SPECIFICATIONS FOR

PHARMACY SERVER HVAC

GEORGE E. WAHLEN VAMC, SALT LAKE CITY, UTAH VA PROJECT NO: 660-13-39S

DATE: FEBRUARY 20, 2014

DOCUMENT 00 01 07 - PROFESSIONAL SEALS PAGE

1.1 DESIGN PROFESSIONALS OF RECORD

ARCHITECT EFT Architects, Inc.

MECHANICAL ENGINEER Van Boerum & Frank Associates, Inc.

ELECTRICAL ENGINEER Van Boerum & Frank Associates, Inc.

129665

129665

129665

129665

129665

129665

129665

129665

120714

120665

No. 270629

DAVID P.
BARANOWSKI

02.20.2014

07747E OF UTAN

1206ESSLOW

1207ESSLOW

1207ESSLO

--- E N D ---

SEALS PAGE 00 01 07 - 1

SECTION 00 01 10 - TABLE OF CONTENTS

PROCUREMENT AND CON	TRACTING REQUIREMENTS GROUP	
DIVISION 00 - INTRODUCTO	ORY INFORMATION	
	SEALS PAGEENTS	
DIVISION 00 - PROCUREME	ENT AND CONTRACTING REQUIREMENTS	
PROCUREMENT AND CON	TRACTING REQUIREMENTS PROVIDED BY GOVERNMENT	-
SPECIFICATIONS GROUP		
DIVISION 01 - GENERAL RE	EQUIREMENTS	
01 32 16.15 PROJECT SCHI 01 33 23 SHOP DRAWING 01 42 19 REFERENCE ST. 01 56 80 ENVIRONMENTA 01 74 19 CONSTRUCTION	IIREMENTS EDULES IS, PRODUCT DATA, AND SAMPLES ANDARDS IN PROTECTION I WASTE MANAGEMENT IESIGN REQUIREMENTS	10 6 9
DIVISIONS 02 - 07 (NOT US	SED)	
DIVISION 08 - OPENINGS		
08 71 00 DOOR HARDWA	RE	3
DIVISIONS 09 - 12 (NOT US	SED)	
DIVISION 13 - SPECIAL CO	NSTRUCTION	
13 05 41 SEISMIC RESTR COMPONENTS	AINT REQUIREMENTS FOR NON-STRUCTURAL	7
DIVISION 14 - 22 (NOT USE	ED)	
DIVISION 23 - HEATING , V	ENTILATING , AND AIR CONDITIONING	
23 05 41 NOISE AND VIBE 23 05 41T TABLES	RESULTS FOR HVAC AND STEAM GENERATIONRATION CONTROL FOR HVAC PIPING AND EQUIPMENT STING, AND BALANCING FOR HVAC	7 10 16 3

PHARMACY SERVER HVAC

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

DI/	/IS	IOV	l 26 -	FL	FC:	ΓRΙ	CA	ı
$\boldsymbol{\nu}$,,,	-	- 20		-		\sim	_

26 05 11	REQUIREMENTS FOR ELECTRICAL INSTALLATIONS	
26 05 19	LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES	6
26 05 26	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS	
	RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS	
	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	

DIVISIONS 27 - 49 (NOT USED)

---END---

SECTION 01 00 00 - GENERAL REQUIREMENTS

TABLE OF CONTENTS

- 1.1 GENERAL INTENTION
- 1.2 STATEMENT OF BID ITEM(S)
- 1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR
- 1.4 CONSTRUCTION SECURITY REQUIREMENTS
- 1.5 FIRE SAFETY
- 1.6 OPERATIONS AND STORAGE AREAS
- 1.7 ALTERATIONS
- 1.8 INFECTION AND PREVENTION MEASURES
- 1.9 DISPOSAL AND RETENTION
- 1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS
- 1.11 RESTORATION
- 1.12 PHYSICAL DATA (NOT USED)
- 1.13 PROFESSIONAL SURVEYING SERVICES (NOT USED)
- 1.14 LAYOUT OF WORK (NOT USED)
- 1.15 AS-BUILT DRAWINGS
- 1.16 USE OF ROADWAYS (NOT USED)
- 1.17 RESIDENT ENGINEER'S FIELD OFFICE (NOT USED)
- 1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT (NOT USED)
- 1.19 TEMPORARY USE OF EXISTING ELEVATORS
- 1.20 TEMPORARY USE OF NEW ELEVATORS (NOT USED)
- 1.21 TEMPORARY TOILETS
- 1.22 AVAILABILITY AND USE OF UTILITY SERVICES
- 1.23 NEW TELEPHONE EQUIPMENT (NOT USED)
- **1.24 TESTS**
- 1.25 INSTRUCTIONS
- 1.26 GOVERNMENT FURNISHED PROPERTY (NOT USED)
- 1.27 RELOCATED EQUIPMENT AND ITEMS (NOT USED)
- 1.28 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT (NOT USED)
- 1.29 CONSTRUCTION SIGNS (NOT USED)
- 1.30 SAFETY SIGN (NOT USED)
- 1.31 PHOTOGRAPHIC DOCUMENTATION
- 1.32 FINAL ELEVATION DIGITAL IMAGES (NOT USED)
- 1.33 HISTORIC PRESERVATION (NOT USED)
- 1.34 VA TRIRIGA CPMS

SECTION 01 00 00 - GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall furnish labor and materials and perform work for the Pharmacy Server HVAC as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. Offices of EFT Architects Inc, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the Resident Engineer in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the Resident Engineer.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Prior to commencing work, general contractor shall provide proof that a OSHA designated "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.

G. Training:

- 1. The "competent person" shall have the 30-hour OSHA certified Construction Safety course and /or other relevant competency training, as determined by VA CP with input from the ICRA team.
- All employees of general contractor or subcontractors shall have the 10-hour OSHA
 certified Construction Safety course and /or other relevant competency training, as
 determined by VA CP with input from the ICRA team.
- 2. Submit training records of all such employees for approval before the start of work.
- H. VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section

1.2 STATEMENT OF BID ITEM(S)

A. Work includes the installation of a new HVAC system for an existing server room, including mechanical, plumbing, and electrical work. The Work also includes the installation of sound seals on the existing door into the server room.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, 3 sets of specifications and drawings will be furnished.
- B. Additional sets of drawings may be made by the Contractor, at Contractor's expense.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all sub-contractors working on the project and their employees also comply with these regulations.

B. Security Procedures:

- General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.

C. Document Control:

1. Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".

- The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.

D. Motor Vehicle Restrictions

- Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access.
 Access shall be restricted to picking up and dropping off materials and supplies.
- 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - American Society for Testing and Materials (ASTM):

 Surface Burning Characteristics of

E84-2009.....Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

10-2010......Standard for Portable Fire Extinguishers
30-2008.....Flammable and Combustible Liquids Code

PHARMACY SERVER HVAC

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

51B-2009	Standard for Fire Prevention During Welding, Cutting and
	Other Hot Work
70-2011	National Electrical Code
101-2012	Life Safety Code
241-2009	Standard for Safeguarding Construction, Alteration, and
	Demolition Operations

- 3. Occupational Safety and Health Administration (OSHA):
 - 29 CFR 1926.....Safety and Health Regulations for Construction
- 4. VHA Directive 2005-007
- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Resident Engineer and Facility Safety Officer for review for compliance with VHA Directive 2005-007, NFPA 101 and NFPA 241. Prior to beginning work, all employees of the contractor and/or any subcontractors shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Provide documentation to the Resident Engineer that all construction workers have undergone contractor's safety briefing.
- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- E. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Resident Engineer and facility Safety Officer.
- F. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Resident Engineer and facility Safety Officer.

- G. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- H. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- I. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Resident Engineer and facility Safety Officer. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- J. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Resident Engineer and facility Safety Officer.
- K. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Resident Engineer. Obtain permits from facility Safety Officer at least 72 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- L. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Resident Engineer and facility Safety Officer.
- M. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- N. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- O. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.
- P. If required, submit documentation to the Resident Engineer that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads. (FAR 52.236-10)
- D. Working space and space available for storing materials shall be as determined by the Resident Engineer.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
- G. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by Resident Engineer where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.

- Schedule delivery of materials and equipment to immediate construction working
 areas within buildings in use by Department of Veterans Affairs in quantities
 sufficient for not more than two work days. Provide unobstructed access to Medical
 Center areas required to remain in operation.
- Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- H. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer. All such actions shall be coordinated with the Utility Company involved:
- I. Building(s) No.s 1 and 14 will be occupied during performance of work; but immediate areas of alterations may be vacated as determined by the Resident Engineer.
 - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.
- J. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- K. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer.

- 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Resident Engineer. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval.
- 2. Contractor shall submit a request to interrupt any such services to Resident Engineer, in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Resident Engineer.
- In case of a contract construction emergency, service will be interrupted on approval of Resident Engineer. Such approval will be confirmed in writing as soon as practical.
- L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - 1. Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- N. Coordinate the work for this contract with other construction operations as directed by Resident Engineer. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the Resident Engineer areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:
 - 1. Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building.
 - 2. Shall note any discrepancies between drawings and existing conditions at site.
 - Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and Resident Engineer.
- B. Re-Survey: Ten days before expected partial or final inspection date, the Contractor and Resident Engineer together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- C. Protection: Provide the following protective measures:
 - 1. Temporary protection against damage for portions of existing structures where work is to be done, and materials handled.
 - Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 INFECTION PREVENTION MEASURES

- A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded.
- B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group. Prior to start of work, prepare a plan detailing project-specific dust protection measures,

including periodic status reports, and submit to Resident Engineer and Facility ICRA team for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

- 1. All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- C. Medical center Infection Control personnel shall monitor for airborne disease (e.g. aspergillosis) as appropriate during construction. A baseline of conditions may be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality. In addition:
 - 1. The RE and VAMC Infection Control personnel shall review pressure differential monitoring documentation to verify that pressure differentials in the construction zone and in the patient-care rooms are appropriate for their settings. The requirement for negative air pressure in the construction zone shall depend on the location and type of activity. Upon notification, the contractor shall implement corrective measures to restore proper pressure differentials as needed.
 - 2. In case of any problem, the medical center, along with assistance from the contractor, shall conduct an environmental assessment to find and eliminate the source.
- D. In general, following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by Resident Engineer and where indicated. Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction.
 - 2. Do not perform dust producing tasks within occupied areas without the approval of the Resident Engineer. For construction in any areas that will remain jointly occupied by the medical Center and Contractor's workers, the Contractor shall:
 - a. Provide dust proof temporary drywall construction barriers if required by the Resident Enginner to completely separate construction from the operational areas of the hospital in order to contain dirt debris and dust. Barriers shall be sealed and made presentable on hospital occupied side. Install a self-closing rated door in a metal frame, commensurate with the partition, to allow worker access. Maintain negative air at all times. A fire retardant polystyrene, 6-mil thick

or greater plastic barrier, with zipper doors, meeting local fire codes may be used where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center.

- b. HEPA filtration is required where the exhaust dust may reenter the breathing zone. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. Install HEPA (High Efficiency Particulate Accumulator) filter vacuum system rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. Insure continuous negative air pressures occurring within the work area. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Exhaust hoses shall be heavy duty, flexible steel reinforced and exhausted so that dust is not reintroduced to the medical center.
- c. Adhesive Walk-off/Carpet Walk-off Mats, minimum 600mm x 900mm (24" x 36"), shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
- d. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as they are created. Transport these outside the construction area in containers with tightly fitting lids.
- e. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
- f. Using a HEPA vacuum, clean inside the barrier and vacuum ceiling tile prior to replacement. Any ceiling access panels opened for investigation beyond sealed areas shall be sealed immediately when unattended.
- g. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All

accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.

h. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

E. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.

