFER SWITCH

- A. General:
 - 1. Comply with UL, NEMA, NEC, ANSI, IEEE, and NFPA.
 - Automatic transfer switches are to be 4-pole draw-out construction, electrically operated, mechanically held open contact type, without integral overcurrent protection.
 - Automatic transfer switches shall be completely factory-assembled and wired such that only external circuit connections are required in the field.
 - 4. Each automatic transfer switch shall be equipped with an integral bypass/isolation switch.
 - 5. Ratings:
 - a. Phases, voltage, ampere rating, poles, and withstand current rating shall be as shown on the drawings.
 - b. Transfer switches are to be rated for continuous duty at specified continuous current rating on 60Hz systems.
 - c. Maximum automatic transfer switch rating: 800 A.
 - 6. Markings:
 - a. Markings shall be in accordance with UL 1008.
 - b. Markings for the additional withstand test specified below shall be included in the nameplate data.

7. Tests:

Automatic transfer switches shall be tested in accordance with UL 1008. The contacts of the transfer switch shall not weld during the performance of withstand and closing tests when used with the upstream overcurrent device and available fault current specified.

8. Surge Withstand Test:

Transfer switches utilizing solid-state devices in sensing, relaying, operating, or communication equipment or circuits shall comply with IEEE C37.90.1.

- 9. Housing:
 - a. Enclose automatic transfer switches in wall- or floor-mounted steel cabinets, with metal gauge not less than No. 14, in accordance with UL 508, or in a switchboard assembly in accordance with UL 891, as shown on the drawings. Enclosure shall be NEMA 3R rated when located outdoors.
 - b. Enclosure shall be constructed so that personnel are protected from energized bypass-isolation components during automatic transfer switch maintenance.
 - c. Automatic transfer switch components shall be removable without disconnecting external source or load power conductors.
 - d. Finish: Cabinets shall be given a phosphate treatment, painted with rust-inhibiting primer, and finish-painted with the manufacturer's standard enamel or lacquer finish.
- B. Automatic transfer switches shall include the following features:
 - 1. Operating Mechanism:
 - a. Actuated by an electrical operator.
 - b. Electrically and mechanically interlocked so that the main contact cannot be closed simultaneously in either normal and emergency position.
 - c. Normal and emergency main contacts shall be mechanically locked in position by the operating linkage upon completion of transfer. Release of the locking mechanism shall be possible only by normal operating action.
 - d. Contact transfer time shall not exceed six cycles.
 - e. Operating mechanism components and mechanical interlocks shall be insulated or grounded.
 - 2. Contacts:
 - a. Main contacts: Silver alloy.
 - b. Neutral contacts: Silver alloy, with same current rating as phase contacts.

- c. Current carrying capacity of arcing contacts shall not be used in the determination of the automatic transfer switch rating, and shall be separate from the main contacts.
- d. Main and arcing contacts shall be visible for inspection with cabinet door open and barrier covers removed.
- 3. Manual Operator:

Capable of operation by one person in either direction under no load.

- 4. Replaceable Parts:
 - a. Include the main and arcing contact individually or as units, relays, and control devices.
 - b. Switch contacts and accessories shall be replaceable from the front without removing the switch from the cabinet and without removing main conductors.
- 5. Sensing Relays:
 - a. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100% of nominal, and dropout voltage is adjustable from 75 to 98% of pickup value. Factory set for pickup at 90% and dropout at 85%.
 - b. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 - c. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100% of nominal. Factory set for pickup at 90%. Pickup frequency shall be adjustable from 90 to 100% of nominal. Factory set for pickup at 95%.
 - d. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - e. Test Switch: Simulate normal-source failure.
 - f. Switch-Position Pilot Lights: Indicate source to which load is connected.
 - g. Source-Available Indicating Lights: Supervise sources via transfer switch normal- and emergency-source sensing circuits.
 - h. Normal Power Supervision: Green light with nameplate engraved
 "Normal Source Available."
 - i. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
 - j. Transfer Override Switch: Overrides automatic retransfer control so that automatic transfer switch shall remain connected to

26 36 23 - 6

emergency power source regardless of condition of normal source. Pilot light indicates override status.

- k. Engine Starting Contacts: One isolated and normally closed and one isolated and normally open; rated 10 A at 32-V dc minimum.
- Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- m. Engine-Generator Exerciser: Programmable exerciser starts enginegenerator(s) and transfers load to them from normal source for a preset time, then retransfers and shuts down engine-generator(s) after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings shall be for 7day exercise cycle, 20-minute running period, and 5-minute cooldown period.
- 6. Controls:
 - a. Control module shall provide indication of switch status and be equipped with alarm diagnostics.
 - b. Control module shall control operation of the automatic transfer switches.
- Factory Wiring: Train and bundle factory wiring and label either by color-code or by numbered/lettered wire markers. Labels shall match those on the shop drawings.
- 8. Annunciation, Control, and Programming Interface Components: Devices for communicating with remote programming devices, annunciators, or control panels and paralleling switchgear shall have open-protocol communication capability matched with remote device.
- 9. Auxiliary Contacts:
 - a. Provide contacts as necessary to accomplish the functions shown on the drawings, as specified herein, and as designated in other sections of these specifications, as well as one spare normally open contact and one normally closed contact.
 - b. Provide remote contact to bypass retransfer time delay to normal source.
- 10. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters is through wiring external to the automatic transfer switch. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated.

Relay contacts handling motor-control circuit in-rush and seal currents are rated for actual currents to be encountered.

11. Time delay Neutral Switch Position: Switch operator has a programmed neutral position, arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer. Pause is adjustable from 0.5 to 30 seconds minimum and factory set for 0.5 seconds, unless otherwise indicated. Time delay occurs for both transfer directions. Pause is disabled unless both sources are live.

2.2 SEQUENCE OF OPERATION

- A. The specified voltage decrease in one or more phases of the normal power source shall initiate the transfer sequence. The automatic transfer switch shall start the engine-generator(s) after a specified time delay to permit override of momentary dips in the normal power source.
- B. The automatic transfer switch shall transfer the load from normal to emergency source when the frequency and voltage of the enginegenerator(s) have attained the specified percent of rated value.
- C. Engine Start: A voltage decrease, at any automatic transfer switch, in one or more phases of the normal power source to less than the specified value of normal shall start the engine-generator(s) after a specified time delay.
- D. Transfer to Emergency System Loads: Automatic transfer switches for Emergency System loads shall transfer their loads from normal to emergency source when frequency and voltage of the engine-generator(s) have attained the specified percent of rated value. Only those switches with deficient normal source voltage shall transfer.
- E. Transfer to Equipment Branch Loads: Automatic transfer switches for Equipment Branch loads shall transfer their loads to the generator on a time-delayed, staggered basis, after the Emergency System switches have transferred. Only those switches with deficient normal source voltage shall transfer.
- F. Retransfer to Normal (All Loads): Automatic transfer switches shall retransfer the load from emergency to normal source upon restoration of normal supply in all phases to the specified percent or more of normal voltage, and after a specified time delay. Should the emergency source fail during this time, the automatic transfer switches shall immediately transfer to the normal source whenever it becomes available. After restoring to normal source, the engine-generator(s) shall continue to run unloaded for a specified interval before shut-down.
- G. Exercise Mode: Transfer to emergency power source shall be accomplished by remote manual test switches on a selective basis.

VAMC DES MOINES VA PROJECT NO. 636A6-12-203 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

2.3 BYPASS/ISOLATION SWITCH

- A. Provide each automatic transfer switch with two-way bypass/isolation manual type switch. The bypass-isolation switch shall permit load bypass to either normal or emergency power source and complete isolation of the automatic transfer switch, independent of transfer switch position. Bypass and isolation shall be possible under all conditions including when the automatic transfer switch is removed from service.
- B. Operation: The bypass/isolation switch shall have provisions for operation by one person through the movement of a maximum of two handles at a common dead front panel in no more than 15 seconds. Provide a lock, which must energize to unlock the bypass switch, to prevent bypassing to a dead source. Provide means to prevent simultaneous connection between normal and emergency sources.
 - Bypass to normal (or emergency): Operation of bypass handle shall allow direct connection of the load to the normal (or emergency) source, without load interruption or by using a break-before-make design, or provide separate load interrupter contacts to momentarily interrupt the load.
 - Ensure continuity of auxiliary circuits necessary for proper operation of the system.
 - b. A red indicating lamp shall light when the automatic transfer switch is bypassed.
 - c. Bypassing source to source: If the power source is lost while in the bypass position, bypass to the alternate source shall be achievable without re-energization of the automatic transfer switch service and load connections.
 - Isolation: Operation of the isolating handle shall isolate all live power conductors to the automatic transfer switch without interruption of the load.
 - a. Interlocking: Provide interlocking as part of the bypass/ isolation switch to eliminate personnel-controlled sequence of operation, and to prevent operation to the isolation position until the bypass function has been completed.
 - b. Padlocking: Include provisions to padlock the isolating handle in the isolated position.
 - c. Visual verification: The isolation blades shall be visible in the isolated position.
 - 3. Testing: It shall be possible to test (normal electrical operation) the automatic transfer switch and engine-generator(s) with the isolation contacts closed and the load bypassed without interruption of power to the load.

C. Ratings: The electrical capabilities and ratings of the bypass/isolation switch shall be compatible with those of the associated automatic transfer switch, including any required additional withstand tests.

2.4 REMOTE ANNUNCIATOR AND CONTROL SYSTEM

- A. Include the following functions for indicated automatic transfer switches these functions shall be displayed on the Master Cubicle HMI of the Paralleling Controls:
 - 1. Indication of sources available, as defined by actual pickup and dropout settings of automatic transfer switch controls.
 - 2. Indication of switch position.
 - 3. Indication of switch in test mode.
 - 4. Indication of failure of digital communication link.
 - 5. Key-switch or user-code access to control functions of panel.
 - 6. Control of switch-test initiation.
 - 7. Control of switch operation in either direction.
 - 8. Control of time-delay bypass for transfer to normal source.
- B. Malfunction of remote annunciator and control system or communication link shall not affect functions of automatic transfer switches. Automatic transfer-switch sensing, controlling, or operating functions shall not depend on remote panel for proper operation.
- C. Remote annunciation and control system shall include the following features:
 - Controls and indicating lights grouped together for each transfer switch.
 - Label each indicating light control group. Indicate the transfer switch it controls, the location of switch, and the load that it serves.
 - 3. Digital Communication Capability: Matched to that of automatic transfer switches supervised.
 - 4. Mounting: Flush, modular steel cabinet, unless otherwise indicated.
- D. Interconnecting Communications Protocol and Media: Automatic transfer switches and the remote annunciator and control system and paralleling switchgear shall be interconnected by a dedicated fiber optic network, when required, Via Ethernet per the requirements of Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING. Provide all necessary fiber optic media, raceways, hardware, software, and programming necessary to establish interconnection between automatic transfer switches and remote annunciator and control system. All equipment shall share a common open communications protocol.

2.5 SPARE PARTS

Provide six control fuses for each automatic transfer switch with adifferent rating.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install the automatic transfer switch in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Anchor control and annunciator panel to wall.
- C. Anchor automatic transfer switch to the slab with plated 0.5 in [12.5 mm] minimum anchor bolts, or as recommended by the manufacturer.
- D. Mount automatic transfer switch on concrete slab. Unless otherwise indicated, the slab shall be at least 4 in [100 mm] thick. The top of the concrete slab shall be approximately 4 in [100 mm] above finished floor. Edges above floor shall have 0.5 in [12.5 mm] chamfer. The slab shall be of adequate size to project at least 8 in [200 mm] beyond the equipment. Provide conduit turnups and adequate cable entrance space required for the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 3 in [75 mm] above the slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- E. Set field-adjustable intervals and delays, relays, and engine exerciser.

3.2 ACCEPTANCE CHECKS AND TESTS

A factory-authorized service representative is required to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.

- Following completion of automatic transfer switch installation and after making proper adjustments and settings, site tests shall be performed by the manufacturer's representative in accordance with manufacturer's written instructions to demonstrate that each automatic transfer switch functions satisfactorily and as specified. Advise Resident Engineer/ COR of the site testing within five days prior to its scheduled date, and provide certified field test reports within 14 days following successful completion of the site tests. Test reports shall describe adjustments and settings made and site tests performed. Minimum operational tests shall include the following:
 - a. Insulation resistance shall be tested, both phase-to-phase and phase-to-ground.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.

- After energizing circuits, demonstrate the interlocking sequence and operational function for each automatic transfer switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, re-transfer time delay on restoration of normal power, and engine cool-down and shut-down.
- 3. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.
 - b. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
 - c. Power failure of normal source shall be simulated by opening upstream protective device. This test shall be performed a minimum of five times.
 - d. Power failure of emergency source with normal source available shall be simulated by opening upstream protective device for emergency source. This test shall be performed a minimum of five times.
 - e. Low phase-to-ground voltage shall be simulated for each phase of normal source.
 - f. Operation and settings shall be verified for specified automatic transfer switch operational feature, such as override time delay, transfer time delay, return time delay, engine shutdown time delay, exerciser, auxiliary contacts, and supplemental features.
 - g. Manual and automatic transfer and bypass isolation functions shall be verified.
 - h. When any defects are detected, correct the defects and repeat the test as requested by the Resident Engineer/ COR at no additional cost to the Government.

3.3 FUNCTIONAL PERFORMANCE TESTS

System functional performance testing is part of the commissioning process as specified in Section 01 91 00. Functional performance testing shall be performed by the Contractor and witnessed and documented by the Commissioning Authority.

26 36 23 - 12

3.4 DEMONSTRATION AND TRAINING

Training of the Owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans. Refer to Demonstration and Training, Section 01 79 00, for Contractor training requirements. Refer to Section 01 91 00 and the Commissioning plan for further Contractor training requirements.

- - - E N D - - -
SECTION 26 41 00 FACILITY LIGHTNING PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing and installation of a complete master labeled lightning protection system, complying with NFPA 780, UL 96 and UL 96A.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: penetrations through the roof.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground faults.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Isometric and plan views showing layout and connections to the required metal surfaces.
 - 2. Show the methods of mounting the system to the adjacent construction.
- C. Qualifications: Submit proof that the installer of the lightning protection system is a certified Lighting Protection Institute (LPI) installer, and has had suitable and adequate experience installing other lightning protection systems, and is capable of installing the system as recommended by the manufacturer of the equipment.
- D. Certification: Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer:
 - 1. Certification that the lightning protection system has been properly installed and tested.
 - Certification that the lightning protection system has been inspected by a UL representative and has been approved by UL without variation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC) 780....Standard for the Installation of Lightning Protection Systems
- C. Underwriters Laboratories, Inc. (UL):

UL 467Standard for Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Attach master labels to each item by its manufacturer as evidence that the materials have been manufactured in conformance with the UL Standards for master label lightning protection materials.
- B. In additional to conformance to UL 96, the component material requirements are as follows:
 - Conductors: Electrical grade copper. Conductors shall be in accordance with NFPA 780 and UL 96 for Class I, Class II, or Class II modified materials as applicable.
 - Air terminals: Solid copper, 18 inches long, not less than 3/8 inch [9mm] diameter, with sharp nickel-plated points.
 - 3. Ground rods: Copper clad steel, not less than 1/2 inch [13mm] diameter by 8 feet [2400mm] long. Rods made of copper-clad steel shall conform to UL 467 and galvanized ferrous rods shall conform to IEEE C135.30. Ground rods of copper-clad steel, steel, stainless steel, galvanized ferrous, and solid copper shall not be mixed on the project.
 - 4. Ground plates: Solid copper, not less than 1/16 inch [2mm] thick.
 - 5. Tubing: Stiff copper or brass.
- C. Anchors and fasteners: Bolt type which are most suitable for the specific anchor and fastener installations. Clamp-type connectors for splicing conductors shall conform to UL 96, class as applicable, and, Class 2, style and size as required for the installation. Clamp-type connectors shall only be used for the connection of the roof conductor to the air terminal and to the guttering. All other connections, bonds, and splices shall be done by exothermic welds or by high compression fittings. The exothermic welds and high compression fittings shall be

listed for the purpose. The high compression fittings shall be the type which require a hydraulically operated mechanism to apply a minimum of 10,000 psi.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be coordinated with the roofing manufacturer and installer.
- B. Install the conductors as inconspicuously as practical and with the proper bends.
- C. Install the vertical conductors within the concealed cavity of exterior walls. Run the conductors to the exterior at elevations below the finished grade and make the ground connections to the earth outside of the building or stack perimeter.
- D. Make connections of dissimilar metal with bimetallic type fittings to prevent electrolytic action.
- E. Use the exothermic welding type connections that form solid metal joints in the main vertical and horizontal conductors, and for connections that are not exposed in the finish work.
- F. Protect copper conductors with stiff copper or brass tubing, which enclose the conductors from the top to the bottom of the tubing, between one foot [300mm] below and seven feet [2100mm] above the finished grade. The conductor shall be bonded to the top and bottom of the tubing.
- G. Sheath copper conductors, which pass over cast stone, cut stone, architectural concrete and masonry surfaces, with not less than a 1/16 inch [2mm] thickness of lead to prevent staining of the exterior finish surfaces.
- H. For the earth connections, install ground rods and ground plates, and the conductor connections to them and the main water pipes in the presence of the Resident Engineer. For the conductors located outside of the building or stack, install the conductors not less than two feet [600mm] below the finished grade.
- For structural steel buildings, connect the steel framework of the buildings to the main water pipe near the water system entrance to the building.
- J. Connect lightning protection cables to all metallic projections, equipment, and components above the roof as indicated on the drawings.
- K. Connect exterior metal surfaces, located within three feet [900mm] of the lightning protection system conductors, to the lightning protection system conductors to prevent flashovers.