1.9 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed as part of alteration shall be disposed of as follows:
 - Removed materials and equipment shall become property of the Contractor and be removed by Contractor from Medical Center.

1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor. (FAR 52.236-9)
- C. Refer to Section 01 56 80, ENVIRONMENTAL PROTECTION, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.

1.11 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the Resident Engineer. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Resident Engineer before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.12 PHYSICAL DATA (NOT USED)

1.13 PROFESSIONAL SURVEYING SERVICES (NOT USED)

1.14 LAYOUT OF WORK (NOT USED)

1.15 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.

- C. Contractor shall deliver two approved completed sets of as-built drawings to the Resident Engineer within 15 calendar days after each completed phase and after the acceptance of the project by the Resident Engineer.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.16 USE OF ROADWAYS (NOT USED)

1.17 RESIDENT ENGINEER'S FIELD OFFICE (NOT USED)

1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT (NOT USED)

1.19 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - Contractor makes all arrangements with the Resident Engineer for use of elevators.
 The Resident Engineer will ascertain that elevators are in proper condition.
 Personnel for operating elevators will not be provided by the Department of Veterans Affairs.
 - Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.
 - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
 - c. Finish flooring.
 - 3. Place elevator in condition equal, less normal wear, to that existing at time it was placed in service of Contractor as approved by Contracting Officer.

1.20 TEMPORARY USE OF NEW ELEVATORS (NOT USED)

1.21 TEMPORARY TOILETS

A. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.22 AVAILABILITY AND USE OF UTILITY SERVICES

A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The Contractor shall carefully conserve any utilities furnished without charge.

1.23 NEW TELEPHONE EQUIPMENT (NOT USED)

1.24 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.25 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being

- furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the Resident Engineer and shall be considered concluded only when the Resident Engineer is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Resident Engineer, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.
- 1.26 GOVERNMENT-FURNISHED PROPERTY (NOT USED)
- 1.27 RELOCATED // EQUIPMENT // ITEMS // (NOT USED)
- 1.28 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT (NOT USED)
- 1.29 CONSTRUCTION SIGN (NOT USED)
- 1.30 SAFETY SIGN (NOT USED)
- 1.31 PHOTOGRAPHIC DOCUMENTATION
 - A. During the construction period through completion, provide photographic documentation of construction progress. Provide up to 25 images per week as directed by the Resident Engineer. In addition, provide images of before work conditions and after work conditions of each work area or room affected by construction operations, with each area or room clearly identified and dated in each image. Each digital image shall be taken with a professional grade camera with minimum size of 6 megapixels.
- 1.32 FINAL ELEVATION DIGITAL IMAGES (NOT USED)
- 1.33 HISTORIC PRESERVATION (NOT USED)
- 1.34 VA TRIRIGA CPMS

VA contractors, selected by award to perform work, are required to get access to the VA TRIRIGA CPMS. The TRIRIGA CPMS is the management and collaborative environment that the VA uses for all Major, Minor and Non-Recurring Maintenance (NRM) projects within the Office of Construction & Facilities Management (CFM), Veterans Health Administration (VHA), National Cemetery Administration (NCA), and the Veterans Benefits Administration (VBA).

The contractor is solely responsible for acquiring access to the VA TRIRIGA CPMS.

To gain access to the VA TRIRIGA CPMS the contractor is encouraged to follow the licensing process outline as specified below:

- A. Requirement: TRIRIGA is the management and collaborative environment that VA uses for all construction projects. VA requires its contractors to procure TRIRIGA access as part of the cost of performance for a VA construction related contract.
- B. Access Request and Payment can be made through the following URL

https://valicensing.oncfi.com/

Inquiries or to request additional services, contact the following:

Craig Alsheimer, Federal Account Manager

Computerized Facility Integrations, LLC

18000 West Nine Mile Road

Suite 700

Southfield, MI 48075

Email: calsheimer@gocfi.com

Phone: 248-557-4234 Extension 6010; 410-292-7006

C. Process:

- Once the contractor has been notified by VA of the award and a unique contract number, the contractor can enter a request for access to TRIRIGA at URL https://valicensing.oncfi.com/
- CFI will process the request for access and payment. CFI will create the USER ID and a password. Security provisions required to align the contractor to the Contract Number will be entered and an email will be generated and submitted to the requestor.
- 3. CFI will also provide standard terms and conditions related to the transaction and use agreement.

---END---

SECTION 01 32 16.15 - PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor

shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 14 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag

constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- D. Within 7 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - 1. Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 7 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.

- c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
- e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
- 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
- 3. Break up the work into activities/events of a duration no longer than 7 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 7 work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall

not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.

D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - 1. Actual start and/or finish dates for updated/completed activities/events.
 - 2. Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.

- 4. Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
- 5. Completion percentage for all completed and partially completed activities/events.
- 6. Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (7) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting

period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - 2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 7 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.

- 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
- 3. The schedule does not represent the actual prosecution and progress of the project.
- 4. When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.

- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 – 4 (Changes) and VAAR 852.236 – 88 (Changes – Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

--- E N D ---

SECTION 01 33 23 - SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto.

 Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.

- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.
- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail or FAX and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor,

- manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
- 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- C. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- D. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- E. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - 4. A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.

- 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

EFT Architects, Inc.

265 East 100 South, Suite 250

Salt Lake City, Utah 84111

1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

--- E N D ---

SECTION 01 42 19 - REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

AABC Associated Air Balance Council

http://www.aabchq.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AAN American Nursery and Landscape Association

http://www.anla.org

AASHTO American Association of State Highway and Transportation Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America

http://www.agc.org

AGMA American Gear Manufacturers Association, Inc.

http://www.agma.org

AHAM Association of Home Appliance Manufacturers

http://www.aham.org

AISC American Institute of Steel Construction

http://www.aisc.org

AISI American Iron and Steel Institute

http://www.steel.org

AITC American Institute of Timber Construction

http://www.aitc-glulam.org

AMCA Air Movement and Control Association, Inc.

http://www.amca.org

ANLA American Nursery & Landscape Association

http://www.anla.org

ANSI American National Standards Institute, Inc.

http://www.ansi.org

APA The Engineered Wood Association

http://www.apawood.org

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

ARI Air-Conditioning and Refrigeration Institute

http://www.ari.org

ASAE American Society of Agricultural Engineers

http://www.asae.org

ASCE American Society of Civil Engineers

http://www.asce.org

ASHRAE American Society of Heating, Refrigerating, and

Air-Conditioning Engineers

http://www.ashrae.org

ASME American Society of Mechanical Engineers

http://www.asme.org

ASSE American Society of Sanitary Engineering

http://www.asse-plumbing.org

ASTM American Society for Testing and Materials

http://www.astm.org

AWI Architectural Woodwork Institute

http://www.awinet.org

AWS American Welding Society

http://www.aws.org

AWWA American Water Works Association

http://www.awwa.org

BHMA Builders Hardware Manufacturers Association

http://www.buildershardware.com

BIA Brick Institute of America

CI

http://www.bia.org

CAGI Compressed Air and Gas Institute

http://www.cagi.org

CGA Compressed Gas Association, Inc.

http://www.cganet.com
The Chlorine Institute, Inc.

The Chlonne Institute, Inc.

http://www.chlorineinstitute.org

CISCA Ceilings and Interior Systems Construction Association

http://www.cisca.org

CISPI Cast Iron Soil Pipe Institute

http://www.cispi.org

CLFMI Chain Link Fence Manufacturers Institute

http://www.chainlinkinfo.org

CPMB Concrete Plant Manufacturers Bureau

http://www.cpmb.org

CRA California Redwood Association

http://www.calredwood.org

CRSI Concrete Reinforcing Steel Institute

http://www.crsi.org

CTICooling Technology Institute

http://www.cti.org

DHI Door and Hardware Institute

http://www.dhi.org

EGSA Electrical Generating Systems Association

http://www.egsa.org

EEI Edison Electric Institute

http://www.eei.org

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

EPA Environmental Protection Agency

http://www.epa.gov

ETL Testing Laboratories, Inc.

http://www.et1.com

FAA Federal Aviation Administration

http://www.faa.gov

FCC Federal Communications Commission

http://www.fcc.gov

FPS The Forest Products Society

http://www.forestprod.org

GANA Glass Association of North America

http://www.cssinfo.com/info/gana.html/

FM Factory Mutual Insurance

http://www.fmglobal.com Gvpsum Association

GA Gypsum Association http://www.gypsum.org

HI

GSA General Services Administration

http://www.gsa.gov Hydraulic Institute

http://www.pumps.org

HPVA Hardwood Plywood & Veneer Association

http://www.hpva.org

ICBO International Conference of Building Officials

http://www.icbo.org

ICEA Insulated Cable Engineers Association Inc.

http://www.icea.net

\ICAC Institute of Clean Air Companies

http://www.icac.com

IEEE Institute of Electrical and Electronics Engineers

http://www.ieee.org\

IMSA International Municipal Signal Association

http://www.imsasafety.org

IPCEA Insulated Power Cable Engineers Association
NBMA Metal Buildings Manufacturers Association

http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers

http://www.naamm.org

NAPHCC Plumbing-Heating-Cooling Contractors Association

http://www.phccweb.org.org

NBS National Bureau of Standards

See - NIST

NBBPVI National Board of Boiler and Pressure Vessel Inspectors

http://www.nationboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association

http://www.nema.org

NFPA National Fire Protection Association

http://www.nfpa.org

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

NHLA National Hardwood Lumber Association

http://www.natlhardwood.org

NIH National Institute of Health

http://www.nih.gov

NIST National Institute of Standards and Technology

http://www.nist.gov

NLMA Northeastern Lumber Manufacturers Association, Inc.

http://www.nelma.org

NPA National Particleboard Association

18928 Premiere Court Gaithersburg, MD 20879

(301) 670-0604

NSF National Sanitation Foundation

http://www.nsf.org

NWWDA Window and Door Manufacturers Association

http://www.nwwda.org

OSHA Occupational Safety and Health Administration

Department of Labor http://www.osha.gov

PCA Portland Cement Association

http://www.portcement.org

PCI Precast Prestressed Concrete Institute

http://www.pci.org

PPI The Plastic Pipe Institute

http://www.plasticpipe.org

PEI Porcelain Enamel Institute, Inc.

http://www.porcelainenamel.com

PTI Post-Tensioning Institute

http://www.post-tensioning.org

RFCI The Resilient Floor Covering Institute

http://www.rfci.com

RIS Redwood Inspection Service

See - CRA

RMA Rubber Manufacturers Association, Inc.

http://www.rma.org

SCMA Southern Cypress Manufacturers Association

http://www.cypressinfo.org

SDI Steel Door Institute

http://www.steeldoor.org

IGMA Insulating Glass Manufacturers Alliance

http://www.igmaonline.org

SJI Steel Joist Institute

http://www.steeljoist.org

SMACNA Sheet Metal and Air-Conditioning Contractors

National Association, Inc.

http://www.smacna.org

SSPC The Society for Protective Coatings

http://www.sspc.org

STI Steel Tank Institute

http://www.steeltank.com

SWI Steel Window Institute

http://www.steelwindows.com

TCA Tile Council of America, Inc.

http://www.tileusa.com

TEMA Tubular Exchange Manufacturers Association

http://www.tema.org

TPI Truss Plate Institute, Inc.

583 D'Onofrio Drive; Suite 200

Madison, WI 53719 (608) 833-5900

UBC The Uniform Building Code

See ICBO

UL Underwriters' Laboratories Incorporated

http://www.ul.com

ULC Underwriters' Laboratories of Canada

http://www.ulc.ca

WCLIB West Coast Lumber Inspection Bureau

6980 SW Varns Road, P.O. Box 23145

Portland, OR 97223 (503) 639-0651

WRCLA Western Red Cedar Lumber Association

P.O. Box 120786

New Brighton, MN 55112

(612) 633-4334

WWPA Western Wood Products Association

http://www.wwpa.org

--- E N D ---

SECTION 01 56 80 - ENVIRONMENTAL PROTECTION

EP-1. DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- 1. Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

7. Sanitary Wastes:

- a. Sewage: Domestic sanitary sewage and human and animal waste.
- b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

EP-2. QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

EP-3. REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced.

 The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA): 33 CFR 328......Definitions

EP-4. SUBMITTALS

- A. In accordance with Section, 01340, SAMPLES AND SHOP DRAWINGS, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Resident Engineer to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Resident Engineer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - C. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.

- e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

EP-5. PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land

resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the Resident Engineer. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted.

- 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
- 2. Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
- 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local //____// (design year) storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.
 - b. Reuse or conserve the collected topsoil sediment as directed by the Resident Engineer. Topsoil use and requirements are specified in Section, EARTHWORK.

- c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- 6. Manage borrow areas on Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- 7. Manage and control spoil areas on Government property to limit spoil to areas shown and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- 8. Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the Resident Engineer.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.

- Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
- 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous by-products from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
 - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
 - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Resident Engineer. Maintain noise-produced work at or below the decibel levels and within the time periods specified.

 Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m unless otherwise permitted by local ordinance or the Resident Engineer. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA):

EARTHMOVING		MATERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	////
GENERATORS	75	SAWS	75
COMPRESSOR S	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.

- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the A weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the Resident Engineer noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Resident Engineer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

--- E N D ---

SECTION 01 74 19 - CONSTRUCTION WASTE MANAGEMENT

PART 1 – GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of non-hazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.cwm.wbdg.org provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.

H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.

- 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
- 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.

- Description of materials to be site-separated and self-hauled to designated facilities.
- 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
- c. The names and locations of mixed debris reuse and recycling facilities or sites.
- d. The names and locations of trash disposal landfill facilities or sites.
- e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.

B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.

C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

--- E N D ---

SECTION 01 81 11 - SUSTAINABLE DESIGN REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section describes general requirements and procedures to comply with the Guiding Principles for Leadership in High Performance and Sustainable Buildings Memorandum of Understanding incorporated in the Executive Orders 13423 and 13514; Energy Policy Act of 2005 (EPA 2005) and the Energy Independence and Security Act of 2007 (EISA 2007).

1.2 OBJECTIVES

- A. To maximize resource efficiency and reduce the environmental impacts of construction and operation, the Contractor during the construction phase of this project shall implement the following procedures:
 - 1. Select products that minimize consumption of energy, water and non-renewable resources, while minimizing the amounts of pollution resulting from the production and employment of building technologies. It is the intent of this project to conform with EPA's Five Guiding Principles on environmentally preferable purchasing. The five principles are:
 - a. Include environmental considerations as part of the normal purchasing process.
 - b. Emphasize pollution prevention early in the purchasing process.
 - c. Examine multiple environmental attributes throughout a product's or service's life cycle.
 - d. Compare relevant environmental impacts when selecting products and services.
 - e. Collect and base purchasing decisions on accurate and meaningful information about environmental performance.
 - Control sources for potential Indoor Air Quality (IAQ) pollutants by controlled selection of materials and processes used in project construction in order to attain superior IAQ.
 - 3. Products and processes that achieve the above objectives to the extent currently possible and practical have been selected and included in these Construction Documents. The Contractor is responsible to maintain and support these objectives in developing means and methods for performing the work of this Contract and in proposing product substitutions and/or changes to specified processes.

4. Use building practices that insure construction debris and particulates do not contaminate or enter duct work prior to system startup and turn over.

1.3 RELATED DOCUMENTS

A. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT

1.4 DEFINITIONS

- A. Construction and Demolition Waste: Includes solid wastes, such as building materials, packaging, rubbish, debris, and rubble resulting from construction, remodeling, repair and demolition operations. A construction waste management plan is to be provided by the Contractor as defined in Section 01 74 19.
- B. Third Party Certification: Certification of levels of environmental achievement by nationally recognized sustainability rating system.
- C. Sealant: Any material that fills and seals gaps between other materials
- D. Volatile Organic Compounds (VOCs): Any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions. Compounds that have negligible photochemical reactivity, listed in EPA 40 CFR 51.100(s), are also excluded from this regulatory definition.

1.5 SUBMITTALS

- A. Sustainable Design Submittals:
 - Interior Adhesives and Sealants: Submittals for all field-applied adhesives and sealants, which have a potential impact on indoor air, must include manufacturer's MSDSs or other Product Data highlighting VOC content.
- B. Construction Waste Management: See Section 01 74 19 "Construction Waste Management" for submittal requirements.

1.6 QUALITY ASSURANCE

A. Preconstruction Meeting: After award of Contract and prior to the commencement of the Work, schedule and conduct meeting with Owner, Architect, and all Subcontractors to discuss the Construction Waste Management Plan, the required Construction Indoor Air Quality (IAQ) Management Plan, and all other Sustainable Design Requirements. The purpose of this meeting is to develop a mutual understanding of the Project's Sustainable Design Requirements and coordination of the Contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.

B. Construction Job Conferences: The status of compliance with the Sustainable Design Requirements of these specifications will be an agenda item at all regular job meetings conducted during the course of work at the site.

PART 2 - PRODUCTS

2.1 PRODUCT ENVIRONMENTAL REQUIREMENTS

A. Do not burn rubbish, organic matter, etc. or any material on the site. Dispose of legally in accordance with Specifications Sections 01 74 19.

---END---

SECTION 08 71 00 - DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Sound control hardware for existing doors.

1.2 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.3 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies.
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

1.4 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. American Society for Testing and Materials (ASTM):
- C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

DOOR HARDWARE 08 71 00-1

A156.22

Door Gasketing and Edge Seal Systems

PART 2 - PRODUCTS

2.1 AUTOMATIC DOOR BOTTOM SEAL AND RUBBER GASKET FOR SOUND CONTROL DOORS

A. Conform to ANSI A156.22.

2.2 DOOR GASKETING

A. Conform to ANSI A156.22, with resilient or flexible seal strips that are easily replaceable and readily available from stocks maintained by manufacturer.

2.3 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below.
- B. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces except where otherwise specified.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish.

3.2 FINAL INSPECTION

- A. Installer to provide letter to VA Resident Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.3 HARDWARE SETS

A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required.

INTERIOR SINGLE DOORS (EXISTING)

DOOR HARDWARE 08 71 00-2

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

<u>HW-1</u>

Each Door to Have:

1 Auto Door Bottom R3Y342 - HEAVY DUTY

1 Set Seals R0Y152 - BLK

---END---

DOOR HARDWARE 08 71 00-3

SECTION 13 05 41 SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS

PART 1 – GENERAL

1.1 DESCRIPTION:

- A. Provide seismic restraint in accordance with the requirements of this section in order to maintain the integrity of nonstructural components of the building so that they remain safe and functional in case of seismic event.
- B. The design to resist seismic load shall be based on Seismic Design Categories per section 4.0 of the VA Seismic Design Requirements (H-18-8) dated August 2013,http://www.cfm.va.gov/til/etc/seismic.pdf.
- C. Definitions: Non-structural building components are components or systems that are not part of the building's structural system whether inside or outside, above or below grade. Non-structural components of buildings include:
 - Architectural Elements: Facades that are not part of the structural system and its shear resistant elements; cornices and other architectural projections and parapets that do not function structurally; glazing; nonbearing partitions; suspended ceilings; stairs isolated from the basic structure; cabinets; bookshelves; medical equipment; and storage racks.
 - 2. Electrical Elements: Power and lighting systems; substations; switchgear and switchboards; auxiliary engine-generator sets; transfer switches; motor control centers; motor generators; selector and controller panels; fire protection and alarm systems; special life support systems; and telephone and communication systems.
 - 3. Mechanical Elements: Heating, ventilating, and air-conditioning systems; medical gas systems; plumbing systems; sprinkler systems; pneumatic systems; boiler equipment and components.
 - 4. Transportation Elements: Mechanical, electrical and structural elements for transport systems, i.e., elevators and dumbwaiters, including hoisting equipment and counterweights.

1.2 RELATED WORK:

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.

- C. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- D. Section 23 21 13, HYDRONIC PIPING.
- E. Section 23 81 23, COMPUTER ROOM AIR CONDITIONERS.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY CONTROL:

- A. Shop-Drawing Preparation:
 - Have seismic-force-restraint shop drawings and calculations prepared by a
 professional structural engineer experienced in the area of seismic force restraints.
 The professional structural engineer shall be registered in the state where the project
 is located.
 - Submit design tables and information used for the design-force levels, stamped and signed by a professional structural engineer registered in the State where project is located.

B. Coordination:

- Do not install seismic restraints until seismic restraint submittals are approved by the Resident Engineer.
- 2. Coordinate and install trapezes or other multi-pipe hanger systems prior to pipe installation.

C. Seismic Certification:

In structures assigned to IBC Seismic Design Category C, D, E, or F, permanent equipments and components are to have Special Seismic Certification in accordance with requirements of section 13.2.2 of ASCE 7 except for equipment that are considered rugged as listed in section 2.2 OSHPD code application notice CAN No. 2-1708A.5, and shall comply with section 13.2.6 of ASCE 7.

1.4 SUBMITTALS:

- A. Submit a coordinated set of equipment anchorage drawings prior to installation including:
 - Description, layout, and location of items to be anchored or braced with anchorage or brace points noted and dimensioned.
 - 2. Details of anchorage or bracing at large scale with all members, parts brackets shown, together with all connections, bolts, welds etc. clearly identified and specified.

- 3. Numerical value of design seismic brace loads.
- 4. For expansion bolts, include design load and capacity if different from those specified.
- B. Submit prior to installation, a coordinated set of bracing drawings for seismic protection of piping, with data identifying the various support-to-structure connections and seismic bracing structural connections, include:
 - 1. Single-line piping diagrams on a floor-by-floor basis. Show all suspended piping for a given floor on the same plain.
 - 2. Type of pipe (Copper, steel, cast iron, insulated, non-insulated, etc.).
 - 3. Pipe contents.
 - 4. Structural framing.
 - 5. Location of all gravity load pipe supports and spacing requirements.
 - 6. Numerical value of gravity load reactions.
 - 7. Location of all seismic bracing.
 - 8. Numerical value of applied seismic brace loads.
 - 9. Type of connection (Vertical support, vertical support with seismic brace etc.).
 - 10. Seismic brace reaction type (tension or compression): Details illustrating all support and bracing components, methods of connections, and specific anchors to be used.
- C. Submit prior to installation, bracing drawings for seismic protection of suspended ductwork and suspended electrical and communication cables, include:
 - 1. Details illustrating all support and bracing components, methods of connection, and specific anchors to be used.
 - 2. Numerical value of applied gravity and seismic loads and seismic loads acting on support and bracing components.
 - 3. Maximum spacing of hangers and bracing.
 - 4. Seal of registered structural engineer responsible for design.
- D. Submit design calculations prepared and sealed by the registered structural engineer specified above in paragraph 1.3A.
- E. Submit for concrete anchors, the appropriate ICBC evaluation reports, OSHPD preapprovals, or lab test reports verifying compliance with OSHPD Interpretation of Regulations 28-6.