- L. Maintain horizontal or downward coursing of main conductor and insure that all bends have at least an 8-inch radius and do not exceed 90 degrees.
- M. Conductors shall be rigidly fastened every three feet [900mm] along the roof and down to the building to ground.
- N. Air terminals shall be secured against overturning either by attachment to the object to be protected or by means of a substantial tripod or other braces permanently and rigidly attached to the building or structure. Install air terminal bases, cable holders and other roofsystem supporting means without piercing roof metal.
- 0. Use through-roof connectors for down-conductor attachment to roof system. Provide flashing in accordance with Section 07 60 00, FLASHING AND SHEET METAL.
- P. Down-conductors coursed on or in reinforced concrete columns or on structural steel columns shall be connected to the reinforcing steel or the structural steel member at its upper and lower extremities. In the case of long vertical members an additional connection shall be made at intervals not exceeding 100 feet [30m].
- Q. A counterpoise, where shown, shall be of No. 1/0 copper cable or equivalent material having suitable resistance to corrosion and shall be laid around the perimeter of the structure in a trench not less than 2 feet [600mm] deep at a distance not less than 3 feet [900mm] nor more than 8 feet [2.5m] from the nearest point of the structure.
- R. On construction utilizing post tensioning systems to secure precast concrete sections, the post tension rods shall not be used as a path for lightning to ground. Down conductors shall be provided on structures using post tensioning systems. Down conductors shall have sufficient separation from post tension rods to prevent side-flashing. Post tension rods shall be bonded to the lightning protection and grounding systems only at the base of the structure; this bonding shall be performed in strict accordance with the recommendations of the post tension rod manufacturer, and shall be done by, or in the presence of, a representative of the manufacturer.
- S. Grounding: Test the ground resistance to earth by standard methods and conform to the ground resistance requirements specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- T. Where shown, use the structural steel framework or reinforcing steel as the main conductor:
 - 1. Weld or bond the non-electrically-continuous sections together and make them electrically continuous.

- Verify the electrical continuity by measuring the ground resistances to earth at the ground level, at the top of the building or stack, and at intermediate points with a sensitive ohmmeter. Compare the resistance readings.
- Connect the air terminals together with an exterior conductor connected to the structural steel framework at not more than 60 foot [18m] intervals.
- 4. Install ground connections to earth at not more than 60 foot [18m] intervals around the perimeter of the building.
- 5. Weld or braze bonding plates, not less than 8 inches [200mm] square, to cleaned sections of the steel and connect the conductors to the plates.
- 6. Do not pierce the structural steel in any manner. Connections to the structural steel shall conform to UL Publication No. 96A.
- U. When the lightning protection systems have been installed, have the systems inspected by a UL representative. Obtain and install a UL numbered master label for each of the lightning protection systems at the location directed by the UL representative and the Resident Engineer.
- V. Where the drawings show the new lightning protection system connected to an existing lightning protection system without a UL master label, the new portion of the lightning system still requires inspection and labels as specified above for new work.
- W. Metal fences that are electrically continuous with metal posts extending at least 2 feet [600mm] into the ground require no additional grounding. Other fences shall be grounded on each side of every gate. Fences shall be grounded by means of ground rods every 1000 to 1500 feet [300 to 450m] of length when fences are located in isolated places, and every 500 to 750 feet [150 to 225m] when in proximity (100 feet [30m] or less) to public roads, highways, and buildings.

- - - E N D - - -

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of the interior lighting systems.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting fixture (luminaire) designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of fixture designation, submit the following information.
 - Material and construction details include information on housing, optics system and lens/diffuser.
 - 2. Physical dimensions and description.
 - 3. Wiring schematic and connection diagram.
 - 4. Installation details.
 - 5. Energy efficiency data.
 - Photometric data based on laboratory tests complying with IESNA Lighting Measurements, testing and calculation guides.
 - Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours) and color temperature (degrees Kelvin).
 - Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts and total harmonic distortion (THD).

- C. Manuals:
 - 1. Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - 2. Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer.
- D. Certifications:
 - 1. Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91.....Guide on the Surge Environment in Low Voltage (1000V and less) AC Power Circuits
- C. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC)
 - 101....Life Safety Code
- D. National Electrical Manufacturer's Association (NEMA):
- C82.1-97.....Ballasts for Fluorescent Lamps Specifications C82.2-02..... Method of Measurement of Fluorescent Lamp Ballasts
 - C82.4-02.....Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps

C82.11-02..... High Frequency Fluorescent Lamp Ballasts

E. Underwriters Laboratories, Inc. (UL):

496-96.....Edison-Base Lampholders

542-99..... Lampholders, Starters, and Starter Holders for Fluorescent Lamps

- 844-95..... Electric Lighting Fixtures for Use in Hazardous (Classified) Locations
- 924-95..... Emergency Lighting and Power Equipment
- 935-01..... Fluorescent-Lamp Ballasts
- 1029A-06......Ignitors and Related Auxiliaries for HID Lamp Ballasts

1598-00....Luminaires

1574-04.....Standard for Track Lighting Systems
2108-04.....Standard for Low-Voltage Lighting Systems
8750-08....Light Emitting Diode (LED) Light Sources for Use
in Lighting Products

F. Federal Communications Commission (FCC):
 Code of Federal Regulations (CFR), Title 47, Part 18

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES (LUMINAIRES)

- A. Shall be in accordance with NFPA 70 and UL 1598, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved) and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame and lens frame shall be free of light leaks; lens doors shall close in a light tight manner.
 - 4. Hinged door closure frames shall operate smoothly without binding when the fixture is in the installed position, latches shall function easily by finger action without the use of tools.
- C. Ballasts shall be serviceable while the fixture is in its normally installed position, and shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Lamp Sockets:
 - Fluorescent: Lampholder contacts shall be the biting edge type or phosphorous-bronze with silver flash contact surface type and shall conform to the applicable requirements of UL 542. Lamp holders for bi-pin lamps shall be of the telescoping compression type, or of the single slot entry type requiring a one-quarter turn of the lamp after insertion.
 - 2. High Intensity Discharge (H.I.D.): Shall have porcelain enclosures.
- E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, captive hinges or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

VA PROJECT NO. 636A6-12-203

G. Metal Finishes:

- 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
- 2. Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- I. Light Transmitting Components for Fluorescent Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - 2. Flat lens panels shall have not less than 1/8 inch [3.2mm] of average thickness. The average thickness shall be determined by adding the maximum thickness to the minimum unpenetrated thickness and dividing the sum by 2.
 - 3. Unless otherwise specified, lenses, diffusers and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction of the lens without distortion or cracking.
- J. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Group areas as defined in NFPA 70, and shall comply with UL 844.
- K. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures (not the lamp). Fixtures shall be designed for lamps as specified.

2.2 BALLASTS

- A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 277V) electronic programmed-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated; including the following features:
 - 1. Lamp end-of-life detection and shutdown circuit (T5 lamps only).
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.

- 4. Total Harmonic Distortion Rating: 10 percent or less.
- 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
- 6. Operating Frequency: 20 kHz or higher.
- 7. Lamp Current Crest Factor: 1.7 or less.
- 8. Ballast Factor: 0.87 or higher unless otherwise indicated.
- 9. Power Factor: 0.98 or higher.
- 10. Interference: Comply with 47 CFT 18, Ch.1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
- 11. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled.
- 12. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp.
- B. Compact Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bilevel control is indicated; including the following features:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion Rating: 10 percent or less.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. Ballast Factor: 0.95 or higher unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.
 - 10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.

- C. Ballasts for high intensity discharge fixtures: Multi-tap voltage (120-480v) electromagnetic ballast for high intensity discharge lamps. Comply with ANSI C82.4 and UL 1029. Include the following features unless otherwise indicated:
 - 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 - Minimum Starting Temperature: Minus 22 deg F (Minus 30 deg C) for single-lamp ballasts.
 - 3. Rated Ambient Operating Temperature: 104 deg F (40 deg C).
 - 4. Open-circuit operation that will not reduce average life.
 - 5. Low-Noise Ballasts: Manufacturers' standard epoxy-encapsulated models designed to minimize audible fixture noise.
- D. Electronic ballast for high intensity discharge metal-halide lamps shall include the following features unless otherwise indicated:
 - Minimum Starting Temperature: Minus 20 deg F (Minus 29 deg C) for single-lamp ballasts.
 - 2. Rated Ambient Operating Temperature: 130 deg F (54 deg C).
 - 3. Lamp end-of-life detection and shutdown circuit.
 - 4. Sound Rating: Class A.
 - 5. Total Harmonic Distortion Rating: 20 percent or less.
 - Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 7. Lamp Current Crest Factor: 1.5 or less.
 - 8. Power Factor: 0.90 or higher.
 - Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
 - 10. Protection: Class P thermal cut.

2.3 FLUORESCENT EMERGENCY BALLAST

- A. Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.
 - Emergency Connection: Operate two fluorescent lamp(s) continuously at an output of 1100 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 2. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 3. Battery: Sealed, maintenance-free, nickel-cadmium type.

- 4. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
- 5. Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.4 LAMPS

- A. Linear and U-shaped T5 and T8 Fluorescent Lamps:
 - 1. Rapid start fluorescent lamps shall comply with ANSI C78.1; and instant-start lamps shall comply with ANSI C78.3.
 - 2. Chromacity of fluorescent lamps shall comply with ANSI C78.376.
 - 3. Except as indicated below, lamps shall be low-mercury energy saving type, have a color temperature between 3500° and 4100°K, a Color Rendering Index (CRI) of greater than 70, average rated life of 20,000 hours, and be suitable for use with dimming ballasts, unless otherwise indicated. Low mercury lamps shall have passed the EPA Toxicity Characteristic Leachate Procedure (TCLP) for mercury by using the lamp sample preparation procedure described in NEMA LL 1.
 - a. Over the beds in Intensive Care, Coronary Care, Recovery, Life Support, and Observation and Treatment areas; Electromyographic, Autopsy (Necropsy), Surgery, and certain dental rooms (Examination, Oral Hygiene, Oral Surgery, Recovery, Labs, Treatment, and X-Ray) use color corrected lamps having a CRI of 85 or above and a correlated color temperature between 5000 and 6000°K.
 - b. Other areas as indicated on the drawings.
- B. Compact Fluorescent Lamps:
 - 1. T4, CRI 80 (minimum), color temperature 3500 K, and suitable for use with dimming ballasts, unless otherwise indicated.
- C. Long Twin-Tube Fluorescent Lamps:
 - T5, CRI 80 (minimum), color temperature between 3500° and 4100°K, 20,000 hours average rated life.
- D. High Intensity Discharge Lamps:
 - Pulse-Start, Metal-Halide Lamps: Minimum CRI 65, and color temperature 4000°K.
 - Ceramic, Pulse-Start, Metal-Halide Lamps: CRI 80 (minimum), and color temperature 4000°K.

2.5 EXIT LIGHT FIXTURES

A. Exit light fixtures shall meet applicable requirements of NFPA 101 and UL 924.

26 51 00 - 7

- B. Housing and Canopy:
 - 1. Shall be made of die-cast aluminum.
 - Optional steel housing shall be a minimum 20 gauge thick or equivalent strength aluminum.
 - 3. Steel housing shall have baked enamel over corrosion resistant, matte black or ivory white primer.
- C. Door frame shall be cast or extruded aluminum, and hinged with latch.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - 1. Maximum fixture wattage shall be 1 watt or less.
 - 2. Inscription panels shall be cast or stamped aluminum a minimum of 0.090 inch [2.25mm] thick, stenciled with 6 inch [150mm] high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass. The LED shall be rated minimum 25 years life.
 - 3. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 4. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltages: Refer to Lighting Fixture Schedule.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Align, mount and level the lighting fixtures uniformly.
- C. Fluorescent bed light fixtures shall be attached to the studs in the walls. Attachment to gypsum board only is not acceptable.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.

- 4. Hardware for recessed fluorescent fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
- 5. Hardware for surface mounting fluorescent fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 1/4 inch [6mm] secured to channel members attached to and spanning the tops of the ceiling structural grid members. Non-turning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 1/4 inch [6mm] studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 1/4 inch [6mm] toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.
- E. Furnish and install the specified lamps for all lighting fixtures installed and all existing lighting fixtures reinstalled under this project.
- F. Coordinate between the electrical and ceiling trades to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges), to match the ceiling system being installed.
- G. Bond lighting fixtures and metal accessories to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum,

unless a lesser period is specifically recommended by lamp manufacturer. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage. Replace any lamps and ballasts which fail during burn-in.

- I. At completion of project, relamp/reballast fixtures which have failed lamps/ballasts. Clean fixtures, lenses, diffusers and louvers that have accumulated dust/dirt/fingerprints during construction. Replace damaged lenses, diffusers and louvers with new.
- J. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.

- - - E N D - - -

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
- B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings.

1.2 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.

- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.5 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.6 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.

- 3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.7 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.9 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as a standard catalog item, or where other method of identification is herein specified, are exceptions.

1.10 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION ".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REOUIREMENTS.
 - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.

2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.

- 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation and maintenance instructions.
 - e. Safety precautions.
 - f. Diagrams and illustrations.
 - g. Testing methods.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Raceway and pathway hangers, clamps and supports.
 - 4. Duct sealing compound.
- I. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.11 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.12 TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies general grounding and bonding requirements of telecommunication installations for equipment operations.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 27.
- B. Section 27 10 00, STRUCTURED CABLING: Low Voltage power and lighting wiring.
- C. Section 26 41 00, FACILITY LIGHTNING PROTECTION: Requirements for a lightning protection system.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
 - Certification that the materials and installation is in accordance with the drawings and specifications.
 - 2. Certification, by the Contractor, that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the

VA PROJECT NO. 636A6-12-203 VAMC DES MOINES JUNE2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013 extent referenced. Publications are referenced in the text by the basic designation only. A. American Society for Testing and Materials (ASTM): B1-2001......Standard Specification for Hard-Drawn Copper Wire B8-2004......Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983..... EEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C. National Fire Protection Association (NFPA): 70-2005......National Electrical Code (NEC) D. Telecommunications Industry Association, (TIA) J-STO-607-A-2002......Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications E. Underwriters Laboratories, Inc. (UL): 83-2003 Thermoplastic-Insulated Wires and Cables 467-2004Grounding and Bonding Equipment 486A-486B-2003Wire Connectors PART 2 - PRODUCTS 2.1 GROUNDING AND BONDING CONDUCTORS A. Equipment grounding conductors shall be UL 83 insulated stranded

- copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.
- C. Isolated Power System: Type XHHW-2 insulation with a dielectric constant of 3.5 or less.
- D. Telecom System Grounding Riser Conductor: Telecommunications Grounding Riser shall be in accordance with J STO-607A. Use a minimum 50mm² (1/0 AWG) insulated stranded copper grounding conductor unless indicated otherwise.

2.2 GROUND RODS

- A. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance.

2.3 SPLICES AND TERMINATION COMPONENTS

Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.4 TELECOMMUNICATION SYSTEM GROUND BUSBARS

- A. Provide solid copper busbar, pre-drilled from two-hole lug connections with a minimum thickness of 6 mm (1/4 inch) for wall and backboard mounting using standard insulators sized as follows:
 - 1. Room Signal Grounding: 300 mm x 100 mm (12 inches x 4 inch).
 - 2. Master Signal Ground: 600 mm x 100 mm (24 inches x 4 inch).

2.5 GROUND CONNECTIONS

- A. Below Grade: Exothermic-welded type connectors.
- B. Above Grade:
 - 1. Bonding Jumpers: compression type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Ground Busbars: Two-hole compression type lugs using tin-plated copper or copper alloy bolts and nuts.
 - Rack and Cabinet Ground Bars: one-hole compression-type lugs using zinc-plated or copper alloy fasteners.
- C. Cable Shields: Make ground connections to multipair communications cables with metallic shields using shield bonding connectors with screw stud connection.

2.6 EQUIPMENT RACK AND CABINET GROUND BARS

Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch x} 3_4 \text{ inch})$.

2.7 GROUND TERMINAL BLOCKS

At any equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.8 SPLICE CASE GROUND ACCESSORIES

Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

27 05 26 - 3

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
 - Isolation transformers and isolated power systems shall not be system grounded.
- C. Equipment Grounding: Metallic structures (including ductwork and building steel), enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 SECONDARY EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water and gas pipe systems, building steel, and supplemental or made electrodes. Jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.
 - 2. Provide a supplemental ground electrode and bond to the grounding electrode system.
- C. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems shall contain an equipment grounding conductor, except that non-metallic feeder conduits which carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment need not contain an equipment grounding conductor.

27 05 26 - 4

VAMC DES MOINES V CENTRALIZED BOILER/CHILLER PLANT

- 3. Conduit containing only a grounding conductor, and which is provided for mechanical protection of the conductor, shall be bonded to that conductor at the entrance and exit from the conduit.
- D. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- E. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
 - 3. Provide ground bars in panelboards, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
- F. Receptacles shall not be grounded through their mounting screws. Ground with a jumper from the receptacle green ground terminal to the device box ground screw and the branch circuit equipment grounding conductor.