1.5 APPLICABLE PUBLICATIONS:

A. The Publications listed below (including amendments, addenda revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only.

> SPEC WRITER NOTE: Edit applicable publications to indicate the most recent edition.

B.	American	Concrete	Institute	(ACI)):
----	----------	----------	-----------	-------	----

355.2-07	.Qualification	for	Post-Installed	Mechanical	Anchors	in
	Concrete and	l Cor	nmentary			

- C. American Institute of Steel Construction (AISC):
 - Load and Resistance Factor Design, Volume 1, Second Edition
- D.

	and recolciance racion	200.g., 10	141116 1, 000011	· · ·			
Ame	rican Society for Testing	and Mater	ials (ASTM):				
A36/	A36M-08	Standard	Specification fo	or Carl	bon Structural	Steel	
A53/	A53M-10	Standard	Specification	for P	ipe, Steel, Bla	ack and	Hot-
		Dipped, Zi	inc-Coated, We	elded a	and Seamless		
A307	7- 10	Standard	Specification for	or Ca	rbon Steel Bol	ts and	Studs;
		60,000 PS	SI Tensile Stren	ngth.			
A325	5-10	Standard	Specification	for S	tructural Bolts	, Steel,	Heat
		Treated, 1	20/105 ksi Min	imum	Tensile Streng	jth	
A325	5M-09	Standard	Specification	for	High-Strengt	h Bolts	s for
		Structural	Steel Joints [M	1etric]			
A490)-10	Standard	Specification f	for He	eat-Treated St	eel Stru	ıctural
		Bolts, 150	ksi Minimum T	Γensile	e Strength		
A490)M-10	Standard	Specification	for	High-Strength	Steel	Bolts,
		Classes 1	0.0 and 10.0 2	for C	tructural Staal	lainta [N	Actric1

A490M-10	.Standard	Specification	tor	High-Strength	Steel E	30lts,
	Classes 10	0.9 and 10.9.3,	for S	Structural Steel	Joints [Me	etric]
A500/A500M-10	.Standard	Specification	for	Cold-Formed	Welded	and
	Seamless	Carbon Steel	Stru	ctural Tubing ir	n Rounds	and
	Shapes					

A501-07	Specification	for	Hot-Formed	Welded	and	Seamless
Carbon Steel Structural Tubing						

A615/A615M-09	Standard Specification for Deformed and Plain Billet-Steel
	Bars for Concrete Reinforcement

A992/A992M-06.....Standard Specification for Steel for Structural Shapes for Use in Building Framing

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

A996/A996M-09.....Standard Specification for Rail-Steel and Axel-Steel

Deformed Bars for Concrete Reinforcement

E488-96(R2003).....Standard Test Method for Strength of Anchors in Concrete

and Masonry Element

- E. American Society of Civil Engineers (ASCE 7) Latest Edition.
- F. International Building Code (IBC) Latest Edition
- G. VA Seismic Design Requirements, H-18-8, August 2013
- H. National Uniform Seismic Installation Guidelines (NUSIG)
- Sheet Metal and Air Conditioning Contractors National Association
 (SMACNA): Seismic Restraint Manual Guidelines for Mechanical Systems, 1998
 Edition and Addendum

1.6 REGULATORY REQUIREMENT:

- A. IBC Latest Edition.
- B. Exceptions: The seismic restraint of the following items may be omitted:
 - Equipment weighing less than 20 pounds, which is suspended from the roof or floor or hung from a wall.
 - 2. All other piping less than 2 ½ inches inside diameter, except for automatic fire suppression systems.
 - 3. All piping suspended by individual hangers, 12 inches or less in length from the top of pipe to the bottom of the support for the hanger.
 - 4. All electrical conduits, less than 2 ½ inches inside diameter.
 - 5. All rectangular air handling ducts less than six square feet in cross sectional area.
 - 6. All round air handling ducts less than 28 inches in diameter.
 - 7. All ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of support for the hanger.

PART 2 - PRODUCTS

2.1 STEEL:

- A. Structural Steel: ASTM A36.
- B. Structural Tubing: ASTM A500, Grade B.
- C. Structural Tubing: ASTM A501.
- D. Steel Pipe: ASTM A53/A53M, Grade B.
- E. Bolts & Nuts: ASTM A307.

PART 3 – EXECUTION

3.1 CONSTRUCTION, GENERAL:

- A. Provide equipment supports and anchoring devices to withstand the seismic design forces, so that when seismic design forces are applied, the equipment cannot displace, overturn, or become inoperable.
- B. Provide anchorages in conformance with recommendations of the equipment manufacturer and as shown on approved shop drawings and calculations.
- C. Construct seismic restraints and anchorage to allow for thermal expansion.
- D. Testing Before Final Inspection:
 - Test 10-percent of anchors in masonry and concrete per ASTM E488, and ACI 355.2
 to determine that they meet the required load capacity. If any anchor fails to meet the
 required load, test the next 20 consecutive anchors, which are required to have zero
 failure, before resuming the 10-percent testing frequency.
 - 2. Before scheduling Final Inspection, submit a report on this testing indicating the number and location of testing, and what anchor-loads were obtained.

3.2 EQUIPMENT RESTRAINT AND BRACING:

A. See drawings for equipment to be restrained or braced.

3.3 MECHANICAL DUCTWORK AND PIPING; BOILER PLANT STACKS AND BREACHING; ELECTRICAL BUSWAYS, CONDUITS, AND CABLE TRAYS; AND TELECOMMUNICATION WIRES AND CABLE TRAYS

- A. Support and brace mechanical ductwork and piping; electrical busways, conduits and cable trays; and telecommunication wires and cable trays including boiler plant stacks and breeching to resist directional forces (lateral, longitudinal and vertical).
- B. Provide supports and anchoring so that, upon application of seismic forces, piping remains fully connected as operable systems which will not displace sufficiently to damage adjacent or connecting equipment, or building members.
- C. Seismic Restraint of Piping:
 - 1. Design criteria:
 - a. Piping resiliently supported: Restrain to support 120-percent of the weight of the systems and components and contents.
 - b. Piping not resiliently supported: Restrain to support 60-percent of the weight of the system components and contents.

F. Piping Connections: Provide flexible connections where pipes connect to equipment.

Make the connections capable of accommodating relative differential movements between the pipe and equipment under conditions of earthquake shaking.

--- E N D ---

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS//
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- G. Section 23 07 11, HVAC, PLUMBING, and Boiler Plant Insulation
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- I. Section 23 21 13, HYDRONIC PIPING
- J. Section 23 81 23, COMPUTER-ROOM AIR-CONDITIONERS
- K. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training
- L. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and rebalanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.

- 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall
 be securely affixed in a conspicuous place on equipment, or name or trademark cast
 integrally with equipment, stamped or otherwise permanently marked on each item of
 equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.

E. Equipment Service Organizations:

- 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.

G. Execution (Installation, Construction) Quality:

- 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
- 2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.

H. Layout Drawings:

- Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas. Refer to Section 00 72 00, GENERAL CONDITIONS, Article, SUBCONTRACTS AND WORK COORDINATION.
- 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
- 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
- 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.

- d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- I. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced.

 The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI):

430-2009......Central Station Air-Handling Units

C. American National Standard Institute (ANSI):

B31.1-2007.....Power Piping

D. Rubber Manufacturers Association (ANSI/RMA):

IP-20-2007......Specifications for Drives Using Classical V-Belts and Sheaves
IP-21-2009.....Specifications for Drives Using Double-V (Hexagonal)

Belts

IP-22-2007.....Specifications for Drives Using Narrow V-Belts and Sheaves

E.	Air Movement and Control Association (AMCA):			
	410-96	Recommended Safety Practices for Air Moving Devices		
F.	American Society of Mechan	nical Engineers (ASME):		
	Boiler and Pressure Vessel	Code (BPVC):		
	Section I-2007	Power Boilers		
	Section IX-2007	Welding and Brazing Qualifications		
	Code for Pressure Piping:			
	B31.1-2007	Power Piping		
G.	American Society for Testing	can Society for Testing and Materials (ASTM):		
	A36/A36M-08	Standard Specification for Carbon Structural Steel		
	A575-96(2007)	Standard Specification for Steel Bars, Carbon, Merchant		
		Quality, M-Grades		
	E84-10	Standard Test Method for Surface Burning Characteristics		
		of Building Materials		
	E119-09c	Standard Test Methods for Fire Tests of Building		
		Construction and Materials		
Н.	Manufacturers Standardizati	on Society (MSS) of the Valve and Fittings Industry, Inc:		
	SP-58-2009	Pipe Hangers and Supports-Materials, Design and		
		Manufacture, Selection, Application, and Installation		
	SP 69-2003	Pipe Hangers and Supports-Selection and Application		
	SP 127-2001	Bracing for Piping Systems, Seismic - Wind - Dynamic,		
		Design, Selection, Application		
I.	National Electrical Manufact	urers Association (NEMA):		
	MG-1-2009	Motors and Generators		
J.	National Fire Protection Association (NFPA):			
		Standard for Installation of Oil-Burning Equipment		
	54-09	National Fuel Gas Code		
	70-08	National Electrical Code		
	85-07	Boiler and Combustion Systems Hazards Code		
	90A-09	Standard for the Installation of Air Conditioning and		
		Ventilating Systems		
	101-09	Life Safety Code		

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS – WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: chilled water service interruptions, as required for interconnections of new and existing systems, will be permitted by the Resident Engineer during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in

the appropriate off-season (if applicable). Provide at least one week advance notice to the Resident Engineer.

- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch //or fixed-pitch// drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.

- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.

- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - 1. HVAC and Boiler Plant: Provide for all valves.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.8 FIRESTOPPING

See drawings for firestopping details and requirements.

2.9 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.

 Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.

- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- F. Attachment to existing structure: Support from existing floor/roof frame.
- G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- I. Supports for Piping Systems:
 - 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.

- f. Turnbuckle: Types 13 or 15. Preinsulate.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- L. Pre-insulated Calcium Silicate Shields:
 - 1. Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- M. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.10 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

2.11 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit

tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.12 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:

1. Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.

- Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately
 protected to prevent damage before and during installation, in accordance with the
 manufacturer's recommendations and as approved by the Resident Engineer.
 Damaged or defective items in the opinion of the Resident Engineer, shall be
 replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.

- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- L. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).

M. Inaccessible Equipment:

- Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
- The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be

insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.

C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.

D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.

E. HVAC Vertical Pipe Supports:

- 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
- 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.

C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.

- j. Glass.
- k. Name plates.
- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended

grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.

- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.11 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.13 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS, and Section 23 08 11, DEMONSTRATIONS AND TESTS FOR BOILER PLANT.

---END---

GEORGE E. WAHLEN VAMC

VA PROJECT NO.: 660-13-39S

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, seismic restraints for equipment, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment
 - B. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
 - C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

B. Noise Criteria:

1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Audio Speech Pathology	25
Audio Suites	25
Auditoriums, Theaters	35-40
Bathrooms and Toilet Rooms	40
Chapels	35
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors(Public)	40
Dining Rooms, Food Services/ Serving	40
Examination Rooms	35

GEORGE E. WAHLEN VAMC

VA PROJECT NO.: 660-13-39S

Gymnasiums	50
Kitchens	50
Laboratories (With Fume Hoods)	45 to 55
Laundries	50
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Operating Rooms	40
Patient Rooms	35
Phono/Cardiology	25
Recreation Rooms	40-45
Shops	50
SPD (Decontamination and Clean Preparation)	45
Therapeutic Pools	45
Treatment Rooms	35
Warehouse	50
X-Ray and General Work Rooms	40

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the fore-going noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the

GEORGE E. WAHLEN VAMC

VA PROJECT NO.: 660-13-39S

difference between sound power level emitted to room and sound pressure level in room.

- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Seismic Restraint Requirements:

1. Equipment:

- a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
- b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of 100 percent of the weight of the equipment furnished.
- 2. Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints

GEORGE E. WAHLEN VAMC

VA PROJECT NO.: 660-13-39S

- 2. Bases.
- 3. Seismic restraint provisions and bolting.
 - 4. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- D. Seismic Requirements: Submittals are required for all equipment anchors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):
 - 2009Fundamentals Handbook, Chapter 7, Sound and Vibration
- C. American Society for Testing and Materials (ASTM):
 - A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized)

 Coatings on Iron and Steel Products
 - A307-07b.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength
 - D2240-05(2010).....Standard Test Method for Rubber Property Durometer Hardness
- D. Manufacturers Standardization (MSS):
 - SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA):
 - 29 CFR 1910.95.....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):
 - ASCE 7-10Minimum Design Loads for Buildings and Other Structures.

GEORGE E. WAHLEN VAMC

VA PROJECT NO.: 660-13-39S

G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA):

001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.

H. International Code Council (ICC):

2009 IBC.....International Building Code.

I. Department of Veterans Affairs (VA):

H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

A. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.

GEORGE E. WAHLEN VAMC

VA PROJECT NO.: 660-13-39S

- 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
- Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel

PART 3 - EXECUTION

3.1 INSTALLATION

A. Vibration Isolation:

- 1. No metal-to-metal contact will be permitted between fixed and floating parts.
- 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.

GEORGE E. WAHLEN VAMC

VA PROJECT NO.: 660-13-39S

3. Non-rotating equipment such as heat exchangers and convertors shall be mounted

on isolation units having the same static deflection as the isolation hangers or

support of the pipe connected to the equipment.

B. Inspection and Adjustments: Check for vibration and noise transmission through

connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators

as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

A. Adjust vibration isolators after piping systems are filled and equipment is at operating

weight.

B. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm)

movement during start and stop.

C. Adjust active height of spring isolators.

D. Adjust seismic restraints to permit free movement of equipment within normal mode of

operation.

E. Torque anchor bolts according to equipment manufacturer's recommendations to resist

seismic forces.

3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section

23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and

contractor testing required above and required by the System Readiness Checklist

provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a

larger system. Refer to section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS and

related sections for contractor responsibilities for system commissioning.

--- E N D ---

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	О	N GRAD	DE	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
	BAS E TYP E	ISOL TYP E	MIN DEF L	BAS E TYP E	ISOL TYP E	MIN DEFL									
REFRIGERATION MAG	CHINES														
ABSORPTION		D	0.3		SP	0.8		SP	1.5		SP	1.5		SP	2.0
PACKAGED HERMETIC		D	0.3		SP	0.8		SP	1.5		SP	1.5	R	SP	2.5
OPEN CENTRIFUGAL	В	D	0.3	В	SP	0.8		SP	1.5	В	SP	1.5	В	SP	3.5
RECIPROCATING:															
ALL		D	0.3		SP	0.8	R	SP	2.0	R	SP	2.5	R	SP	3.5
COMPRESSORS AND	VACUL	JM PUN	IPS												
UP THROUGH 1-1/2 HP		D,L, W	0.8		D,L, W	0.8		D,L, W	1.5		D,L, W	1.5		D,L, W	
2 HP AND OVER:															
500 - 750 RPM		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
750 RPM & OVER		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
PUMPS	PUMPS														

EQUIPMENT		O	N GRAD	DE	20FT I	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
		BAS E TYP E	ISOL TYP E	MIN DEF L	BAS E TYP E	ISOL TYP E	MIN DEFL									
CLOSE COUPLE D	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W	
	2 HP & OVER				I	S	0.8	I	S	1.5	Ι	S	1.5	1	S	2.0
LARGE INLINE	Up to 25 HP					S	0.75		S	1.50		S	1.50			NA
	26 HP THRU 30 HP					S	1.0		S	1.50		S	2.50			NA
	UP TO 10 HP					D,L, W			D,L, W			D,L, W			D,L, W	
BASE MOUNTED	15 HP THRU 40 HP	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.0	I	S	2.0
	50 HP & OVER	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.5	I	S	2.5
ROOF FANS																
ABOVE OCCUPIED AREAS:																
5 HP & OV	ER				СВ	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0

EQUIPMENT	ON GRADE		DE	20FT I	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
	BAS E TYP E	ISOL TYP E	MIN DEF L	BAS E TYP E	ISOL TYP E	MIN DEFL									
CENTRIFUGAL FANS															
UP TO 50 HP:															
UP TO 200 RPM	В	N	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300 RPM	В	N	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500 RPM	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM & OVER	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5
60 HP & OVER:															
UP TO 300 RPM	В	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5	I	S	3.5
301 - 500 RPM	В	S	2.0	1	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5
501 RPM & OVER	В	S	1.0	1	S	2.0	I	S	2.0	1	S	2.5	1	S	2.5
COOLING TOWERS															
UP TO 500 RPM					SP	2.5		SP	2.5		SP	2.5		SP	3.5
501 RPM & OVER					SP	0.75		SP	0.75		SP	1.5		SP	2.5
INTERNAL COMBUST	ION EN	GINES					_								
UP TO 25 HP	1	N	0.75	I	N	1.5	1	S	2.5	I	S	3.5	I	S	4.5

EQUIPMENT	EQUIPMENT ON GRADE		20FT I	FLOOR	SPAN	30FT I	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN	
	BAS E TYP E	ISOL TYP E	MIN DEF L	BAS E TYP E	ISOL TYP E	MIN DEFL									
30 THRU 100 HP	I	N	0.75	1	N	1.5	1	S	2.5	I	S	3.5	1	S	4.5
125 HP & OVER	I	N	0.75	I	N	1.5	I	S	2.5	I	S	3.5	I	S	4.5
AIR HANDLING UNIT PACKAGES															
SUSPENDED:															
UP THRU 5 HP					Н	1.0		Н	1.0		Н	1.0		Н	1.0
7-1/2 HP & OVER:	7-1/2 HP & OVER:														
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0
FLOOR MOUNTED:		•	•	•	•	•	•		•	•	•	•			•
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:		•	•						•						
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
HEAT PUMPS		•	•	-					•	7					
ALL		S	0.75		S	0.75		S	0.75	СВ	S	1.5			NA

EQUIPMENT	Ol	ON GRADE		20FT I	FLOOR	SPAN	30FT I	FLOOR	SPAN	40FT I	FLOOR	SPAN	50FT	FLOOR	SPAN
	BAS E TYP E	ISOL TYP E	MIN DEF L	BAS E TYP E	ISOL TYP E	MIN DEFL									
CONDENSING UNITS															
ALL SS 0.25 SS 0.75 SS 1.5 CB SS 1.5 NA															
IN-LINE CENTRIFUGAL AND VANE AXIAL FANS, FLOOR MOUNTED: (APR 9)															
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5
60 HP AND OVER:															
301 - 500 RPM	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.5	R	S	3.5
501 RPM & OVER	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.0	R	S	2.5

PHARMACY SERVER HVAC

GEORGE E. WAHLEN VAMC VA PROJECT NO.: 660-13-39S

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Systems Readiness Report.
 - 5. Balancing water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 6. Vibration and sound measurements.
 - 87. Recording and reporting results.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. Hydronic Systems: Includes chilled water.
- 6. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- C. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- D. Section 23 81 23, COMPUTER ROOM AIR CONDITIONERS.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

B. Qualifications:

- 1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
- 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting

all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:

- a. Shall directly supervise all TAB work.
- b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
- c. Would follow all TAB work through its satisfactory completion.
- d. Shall provide final markings of settings of all HVAC adjustment devices.
- e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. Tab Criteria:

- 1. One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute):
 Minus 0 percent to plus 10 percent.
 - b. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
 - c. Chilled water coils: Minus 0 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.

- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 15 days for conventional design projects after the system layout on water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Systems Readiness Report.
 - 4. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.

- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 - 2007HVAC Applications ASHRAE Handbook, Chapter 37,
 Testing, Adjusting, and Balancing and Chapter 47, Sound
 and Vibration Control
- C. Associated Air Balance Council (AABC):
 - 2002......AABC National Standards for Total System Balance
- D. National Environmental Balancing Bureau (NEBB):
 - 7th Edition 2005......Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems
 - 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
 - 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3rd Edition 2002......HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing chilled water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
 - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.5 TAB REPORTS

- A. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.6 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.

- c. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for //pre construction air and water flow rate and for// each phase of the project prior to partial final inspections of each phase of the project. //Return existing areas outside the work area to pre constructed conditions.//
- D. Allow 7 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Equipment Test: Include computer room AC units.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - 1. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - Record final measurements for hydronic equipment on performance data sheets.
 Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.7 VIBRATION TESTING

A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.

B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.8 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - 1. Take readings in room. The Resident Engineer may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05
 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE :	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.

- b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
- c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use // 10 meters (30 feet) // 13 meters (40 feet) // 16 meters (50 feet) // for sound level location.
- 3. Where sound pressure levels are specified in terms of dB(A), as in Section 23 65 00, COOLING TOWERS, measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.9 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.10 PHASING

A. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.11 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

--END---

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping and equipment.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F);HVAC equipment or piping handling media above 41 degrees C (105 degrees F)//; Boiler Plant breechings and stack temperature range 150-370 degrees C(300-700 degrees F) and piping media and equipment 32 to 230 degrees C(90 to 450 degrees F)//.
- 8. Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.

41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
 - B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
 - C. Section 23 21 13, HYDRONIC PIPING: chilled water piping.
 - D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See <u>4.2.4.2.</u>)
 - **4.3.3.1.2** The flame spread and smoke developed index requirements of <u>4.3.3.1.1</u> shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
 - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
 - (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

- 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
- 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of <u>5.4.6.4</u>.
- <u>4.3.3.5*</u> Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- //4.3.10.2.6.2 Pneumatic tubing for control systems shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1820, Standard for Safety Fire Test of Pneumatic Tubing for Flame and Smoke Characteristics. //
 - 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
 - 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
 - 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
 - (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides
 - (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced.