3.4 CORROSION INHIBITORS

When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.5 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the gases and suction piping, at the outlets, directly to the room or patient ground bus.

3.6 TELECOMMUNICATIONS SYSTEM

- A. Bond telecommunications system grounding equipment to the electrical grounding electrode system.
- B. Furnish and install all wire and hardware required to properly ground, bond and connect communications raceway, cable tray, metallic cable shields, and equipment to a ground source.
- C. Ground bonding jumpers shall be continuous with no splices. Use the shortest length of bonding jumper possible.
- D. Provide ground paths that are permanent and continuous with a resistance of 1 ohm or less from raceway, cable tray, and equipment

connections to the building grounding electrode. The resistance across individual bonding connections shall be 10 milli ohms or less.

- E. Below-Grade Grounding Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with the manufacturer's recommendations. After welds have been made and cooled, brush slag from the weld area and thoroughly cleaned the joint area. Notify the Resident Engineer prior to backfilling any ground connections.
- F. Above-Grade Grounding Connections: When making bolted or screwed connections to attach bonding jumpers, remove paint to expose the entire contact surface by grinding where necessary; thoroughly clean all connector, plate and other contact surfaces; and apply an appropriate corrosion inhibitor to all surfaces before joining.
- G. Bonding Jumpers:
 - 1. Use insulated ground wire of the size and type shown on the Drawings or use a minimum of 16 $\rm mm^2$ (6 AWG) insulated copper wire.
 - 2. Assemble bonding jumpers using insulated ground wire terminated with compression connectors.
 - 3. Use compression connectors of proper size for conductors specified. Use connector manufacturer's compression tool.
- H. Bonding Jumper Fasteners:
 - Conduit: Fasten bonding jumpers using screw lugs on grounding bushings or conduit strut clamps, or the clamp pads on push-type conduit fasteners. When screw lug connection to a conduit strut clamp is not possible, fasten the plain end of a bonding jumper wire by slipping the plain end under the conduit strut clamp pad; tighten the clamp screw firmly. Where appropriate, use zinc-plated external tooth lockwashers.
 - 2. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers, and nuts. Install protective cover, e.g., zinc-plated acorn nuts on any bolts extending into wireway or cable tray to prevent cable damage.
 - 3. Ground Plates and Busbars: Fasten bonding jumpers using two-hole compression lugs. Use tin-plated copper or copper alloy bolts, external tooth lockwashers, and nuts.
 - Unistrut and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and external tooth lockwashers.

3.7 COMMUNICATIONS CABLE GROUNDING

- A. Bond all metallic cable sheaths in multipair communications cables together at each splicing and/or terminating location to provide 100 percent metallic sheath continuity throughout the communications distribution system.
 - At terminal points, install a cable shield bonding connector provide a screw stud connection for ground wire. Use a bonding jumper to connect the cable shield connector to an appropriate ground source like the rack or cabinet ground bar.
 - 2. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or the splice case grounding and bonding accessories provided by the splice case manufacturer. When an external ground connection is provided as part of splice closure, connect to an approved ground source and all other metallic components and equipment at that location.

3.8 COMMUNCIATIONS RACEWAY GROUNDING

- A. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to ground metallic conduit at each end and to bond at all intermediate metallic enclosures.
- B. Wireway: use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and across all section junctions.
- C. Cable Tray Systems: Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 16 meters (50 feet).

3.9 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make necessary modifications or additions to the grounding electrode system for compliance without additional cost to the Government. Final tests shall assure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required

resistance, but the specified number of electrodes must still be provided.

- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the Resident Engineer prior to backfilling. The Contractor shall notify the Resident Engineer 24 hours before the connections are ready for inspection.

3.10 GROUND ROD INSTALLATION

- A. Drive each rod vertically in the earth, not less than 3000 mm (10 feet) in depth.
- B. Where permanently concealed ground connections are required, make the connections by the exothermic process to form solid metal joints. Make accessible ground connections with mechanical pressure type ground connectors.
- C. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Bedding of conduits: Section 31 20 00, EARTH MOVING.
- B. Mounting board for communication closets: Section 06 10 00, ROUGH CARPENTRY.
- C. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- D. Fabrications for the deflection of water away from the building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- E. Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building: Section 07 92 00, JOINT SEALANTS.
- F. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- G. General electrical requirements and items that is common to more than one section of Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- H. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

- A. Shop Drawings:
 - 1. Size and location of panels and pull boxes
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Certification: Prior to final inspection, deliver to the Resident Engineer/ COR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC)
- C. Underwriters Laboratories, Inc. (UL):
 - 1-03......Flexible Metal Conduit 5-01.....Surface Metal Raceway and Fittings 6-03.....Rigid Metal Conduit 50-03.....Enclosures for Electrical Equipment 360-03.....Liquid-Tight Flexible Steel Conduit 467-01.....Grounding and Bonding Equipment 514A-01.....Metallic Outlet Boxes 514B-02......Netallic Outlet Boxes 514B-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-02.....Schedule 40 and 80 Rigid PVC Conduit 651A-03......Type EB and A Rigid PVC Conduit and HDPE Conduit 797-03......Electrical Metallic Tubing
 - 1242-00......Intermediate Metal Conduit
- D. National Electrical Manufacturers Association (NEMA):
- TC-3-04..... PVC Fittings for Use with Rigid PVC Conduit and Tubing

FB1-03.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than (3/4 inch) unless otherwise shown.
- B. Conduit:
 - 1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
 - 2. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
 - 3. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.
 - Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical metallic tubing fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - d. Indent type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 3. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.

- b. Clamp type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct burial plastic conduit fittings:
 - a. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - b. As recommended by the conduit manufacturer.
- 6. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- 7. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.

- 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/ COR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/ COR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).

- 7. Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/ COr.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/ COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
- b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
- c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (six feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for conductors above 600 volts:
 - 1. Rigid steel or rigid aluminum.
 - 2. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
- C. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- G. Surface metal raceways: Use only where shown.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, PAINTING.

2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.

VAMC DES MOINES

- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

3.8 COMMUNICATION SYSTEM CONDUIT

- A. Install the communication raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Were drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.

VAMC DES MOINES

- H. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 28 05 28.33

CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

VAMC DES MOINES VA PROJECT NO. 636A6-12-203 JUNE 2013 SCHEMMER NO. 06054.013 CENTRALIZED BOILER/CHILLER PLANT FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 50-07..... Enclosures for Electrical Equipment 360-09.....Liquid-Tight Flexible Steel Conduit 467-07.....Grounding and Bonding Equipment 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit 514C-02......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07..... Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- C. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches).

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.

- Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
- 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- C. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- D. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.

- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.8 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - Pressure Plates: Carbon steel. Include two for each sealing element.
 - Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.9 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COTR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.

- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COTR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.

D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.

- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.

- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Resident Engineer or CORor his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building) shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in the boiler plant.
- E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. A fully addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - 1. Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - 2. Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
 - 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD software latest release and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - 1. Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - q. Include information indicating who will provide emergency service and perform post contract maintenance.

 $28 \ 31 \ 00 \ - \ 4$

- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the

proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.

- Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.

28 31 00 - 6

VAMC DES MOINES V CENTRALIZED BOILER/CHILLER PLANT

VA PROJECT NO. 636A6-12-203 SCHEMMER NO. 06054.013

- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA Resident Engineer /CORor his authorized representative.
- G. Emergency Service:
 - 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the Resident Engineer/COR or his authorized representative.
 - 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
 - 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
 - 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency callback hours is based on actual time spent on site and does not include travel time.
- H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble

calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

In the event that VA modifies the fire alarm system post-Acceptance but Ι. during the 5 year Guaranty Period Service period, Contractor shall be required to verify that the system, as newly modified or added, is consistent with the manufacturer's requirements; any verification performed will be equitably adjusted under the Changes clause. The post-Acceptance modification or addition to the fire alarm system shall not void the continuing requirements under this contract set forth in the Guarantee Period Service provision for the fire alarm system as modified or added. The contract will be equitably adjusted under the Changes clause for such additional performance.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA): NFPA 13Standard for the Installation of Sprinkler Systems, 2010 edition NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2010 edition NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition NFPA 70.....National Electrical Code (NEC), 2010 edition NFPA 72.....National Fire Alarm Code, 2010 edition NFPA 90A..... of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008

F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduits shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - 1. Wiring shall be in accordance with NEC article 760, , and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - 2. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 3. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for

junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.

- 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
- Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - 1. Each buildingshall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.
 - Each power source shall be supervised from the other source for loss of power.
 - 3. All circuits shall be monitored for integrity.
 - Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
 - 5. Transmit digital alarm information to the main fire alarm control unit.
- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - 2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
 - 2. Display screen shall have a minimum 15-inch (380 mm) diagonal nonglare screen capable of displaying 24 lines of 80 characters each.
 - Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
 - 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.

D. Power Supply:

- 1. The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
- 2. The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
- 3. Power supply for smoke detectors shall be taken from the fire alarm control unit.
- 4. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
- 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - 1. Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off"

position. A system trouble signal shall be energized when switch is in the off position.

- Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
- 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
- Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
- 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
- Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
- 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
- 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
- 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.
- I. Remote Transmissions:
 - Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
 - Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit

K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control

2.4 STANDBY POWER SUPPLY

A. Uninterrupted Power Supply (UPS):

unit and secondary power supply.

- 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
- 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
- 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
- 4. Batteries shall be sealed, gel cell type.
- 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.
- B. Batteries:
 - Battery shall be of the sealed, maintenance free type, 24-volt nominal.
 - Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
 - 3. Battery racks shall be steel with an alkali-resistant finish. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.
- C. Battery Charger:
 - Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
 - Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
 - 3. Shall have protection to prevent discharge through the charger.

- Shall have protection for overloads and short circuits on both AC and DC sides.
- 5. A trouble condition shall actuate the fire alarm trouble signal.
- 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - 1. Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
 - Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
 - 3. The initial alarm received shall be indicated as such.
 - A selector switch shall be provided for viewing subsequent alarm messages.
 - 5. The display shall be UL listed for fire alarm application.
 - 6. Annunciators shall display information for all buildings connected to the system. Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COTR.
- B. Printers:
 - System printers shall be high reliability digital input devices, UL approved, for fire alarm applications. The printers shall operate at a minimum speed of 30 characters per second. The printer shall be continually supervised.
 - 2. Printers shall be programmable to either alarm only or event logging output.
 - a. Alarm printers shall provide a permanent (printed) record of all alarm information that occurs within the fire alarm system. Alarm information shall include the date, time, building number, floor, zone, device type, device address, and condition.
 - b. Event logging printers shall provide a permanent (printed) record of every change of status that occurs within the fire alarm system. Status information shall include date, time, building number, floor, zone, device type, device address and change of status (alarm, trouble, supervisory, reset/return to normal).
 - System printers shall provide tractor drive feed pins for conventional fan fold 8-1/2" x 11" (213 mm x 275 mm) paper.

- 4. The printers shall provide a printing and non-printing self test feature.
- 5. Power supply for printers shall be taken from and coordinated with the building emergency service.
- 6. Each printer shall be provided with a stand for the printer and paper.
- 7. Spare paper and ribbons for printers shall be stocked and maintained as part of the one year guarantee period services in addition to the one installed after the approval of the final acceptance test.

2.6 ALARM NOTIFICATION APPLIANCES

- A. Bells:
 - Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
 - Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on outlet boxes.
 - 4. Bells located outdoors shall be weatherproof type with metal housing and protective grille.
 - 5. Each bell circuit shall have a minimum of 20 percent spare capacity.
- B. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
 - Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- C. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.

- Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.
- D. Fire Alarm Horns:
 - Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.
 - Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
 - 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.7 ALARM INITIATING DEVICES

A. Manual Fire Alarm Stations:

- 1. Shall be non-breakglass, address reporting type.
- Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.

28 31 00 - 16

- All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.
- C. Heat Detectors:
 - Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
 - Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
 - 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
 - 4. Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector - Elevator P-______) for each elevator group. Locate key test station in plain view on elevator machine room wall.
- D. Water Flow and Pressure Switches:
 - Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
 - 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

2.8 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall

28 31 00 - 17

have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.

- 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - 1. Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
 - 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
 - 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.

2.9 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.

- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.10 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

2.11 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5
 - 2. Heat detectors 2 of each type
 - 3. Fire alarm strobes 5
 - 4. Fire alarm bells 5
 - 5. Fire alarm speakers 5
 - 6. Smoke detectors 20
 - 7. Duct smoke detectors with all appurtenances 1
 - 8. Sprinkler system water flow switch 1 of each size
 - 9. Sprinkler system water pressure switch 1 of each type
 - 10. Sprinkler valve tamper switch 1 of each type
 - 11. Control equipment utility locksets 5
 - 12. Control equipment keys 25
 - 13. 2.5 oz containers aerosol smoke 12
 - 13. Monitor modules 3
 - 14. Control modules 3
- B. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- C. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.12 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each VA PROJECT NO. 636A6-12-203 JUNE 2013 SCHEMMER NO. 06054.013

control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
- E. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- F. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- G. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- H. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.

I. Mount value tamper switches so as not to interfere with the normal operation of the value and adjust to operate within 2 revolutions toward the closed position of the value control, or when the stem has moved no more than 1/5 of the distance from its normal position.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, or smoke detector shall cause the following operations to occur:
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building
 - 2. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 3. Unlock the electrically locked exit doors within the zone of alarm.
- B. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- C. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- D. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.

- 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
- 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - 1. Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 2. Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
VAMC DES MOINES

VA PROJECT NO. 636A6-12-203 JUNE 2013 CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - END - -

SECTION 31 20 11 EARTH MOVING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

A. Unsuitable Materials:

- Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 3 inches; organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
- Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
- 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from reference borings and design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D698.
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 SUBMITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Furnish to Resident Engineer, soil samples, suitable for laboratory tests, of proposed off site or on site fill material.

1.5 APPLICABLE PUBLICATIONS:

- A. American Society for Testing and Materials (ASTM): D698-07.....Laboratory Compaction Characteristics of Soil
- B. Standard Specifications of Iowa State Department of Transportation, latest revision.
- C. Iowa Statewide Urban Design and Specifications (SUDAS)Standard Specifications.

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Fills: Materials approved from on site and off site sources shall consist of sandy lean clay or lean clay of glacial till origin, having a maximum Plasticity Index of 22, and a maximum Liquid Limit of 45.
- B. Granular Fill:
 - Under concrete slab, crushed stone or gravel graded from 1 inch (No. 4).
 - Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 1/2 inch (No. 4).

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Property.
- B. Grubbing: Remove stumps and roots 3 inches and larger diameter. Undisturbed sound stumps, roots up to 3 inches diameter, and nonperishable solid objects which will be a minimum of 3 feet below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 15 feet of new construction and 7'-6" of utility lines if such removal is approved in advance by the Resident Engineer. Remove materials from the Property. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs, that are to remain, than the farthest extension of their limbs.

VAMC DES MOINES CENTRALIZED BOILER/CHILLER PLANT SCHEMMER NO. 06054.013

VA PROJECT NO. 636A6-12-203

- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 1/2 cubic foot in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 2 inches in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to its angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - 1. Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.
 - 2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill support under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent

work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. When removed disturbed material is located where it is not possible to install and properly compact disturbed subgrade material with mechanically compacted sand or gravel, the Resident Engineer should be contacted to consider the use of flowable fill.

- C. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft material to solid bottom.
 - 4. Fill excess cut under footings or foundations with 3000 psi concrete, poured separately from the footings.
 - 5. Do not tamp earth for backfilling in footing bottoms, except as specified.
- D. Trench Earthwork:
 - 1. Utility trenches (except sanitary sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on undisturbed earth unless a mechanical support is shown.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.
 - 2. Storm sewer trenches:
 - a. Trench width below a point 6 inches above top of the pipe shall be 24 inches for up to and including 12 inches diameter and four-thirds diameter of pipe plus 8 inches for pipe larger than 12 inches. Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - b. The bottom quadrant of the pipe shall be bedded on undisturbed soil or granular fill.
 - Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 12 inches above top of pipe shall be clean earth placed and tamped by hand.
 - 2) Granular Fill: Depth of fill shall be a minimum of 3 inches plus one-sixth of pipe diameter below the pipe of 12 inches above top of pipe. Place and tamp fill material by hand.

- c. Place and compact as specified the remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- d. Use granular fill for bedding where rock or rocky materials are excavated.
- E. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials, that are determined by the Resident Engineer as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the Contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not.
- F. Finished elevation of subgrade shall be as follows:
 - 1. Pavement Areas bottom of the pavement or base course as applicable.
 - 2. Planting and Lawn Areas 4 inches below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, and pipes coming in contact with backfill have been installed, and inspected and approved by Resident Engineer.
- B. Proof-rolling Existing Subgrade: Proof-roll with a fully loaded dump truck. Make a minimum of one pass in each direction. Remove unstable uncompactable material and replace with granular fill material completed to mix requirements specified.
- C. Placing: Place material in horizontal layers not exceeding 8 inches in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 10 feet of new or existing building walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer to not less than 98 percent of the maximum density determined in accordance with the following test method ASTM D698.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 10 feet at a minimum five percent (5%) slope.
- D. The finished grade shall be 6 inches below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 6 inches, unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.
- G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 0.25 inches of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 4 inches, new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.
- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 6 inches. Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 6 inches of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits

indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.

C. Fertilizing: Incorporate fertilizer into the soil to a depth of 6 inches) at a rate of 25 pounds per 1000 square feet.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off property.
- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 6 mil polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Property.

- - - E N D - - -

SECTION 32 05 23 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section shall cover site work concrete constructed upon the prepared subgrade and in conformance with the lines, grades, thickness, and cross sections shown. Construction shall include the following:
- B. Curb and gutter.
- C. Pedestrian Pavement: Walks and grade slabs.
- D. Vehicular Pavement: Service courts and driveways.
- E. Equipment Pads: transformers.

1.2 RELATED WORK

- A. Laboratory and Field Testing Requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Section 31 20 00, EARTH MOVING.
- C. Concrete Materials, Quality, Mixing, Design and Other Requirements: Section 03 30 00, CAST-IN-PLACE-CONCRETE.

1.3 DESIGN REQUIREMENTS

Design all elements with the latest published version of applicable codes.

1.4 WEATHER LIMITATIONS

Placement of concrete shall be as specified under Article 3.8, COLD WEATHER and Article 3.7, HOT WEATHER of Section 03 30 00, CAST-IN-PLACE CONCRETE.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Manufacturers' Certificates and Data certifying that the following materials conform to the requirements specified.
 - 1. Expansion joint filler
 - 2. Hot poured sealing compound
 - 3. Reinforcement
 - 4. Curing materials
- C. Data and Test Reports: Select subbase material.
 - 1. Job-mix formula.
 - 2. Source, gradation, liquid limit, plasticity index, percentage of wear, and other tests as specified and in referenced publications.

1.6 APPLICABLE PUBLICATIONS

A	. The publications listed below form a part of this specification to the
	extent referenced. The publications are referenced in the text by the
	basic designation only. Refer to the latest edition of all referenced
	Standards and codes.
В	. American Association of State Highway and Transportation Officials (AASHTO):
	M031MM031-07-ULDeformed and Plain Carbon-Steel Bars for
	Concrete Reinforcement (ASTM A615/A615M-09)
	M055MM055-09-ULSteel Welded Wire Reinforcement, Plain, for
	Concrete (ASTM A185)
	M147-65-ULMaterials for Aggregate and Soil-Aggregate
	Subbase, Base and Surface Courses (R 2004)
	M148-05-UL
	Concrete (ASTM C309)
	M171-05-UL
	M182-05-ULBurlap Cloth Made from Jute or Kenaf and Cotton
	Mats
	M213-01-UL Preformed Expansion Joint Fillers for Concrete
	Paving and Structural Construction
	(Non-extruding and Resilient Bituminous Type)
	(ASTM D1751)
	M233-86-ULBoiled Linseed Oil Mixer for Treatment of
	Portland Cement Concrete
	T099-09-ULMoisture-Density Relations of Soils Using a 2.5
	kg. (5.5 lb) Rammer and a 305 mm (12 in.) Drop
	T180-09-ULMoisture-Density Relations of Soils Using a 4.54
	kg (10 lb.) Rammer and a 457 mm (18 in.) Drop
С	. American Society for Testing and Materials (ASTM):
	C94/C94M-09Ready-Mixed Concrete
	C143/C143M-09Slump of Hydraulic Cement Concrete
D	. Iowa Department of Transportation (IDOT) Standard Specifications.
E	. Iowa Statewide Urban Design and Specifications (SUDAS)Standard
	Specifications.
PART	2 - PRODUCTS

2.1 GENERAL

Concrete shall be Type C, air-entrained as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, with the following exceptions:

TYPE	MAXIMUM SLUMP*	
Curb & Gutter	3"	
Pedestrian Pavement	3"	
Vehicular Pavement	2" (Machine Finished) 4" (Hand Finished)	
Equipment Pad	3" to 4"	
* For concrete to be vibrated: Slump as determined by ASTM C143. Tolerances as established by ASTM C94.		

2.2 REINFORCEMENT

- A. The type, amount, and locations of steel reinforcement shall be as shown on the drawings and in the specifications.
- B. Welded wire-fabric shall conform to AASHTO M55.
- C. Dowels shall be plain steel bars conforming to AASHTO M31. Tie bars shall be deformed steel bars conforming to AASHTO M31.

2.3 FORMS

- A. Use metal or wood forms that are straight and suitable in cross-section, depth, and strength to resist springing during depositing and consolidating the concrete, for the work involved.
- B. Do not use forms if they vary from a straight line more than 1/8 inch in any ten foot long section, in either a horizontal or vertical direction.
- C. Wood forms should be at least 2 inches thick (nominal). Wood forms shall also be free from warp, twist, loose knots, splits, or other defects. Use approved flexible or curved forms for forming radii.

2.4 CONCRETE CURING MATERIALS

- A. Concrete curing materials shall conform to one of the following:
 - 1. Burlap conforming to AASHTO M182 having a weight of seven ounces or more per square yard when dry.
 - 2. Impervious Sheeting conforming to AASHTO M171.
 - 3. Liquid Membrane Curing Compound conforming to AASHTO M148 (ASTM C309), Type 2 and shall be free of paraffin or petroleum.

2.5 EXPANSION JOINT FILLERS

Material shall conform to AASHTO M213.

PART 3 - EXECUTION

3.1 SUBGRADE PENETRATION

- A. Prepare, construct, and finish the subgrade as specified in Section 31 20 00, EARTH MOVING.
- B. Maintain the subgrade in a smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

 $32 \ 05 \ 23 \ - \ 3$

3.2 SETTING FORMS

- A. Base Support:
 - Compact the base material under the forms true to grade so that, when set, they will be uniformly supported for their entire length at the grade as shown.
 - Correct imperfections or variations in the base material grade by cutting or filling and compacting.
- B. Form Setting:
 - Set forms sufficiently in advance of the placing of the concrete to permit the performance and approval of all operations required with and adjacent to the form lines.
 - Set forms to true line and grade and use stakes, clamps, spreaders, and braces to hold them rigidly in place so that the forms and joints are free from play or movement in any direction.
 - 3. Forms shall conform to line and grade with an allowable tolerance of 1/8 inch when checked with a straightedge and shall not deviate from true line by more than 6 mm (1/4 inch) at any point.
 - 4. Do not remove forms until removal will not result in damaged concrete or at such time to facilitate finishing.
 - 5. Clean and oil forms each time they are used.
- C. The Contractor's Registered Professional Land Surveyor shall establish and control the alignment and the grade elevations of the forms or concrete slipforming machine operations.
 - Make necessary corrections to forms immediately before placing concrete.
 - 2. When any form has been disturbed or any subgrade or subbase has become unstable, reset and recheck the form before placing concrete.

3.3 EQUIPMENT

- A. The Resident Engineer shall approve equipment and tools necessary for handling materials and performing all parts of the work prior to commencement of work.
- B. Maintain equipment and tools in satisfactory working condition at all times.

3.4 PLACING REINFORCEMENT

- A. Reinforcement shall be free from dirt, oil, rust, scale or other substances that prevent the bonding of the concrete to the reinforcement.
- B. Before the concrete is placed, the Resident Engineer shall approve the reinforcement, which shall be accurately and securely fastened in place with suitable supports and ties. The type, amount, and position of the reinforcement shall be as shown.

32 05 23 - 4

3.5 PLACING CONCRETE - GENERAL

- A. Obtain approval of the Resident Engineer before placing concrete.
- B. Remove debris and other foreign material from between the forms before placing concrete. Obtain approval of the Resident Engineer before placing concrete.
- C. Before the concrete is placed, uniformly moisten the subgrade, base, or subbase appropriately, avoiding puddles of water.
- D. Convey concrete from mixer to final place of deposit by a method which will prevent segregation or loss of ingredients. Deposit concrete so that it requires as little handling as possible.
- E. While being placed, spade or vibrate and compact the concrete with suitable tools to prevent the formation of voids or honeycomb pockets. Vibrate concrete well against forms and along joints. Over-vibration or manipulation causing segregation will not be permitted. Place concrete continuously between joints without bulkheads.
- F. Install a construction joint whenever the placing of concrete is suspended for more than 30 minutes and at the end of each day's work.
- G. Workmen or construction equipment coated with foreign material shall not be permitted to walk or operate in the concrete during placement and finishing operations.

3.6 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS

- A. Place concrete in the forms in one layer of such thickness that, when compacted and finished, it will conform to the cross section as shown.
- B. Deposit concrete as near to joints as possible without disturbing them but do not dump onto a joint assembly.
- C. After the concrete has been placed in the forms, use a strike-off guided by the side forms to bring the surface to the proper section to be compacted.
- D. Consolidate the concrete thoroughly by tamping and spading, or with approved mechanical finishing equipment.
- E. Finish the surface to grade with a wood or metal float.
- F. All Concrete pads and pavements shall be constructed with sufficient slope to drain properly.

3.7 PLACING CONCRETE FOR VEHICULAR PAVEMENT

- A. Deposit concrete into the forms as close as possible to its final position.
- B. Place concrete rapidly and continuously between construction joints.
- C. Strike off concrete and thoroughly consolidate by a finishing machine, vibrating screed, or by hand-finishing.

- D. Finish the surface to the elevation and crown as shown.
- E. Deposit concrete as near the joints as possible without disturbing them but do not dump onto a joint assembly. Do not place adjacent lanes without approval by the Resident Engineer.

3.8 CONCRETE FINISHING - GENERAL

- A. The sequence of operations, unless otherwise indicated, shall be as follows:
 - 1. Consolidating, floating, straight-edging, troweling, texturing, and edging of joints.
 - 2. Maintain finishing equipment and tools in a clean and approved condition.

3.9 CONCRETE FINISHING CURB AND GUTTER

- A. Round the edges of the gutter and top of the curb with an edging tool to a radius of 6mm (1/4 inch) or as otherwise detailed.
- B. Float the surfaces and finish with a smooth wood or metal float until true to grade and section and uniform in textures.
- C. Finish the surfaces, while still wet, with a bristle type brush with longitudinal strokes.
- D. Immediately after removing the front curb form, rub the face of the curb with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Brush the surface, while still wet, in the same manner as the gutter and curb top.
- E. Except at grade changes or curves, finished surfaces shall not vary more than 3 mm (1/8 inch) for gutter and 6 mm (1/4 inch) for top and face of curb, when tested with a 3000 mm (10 foot) straightedge.
- F. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints.
- G. Correct any depressions which will not drain.
- H. Visible surfaces and edges of finished curb and gutter shall be free of blemishes, form marks, and tool marks, and shall be uniform in color, shape, and appearance.

3.10 CONCRETE FINISHING PEDESTRIAN PAVEMENT

- A. Walks and Grade Slabs:
 - Finish the surfaces to grade and cross section with a metal float, trowled smooth and finished with a broom moistened with clear water.
 - 2. Brooming shall be transverse to the line of traffic.
 - 3. Finish all slab edges, including those at formed joints, carefully with an edger having a radius as shown on the Drawings.
 - Unless otherwise indicated, edge the transverse joints before brooming. The brooming shall eliminate the flat surface left by the

surface face of the edger. Execute the brooming so that the corrugation, thus produced, will be uniform in appearance and not more than 1/16 inch in depth.

- 5. The completed surface shall be uniform in color and free of surface blemishes, form marks, and tool marks. The finished surface of the pavement shall not vary more than 3/16 inch when tested with a 10 foot straightedge.
- 6. The thickness of the pavement shall not vary more than 1/4 inch.
- 7. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints.

3.11 CONCRETE FINISHING FOR VEHICULAR PAVEMENT

- A. Accomplish longitudinal floating with a longitudinal float not less than 10 feet long and 6 inches wide, properly stiffened to prevent flexing and warping. Operate the float from foot bridges in a sawing motion parallel to the direction in which the pavement is being laid from one side of the pavement to the other, and advancing not more than half the length of the float.
- B. After the longitudinal floating is completed, but while the concrete is still plastic, eliminate minor irregularities in the pavement surfaces by means of metal floats, 5 feet in length, and straightedges, 10 feet in length. Make the final finish with the straightedges, which shall be used to float the entire pavement surface.
- C. Test the surface for trueness with a 10 foot straightedge held in successive positions parallel and at right angles to the direction in which the pavement is being laid and the entire area covered as necessary to detect variations. Advance the straightedge along the pavement in successive stages of not more than one half the length of the straightedge. Correct all irregularities and refinish the surface.
- D. The finished surface of the pavement shall not vary more than 1/4 inch in both longitudinal and transverse directions when tested with a 10 foot straightedge.
- E. The thickness of the pavement shall not vary more than 1/4 inch.
- F. When most of the water glaze or sheen has disappeared and before the concrete becomes nonplastic, give the surface of the pavement a broomed finish with an approved fiber broom not less than 18 inches wide. Pull the broom gently over the surface of the pavement from edge to edge. Brooming shall be transverse to the line of traffic and so executed that the corrugations thus produced will be uniform in character and width, and not more than 1/8 inch in depth. Carefully finish the edge of the

pavement along forms and at the joints with an edging tool. The brooming shall eliminate the flat surface left by the surface face of the edger.

G. The finish surfaces of new and existing abutting pavements shall coincide at their juncture.

3.12 CONCRETE FINISHING EQUIPMENT PADS

- A. After the surface has been struck off and screeded to the proper elevation, give it a smooth dense float finish, free from depressions or irregularities.
- B. Carefully finish all slab edges with an edger having a radius as shown in the Drawings.
- C. After removing the forms, rub the faces of the pad with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The finish surface of the pad shall not vary more than 1/8 inch when tested with a 10 foot straightedge.
- D. Correct irregularities exceeding the above.

3.13 JOINTS - GENERAL

- A. Place joints, where shown, conforming to the details as shown, and perpendicular to the finished grade of the concrete surface.
- B. Joints shall be straight and continuous from edge to edge of the pavement.

3.14 CONTRACTION JOINTS

- A. Cut joints to depth as shown with a grooving tool or jointer of a radius as shown or by sawing with a blade producing the required width and depth.
- B. Construct joints in curbs and gutters by inserting 1/8 inch steel plates conforming to the cross sections of the curb and gutter.
- C. Plates shall remain in place until concrete has set sufficiently to hold its shape and shall then be removed.
- D. Finish edges of all joints with an edging tool having the radius as shown.
- E. Score pedestrian pavement with a standard grooving tool or jointer.

3.15 EXPANSION JOINTS

- A. Use a preformed expansion joint filler material of the thickness as shown to form expansion joints.
- B. Material shall extend the full depth of concrete, cut and shaped to the cross section as shown, except that top edges of joint filler shall be below the finished concrete surface where shown to allow for sealing.
- C. Anchor with approved devices to prevent displacing during placing and finishing operations.
- D. Round the edges of joints with an edging tool.

- E. Form expansion joints as follows:
 - 1. Without dowels, about structures and features that project through, into, or against any site work concrete construction.
 - 2. Using joint filler of the type, thickness, and width as shown.
 - 3. Installed in such a manner as to form a complete, uniform separation between the structure and the site work concrete item.

3.16 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown.
- B. Place transverse construction joints of the type shown, where indicated and whenever the placing of concrete is suspended for more than 30 minutes.
- C. Use a butt-type joint with dowels if the joint occurs at the location of a planned joint.
- D. Use keyed joints with tiebars if the joint occurs in the middle third of the normal joint interval.

3.17 FORM REMOVAL

- A. Forms shall remain in place at least 12 hours after the concrete has been placed. Remove forms without injuring the concrete.
- B. Do not use bars or heavy tools against the concrete in removing the forms. Promptly repair any concrete found defective after form removal.

3.18 CURING OF CONCRETE

- A. Cure concrete by one of the following methods appropriate to the weather conditions and local construction practices, against loss of moisture, and rapid temperature changes for at least seven days from the beginning of the curing operation. Protect unhardened concrete from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready to install before actual concrete placement begins. Provide protection as necessary to prevent cracking of the pavement due to temperature changes during the curing period. If any selected method of curing does not afford the proper curing and protection against concrete cracking, remove and replace the damaged pavement and employ another method of curing as directed by the Resident Engineer.
- B. Burlap Mat: Provide a minimum of two layers kept saturated with water for the curing period. Mats shall overlap each other at least 6 inches.
- C. Impervious Sheeting: Use waterproof paper, polyethylene-coated burlap, or polyethylene sheeting. Polyethylene shall be at least 4 mils in thickness. Wet the entire exposed concrete surface with a fine spray of water and then cover with the sheeting material. Sheets shall overlap each other at least 12 inches. Securely anchor sheeting.

- D. Liquid Membrane Curing:
 - Apply pigmented membrane-forming curing compound in two coats at right angles to each other at a rate of 200 square feet per gallon for both coats.
 - Do not allow the concrete to dry before the application of the membrane.
 - 3. Cure joints designated to be sealed by inserting moistened paper or fiber rope or covering with waterproof paper prior to application of the curing compound, in a manner to prevent the curing compound entering the joint.
 - 4. Immediately re-spray any area covered with curing compound and damaged during the curing period.

3.19 CLEANING

- A. After completion of the curing period:
 - 1. Remove the curing material (other than liquid membrane).
 - 2. Sweep the concrete clean.
 - 3. After removal of all foreign matter from the joints, seal joints as herein specified.
 - 4. Clean the entire concrete of all debris and construction equipment as soon as curing and sealing of joints has been completed.