 The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2)- 99 Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride)

and Poly (Vinyl Chloride - Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):

MIL-A-3316C (2)-90 Adhesives, Fire-Resistant, Thermal Insulation

MIL-A-24179A (1)-87 Adhesive, Flexible Unicellular-Plastic

Thermal Insulation

MIL-C-19565C (1)-88 Coating Compounds, Thermal Insulation, Fire-and Water-

Resistant, Vapor-Barrier

MIL-C-20079H-87 Cloth, Glass; Tape, Textile Glass; and Thread, Glass and

Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):

A167-99(2004) Standard Specification for Stainless and Heat-Resisting

Chromium-Nickel Steel Plate, Sheet, and Strip

B209-07 Standard Specification for Aluminum and Aluminum-Alloy

Sheet and Plate

C411-05 Standard test method for Hot-Surface Performance of

High-Temperature Thermal Insulation

C449-07 Standard Specification for Mineral Fiber Hydraulic-Setting

Thermal Insulating and Finishing Cement

C533-09 Standard Specification for Calcium Silicate Block and Pipe

Thermal Insulation

C534-08 Standard Specification for Preformed Flexible Elastomeric

Cellular Thermal Insulation in Sheet and Tubular Form

C547-07 Standard Specification for Mineral Fiber pipe Insulation

C552-07 Standard Specification for Cellular Glass Thermal

Insulation

C553-08 Standard Specification for Mineral Fiber Blanket Thermal

Insulation for Commercial and Industrial Applications

	C585-09	Standard Practice for Inner and Outer Diameters of Rigid
		Thermal Insulation for Nominal Sizes of Pipe and Tubing
		(NPS System) R (1998)
	C612-10	Standard Specification for Mineral Fiber Block and Board
		Thermal Insulation
	C1126-04	Standard Specification for Faced or Unfaced Rigid Cellular
		Phenolic Thermal Insulation
	C1136-10	Standard Specification for Flexible, Low Permeance Vapor
		Retarders for Thermal Insulation
	D1668-97a (2006)	Standard Specification for Glass Fabrics (Woven and
		Treated) for Roofing and Waterproofing
	E84-10	Standard Test Method for Surface Burning Characteristics
		of Building
		Materials
	E119-09c	Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-09b	Standard Test Methods for Behavior of Materials in a
		Vertical Tube Furnace at 750 degrees C (1380 F)
E.	National Fire Protection Asso	ociation (NFPA):
	90A-09	Standard for the Installation of Air Conditioning and
		Ventilating Systems
	96-08	Standards for Ventilation Control and Fire Protection of
		Commercial Cooking Operations
	101-09	Life Safety Code
	251-06	Standard methods of Tests of Fire Endurance of Building
		Construction Materials
	255-06	Standard Method of tests of Surface Burning
		Characteristics of Building Materials
F.	Underwriters Laboratories, Ir	nc (UL):
	723	UL Standard for Safety Test for Surface Burning
		Characteristics of Building Materials with Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS):

SP58-2009

Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.

SPEC WRITER NOTE: See HVAC Design Manual Appendix 7-A Table 7-A1 for high humidity areas. Specify class B-5 duct insulation for high humidity areas.

- B. ASTM C553 (Blanket, Flexible) Type I, // Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) // Class B-5, Density 32 kg/m³ (2 pcf), k = 0.04 (0.27) // at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
- B. Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.4 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.

C. Equipment Insulation: ASTM C533, Type I and Type II

D. Characteristics:

Insulation Characteristics											
ITEMS	TYPE I	TYPE II									
Temperature, maximum degrees C (degrees	649 (1200)	927 (1700)									
F)											
Density (dry), Kg/m³ (lb/ ft3)	232 (14.5)	288 (18)									
Thermal conductivity:											
Min W/ m K (Btu in/h ft² degrees F)@	0.059	0.078 (0.540)									
mean temperature of 93 degrees C (200	(0.41)										
degrees F)											
Surface burning characteristics:											
Flame spread Index, Maximum	0	0									
Smoke Density index, Maximum	0	0									

2.5 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance

 = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.

G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)								
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)							
Up through 125 (5)	150 (6) long							
150 (6)	150 (6) long							
200 (8), 250 (10), 300 (12)	225 (9) long							
350 (14), 400 (16)	300 (12) long							
450 through 600 (18 through 24)	350 (14) long							

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.7 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.8 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching // monel or // galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.9 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.10 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface

- shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- G. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- H. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed..
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:

- a. Pipe risers through floors
- b. Pipe or duct chase walls and floors
- c. Smoke partitions
- d. Fire partitions

3.2 INSULATION INSTALLATION

- A. Polyisocyanurate Closed-Cell Rigid Insulation:
 - 1. Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).
 - Install insulation, vapor barrier and jacketing per manufacturer's recommendations.
 Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
 - 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications).
 - 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
 - 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
 - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
 - 7. For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
 - All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).

- Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B.
 Refer to paragraph 3.1 for items not to be insulated.
- 11. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.

I. Calcium Silicate:

 Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

	Insulation Thickness Millimeters (Inches)												
		Nom	inal Pipe Size	e Millimeters (Inches)								
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 – 32 (1 – 1¼)	38 – 75 (1½ - 3)	100 (4) and Above								
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)								
93-260 degrees C (200- 500 degrees F)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)								

(HPS, HPR)					
100-121 degrees C (212-250 degrees F)	Mineral Fiber (Above ground	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
(HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	piping only)				
100-121 degrees C (212-250 degrees F)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
(HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)					
38-94 degrees C (100- 200 degrees F)	Mineral Fiber (Above ground	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(LPR, PC, HWH, HWHR, GH and GHR)	piping only)				
38-99 degrees C	Rigid Cellular	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(100-211 degrees F)	Phenolic Foam				
(LPR, PC, HWH, HWHR, GH and GHR)					
39-99 degrees C (100- 211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Polyiso-cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
38-94 degrees C (100-	Flexible	38 (1.5)	38 (1.5)		
200 degrees F)	Elastomeric Cellular Thermal				
(LPR, PC, HWH, HWHR, GH and GHR)	(Above ground piping only)				
4-16 degrees C	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	i rienolic i dani				
(CH, CHR, GC, GCR and RS for DX					

refrigeration)					
4-16 degrees C	Cellular Glass	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
(40-60 degrees F)	Closed-Cell				
(CH and CHR within chiller room and pipe chase and underground)					
4-16 degrees C	Cellular Glass	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Closed-Cell				
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Polyiso-cyanurate	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(40-60 degrees F)	Closed-Cell Rigid				
(CH, CHR, GC and GCR (where underground)					
4-16 degrees C	Polyiso-cyanurate	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Closed-Cell Rigid (Exterior				
(CH, CHR, GC, GCR and RS for DX refrigeration)	Locations only)				
(40-60 degrees F)	Flexible	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(CH, CHR, GC, GCR and RS for DX refrigeration)	Elastomeric Cellular Thermal (Above ground piping only)				

---END---

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is chilled water piping and computer room air conditioner system. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

A. This Section includes requirements for commissioning the Facility related subsystems and related equipment.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Division 23, is required in cooperation with the VA and the Commissioning Agent.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Division 23 Sections for additional Contractor training requirements.

---- END -----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network
 of DDC controllers, a control system server, and an Engineering Control Center.
 Provide a remote user using a standard web browser to access the control system
 graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other

contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:

- 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - 1. Unitary HVAC equipment computer room air conditioning units controls. These include:
 - a. Discharge temperature control.
 - b. Flowrate control.
 - c. Setpoint reset.
 - d. Status alarm.

E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Interface with chiller/boiler controls	23 09 23	23 09 23	23 09 23	26
Chiller/boiler controls interface with control system	23	23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
Chiller/starter interlock wiring	N/A	N/A	26	26
Chiller Flow Switches	23	23	23	N/A
Boiler interlock wiring	23	23	23	26
Boiler Flow Switches	23	23	23	N/A
Water treatment system	23	23	23	26
VFDs	23 09 23	26	23 09 23	26
Refrigerant monitors	23	23 09 23	23 09 23	26
Laboratory Environmental Controls	23 09 23	23 09 23	23 09 23	26
Fume hood controls	23 09 23	23 09 23	23 09 23	26
Medical gas panels	23	23	26	26
Laboratory Air Valves	23	23	23 09 23	N/A
Computer Room A/C Unit field-mounted controls	23	23	16	26
Control system interface with CRU A/C controls	23 09 23	23 09 23	23 09 23	26
CRU A/C unit controls interface with control system	23	23 09 23	23 09 23	26
Fire Alarm shutdown relay	28	28	28	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
interlock wiring				
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Fan Coil Unit controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU unit-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Cooling Tower Vibration Switches	23	23	23 09 23	23 09 23
Cooling Tower Level Control Devices	23	23	23 09 23	23 09 23
Cooling Tower makeup water control devices	23	23	23 09 23	23 09 23
Starters, HOA switches	23	23	N/A	26

- F. This facility's existing direct-digital control system is manufactured by Johnson Controls Building Automation and its ECC is located at Building 6. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
- G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification.

It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.

- The General Contractor of this project shall directly hire the Control System Integrator
 in a contract separate from the contract procuring the controls contractor
 administered by this Section of the technical specifications.
- 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.

4. Responsibility Table:

Item/Task	S	Со	V
	е	ntr	
	ct	ol	
	io	sy	
	n	ste	
	2	m	
	3	int	
	0	egr	
	9	ato	
	2	r	
	3		
	С		
	0		
	nt		
	а		
	ct		
	0		
	r		
ECC expansion		X	
ECC programming		X	
Devices, controllers, control panels	X		
and equipment			
Point addressing: all hardware and	X		
software points including setpoint,			

calculated point, data point(analog/ binary), and reset schedule point			
Point mapping		Х	
Network Programming	X		
ECC Graphics		Х	
Controller programming and	X		
sequences			
Integrity of LAN communications	X		
Electrical wiring	X		
Operator system training		X	
LAN connections to devices	X		
LAN connections to ECC		X	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

I The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system.

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 81 23, Computer-Room Air-Conditioners.
- C. Section 26 05 11, Requirements for Electrical Installations.
- D. Section 26 05 19, Low-Voltage Electrical Power Conductors and Cables.
- E. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- F. Section 26 05 33, Raceway and Boxes for Electrical Systems.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.

- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).

- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a standalone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.

- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-toend confirmation and guaranteed sequence of delivery.

- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW.Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.

- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

A. Criteria:

- 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
- Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- 4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.

- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disgualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

B. Codes and Standards:

- 1. All work shall conform to the applicable Codes and Standards.
- 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - 1. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 2. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - 3. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 4. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 5. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The

controller shall scan and update the process value and output generated by this calculation at this same frequency.

SPEC WRITER NOTE: Edit the following Table to suit Project.

6. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Water flow	±1% of reading

Note 1: for both absolute and differential pressure

7. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Manufacturer's literature and data for all components including the following:
 - A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - 6. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.
 - 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
 - Schematic wiring diagrams for all control, communication and power wiring. Provide
 a schematic drawing of the central system installation. Label all cables and ports with
 computer manufacturers' model numbers and functions. Show all interface wiring to
 the control system.
 - 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
 - 11. Riser diagrams of wiring between central control unit and all control panels.

- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.

- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 8 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 4 hours of instructions, given in multiple training sessions (each no longer than two hours in length), to the VA facilities personnel.
 - The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65°C (-40 to 150°F).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced.

 The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

Standard 135-10 BACNET Building Automation and Control Networks

C. American Society of Mechanical Engineers (ASME):

B16.18-01 Cast Copper Alloy Solder Joint Pressure Fittings.

B16.22-01 Wrought Copper and Copper Alloy Solder Joint Pressure

Fittings.

D. American Society of Testing Materials (ASTM):

B32-08 Standard Specification for Solder Metal

B88-09 Standard Specifications for Seamless Copper Water Tube
B88M-09 Standard Specification for Seamless Copper Water Tube

(Metric)

B280-08 Standard Specification for Seamless Copper Tube for Air-

Conditioning and Refrigeration Field Service

D2737-03 Standard Specification for Polyethylene (PE) Plastic

Tubing

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11 Information Technology-Telecommunications and

Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer

Specifications

G. National Fire Protection Association (NFPA):

70-11 National Electric Code

90A-09 Standard for Installation of Air-Conditioning and Ventilation

Systems

H. Underwriter Laboratories Inc (UL):

94-10 Tests for Flammability of Plastic Materials for Parts and

Devices and Appliances

294-10 Access Control System Units

486A/486B-10 Wire Connectors

555S-11 Standard for Smoke Dampers 916-10 Energy Management Equipment

1076-10 Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

- 1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
- The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels – not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.