3.20 PROTECTION

The contractor shall protect the concrete against all damage prior to final acceptance by the Government. Remove concrete containing excessive cracking, fractures, spalling, or other defects and reconstruct the entire section between regularly scheduled joints, when directed by the Resident Engineer, and at no additional cost to the Government. Exclude traffic from vehicular pavement until the concrete is at least seven days old, or for a longer period of time if so directed by the Resident Engineer.

3.21 FINAL CLEAN-UP

Remove all debris, rubbish and excess material from the Station.

- - - E N D - - -

SECTION 32 34 13

FABRICATED PEDESTRIAN BRIDGES

PART 1 - GENERAL

1.1 DESCRIPTION:

These specifications are for a fully engineered, single span, bridge of welded painted steel for construction of the exposed utility tunnel. These specifications shall be regarded as minimum standards for design and construction.

1.2 QUALIFICATIONS

- A. Qualified bridge manufacturers shall have been in the business of design and fabrication of bridges for a minimum of five years, be AISC certified Major Bridge Fabricator with Fracture Critical endorsement, and provide a list of five successful bridge projects, of similar construction, each of which has been in service at least three years.
- B. The bridge manufacturer shall employ an engineer who is experienced in bridge design to perform all engineering related task and design. The engineer shall have a minimum of 5 years experience in bridge design and be a currently licensed engineer in the State of Iowa.

1.3 APPLICABLE CODES AND STANDARDS

- A. Bridge shall be designed in accordance with the AASHTO, Guide Specification for Design of Pedestrian Bridges, August, 1997 Edition.
- B. AASHTO, LRFD Bridge Design Specifications, 4th Edition, including all current addendums.
- C. AISC, LRFD Specification for Steel Hollow Structural Sections, November, 2000.
- D. American Welding Society, Structural Welding Code, D1.1, latest edition.
- E. American Welding Society, Bridge Welding Code, D1.5, Latest Edition.

1.4 DIMENSIONS

- A. Width: Inside clear width of bridge shall be a minimum of 8 feet from face-of-steel to face-of-steel. The total out-to-out of the truss shall be a maximum of 10'-0".
- B. Length: Varies (see plans for end to end truss dimensions). See plans for end of floor dimensions and other details.
- C. Camber: Bridge shall be cambered to meet the deflection of the dead load and the profile shown in the plans.

D. Superstructure Depth: Inside clear depth of bridge shall be a minimum of 7 feet from face-of-steel to face-of-concrete deck. The maximum depth of the superstructure measured from the top of the deck to the bottom of the low steel is 10'-0''. If design of prefabricated truss is any other dimension, contact Engineer.

1.5 DESIGN

- A. Bridge truss shall be designed by a professional engineer licensed in the State of Iowa.
- B. In addition to normal dead loads, the bridge shall be designed for the following:
 - 1. Piping Load: All bridges shall be designed to support 650 plf of piping.
 - 2. Uniform Live Load: Pedestrian bridges shall be designed for an evenly distributed live load of 85 pounds per square foot of deck For primary truss members, when the deck area exceeds 400 area. square feet, the load may reduced to in accordance with the following formula: $w = 85(0.25 + 15 / (A^{-1}.5))$ where w is the pedestrian load (psf) and A is the deck influence area.

The reduced design load shall not be less than 65 psf.

- 3. Vehicle Load: Bridges will also be designed to withstand a moving concentrated load of a AASHTO H10 vehicle. The vehicle load shall be in addition to a 20 pounds per square foot evenly distributed snow load. The vehicle load shall be distributed such that 80% of the load is on the rear axle (per AASHTO).
- 4. Wind Load: All bridges shall be designed for a minimum wind load of 35 pounds per square foot. The wind is calculated on the entire vertical surface of the bridge as if fully enclosed.
- 5. Seismic: All bridges shall be designed for seismic loads of the intensity required for Seismic Zone 1.
- C. Temperature: Bridge shall be designed to accommodate a temperature differential of 120 degrees Fahrenheit. Slip pads of UHMW polyethylene shall be placed between the smooth surface of this setting plate and the smooth bearing plate of the bridge. At least 1 1/2" clearance shall be provided between the bridge and concrete abutments.
- D. Deflection: The vertical deflection of the bridge due to pedestrian live load shall not exceed 1/500 of the span length. The horizontal

deflection due to lateral wind load shall not exceed 1/500 of the span length.

E. Vertical Splice: Vertical splices in the truss - splices in the truss members that are perpendicular to the horizon - will not be permitted.

1.6 SUBMITTALS

- A. Shop Drawings shall be submitted to the Design Engineer for review prior to fabrication. Shop drawings shall be unique drawings, prepared to illustrate the specific portion of the work to be accomplished. All design information such as member sizes, bridge reaction, and general notes shall be clearly specified on the drawings. All lifting and hoisting requirements shall also be shown on the shop drawings including, bridge weight, location of lifting points, and all other information required to install the bridge. All drawings shall be signed and sealed by a Professional Engineer licensed in the State of Shop drawings may be furnished on half-size sheets (11 x 17 Iowa. inches) provided all information is legible.
- B. Structural Calculations for the bridge superstructure shall be submitted to the Design Engineer for review with the Shop Drawings. All calculations shall be signed and sealed by a Professional Engineer licensed in the State of Iowa. The calculations shall include all design information necessary to determine the structural adequacy of the bridge. The calculations shall include the following:
 - 1. All AASHTO Standard Specification required checks for axial, bending and shear forces in the critical member of each truss member type (i.e. top chord, bottom chord, floor beam, vertical, etc.)
 - 2. All truss member type (i.e. vertical, diagonal, floor beam, etc.) welded connection capacity checks.
 - 3. All bolted splice connections (if applicable).
 - 4. Main Truss deflection checks.
 - 5. U-frame stiffness checks (used to determine K factors for out-ofplane buckling of the top chord).
 - 6. Deck Design.

1.7 FABRICATION AND QUALITY CONTROL

A. Bridge fabricator shall be certified by the American Institute of Steel Construction to have the personnel, organization, experience, capability, and commitment to produce fabricated structural steel for Conventional Steel Structures and Simple Steel Bridge Structures.

- B. Workmanship, fabrication, and shop connections shall be in accordance with American Association of State Highway and Transportation Officials Specifications (AASHTO).
- C. Welding operators shall be properly accredited experienced operators, each of whom shall submit satisfactory evidence of experience and skill in welding structural steel with the kind of welding to be used in the work, and who have demonstrated the ability to make uniform good welds meeting the size and type of weld required.
- D. All welding shall utilize E70 or E80 series electrodes. The weld process used shall be Flux Core Arc Welding (FCAW) or Gas Metal Arc Welding (GMAW) or Shielded Manual Arc Welding (SMAW per ANSI/AASHTO/AWS D1.5) "Bridge Welding Code."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. All structural members shall have a minimum thickness of material of at least 1/4".
- B. Painted Steel bridges shall be fabricated from ASTM A572, (Fy) shall be greater than 50,000 psi.
- C. Field splices shall be bolted with High Strength ASTM A325 bolts; type 3 bolts are required for weathering steel bridges.
- D. Welding materials shall be in strict accordance with the American Welding Society (AWS). Structural welding code, D1.1. Filler metal as specified in 4.1 shall be used for the particular welding process required. Welders will be certified in accordance with AWS D1.1.
- E. The bridge shall be furnished with a stay-in-place galvanized steel form deck suitable for pouring a reinforced concrete slab. The form deck shall be designed to carry the dead load of the wet concrete, weight of the form decking, plus a construction load of 20 PSF uniform load or a 150 pound concentrated load on a 1'-0'' wide section of deck. When edge supports are used, deflection is limited to 1/180 of the span or 3/4", whichever is less. Without edge supports, deflection shall be limited to 1/180 of the span or 3/8'', whichever is less.
- F. The form deck shall be either smooth or composite. Composite decking shall not be used as reinforcing when designing for vehicular wheel loads. The form deck material shall be supplied in accordance with ASTM A653 and galvanized to a minimum G90 coating weight.
- G. The deck slab shall be constructed using concrete with a minimum 28-day strength (f'c) of 4000 PSI. Use Normal weight concrete (145 PCF).
- H. Concrete deck design shall be performed by the bridge manufacturer.

PART 3 - EXECUTION

3.1 FINISHES

- A. All boldly exposed surfaces of weathering steel bridges shall be sand blasted in accordance with the Steel Structures Painting Council (SSPC) Surface Preparation Specification No. 6 "Commercial Blast Cleaning".
- B. Bridge shall be painted by the bridge manufacturer. The manufacturer shall have an AISC certified shop with Sophisticated Paint Endorsement. The bridge shall be painted with a zinc rich epoxy primer (Amercoat 68HS or equivalent), followed by a fast-dry multi-purpose epoxy (Amercoat 370 or equivalent), and finished with a gloss aliphatic polyurethane topcoat (Amercoat 450H or equivalent). Bridges shall be provided with paint for touch up after erection.

3.2 ANCHOR BOLTS

The Contractor must coordinate with the Truss Manufacturer the anchor bolt spacing and locations and verify placement parameters with criteria listed in the plans. If a discrepancy is found, contact the Engineer before proceeding.

3.3 DELIVERY AND ERECTION

- A. Bridges shall be delivered by truck to a location nearest to the site accessible by roads. Hauling permits and freight charges are the responsibility of the manufacturer.
- B. The manufacturer will indicate the actual lifting weights, show attachment points, and all necessary information to install the bridge on the shop drawings.

3.4 PAYMENT

Payment for the "PREFABRICATED BRIDGE TRUSS" shall be per Lump Sum for all materials (including deck concrete and reinforcing steel), labor and equipment necessary to provide and construct the bridge truss as specified.

- - - E N D - - -

SECTION 32 90 00 PLANTING

PLANT

PART 1 - GENERAL

1.1 DESCRIPTION

A. The work in this section consists of furnishing and installing plant, soils, edging turf, grasses and landscape materials required as specified in locations shown.

1.2 RELATED WORK

- A. Topsoil Testing: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Stripping Topsoil, Stock Piling and Topsoil Materials: Section 31 20 00, EARTH MOVING.

1.3 DEFINITIONS

A. Backfill: The earth used to replace earth in an excavation.

- B. Balled and Burlapped Stock: ANSI Z60.1. Plants dug with firm, natural balls of earth in which they were grown, with ball size not less than sizes indicated; wrapped with burlap, tied, rigidly supported, and drum laced with twine with the root flare visible at the surface of the ball.
- C. Balled and Potted Stock: ANSI Z60.1. Plants dug with firm, natural balls of earth in which they are grown and placed, unbroken, in a container. Ball size is not less than sizes indicated.
- D. Bare-Root Stock: Plants with a well-branched, fibrous-root system developed by transplanting or root pruning, with soil or growing medium removed, and with not less than minimum root spread according to ANSI Z60.1 for type and size of plant required.
- E. Container-Grown Stock: Healthy, vigorous, well-rooted plants grown in a container, with a well-established root system reaching sides of container and maintaining a firm ball when removed from container. Container shall be rigid enough to hold ball shape and protect root mass during shipping and be sized according to ANSI Z60.1 for type and size of plant required.
- F. Fabric Bag-Grown Stock: Healthy, vigorous, well-rooted plants established and grown in-ground in a porous fabric bag with wellestablished root system reaching sides of fabric bag. Fabric bag size is not less than diameter, depth, and volume required by ANSI Z60.1 for type and size of plant.
- G. Finish Grade: Elevation of finished surface of planting soil.

- H. Manufactured Topsoil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil.
- I. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.
- J. Planting Soil: Standardized topsoil; existing, native surface topsoil; existing, in-place surface soil; imported topsoil; or manufactured topsoil that is modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.
- K. Plant Material: These terms refer to vegetation in general, including trees, shrubs, vines, ground covers, turf and grasses, ornamental grasses, bulbs, corms, tubers, or herbaceous vegetation.
- L. Root Flare: Also called "trunk flare." The area at the base of the plant's stem or trunk where the stem or trunk broadens to form roots; the area of transition between the root system and the stem or trunk.
- M. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.
- N. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

1.4 DELIVERY, STORAGE AND HANDLING

- A. Notify the Contracting Officer's Representative of the delivery schedule in advance so the plant material may be inspected upon arrival at the job site. Remove unacceptable plant and landscape materials from the job site immediately.
- B. Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of conformance with state and federal laws, as applicable. Keep seed and other packaged materials in dry storage away from contaminants.
- C. Bulk Materials:
 - Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants. Keep bulk materials in dry storage away from contaminants.

 Provide erosion control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.

- 3. Accompany each delivery of bulk fertilizers, lime and soil amendments with appropriate certificates.
- D. Deliver bare-root stock plants freshly dug. Immediately after digging up bare-root stock, pack root system in wet straw, hay, or other suitable material to keep root system moist until planting.
- E. Do not prune trees and shrubs before delivery. Protect bark, branches, and root systems from sun scald, drying, wind burn, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy their natural shape. Provide protective covering of plants during shipping and delivery. Do not drop plants during delivery and handling.
- F. Handle planting stock by root ball.
- G. The use of equipment such as "tree spades" is permitted provided the plant balls are sized in accordance with ANSI Z60.1 and tops are protected from damage.
- H. Store bulbs, corms, and tubers in a dry place at 60 to 65 deg F (16 to 18 deg C) until planting.
- I. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than 6 hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.
 - 1. Heel-in bare-root stock: Soak roots that are in dry condition in water for two hours. Reject dried-out plants.
 - Set balled stock on ground and cover ball with soil, peat moss, sawdust, or other acceptable material.
 - 3. Do not remove container-grown stock from containers before time of planting.
 - 4. Water root systems of plants stored on-site deeply and thoroughly with a fine-mist spray. Water as often as necessary to maintain root systems in a moist, but not overly-wet, condition.
- J. Harvest, deliver, store, and handle sod according to requirements in TPI's "Guideline Specifications to Turfgrass Sodding". Deliver sod in time for planting within 24 hours of harvesting. Protect sod from breakage, seed contamination and drying.

- K. Deliver sprigs in air tight bags to keep from drying out. Sprigs delivered unwrapped, shall be kept moist in burlap or other accepted material until planting.
- L. Deliver plugs within 24 hours of harvesting, keep moist until planting.
- M. All pesticides and herbicides shall be properly labeled and registered with the U.S. Department of Agriculture. Deliver materials in original, unopened containers showing, certified analysis, name and address of manufacturer, product label, manufacturer's application instructions specific to the project and indication of conformance with state and federal laws, as applicable.

1.5 PROJECT CONDITIONS

- A. Verify actual grade elevations, service and utility locations, irrigation system components, and dimensions of plantings and construction contiguous with new plantings by field measurements before proceeding with planting work.
- B. Coordinate planting periods with maintenance periods to provide required maintenance from date of Substantial Completion. Plant during one of the following periods:
 - 1. Spring Planting: Prior to June 15, except when soil is frozen or freezing conditions are forecasted within 24 hours.
 - 2. Fall Planting: After August 15, except when soil is frozen or freezing conditions are forecasted within 24 hours.
- C. Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions and warranty requirements.
- D. Plant trees, shrubs, and other plants after finish grades are established and before planting turf areas unless otherwise indicated.
 - When planting trees, shrubs, and other plants after planting turf areas, protect turf areas, and promptly repair damage caused by planting operations.
- E. Plant trees, shrubs, and other plants after finish grades and irrigation system components are established unless otherwise indicated.
 - When planting trees, shrubs, and other plants, protect irrigation system components and promptly repair damage caused by planting operations.

1.6 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Installer Qualifications: A qualified landscape installer whose work has resulted in successful establishment of plants.
 - Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association with 5 years experience in landscape installation.
 - Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
 - 3. Installer's field supervisor shall have certification in one of the following categories from the Professional Landcare Network and submit one copy of certificate to the Contracting Officer's Representative:
 - a. Certified Landscape Technician (CLT) Exterior, with installation, maintenance ,specialty area(s), designated CLT-Exterior.
 - b. Certified Landscape Technician (CLT) Interior, designated CLT-Interior.
 - c. Certified Ornamental Landscape Professional, designated COLP.
 - 4. Pesticide Applicator: Licensed in state of project, commercial.
- C. A qualified Arborist shall be licensed and required to submit one copy of license to the Contracting Officer's Representative.
- D. Include an independent or university laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed.
- E. For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange

capacity; sodium absorption ratio; deleterious material; pH; and mineral and plant-nutrient content of the soil.

- Testing methods and written recommendations shall comply with USDA's Handbook No. 60, "Diagnosis and Improvement of Saline and Alkali Soils".
- 2. The soil-testing laboratory shall oversee soil sampling; with depth, location, and number of samples to be taken per instructions from Contracting Officer's Representative. A minimum of 3 representative samples shall be taken from varied locations for each soil to be used or amended for planting purposes.
- 3. Report suitability of tested soil for plant growth.
 - a. Based upon the test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 1000 sq. ft. (92.9 sq. m) or volume per cu. yd (0.76 cu. m) for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.
 - b. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action.
- F. Provide quality, size, genus, species, variety and sources of plants indicated, complying with applicable requirements in ANSI Z60.1.
- G. Measure according to ANSI Z60.1. Do not prune to obtain required sizes.
 - 1. Measure trees and shrubs with branches and trunks or canes in their normal position. Take height measurements from or near the top of the root flare for field-grown stock and container grown stock. Measure main body of tree or shrub for height and spread; do not measure branches or roots tip to tip. Take caliper measurements 6 inches (150 mm) above the root flare for trees up to 4 inch (100 mm) caliper size, and 12 inches (300 mm) above the root flare for larger sizes.
 - 2. Measure other plants with stems, petioles, and foliage in their normal position.
- H. Contracting Officer's Representative may observe plant material either at place of growth or at site before planting for compliance with requirements for genus, species, variety, cultivar, size, and quality. Contracting Officer's Representative retains right to observe trees and shrubs further for size and condition of balls and root systems, pests,

32 90 00-6

disease symptoms, injuries, and latent defects and to reject unsatisfactory or defective material at any time during progress of work. Remove rejected trees or shrubs immediately from Project site. 1. Notify Contracting Officer's Representative of plant material sources seven days in advance of delivery to site.

- Include product label and manufacturer's literature and data for pesticides and herbicides.
- J. Conduct a pre-installation conference at Project site.

1.7 SUBMITTALS

- A. Submit product data for each type of product indicated, including soils:
 - 1. Include quantities, sizes, quality, and sources for plant materials.
 - 2. Include EPA approved product label, MSDS (Material Safety Data Sheet) and manufacturer's application instructions specific to the Project.
 - 3. Include color photographs in digital format of each required species and size of plant material as it will be furnished to the Project. Take photographs from an angle depicting true size and condition of the typical plant to be furnished. Include a scale rod or other measuring device in each photograph. For species where more than 20 plants are required, include a minimum of 3 photographs showing the average plant, the best quality plant, and the worst quality plant to be furnished. Identify each photograph with the full scientific name of the plant, plant size, and name of the growing nursery.
- B. Submit samples and manufacturer's literature for each of the following for approval before work is started.
 - Trees and Shrubs: 3 samples of each variety and size delivered to the site for review. Maintain approved samples on-site as a standard for comparison.
 - 2. Organic and Compost Mulch: 1-pint (0.5-liter) volume of each organic and compost mulch required; in sealed plastic bags labeled with composition of materials by percentage of weight and source of mulch. Each Sample shall be typical of the lot of material to be furnished; provide an accurate representation of color, texture, and organic makeup.
- C. Qualification data for qualified landscape Installer. Include list of similar projects completed by Installer demonstrating Installer's capabilities and experience. Include project names, addresses, and year completed, and include names and addresses of owners' contact persons.

- D. Prior to delivery, provide notarized certificates attesting that each type of manufactured product, from the manufacturer, meet the requirements specified and shall be submitted to the Contracting Officer's Representative for approval:
 - 1. Plant Materials (Department of Agriculture certification by State Nursery Inspector declaring material to be free from insects and disease).
 - 2. Seed and Turf Materials notarized certificate of product analysis.
 - 3. Manufacturer's certified analysis of standard products.
 - 4. Analysis of other materials by a recognized laboratory made according to methods established by the Association of Official Analytical Chemists, where applicable.
- E. Material Test Reports: For standardized ASTM D5268 topsoil .
- F. Maintenance Instructions: Recommended procedures to be established by Owner for maintenance of plants during a calendar year. Submit before start of required maintenance periods.

1.8 PLANT AND TURF ESTABLISHMENT PERIOD

A. The establishment period for plants and turf shall begin immediately after installation, with the approval of the Contracting Officer's Representative, and continue until the date that the Government accepts the project or phase for beneficial use and occupancy. During the Establishment Period the Contractor shall maintain the plants and turf as required in Part 3.

1.9 PLANT AND TURF MAINTENANCE SERVICE

A. Provide initial maintenance service for trees, shrubs, ground cover and other plants by skilled employees of landscape Installer. Begin maintenance immediately after plants are installed and continue until plantings are acceptably healthy and well established but for not less than maintenance period below.

1. Maintenance Period: 3 months from date of Substantial Completion. B. Obtain continuing maintenance proposal from Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below, form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American National Standards Institute (ANSI): Z60.1-04.....Nursery Stock
- C. Association of Official Seed Analysts (AOSA): Rules for Testing Seed.
- D. American Society For Testing And Materials (ASTM):

B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes C33/C33M-11....Concrete Aggregates C136-06....Sieve Analysis of Fine and Coarse Aggregates C516-08....Vermiculite Loose Fill Thermal Insulation

C549-06.....Perlite Loose Fill Insulation

C602-07.....Agricultural Liming Materials

D977-05.....Emulsified Asphalt (AASTHO M140)

- E. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada.
- F. Turfgrass Producers International (TPI): Guideline Specifications to Turfgrass Sodding.
- G. United States Department of Agriculture (USDA): Handbook No. 60 Diagnosis and Improvement of Saline and Alkali Soils; Federal Seed Act Regulations.

1.11 WARRANTY

- A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance, unless noted otherwise below. Further, the Contractor will provide all manufacturer's and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.
 - Plant and Turf Warranty Periods will begin from the date of Substantial Completion.
 - a. Trees, Shrubs, Vines, and Ornamental Grasses: 24 months.
 - b. Ground Covers, Biennials, Perennials, Turf, and Other Plants: 24 months.
 - c. Annuals: 3 months.

- 2. The Contractor shall have completed, located, and installed all plants and turf according to the plans and specifications. All plants and turf are expected to be living and in a healthy condition at the time of final inspection.
- 3. The Contractor will replace any dead plant material and any areas void of turf immediately, unless required to plant in the succeeding planting season. Provide extended warranty for period equal to original warranty period for replacement plant materials. Replacement plant and turf warranty will begin on the day the work is completed.
- 4. Replacement of relocated plants, that the Contractor did not supply, is not required unless plant failure is due to improper handling and care during transplanting. Loss through Contractor negligence requires replacement in plant type and size.
- 5. The Government will reinspect all plants and turf at the end of the Warranty Period. The Contractor will replace any dead, missing, or defective plant material and turf immediately. The Warranty Period will end on the date of this inspection provided the Contractor has complied with the warranty work required by this specification. The Contractor shall also comply with the following requirements: a. Replace plants that are more than 25 percent dead, missing or
 - defective plant material prior to final inspection.
 - b. A limit of one replacement of each plant will be required except for losses or replacements due to failure to comply with requirements.
 - c. Mulch and weed plant beds and saucers. Just prior to final inspection, treat these areas to a second application of approved pre-emergent herbicide.
 - d. Complete remedial measures directed by the Contracting Officer's Representative to ensure plant and turf survival.
 - e. Repair damage caused while making plant or turf replacements.
- B. Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by Owner, or incidents that are beyond Contractor's control.
 - b. Structural failures including plantings falling or blowing over.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
PART 2 - PRODUCTS

2.1 PLANT MATERIAL

- A. Plant and turf materials: ANSI Z60.1; will conform to the varieties specified and be true to botanical name as listed in Hortus Third; nursery-grown plants and turf material true to genus, species, variety, cultivar, stem form, shearing, and other features indicated on Drawings; healthy, normal and unbroken root systems developed by transplanting or root pruning; well-shaped, fully branched, healthy, vigorous stock, densely foliated when in leaf; free of disease, pests, eggs, larvae, and defects such as knots, sun scald, windburn, injuries, abrasions, and disfigurement.
 - 1. Trees-deciduous and evergreen: Single trunked with a single leader, unless otherwise indicated; symmetrically developed deciduous trees and shrubs of uniform habit of growth; straight boles or stems; free from objectionable disfigurements; evergreen trees and shrubs with well developed symmetrical tops, with typical spread of branches for each particular species or variety. Trees with damaged, crooked, or multiple leaders; tight vertical branches where bark is squeezed between two branches or between branch and trunk ("included bark"); crossing trunks; cut-off limbs more than 3/4 inch (19 mm) in diameter; or with stem girdling roots will be rejected.
 - 2. Ground cover and vine plants: Provide the number and length of runners for the size specified on the Drawings, together with the proper age for the grade of plants specified. Provide vines and ground cover plants well established in removable containers, integral containers, or formed homogeneous soil sections. Plants shall have been grown under climatic conditions similar to those in the locality of the project. Spray all plants budding into leaf or having soft growth with an anti desiccant at the nursery before digging.
 - 3. The minimum acceptable sizes of all plants, measured before pruning with branches in normal position, shall conform to the measurements designated. Plants larger in size than specified may be used with the approval of the Contracting Officer's Representative, with no change in the contract price. When larger plants are used, increase the ball of earth or spread of roots in accordance with ANSI Z60.1.
 - 4. Provide nursery grown plant material conforming to the requirements and recommendations of ANSI Z60.1. Dig and prepare plants for shipment in a manner that will not cause damage to branches, shape, and future development after planting.

- 5. Balled and burlapped (B&B) plant ball sizes and ratios will conform to ANSI Z60.1, consisting of firm, natural balls of soil wrapped firmly with burlap or strong cloth and tied.
- 6. Bare root (BR) plants shall have the root system substantially intact, but with the earth carefully removed. Cover roots with a thick coating of mud by "puddling" after the plants are dug.
- 7. Container grown plants shall have sufficient root growth to hold the earth intact when removed from containers, but shall not be root bound.
- 8. Make substitutions only when a plant (or alternates as specified) is not obtainable and the Contracting Officer's Representative authorizes a change order providing for use of the nearest equivalent obtainable size or variety of plant with the same essential characteristics and an equitable adjustment of the contract price.
- 9. Existing plants to be relocated, ball sizes shall conform to requirements for collected plants in ANSI Z60.1, and plants shall be dug, handled, and replanted in accordance with applicable sections of these specifications.
- 10. Do not use plants harvested from the wild, from native stands, from an established landscape planting, or not grown in a nursery unless otherwise indicated.
- B. Label each plant of each variety, size, and caliper with a securely attached, waterproof and weather-resistant label bearing legible the correct designation of common name and full scientific name, including genus and species. Include nomenclature for hybrid, variety, or cultivar, if applicable for the plant as indicated in the Plant Schedule or Plant Legend shown on the Drawings. Labels shall be securely attached and not be removed.

2.2 INORGANIC SOIL AMENDMENTS

- A. Lime: ASTM C602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:
 - 1. Class: T, with a minimum of 99 percent passing through No. 8 (2.36 mm) sieve and a minimum of 75 percent passing through No. 60 (0.25 mm) sieve.
 - 2. Class: O, with a minimum of 95 percent passing through No. 8 (2.36 mm) sieve and a minimum of 55 percent passing through No. 60 (0.25 mm) sieve.

- B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent sulfur, with a minimum of 99 percent passing through No. 6 (3.35 mm) sieve and a maximum of 10 percent passing through No. 40 (0.425 mm) sieve.
- C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.
- D. Aluminum Sulfate: Commercial grade, unadulterated.
- E. Perlite: ASTM C549, horticultural perlite, soil amendment grade.
- F. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through No. 50 (0.30 mm) sieve.
- G. Coarse Sand shall be concrete sand, ASTM C33 Fine Aggregate, clean, sharp free of limestone, shale and slate particles, and toxic materials.
- H. Vermiculite: ASTM C516, horticultural grade and free of any toxic materials.
- I. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.
- J. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.3 ORGANIC SOIL AMENDMENTS

A. Organic matter: Commercially prepared compost. Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1 inch sieve; soluble salt content of 5 to 10 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:

1. Organic Matter Content: 30 percent minimum of dry weight.

2.4 PLANT AND TURF FERTILIZERS

A. Soil Test: Evaluate existing soil conditions and requirements prior to fertilizer selection and application to minimize the use of all fertilizers and chemical products. Obtain approval of Contracting Officer's Representative for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions prior to application. Apply products during favorable weather and site conditions according to manufacturer's written instructions and warranty requirements. Fertilizers to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer applicable to specific areas as required for Project conditions and application. Provide commercial

grade plant and turf fertilizers, free flowing, uniform in composition and conforms to applicable state and federal regulations.

- B. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:
 - 1. Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.
- C. Slow-Release Fertilizer: Granular or pellet fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 - 1. Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.
- D. Plant Tablets: Tightly compressed chip type, long-lasting, slow-release, commercial-grade planting fertilizer in tablet form. Tablets shall break down with soil bacteria, converting nutrients into a form that can be absorbed by plant roots.
 - 1. Size: 10-gram tablets.
 - Nutrient Composition shall be 20 percent nitrogen, 10 percent phosphorous, and 5 percent potassium, by weight plus micronutrients.

2.5 PLANTING SOILS

- A. Planting Soil: ASTM D5268 topsoil, with pH range of 5.5 to 7, a minimum of 4 percent organic material content; free of stones 1 inch or larger in any dimension and other extraneous materials harmful to plant growth. Mix ASTM D5268 topsoil with the following soil amendments and fertilizers as recommended by the soils analysis.
- B. Existing Planting Soil: Existing, native surface topsoil formed under natural conditions retained during excavation process and stockpiled onsite. Verify suitability of native surface topsoil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 - 1. Supplement with planting soil when quantities are insufficient.
 - 2. Mix existing, native surface topsoil with the following soil amendments and fertilizers as recommended by the soils analysis.
- C. Imported Planting Soil: Imported topsoil or manufactured topsoil from off-site sources can be used if sufficient topsoil is not available on site to meet the depth as specified herein. The Contractor shall furnish imported topsoil. At least 10 days prior to topsoil delivery, notify the

Contracting Officer's Representative of the source(s) from which topsoil is to be furnished. Obtain imported topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches deep; do not obtain from agricultural land, bogs, or marshes.

2.6 BIOSTIMULANTS

A. Biostimulants: Contain soil conditioners, VAM fungi, and endomycorrhizal and ectomycorrhizal fungi spores and soil bacteria appropriate for existing soil conditions.

2.7 MULCH

- A.Organic Mulch: Free from deleterious materials and suitable as a top dressing of trees and shrubs, consisting of one of the following:
 - 1. Type: Shredded hardwood
 - 2. Size Range shall be 3 inches maximum, 1/2 inch minimum.
 - 3. Color shall be natural.

2.8 EROSION CONTROL

A. Erosion control blankets: Biodegradable wood excelsior, straw, or coconut fiber mat enclosed in a photodegradable plastic mesh. Include manufacturer's recommended biodegradable staples, 6 inches (150 mm) long.

2.9 TREE WRAP

- A. Crinkle paper tree wrap: Two thicknesses of crinkled paper cemented together with a layer of bituminous material. Wrapping material shall be a minimum of 4 inches (100 mm) in width and have a stretch factor of 33 1/3 percent. Twine for tying shall be lightly tarred medium or coarse sisal yarn.
- B. Extruded, translucent, twin walled polypropylene protection board sheets: 1/8 inch (3 mm) thick, 6 ft (1800 mm) long tree shelters may be utilized for short trunk trees 3 inch (75 mm) caliper or less.
- C. Breathable synthetic fabric tree wrap: White in color, delivered in 3 inch (75 mm) wide rolls. Material shall be specifically manufactured for tree wrapping.
- D. Tree wrap shall be secured to the trunk using bio-degradable tape suitable for nursery use and which is expected to degrade in sunlight in less than 2 years after installation.

2.10 WATER

A. Water shall not contain elements toxic to plant life.

2.11 ANTIDESICCANT

A. Antidesiccant: An emulsion specifically manufactured for agricultural use that will provide a protective film over plant surfaces permeable enough to permit transpiration.

2.12 SOD

- A. Sod: Certified, including limitations on thatch, weeds, diseases, nematodes, and insects, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding". Furnish viable sod of uniform density, color, and texture, strongly rooted, and capable of vigorous growth and development when planted.
- B. Sod Species: Kentucky Bluegrass sod per Iowa SUDAS Standard Specifications, Division 9: Sitework and Landscaping; Section 9020 -Sodding, Part 2.

2.13 PESTICIDES

- A. Consider IPM (Integrated Pest Management) practices to minimize the use of all pesticides and chemical products. Obtain approval of Chief Engineer for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions prior to application. Apply products during favorable weather and site conditions according to manufacturer's written instructions and warranty requirements. Pesticides to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.
- B. Pre-Emergent Herbicide (Selective and Non-Selective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.
- C. Post-Emergent Herbicide (Selective and Non-Selective): Effective for controlling weed growth that has already germinated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance.
 - Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner,

turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.

- Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
- 3. Suspend soil spreading, grading, and tilling operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
- 4. Uniformly moisten excessively dry soil that is not workable and which is too dusty.
- 5. Special conditions may exist that warrant a variance in the specified planting dates or conditions. Submit a written request to the Contracting Officer's Representative stating the special conditions and proposal variance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Contracting Officer's Representative and replace with new planting soil.

3.2 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities and turf areas and existing plants from damage caused by planting operations.
- B. Install erosion control measures to prevent erosion or displacement of soils and discharge of soil bearing water runoff or airborne dust to adjacent properties and walkways.
- C. Lay out individual tree and shrub locations and areas for multiple plantings. Stake locations, outline areas, adjust locations when requested, and obtain approval by the Contracting Officer's Representative of layout before excavating or planting. The Contracting Officer's Representative may approve adjustments to plant material locations to meet field conditions.
- D. Apply antidesiccant to trees and shrubs using power spray to provide an adequate film over trunks (before wrapping), branches, stems, twigs, and foliage to protect during digging, handling, and transportation.
 - If deciduous trees or shrubs are moved in full leaf, spray with antidesiccant at nursery before moving and again two weeks after planting.