- f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.

C. Network Architecture

- The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
- 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
- 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.

D. Third Party Interfaces:

- The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
- 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
- B. Each controller shall have a communication port for connection to an operator interface.

- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface
 with each internetwork controller as if directly connected. Controller information such
 as data, status, reports, system software, and custom programs shall be viewable
 and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute specified control system operation. An authorized operator shall be able to edit cross-controller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 NETWORK AND DEVICE NAMING CONVENTION

A. Network Numbers

- 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
- 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances

- BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.

C. Device Names

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.5 BACNET DEVICES

A. All BACnet Devices – controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance

Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.

- BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
- BACnet Advanced Application Controllers shall conform to the BACnet B-AAC
 Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile.
 The Device's PICS shall be submitted.
- BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.6 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.

- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.

7. Communication.

- a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
- b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.

- 1. Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
- 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
- 3. Communication.
 - a. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- 7. Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.

C. Direct Digital Controller Software

- The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
- 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
- 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input

sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.

2.7 SENSORS (AIR, WATER AND STEAM)

A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.

- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - 1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - b. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - c. Wire: Twisted, shielded-pair cable.
 - d. Output Signal: 4-20 ma.

C. Flow switches:

- 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- D. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.8 CONTROL CABLES

A. General:

- 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.

- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 19.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - 1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.9 THERMOSTATS AND HUMIDISTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or

dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have // polished or brushed aluminum // satin chrome // manufacturer's recommendation // finish, setpoint range and temperature display and external adjustment:

- 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Battery replacement without program loss.

2.10 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Control Valves:
 - 1. Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - 4. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.

- b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
- c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.

D. Damper and Valve Operators and Relays:

- 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's deadhead pressure, minimum 50 psig for valves smaller than 4 inches.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
- 2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- 3. Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- 6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- A. Electrical Wiring Installation:

- 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
- 2. Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.

8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.

C. Install Sensors and Controls:

1. Temperature Sensors:

- a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
- b. Calibrate sensors to accuracy specified, if not factory calibrated.
- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. All pipe mounted temperature sensors shall be installed in wells.
- g. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- h. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

2. Flow Switches:

- a. Install flow switch according to manufacturer's written instructions.
- b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.
- 3. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:

- Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
- 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

B. Demonstration

- System operation and calibration to be demonstrated by the installer in the presence
 of the Architect or VA's representative on random samples of equipment as dictated
 by the Architect or VA's representative. Should random sampling indicate improper
 commissioning, the owner reserves the right to subsequently witness complete
 calibration of the system at no addition cost to the VA.
- 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check valves for normal position.

- b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
- c. Demonstrate the software ability to edit the control program off-line.
- d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
- e. Demonstrate ability of software program to function for the intended applicationstrend reports, change in status etc.
- f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

---- FND ----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for piping.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Piping insulation.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers .
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.

HYDRONIC PIPING 23 21 13-1

- 4. Flanges, gaskets and bolting.
- 5. Grooved joint couplings and fittings.
- 6. Valves of all types.
- 7. Flexible connectors for water service.
- 8. All specified hydronic system components.
- 9. Water flow measuring devices.
- 10. Gages.
- 11. Thermometers and test wells.
- 12. Seismic bracing details for piping.
- C. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - 1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.
- B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI):

	B1.20.1-83(R2006)	Pipe Threads, General Purpose (Inch)		
	B16.4-06	Gray Iron Threaded FittingsB16.18-01	Cast	Copper
		Alloy Solder joint Pressure fittings		
	B16.23-02	Cast Copper Alloy Solder joint Drainage fitt	ings	
	B40.100-05	Pressure Gauges and Gauge Attachments		
C.	C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI):			
	70-2-2006	Control Valve Seat Leakage		
D.	American Society of Mechan	ical Engineers (ASME):		

HYDRONIC PIPING 23 21 13-2

B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings

	B16.3-2006	Malleable Iron Threaded Fittings: Class 150 and 300		
	B16.4-2006	Gray Iron Threaded Fittings: (Class 125 and 250)		
	B16.5-2003	Pipe Flanges and Flanged Fittings: NPS ½ through NPS		
		24 Metric/Inch Standard		
	B16.9-07	Factory Made Wrought Butt Welding Fittings		
	B16.11-05	Forged Fittings, Socket Welding and Threaded		
	B16.18-01	Cast Copper Alloy Solder Joint Pressure Fittings		
	B16.22-01	Wrought Copper and Bronze Solder Joint Pressure		
		Fittings.		
	B16.24-06	Cast Copper Alloy Pipe Flanges and Flanged Fittings		
	B16.39-06	Malleable Iron Threaded Pipe Unions		
	B16.42-06	Ductile Iron Pipe Flanges and Flanged Fittings		
	B31.1-08	Power Piping		
E.	American Society for Testing	iety for Testing and Materials (ASTM):		
	A47/A47M-99 (2004)	Ferritic Malleable Iron Castings		
	A53/A53M-07	Standard Specification for Pipe, Steel, Black and Hot-		
		Dipped, Zinc-Coated, Welded and Seamless		
	A106/A106M-08	Standard Specification for Seamless Carbon Steel Pipe for		
		High-Temperature Service		
	A126-04	Standard Specification for Gray Iron Castings for Valves,		
		Flanges, and Pipe Fittings		
	A183-03	Standard Specification for Carbon Steel Track Bolts and		
		Nuts		
	A216/A216M-08	Standard Specification for Steel Castings, Carbon, Suitable		
		for Fusion Welding, for High Temperature Service		
	A234/A234M-07	Piping Fittings of Wrought Carbon Steel and Alloy Steel for		
		Moderate and High Temperature Service		
	A307-07	Standard Specification for Carbon Steel Bolts and Studs,		
		60,000 PSI Tensile Strength		
	A536-84 (2004)	Standard Specification for Ductile Iron Castings		
	A615/A615M-08	Deformed and Plain Carbon Steel Bars for Concrete		
		Reinforcement		

	A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy		
		Coated (Galvannealed) By the Hot-Dip Process		
	B32-08	Standard Specification for Solder Metal		
	B62-02	Standard Specification for Composition Bronze or Ounce		
		Metal Castings		
	B88-03	Standard Specification for Seamless Copper Water Tube		
	B209-07	Aluminum and Aluminum Alloy Sheet and Plate		
	C177-04	Standard Test Method for Steady State Heat Flux		
		Measurements and Thermal Transmission Properties by		
		Means of the Guarded Hot Plate Apparatus		
	C478-09	Precast Reinforced Concrete Manhole Sections		
	C533-07Calcium Silicate Block and Pipe Thermal Insulation			
	C552-07	52-07Cellular Glass Thermal Insulation		
	D3350-08	Polyethylene Plastics Pipe and Fittings Materials		
	C591-08	Unfaced Preformed Rigid Cellular Polyisocyanurate		
		Thermal Insulation		
	D1784-08	Rigid Poly (Vinyl Chloride) (PVC) Compounds and		
		Chlorinated Poly (Vinyl Chloride) (CPVC) Compound		
	D1785-06	Poly (Vinyl Chloride0 (PVC) Plastic Pipe, Schedules 40, 80		
		and 120		
	D2241-05	Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe (SDR		
		Series)		
	F439-06	Standard Specification for Chlorinated Poly (Vinyl Chloride)		
		(CPVC) Plastic Pipe Fittings, Schedule 80		
	F441/F441M-02	Standard Specification for Chlorinated Poly (Vinyl Chloride)		
		(CPVC) Plastic Pipe, Schedules 40 and 80		
	F477-08	Elastomeric Seals Gaskets) for Joining Plastic Pipe		
F.	American Water Works Ass	ociation (AWWA):		
	C110-08	Ductile Iron and Grey Iron Fittings for Water		
	C203-02	Coal Tar Protective Coatings and Linings for Steel Water		
		Pipe Lines Enamel and Tape Hot Applied		
G.	American Welding Society (AWS):			
	B2.1-02	Standard Welding Procedure Specification		

Н.	Copper Development Association, Inc. (CDA):		
	CDA A4015-06	Copper Tube Handbook	
I.	Expansion Joint Manufacture	er's Association, Inc. (EJMA):	
	EMJA-2003	Expansion Joint Manufacturer's Association Standards,	
		Ninth Edition	
J.	Manufacturers Standardization	on Society (MSS) of the Valve and Fitting Industry, Inc.:	
	SP-67-02a	Butterfly Valves	
	SP-70-06	Gray Iron Gate Valves, Flanged and Threaded Ends	
	SP-71-05	Gray Iron Swing Check Valves, Flanged and Threaded	
		Ends	
	SP-80-08	Bronze Gate, Globe, Angle and Check Valves	
	SP-85-02	Cast Iron Globe and Angle Valves, Flanged and Threaded	
		Ends	
	SP-110-96	Ball Valves Threaded, Socket-Welding, Solder Joint,	
		Grooved and Flared Ends	
	SP-125-00	Gray Iron and Ductile Iron In-line, Spring Loaded, Center-	
		Guided Check Valves	
K.	National Sanitation Foundati	on/American National Standards Institute, Inc. (NSF/ANSI):	
	14-06	Plastic Piping System Components and Related Materials	
	50-2009a	Equipment for Swimming Pools, Spas, Hot Tubs and other	
		Recreational Water Facilities - Evaluation criteria for	
		materials, components, products, equipment and systems	
		for use at recreational water facilities	
	61-2008	Drinking Water System Components – Health Effects	
L.	Tubular Exchanger Manufac	turers Association: TEMA 9th Edition, 2007	

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Chilled Water, Condenser Water Piping:
 - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.

- 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Cooling Coil Condensate Drain Piping:
 - From air handling units: Copper water tube, ASTM B88, Type M, or schedule 40 PVC plastic piping.
 - 2. From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.
- C. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional.
 - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

- D. Grooved Mechanical Pipe Couplings and Fittings (Contractor's Option): Grooved Mechanical Pipe Couplings and Fittings may be used, with cut or roll grooved pipe, in water service up to 110 degrees C (230 degrees F) in lieu of welded, screwed or flanged connections. All joints must be rigid type.
 - 1. Grooved mechanical couplings: Malleable iron, ASTM A47 or ductile iron, ASTM A536, fabricated in two or more parts, securely held together by two or more track-head, square, or oval-neck bolts, ASTM A449 and A183.
 - Gaskets: Rubber product recommended by the coupling manufacturer for the intended service.
 - Grooved end fittings: Malleable iron, ASTM A47; ductile iron, ASTM A536; or steel, ASTM A53 or A106, designed to accept grooved mechanical couplings. Tap-in type branch connections are acceptable.

2.4 FITTINGS FOR COPPER TUBING

A. Joints:

- 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING

- A. Schedule 40, socket type for solvent welding.
- B. Schedule 40 PVC drain piping: Drainage pattern.
- C. Chemical feed piping for condenser water treatment: Chlorinated polyvinyl chloride (CPVC), Schedule 80, ASTM F439.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.

- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves // or dielectric nipples// may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

DESIGNER NOTE: The use of triple duty valves is not permitted.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2760 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to

- completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - 1) Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) 3. Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves):
 - a) 50 mm (2 inches) and smaller: MSS-SP 80, Bronze, 1034 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

E. Globe and Angle Valves

1. Globe Valves

- a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
- b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.

2. Angle Valves:

- a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
- b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle.