E. Wrap trees and shrubs with burlap fabric over trunks, branches, stems, twigs, and foliage to protect from wind and other damage during digging, handling, and transportation.

3.3 PLANTING AREA ESTABLISHMENT

- A. Loosen subgrade of planting areas to a minimum depth of 4 inches Remove stones larger than 1 inch (in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 - 1. Apply fertilizer directly to subgrade before loosening.
 - 2. Thoroughly blend planting soil off-site before spreading or spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 - a. Delay mixing fertilizer with planting soil if planting will not proceed within a few days.
 - b. Mix lime with dry soil before mixing fertilizer.
 - 3. Spread planting soil to a depth of 6 inches (150 mm) but not less than required to meet finish grades after natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 - a. Spread approximately one-half the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches of subgrade.
 Spread remainder of planting soil.
- B. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.
- C. Before planting, obtain Contracting Officer's Representative acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.4 EXCAVATION FOR TREES AND SHRUBS

- A. Planting Pits and Trenches: Excavate circular planting pits with sides sloping inward at a 45 degree angle. Excavations with vertical sides are not acceptable. Trim perimeter of bottom leaving center area of bottom raised slightly to support root ball and assist in drainage away from center. Do not further disturb base. Ensure that root ball will sit on undisturbed base soil to prevent settling. Scarify sides of planting pit smeared or smoothed during excavation.
 - Excavate approximately 3 times as wide as ball diameter for balled and burlapped stock.

- 2. Excavate at least 12 inches (300 mm) wider than root spread and deep enough to accommodate vertical roots for bare-root stock.
- 3. Do not excavate deeper than depth of the root ball, measured from the root flare to the bottom of the root ball.
- 4. If area under the plant was initially dug too deep, add soil to raise it to the correct level and thoroughly tamp the added soil to prevent settling.
- 5. Maintain required angles of repose of adjacent materials as shown on the Drawings. Do not excavate subgrades of adjacent paving, structures, hardscapes, or other new or existing improvements.
- 6. Maintain supervision of excavations during working hours.
- 7. Keep excavations covered or otherwise protected when unattended by Installer's personnel.
- 8. Use topsoil to form earth saucers or water basins for watering around plants. Basins to be 2 inches high for shrubs and 4 inches high for trees.
- B. Subsoil and topsoil removed from excavations may not be used as planting soil.
- C. Notify Contracting Officer's Representative if unexpected rock or obstructions detrimental to trees or shrubs are encountered in excavations.
- D. Notify Contracting Officer's Representative if subsoil conditions evidence unexpected water seepage or retention in tree or shrub planting pits.
- E. Fill excavations with water and allow water to percolate away before positioning trees and shrubs.
- 3.5 TREE, SHRUB, AND VINE PLANTING
 - A. Prior to planting, verify that root flare is visible at top of root ball according to ANSI Z60.1. If root flare is not visible, remove soil in a level manner from the root ball to where the top-most root emerges from the trunk. After soil removal to expose the root flare, verify that root ball still meets size requirements.
 - B. Remove stem girdling roots and kinked roots. Remove injured roots by cutting cleanly; do not break.
 - C. Set balled and burlapped stock plumb and in center of planting pit or trench with root flare 1 inch (25 mm) above adjacent finish grades. 1. Use planting soil for backfill.

- 2. After placing some backfill around root ball to stabilize plant, carefully cut and remove burlap, rope, and wire baskets from tops of root balls and from sides, but do not remove from under root balls. Remove pallets, if any, before setting. Do not use planting stock if root ball is cracked or broken before or during planting operation.
- 3. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half full, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
- 4. Place planting tablets in each planting pit when pit is approximately one-half filled; in amounts recommended in soil reports from soiltesting laboratory. Place tablets beside soil-covered roots about 1 inch from root tips; do not place tablets in bottom of the hole or touching the roots.
- 5. Continue backfilling process. Water again after placing and tamping final layer of soil.
- D. When planting on slopes, set the plant so the root flare on the uphill side is flush with the surrounding soil on the slope; the edge of the root ball on the downhill side will be above the surrounding soil. Apply enough soil to cover the downhill side of the root ball.

3.6 MECHANIZED TREE SPADE PLANTING

- A. Trees may be planted with an approved mechanized tree spade at the designated locations. Do not use tree spade to move trees larger than the maximum size allowed for a similar field-grown, balled-and-burlapped root-ball diameter according to ANSI Z60.1, or larger than the manufacturer's maximum size recommendation for the tree spade being used, whichever is smaller.
- B. When extracting the tree, center the trunk within the tree spade and move tree with a solid ball of earth.
- C. Cut exposed roots cleanly during transplanting operations.
- D. Use the same tree spade to excavate the planting hole as was used to extract and transport the tree.
- E. Where possible, orient the tree in the same direction as in its original location.

3.7 TREE, SHRUB, AND VINE PRUNING

A. Remove only dead, dying, or broken branches. Do not prune for shape.

B. Prune, thin, and shape trees, shrubs, and vines according to standard professional horticultural and arboricultural practices. Unless

otherwise indicated by Contracting Officer's Representative, do not cut tree leaders; remove only injured, dying, or dead branches from trees and shrubs; and prune to retain natural character.

C. Do not apply pruning paint to wounds.

3.8 TREE WRAP

A. Wrap the trunks of deciduous trees immediately after planting. Wrap the trunks of deciduous trees, 1-1/2 inches or greater in caliber with the specified material beginning at the base and extending to the first branches. Remove wrapping after one year. When using crinkled paper wrap, securely tie wrapping at the top and bottom and at 18 inch maximum intervals with twine.

3.9 MULCH INSTALLATION

- A. Install weed-control barriers before mulching according to manufacturer's written instructions. Completely cover area to be mulched, overlapping edges a minimum of 12 inches (300 mm) and secure seams with galvanized pins.
- B. Mulch backfilled surfaces of planting areas and other areas indicated. Keep mulch out of plant crowns and off buildings, pavements, utility standards/pedestals, and other structures.
 - 1. Trees in Turf Areas: Apply organic mulch ring of 2 inch average thickness, with 24 inch radius around trunks or stems. Do not place mulch within 3 inches of trunks or stems.

3.10 PLANT MAINTENANCE

- A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring plant saucers, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings. Spray or treat as required to keep trees and shrubs free of insects and disease.
- B. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.
- C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use IPM (Integrated Pest Management) practices whenever possible to minimize the use of pesticides and reduce hazards. Treatments include physical controls such as hosing off foliage, mechanical controls such as traps, and biological control agents.

3.11 TURF AREA PREPARATION AND GRADING

- A. For newly graded subgrades loosen subgrade to a minimum depth of 6 inches (150 mm). Remove stones larger than 1 inch in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 - 1. Apply fertilizer and soil amendments directly to subgrade before loosening, at rates recommended by the soils analysis.
 - 2. Spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 - 3. Spread planting soil to a depth of 6 inches but not less than required to meet finish grades after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 - a. Spread approximately 1/2 the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches of subgrade.
 Spread remainder of planting soil.
- B. Finish grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in the immediate future.

3.12 PREPARATION FOR EROSION-CONTROL MATERIALS.

- A. For erosion control blanket or mesh, install from top of slope, working downward, and as recommended by material manufacturer for site conditions. Fasten with biodegradable materials as recommended by material manufacturer.
- B. Moisten prepared area before planting if surface is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

3.13 SODDING

- A. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.
- B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to subgrade or sod during installation. Tamp and roll lightly to ensure contact with subgrade, eliminate air pockets, and form a smooth surface. Work sifted

soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.

- 1. Lay sod across angle of slopes exceeding 1:3.
- 2. Anchor sod on slopes exceeding 1:6 with biodegradable staples spaced as recommended by sod manufacturer but not less than 2 anchors per sod strip to prevent slippage.
- C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently until sod is established.

3.14 TURF RENOVATION

- A. Renovate existing turf damaged by Contractor's operations, such as storage of materials or equipment and movement of vehicles.
 - 1. Reestablish turf where settlement or washouts occur or where minor regrading is required.
 - 2. Install new planting soil as required.
- B. Remove sod and vegetation from diseased or unsatisfactory turf areas; do not bury in soil.
- C. Remove topsoil containing foreign materials such as oil drippings, fuel spills, stones, gravel, and other construction materials resulting from Contractor's operations, and replace with new planting soil.
- D. Mow, dethatch, core aerate, and rake existing turf.
- E. Remove weeds before seeding. Where weeds are extensive, apply selective herbicides as required. Do not use pre-emergence herbicides.
- F. Remove waste and foreign materials, including weeds, soil cores, grass, vegetation, and turf, and legally dispose of them off Owner's property.
- G. Till stripped, bare, and compacted areas thoroughly to a soil depth of 6 inches.
- H. Apply soil amendments and initial fertilizers required for establishing new turf and mix thoroughly into top 4 inches of existing soil. Install new planting soil to fill low spots and meet finish grades.
- I. Apply seed and protect with straw mulch or as required for new turf.
- J. Water newly planted areas and keep moist until new turf is established.

3.15 TURF MAINTENANCE

A. Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.

- 1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
- 2. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
- 3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use IPM (Integrated Pest Management) practices whenever possible to minimize the use of pesticides and reduce hazards.
- B. Install and maintain temporary piping, hoses, and turf-watering equipment to convey water from sources and to keep turf uniformly moist to a depth of 4 inches.
 - 1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
 - 2. Water turf with fine spray at a minimum rate of 1 inch per week unless rainfall precipitation is adequate.
- C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than 1/3 of grass height. Remove no more than 1/3 of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

1. Mow to a height of 2 to 3 inches

3.16 SATISFACTORY TURF

- A. Turf installations shall meet the following criteria as determined by Contracting Officer's Representative:
 - 1. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.
- B. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

3.17 PESTICIDE APPLICATION

A. Apply pesticides and other chemical products and biological control agents in accordance with authorities having jurisdiction and

manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Contracting Officer's Representative before each application is performed.

- B. Pre-Emergent Herbicides (Selective and Non-Selective): Applied to tree, shrub, and ground-cover areas in accordance with manufacturer's written recommendations. Do not apply to seeded areas.
- C. Post-Emergent Herbicides (Selective and Non-Selective): Applied only as necessary to treat already-germinated weeds and in accordance with manufacturer's written recommendations.

3.18 CLEANUP AND PROTECTION

- A. During planting, keep adjacent paving and construction clean and work area in an orderly condition.
- B. Protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings.
- C. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.
- D. Erect temporary fencing or barricades and warning signs, as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.
- E. After installation and before Project Completion, remove nursery tags, nursery stakes, tie tape, labels, wire, burlap, and other debris from plant material, planting areas, and Project site.
- F. Remove nondegradable erosion control measures after grass establishment period.
- G. Remove surplus soil and waste material including excess subsoil, unsuitable soil, trash, and debris and legally dispose of them off Owner's property.

--- END ---

SECTION 33 10 00 WATER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION:

Underground water distribution system complete, ready for operation, including all appurtenant structures, and connections to both new building service lines and to existing water supply.

1.2 RELATED WORK:

- A. Maintenance of Existing Utilities: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Excavation, trench widths, pipe bedding, backfill, shoring, sheeting, bracing: Section 31 20 00, EARTH MOVING.
- C. Concrete: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Protection of materials and equipment: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 DEFINITIONS:

- A. Water Distribution: Pipelines and appurtenances which are part of the distribution system. The distribution system comprises the network of piping located throughout building areas and other areas of water use, including hydrants, valves, and other appurtenances used to supply water for domestic and fire-fighting/fire protection purposes.
- B. Water Service Line: Pipe line connecting building piping to water distribution lines.

1.4 QUALITY ASSURANCE:

- A. Products Criteria:
 - Multiple Units: When two or more units of the same type or class of materials or equipment are required, these units shall be product of one manufacturer.
 - Nameplate: Nameplate bearing manufacturer's name or identifiable trademark securely affixed in a conspicuous place on equipment or name or trademark cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Utility having jurisdiction over the connection to Public Water lines and the extension, and/or modifications to Public Utility systems.

- C. Comply with all rules and regulations of Federal, State, and Local authorityhaving jurisdiction over the design, construction, and operation of potable water systems.
- D. All material surfaces in contact with potable water shall comply with NSF 61.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers' Literature and Data (Submit all items as one package): (Ductile Iron Pipe and Polyvinyl Chloride (PVC) shall be in accordance with AWWA C600 and C605 respectively; and shall be provided to Resident Engineer for approval.)
 - 1. Piping.
 - 2. Gaskets.
 - 3. Valves.
 - 4. Fire hydrants.
 - 5. Street washer.
 - 6. Meter.
 - 7. Vaults, frames and covers.
 - 8. Steps.
 - 9. Post indicator.
 - 10. Valve boxes.
 - 11. Corporation and curb stops.
 - 12. Curb stop boxes.
 - 13. Joint restraint.
 - 14. Disinfection products.
 - 15. Link/sleeve seals.
- C. Testing Certifications:
 - 1. Certification of Backflow Devices.
 - 2. Hydrostatic Testing.
 - 3. Certification of Disinfection, including free chlorine residuals, and bacteriological examinations.

1.6 APPLICABLE PUBLICATIONS:

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

Tubes

B40.100-98.....Pressure Gauges and Gauge Attachments

- C. American Society for Testing and Materials (ASTM):
 - A123-97.....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A148M-03.....Standard Specifications for Steel Castings
 - A242-00.....Standard Specifications for High Strength Low Alloy Structural Steel AASHTO No. M161
 - A307-02.....Standard Specifications for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength
 - A536-04.....Standard Specifications for Ductile Iron Castings
 - B61-02..... Castings
 - B62-02..... Ocmposition Bronze or Ounce Metal Castings
 - B88-02.....Beamless Copper Water Tube
 - B828..... Standard Practice: Soldering and Brazing Copper Tube and fittings
 - C32-04.....Sewer and Manhole Brick (Made from Clay or Shale)
 - C139-03.....Concrete Masonry Units for Construction of Catch Basins and Manholes
 - D1784-03.....Standard Specifications for Rigid PVC Compounds and CPVC Compounds D1869-00....Standard Specifications for Rubber Rings for Asbestos Cement Pipe
 - D2464-99.....Standard Specifications for Threaded PVC Pipe Fittings, Schedule 80
 - D2467-02.....Standard Specifications for Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80 D3139-98.....Joints for Plastic Pressure Pipes Using
 - Flexible Elastomeric Seals

Pipe C32-04..... Standard Specifications for Sewer Manhole Brick D. American Water Works Association (AWWA): B300-04.....Hypochlorites B301-04.....Liquid Chlorine C104-04.....Cement Mortar Lining for Ductile Iron Pipe and Fittings for Water C105-99.....Polyethylene Encasement for Gray and Ductile C.I. Piping for Water and Other Liquids C110-03..... Ductile-Iron and Gray-Iron Fittings, 80 mm (3 Inches) Through 1200 mm (48 Inches) for Water and Other Liquids C111-01.....Rubber-Gasket Joints for Ductile-Iron and Gray-Iron Pressure Pipe and Fittings C115-99.....Flanged Ductile-Iron and Gray-Iron Pipe with Threaded Flanges C150-02.....American National Standard for Thickness Design of Ductile Iron Pipe C151-96.....Ductile-Iron Pipe, Centrifugally Cast in Metal Molds or Sand-Lined Molds, for Water or Other Liquids C153-00.....Ductile-Iron Compact Fittings, 80 mm (3 inches) Through 300 mm (12 Inches) for Water and Other Liquids C500-02.....Gate Valves for Water and Sewerage Systems C502a-95.....Dry-Barrel Fire Hydrants C503-97.....Wet-Barrel Fire Hydrants C508-01.....Swing Check Valves for Waterworks Service, 2 Inches (50 mm) Through 24 Inches (600mm) NPS C509-01.....Resilient Seated Gate Valve for Water and Sewage System C510-97.....Double Check Valve Back-Flow Prevention Assembly C511-97.....Reduced Pressure Principle Back-Flow Prevention Assembly

- C550-01.....Protective Epoxy Interior Coatings for Valves and Hydrants C600-01..... Water Mains and Their Appurtenances C605-94...... Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water C651-92.....Disinfecting Water Mains C800-01.....Underground Service Line Valves and Fittings C900-97.....Polyvinyl Chloride (PVC) Pressure Pipe, 4 Inches Thru 12 Inches, for Water C905-97.....Polyvinyl Chloride (PVC) Pressure Pipe 14 Inches Thru 36 Inches E. National Fire Protection Association (NFPA): 24-95..... First allation of Private Fire Service Mains and Their Appurtenances 291-01.....Fire Flow Testing and Marking of Hydrants 1141-98......Fire Protection in Planned Building Groups F. NSF International: 14-03.....Plastics Piping Components and Related Materials 61-02.....Drinking Water System Components-Health Effects (Sections 1-9) G. American Welding Society (AWS): A5.8-04.....Brazing Filler Metal
 - H. Foundation for Cross-Connection Control and Hydraulic Research-2005
 - I. Copper Development Association's Copper Tube Handbook-2005

PART 2 - PRODUCTS

2.1 DUCTILE IRON PIPE AND FITTINGS:

- A. Ductile iron pipe, direct buried:
 - Provide ductile iron pipe conforming to the requirements of AWWA C151, Pressure Class 350 for Pipe 4 inches through 12 inches in diameter and 250, [] minimum for pipe larger than 12 inches in diameter, with standard thickness cement mortar lining interior, and interior asphaltic seal coat and exterior asphaltic coating, in accordance with AWWA and ANSI Standards.
 - Below Grade: Supply pipe in lengths not in excess of a nominal 20 feet with rubber ring type push-on joints, mechanical joint or

JUNE 2013

approved restrained joint. Provide flange joint pipe where shown on the drawings. Provide mechanical and restrained joint pipe with sufficient quantities of accessories as required for each joint.

- 3. When a polyethylene encasement over pipe, fittings, and valves is a requirement as indicated on the drawings, the material, installation and workmanship shall conform to applicable sections of AWWA C105. Make provisions to keep the polyethylene from direct exposure to sunlight prior to installation. Backfill following installation without delay to avoid exposure to sunlight.
- B. All Pipe Fittings: Ductile iron with a minimum pressure rating of 350 psi. Fittings shall meet the requirements of ANSI and AWWA specifications as applicable. Rubber gasket joints shall conform to AWWA C111 for mechanical and push-on type joints. Ball joints shall conform to AWWA C151 with a separately cast ductile iron bell conforming to ASTM A148. Flanged fittings shall conform to AWWA C115 and be furnished flat faced and drilled to 125 psi or 250 psi template in accordance with ANSI B16.1 with full faced gaskets.
- C. Provide cement mortar lining and bituminous seal coat on the inside of the pipe and fittings in accordance with AWWA C104. Provide standard asphaltic coating on the exterior.
- D. Provide a factory hydrostatic test of not less than 500 psi for all pipe in accordance with AWWA C151.
- E. Provide non-detectable adhesive backed identification tape on top and sides of all buried ductile iron pipe, extended from joint to joint along the length of the pipe and have black lettering identifying the pipe service at no more than 12 inch intervals. According to service, the tape background color shall be as follows: potable water-blue.

2.2 POLYVINYL CHLORIDE PIPE AND FITTINGS:

A. Class-Rated Polyvinyl Chloride (PVC) Pipe:

- PVC pipe and accessories 4 inches-14 inches in diameter, AWWA C900 "Polyvinyl Chloride (PVC) Pressure Pipe", Class 200, DR 14, cast iron outside diameters, unless otherwise shown or specified.
- 2. PVC pipe and accessories 16 inches or larger, AWWA C905, "Polyvinyl Chloride Water Transmission Pipe", Class 235, DR 18, cast iron outside diameters unless otherwise shown or specified. Pipe and accessories shall bear the NSF mark indicating pipe size, manufacturer's name, AWWA and/or ASTM Specification number, working

pressure and production code. Pipe and couplings shall be made in accordance with ASTM D1784.

- 3. PVC Pipe and Accessories Smaller than 4 inches: Schedule 80, meeting the requirements of ASTM D-1785, Type 1, Grade 1. All exposed piping shall be CPVC meeting requirements of ASTM F441.
- B. Joints:
 - Pipe 3 inches and Greater in Diameter: Push-on type with factory installed solid cross section elastomeric ring meeting the requirements of ASTM F-477.
 - Pipe Less Than 3 inches in Diameter: Threaded (ASTM D-2464) or solvent welded (ASTM 2467). Use Teflon tape or liquid Teflon thread lubricant approved for use on plastic on all threaded joints.
- C. Fittings:
 - 1. Class-Rated Pipe 3 inches in Diameter and Greater: Ductile iron with mechanical joints conforming to the requirements of AWWA C153.
 - For Schedule 80 Pipe less than 3 inches in Diameter: Threaded or solvent weld. Threaded PVC fittings shall conform to ASTM D2464. CPVC fittings shall conform to ASTM F437 for threaded fittings and ASTM F439 for solvent weld fittings.

2.3 VALVES:

- A. Asbestos packing is not allowed.
- B. Gate:
 - 1. 3 inches and Larger: Resilient seated, ductile iron body, bronze mounted, inclined seats, non-rising stem type turning counterclockwise to open, 200 pound WOG. AWWA C509. The resilient seat shall be fastened to the gate with stainless steel fasteners or vulcanizing methods. The interior and exterior shall be coated with thermo-setting or fusion epoxy coating in accordance with AWWA C550.
 - 2. Operator:
 - a. Underground: Except for use with post indicators, furnish valves with 2 inch nut for socket wrench operation. Post indicator shall comply with the requirements of NFPA 24 and shall be fully compatible with the valve provided.
 - b. Above Ground and in Pits: Hand wheels.
 - Joints: Ends of valves shall accommodate, or be adapted to, pipe installed.

2.4 VALVE BOX:

Cast iron extension box with screw or slide-type adjustment and flared base. Minimum thickness of metal shall be 3/16 inch. Box shall be adapted, without full extension, to depth of cover required over pipe at valve location. Cast the word "WATER" in cover. Provide 2 "T" handle socket wrenches of 5/8 inch round stock long enough to extend 2 feet above top of deepest valve box.

2.5 PIPE SLEEVES:

Ductile iron or zinc coated steel.

2.6 POTABLE WATER:

Water used for filling, flushing, and disinfection of water mains and appurtenances shall conform to Safe Drinking Water Act.

2.7 DISINFECTION CHLORINE:

- A. Liquid chlorine shall conform to AWWA B301 and AWWA C651.
- B. Sodium hypochlorite shall conform to AWWA B300 with 5 percent to 15 percent available chlorine.
- C. Calcium hypochlorite shall conform to AWWA B300 supplied in granular form or 5.g tablets, and shall contain 65 percent chlorine by weight.

2.8 WARNING TAPE

Standard, 4-Mil polyethylene 3 inch wide tape, detectable type, blue with black letters, and imprinted with "CAUTION BURIED WATER LINE BELOW".

PART 3 - EXECUTION

3.1 REGRADING:

Raise or lower existing valve and curb stop boxes and fire hydrants to finish grade in areas being graded.

3.2 PIPE LAYING, GENERAL:

- A. Care shall be taken in loading, transporting, and unloading to prevent injury to the pipe or coatings. Pipe or fittings shall not be dropped. All pipe or fittings shall be examined before laying, and no piece shall be installed which is found to be defective. Any damage to the pipe coatings shall be repaired as directed by the Resident Engineer.
- B. All pipe and fittings shall be subjected to a careful inspection just prior to being laid or installed. If any defective piping is discovered after it has been laid, it shall be removed and replaced with a sound pipe in a satisfactory manner at no additional expense to the Government. All pipe and fittings shall be thoroughly cleaned before

laying, shall be kept clean until they are used in the work, and when installed or laid, shall conform to the lines and grades required.

- C. All buried piping shall be installed to the lines and grades as shown on the drawings. All underground piping shall slope uniformly between joints where elevations are shown.
- D. Contractor shall exercise extreme care when installing piping to shore up and protect from damage all existing underground water line and power lines, and all existing structures.
- E. Do not lay pipe on unstable material, in wet trench, or when trench or weather conditions are unsuitable.
- F. Do not lay pipe in same trench with other pipes or utilities unless shown otherwise on drawings.
- G. Hold pipe securely in place while joint is being made.
- H. Do not walk on pipes in trenches until covered by layers of earth well tamped in place to a depth of 12 inches over pipe.
- I. Full length of each section of pipe shall rest solidly upon pipe bed with recesses excavated to accommodate bells or joints. Do not lay pipes on wood blocking.
- J. Tees, plugs, caps, bends and hydrants on pipe installed underground shall be anchored. See section 3.7 "PIPE SUPPORTS".
- K. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water and chemical, or mechanical injury. At completion of all work, thoroughly clean exposed materials and equipment.
- L. Good alignment shall be preserved in laying. The deflection at joints shall not exceed that recommended by the manufacturer.
- M. Warning tape shall be continuously placed 12 inches above buried water pipes.

3.3 DUCTILE IRON PIPE:

- A. Installing Pipe: Lay pipe in accordance with AWWA C600 with polyethylene encasement if required in accordance with AWWA C105. Provide a firm even bearing throughout the length of the pipe by tamping selected material at the sides of the pipe up to the spring line.
- B. All pipe shall be sound and clean before laying. When laying is not in progress, the open ends of the pipe shall be closed by watertight plug or other approved means.

- C. When cutting pipe is required, the cutting shall be done by machine, leaving a smooth cut at right angles to the axis of the pipe. Bevel cut ends of pipe to be used with push-on bell to conform to the manufactured spigot end. Cement lining shall be undamaged.
- D. Jointing Ductile-Iron Pipe:
 - 1. Push-on joints shall be made in strict accordance with the manufacturer's instruction. Pipe shall be laid with bell ends looking ahead. A rubber gasket shall be inserted in the groove of the bell end of the pipe, and the joint surfaces cleaned and lubricated. The plain end of the pipe is to be aligned with the bell of the pipe to which it is joined, and pushed home with approved means.
 - Mechanical Joints at Valves, Fittings: Install in strict accordance with AWWA C111. To assemble the joints in the field, thoroughly clean the joint surfaces and rubber gaskets with soapy water before tightening the bolts. Bolts shall be tightened to the specified torque.
 - 3. Ball Joints: Install in strict accordance with the manufacturer's instructions. Where ball joint assemblies occur at the face of structures, the socket end shall be at the structure and ball end assembled to the socket.
 - 4. Flanged joints shall be in accordance with AWWA C115. Flanged joints shall be fitted so that the contact faces bear uniformly on the gasket and then are made up with relatively uniform bolt stress.

3.4 PVC PIPE:

- A. PVC piping shall be installed in strict accordance with the manufacturer's instructions and AWWA 605. Place selected material and thoroughly compacted to one foot above the top of the pipe and thereafter back filled as specified in Section 31 20 00, EARTH MOVING.
- B. Copper Tracer Wire: Copper tracer wire consisting of No. 14 AWG solid, single conductor, insulated copper wire shall be installed in the trench with all piping to permit location of the pipe with electronic detectors. The wire shall not be spiraled around the pipe nor taped to the pipe. Wire connections are to be made by stripping the insulation from the wire and soldering with rosin core solder. Solder joints shall be wrapped with rubber tape and electrical tape. At least every 300 m (1000 feet), provide a 2.3 kg (5 pound) magnesium anode attached to the

06054.013

JUNE 2013

main tracer wire by solder. The solder joint shall be wrapped with rubber tape and with electrical tape. An anode shall be attached at the end of each line.

C. Magnetic markers may be used in lieu of copper tracer wire to aid in future pipe locating. Generally, install markers on 20 foot centers. If pipe is in a congested piping area, install on 10 foot centers. Prepare as-built drawing indicating exact location of magnetic markers.

3.5 PIPE SEPARATION:

- A. Horizontal Separation-Water Mains and Sewers:
 - 1. Water mains shall be located at least 10 feet horizontally from any proposed drain, storm sewer, sanitary or sewer service connection.
 - Water mains may be located closer than 10 feet to a sewer line when:
 a. Local conditions prevent a lateral separation of 10 feet; and
 - b. The water main invert is at least 18 inches above the crown of the sewer; and
 - c. The water main is either in a separate trench or in the same trench on an undisturbed earth shelf located one side of the sewer.
 - 3. When it is impossible to meet (1) or (2) above, both the water main and drain or sewer shall be constructed of mechanical joint ductile iron pipe. Ductile iron pipe shall comply with the requirements listed in this specification section. The drain or sewer shall be pressure tested to the maximum expected surcharge head before back filling.
- B. Vertical Separation-Water Mains and Sewers:
 - 1. A water main shall be separated from a sewer so that its invert is a minimum of 18 inches above the crown of the drain or sewer whenever water mains cross storm sewers, sanitary sewers or sewer service connections. The vertical separation shall be maintained for that portion of the wear main located within 10 feet horizontally of any sewer or drain crossed. A length of water main pipe shall be centered over the sewer to be crossed with joints equidistant from the sewer or drain.
 - Both the water main and sewer shall be constructed of slip-on or mechanical joint ductile iron pipe or PVC pipe equivalent to water main standards of construction when:

- a. It is impossible to obtain the proper vertical separations described in (1) above; or
- b. The water main passes under a sewer or drain.
- 3. A vertical separation of 18 inches between the invert of the sewer or drain and the crown of the water main shall be maintained where a water main crosses under a sewer. Support the sewer or drain lines to prevent settling and breaking the water main.
- Construction shall extend on each side of the crossing until the perpendicular distance from the water main to the sewer or drain line is at least 10 feet.

3.6 SETTING OF VALVES AND BOXES:

- A. Provide a surface concrete pad 18 by 18 by 6 inches to protect valve box when valve is not located below pavement.
- B. Clean valve and curb stops interior before installation.
- C. Set valve and curb stop box cover flush with finished grade.
- D. Valves shall be installed plumb and level and in accordance with manufacturer's recommendations.

3.7 FLUSHING AND DISINFECTING:

A. Flushing and disinfecting shall be in accordance with Iowa SUDAS Standard Specifications, Division 5: Water Mains and Appurtenances; Section 5030 - Testing and Disinfection, Part 2 and Part 3.

3.8 HYDROSTATIC TESTING:

- A. Hydrostatic testing of the system shall occur prior to disinfecting the system.
- B. After new system is installed, except for connections to existing system and building, backfill at least 12 inches above pipe barrel, leaving joints exposed. The depth of the backfill shall be adequate to prevent the horizontal and vertical movement of the pipe during testing.
- C. Prior to pressurizing the line, all joint restraints shall be completely installed and inspected.
- D. If the system is tested in sections, and at the temporary caps at connections to the existing system and buildings, the Contractor shall provide and install all required temporary thrust restraints required to safely conduct the test.

- E. The Contractor shall install corporation stops in the line as required to purge the air out of the system. At the completion of the test, all corporation stops shall be capped.
- F. The Contractor shall perform pressure and leakage tests for the new system for 2 hours to 200 psi. Leakage shall not exceed the following requirements.
 - 1. Copper Tubing: No leaks.
 - 2. Ductile Iron Pipe: AWWA C600.Provide to Resident Engineer office.
 - 3. Polyvinyl Chloride (PVC) AWWA C605.Provide to Resident Engineer office.

- - - E N D - - -

SECTION 33 40 00

STORM SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of outside, underground storm sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.

1.3 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

1.4 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings and appurtenances, including jointing materials, hydrants, valves and other miscellaneous items.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185/A185M-07.....Steel Welded Wire Reinforcement, Plain, for Concrete

A242/A242M-04(2009)....High-Strength Low-Alloy Structural Steel A536-84(2009).....Ductile Iron Castings A615/A615M-09b.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

C33/C33M-08.....Concrete Aggregates

VAMC DES MOINES CENTRALIZED BOILER/CHILLER P	VA PROJECT NO. 636A6-12-203 JUNE 2013 LANT SCHEMMER NO. 06054.013
C76-11	Reinforced Concrete Culvert, Storm Drain, and
	Sewer Pipe
C150/C150M-11	Portland Cement
C443-10	Joints for Concrete Pipe and Manholes, Using
	Rubber Gaskets
C478-09	Precast Reinforced Concrete Manhole Sections
C857-07	Minimum Structural Design Loading for
	Underground Precast Concrete Utility Structures
C891-09	Installation of Underground Precast Concrete
	Utility Structures
C913-08	Precast Concrete Water and Wastewater
	Structures
С923-08	Resilient Connectors Between Reinforced
	Concrete Manhole Structures, Pipes, and
	Laterals
C924-02(2009)	Testing Concrete Pipe Sewer Lines by Low-
	Pressure Air Test Method
C990-09	Joints for Concrete Pipe, Manholes, and Precast
	Box Sections Using Preformed Flexible Joint
	Sealants

C1103-03(2009).....Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines

- C1173-08..... Flexible Transition Couplings for Underground Piping Systems
- C1479-10.....Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations
- D448-08.....Sizes of Aggregate for Road and Bridge Construction
- D698-07e1.....Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
- C. American Association of State Highway and Transportation Officials
 (AASHTO):
 M198-10.....Joints for Concrete Pipe, Manholes, and Precast

Box Sections Using Preformed Flexible Joint Sealants D. National Stone, Sand and Gravel Association (NSSGA): Quarried Stone for Erosion and Sediment Control

1.6 WARRANTY

The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance. Further, the Contractor will furnish all manufacturers' and suppliers' written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

Refer to Iowa SUDAS Standard Specifications, Division 3: Trench and Trenchless Construction; Section 3020 - Trenchless Construction, Part 2 for casing pipe construction; Division 4: Sewers and Drains; Section 4020 - Storm Sewer, Part 2; Section 4060 - Cleaning, Inspection and Testing of Sewers, Part 2; and Division 6: Structures for Sanitary and Storm Sewers; Section 6010 - Structures for Sanitary and Storm Sewers, Part 2; Section 6030 - Cleaning, Inspection, and Testing of Structures, Part 2.

PART 3 - EXECUTION

Refer to Iowa SUDAS Standard Specifications, Division 3: Trench and Trenchless Construction; Section 3020 - Trenchless Construction, Part 3 for casing pipe construction; Division 4: Sewers and Drains; Section 4020 - Storm Sewer, Part 3; Section 4060 - Cleaning, Inspection and Testing of Sewers, Part 3; and Division 6: Structures for Sanitary and Storm Sewers; Section 6010 - Structures for Sanitary and Storm Sewers, Part 3; Section 6030 - Cleaning, Inspection, and Testing of Structures, Part 3.

--- E N D ---