F. Check Valves

1. Swing Check Valves:

- a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.), 45 degree swing disc.
- b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.
- 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves

are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.

- a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
- b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball or Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - Gray iron (ASTM A126) or brass body rated 1205 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - Brass or ferrous body designed for 2067 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.

SPEC WRITER NOTE: On projects using constant flow valves extensively include a meter kit as follows:

4. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.

2.9 WATER FLOW MEASURING DEVICES

A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.

- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.
- D. Self-Averaging Annular Sensor Type: Brass or stainless steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - 2. Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in l/m (gpm).
- G. Portable Water Flow Indicating Meters:
 - Minimum 150 mm (6 inch) diameter dial, forged brass body, beryllium-copper bellows, designed for 1205 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
 - 2. Bleed and equalizing valves.
 - 3. Vent and drain hose and two 3000 mm (10 feet) lengths of hose with quick disconnect connections.
 - 4. Factory fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 - 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.

2.10 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets.
 Connectors shall be internally reinforced with high strength synthetic fibers

impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.

- 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
- 3. Provide ductile iron retaining rings and control units.
- B. Mechanical Pipe Couplings:

See other fittings specified under Part 2, PRODUCTS.

2.11 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.

2.17 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.

- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Glycol-Water: 0-38 degrees C (32-100 degrees F).

2.18 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fancoils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly

- valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.

- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- E. Solvent Welded Joints: As recommended by the manufacturer.

3.3 SEISMIC BRACING ABOVEGROUND PIPING

Provide in accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS./

3.4 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.5 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

--- E N D ---

SECTION 23 81 23 COMPUTER-ROOM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies process cooling split systems air conditioning unit.
- B. Definitions:
 - Energy Efficiency Ratio (EER): A ratio calculated by dividing the cooling capacity in Btuh by the power input in watts at any given set of rating conditions, expressed in Watts (Btu/h) per watt.
 - 2. Coefficient of Performance (COP): A ratio calculated by dividing the change in heating or cooling capacity (Btu/h) to the energy consumed by the system (kW), expressed in Btu/kWh.
 - 3. Unitary (AHRI): Consists of one or more factory-made assemblies, which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function.
 - 4. CRAC Units: Computer Room Air Conditioning Units.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Requirements for vibration isolators and room noise level.
- E. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Requirements and for ducts and piping insulation.
- F. Section 23 23 00, REFRIGERANT PIPING: Requirements for field refrigerant piping.
- G. Section 23 21 13, HYDRONIC PIPING
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
- I. Section 23 05 93: TESTING, ADJUSTING, and BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.

J. Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data, rated capacities (at design indoor and outdoor conditions), EER/COP, operating characteristics, required specialties and accessories. Submit published catalog selection data showing equipment ratings and compliance with required sensible ratio.
 - 1. Indoor Air Conditioning Unit
- C. Submit detailed equipment assemblies with dimensions, operating weights, required clearances.
- D. Submit wiring diagrams for power, alarm and controls.
- E. Certification: Submit, simultaneously with shop drawings, a proof of certification:
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 GUARANTEE

The unit shall be guaranteed against all mechanical defects in material, parts or workmanship and shall be repaired or replaced at the Contractor's expense within the period of one year from final acceptance. Contractor shall adhere to a four hour service response time to troubles during the guarantee period.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed Spec):

00-A-374C-95Air-Conditioners with Remote Condensing Units or Rer		
	Air-cooled and Water-Cooled Condenser Units, Unitary	
TT-C-490D-93	.Cleaning Methods for Ferrous Surfaces and Pretreatments	
	for Organic Coatings	

C.	Air-Conditioning, Heating and Refrigeration Institute (AHRI) Standards:		
	210/240-08Performance Rating of Unitary Air-Conditioning and Air-		
		Source Heat Pump Equipment	
	340/360-07	Performance Rating of Commercial and Industrial Unitary	
		Air Conditioning and Heat Pump Equipment	
	410-01	Forced-Circulation Air-Cooling and Air-Heating Coils	
	460-2005	Performance Rating of Remote Mechanical-Draft Air-	
		Cooled Refrigerant Condensers	
	520-04	Performance Rating of Positive Displacement Condensing	
		Units	
	AHRI-DCPP	Directory of Certified Product Performance - Applied	
		Directory of Certified Products	
D.	Air Movement and Control A	ssociation (AMCA):	
	210-07	Laboratory Methods of Testing Fans for Certified	
		Aerodynamic Performance Rating (ANSI)	
	410-96	Recommended Safety Practices for Users and Installers of	
		Industrial and Commercial Fans	
E.	American Society of Hear	ting, Refrigerating, and Air-Conditioning Engineers Inc.	
	(ASHRAE):		
	15-10	Safety Standard for Refrigeration Systems (ANSI)	
	90.1-10	Energy Standard for Buildings except Low-Rise	
		Residential Buildings (ANSI Approved; IESNA Co-	
		sponsored)	
	2008 HandbookHVAC Systems and Equipment		
	2010 Handbook	Refrigeration	
	52.1-92	Gravimetric and Dust-Spot Procedures for Testing Air-	
		Cleaning Devices used in General Ventilation for	
		Removing Particulate Matter	
F.	American Society of Testing	and Materials (ASTM):	
	B117-09	Standard Practice for Operating Salt Spray (Fog)	
		Apparatus	
G.	National Electrical Manufacturer's Association (NEMA):		
	MG 1-09 (R2010)	Motors and Generators (ANSI)	

H. National Fire Protection Association (NFPA) Publications:

70-11.....National Electrical Code

90A-09.....Standard for the Installation of Air-Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 CEILING-MOUNTED UNITS

- A. Description: Self-contained, factory assembled, prewired, and prepiped; consisting of cabinet, fan, filters, and controls; for horizontal ceiling mounting to fit T-bar ceiling opening of 610 by 1220 mm (24 by 48 inches).
- B. Cabinet: Galvanized steel, insulated with 6-mm (1/4-inch) thick closed cell insulation.
- C. Integral factory-supplied supply and return grille to fit ceiling grid kit of 610 by 1220 mm (24 by 48 inches), with filter.
- D. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2010.
- E. Supply-Air Fan:
 - 1. Plenum Fans: Direct-drive, Arrangement 4, variable-speed drive fan(s) with aluminum wheels; with multiple fans, the number of fans shall not exceed four.
- F. Compressor: Hermetic scroll, (VA: Type) with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
- G. Hydronic Cooling Coil: Seamless copper tubes expanded into aluminum fins with twoway control valve.
 - 1. Cooling Medium: Water.
 - 2. Mount coil assembly over stainless-steel drain pan complying with ASHRAE 62.1-2010 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir. Condensate pump, 60 GPH at 8 feet TDH.
- I. Filter: 25-mm (1 inch) thick, disposable, glass-fiber media.
 - 1. Initial Resistance: 0.31 inches wg.
 - 3. Arrestance: 90 percent according to ASHRAE 52.1.
 - 4. MERV Rating: 8 according to ASHRAE 52.2.
- J. Plumbing Components and Valve Bodies: Plastic, linked by flexible rubber hosing, with water fill with air gap and solenoid valve incorporating built-in strainer, pressure-reducing and flow-regulating orifice, and drain with integral air gap.

- S. Control: Fully modulating to provide gradual 0 to 100 percent capacity with field-adjustable maximum capacity; with high-water probe.
- T. Drain Cycle: Field-adjustable drain duration and drain interval.
- U. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- V. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature- control modules, time-delay relay, and high-temperature thermostat. Wall-mounted control panel shall be solid-state, with start-stop switch and adjustable temperature set point. Provide Data Aire "dap4" controller with BACnet IP card.
- W. DDC Interface: Provide connection and card to DDC system.

2.2 FAN MOTORS

- A. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- D. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

2.3 SPECIAL TOOLS

If any part of equipment furnished under these specifications requires a special tool for assembly, adjustment, setting, or maintenance and the tool is not readily available from the commercial tool market, furnish the necessary tools with equipment as a standard accessory

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Handle and install refrigeration units and accessories in accordance with the instructions and recommendations of the manufacturer.
- B. Electrical System Connections and Equipment Ground: As specified in Division 26 Sections.

3.2 CONNECTIONS

- A. Coordinate piping installations and specialty arrangements with schematics on Drawings and with requirements specified in piping systems. If Drawings are explicit enough, these requirements may be reduced or omitted.
- B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

C. Provide shutoff valves and piping for chilled water.

3.3 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. After startup service and performance test, change filters and flush humidifier.

3.4 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

3.5 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

---END---

SECTION 26 05 11 - REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, conductors and cable, panelboards, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

 Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states

- that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.

B. Product Qualification:

- 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
- 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.

B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - Damaged equipment shall be repaired or replaced, as determined by the Resident Engineer.

4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.

5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment deenergized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
 - 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as cabinets, motor controllers, fused and non-fused safety switches, individual breakers and controllers in switchboards, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

A. Submit to the Resident Engineer in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____"
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the
 manufacturer's name, model or catalog numbers, catalog information, technical data
 sheets, shop drawings, manuals, pictures, nameplate data, and test reports as
 required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.//
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:

- 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.

- 2. Each type of conduit coupling, bushing, and termination fitting.
- 3. Conduit hangers, clamps, and supports.
- 4. Duct sealing compound.
- 5. Each type of manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10 Standard Specification for Vinyl Chloride Plastic Pressure-

Sensitive Electrical Insulating Tape

D2304-10 Test Method for Thermal Endurance of Rigid Electrical

Insulating Materials

D3005-10 Low-Temperature Resistant Vinyl Chloride Plastic

Pressure-Sensitive Electrical Insulating Tape

C. National Electrical Manufacturers Association (NEMA):

WC 70-09 Power Cables Rated 2000 Volts or Less for the Distribution

of Electrical Energy

D. National Fire Protection Association (NFPA):

70-11 National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

Thermoset-Insulated Wires and CablesThermoplastic-Insulated Wires and Cables

467-07 Grounding and Bonding Equipment

486A-486B-03 Wire Connectors

486C-04 Splicing Wire Connectors

486D-05 Sealed Wire Connector Systems

486E-09 Equipment Wiring Terminals for Use with Aluminum and/or

Copper Conductors

493-07 Thermoplastic-Insulated Underground Feeder and Branch

Circuit Cables

514B-04 Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

D. Color Code:

- 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	Α	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:

- 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
- 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
- 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be //zinc-plated//cadmium-plated// steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, and pullboxes,
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.

- E. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- F. For connections to motors and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- G. Conductor and Cable Pulling:
 - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.4 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.5 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.

C. Wire markers shall retain their markings after cleaning.

3.6 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

2. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

B.	American Society for Testing	and Materials (ASTM):
	B1-07	.Standard Specification for Hard-Drawn Copper Wire
	B3-07	.Standard Specification for Soft or Annealed Copper Wire
	B8-11	.Standard Specification for Concentric-Lay-Stranded
		Copper Conductors, Hard, Medium-Hard, or Soft
C.	Institute of Electrical and Ele	ctronics Engineers, Inc. (IEEE):
	81-83	.IEEE Guide for Measuring Earth Resistivity, Ground
		Impedance, and Earth Surface Potentials of a Ground
		System Part 1: Normal Measurements
D.	National Fire Protection Asso	ociation (NFPA):
	70-11	.National Electrical Code (NEC)
	70E-12	.National Electrical Safety Code
	99-12	.Health Care Facilities
E.	Underwriters Laboratories, Ir	nc. (UL):
	44-10	.Thermoset-Insulated Wires and Cables
	83-08	.Thermoplastic-Insulated Wires and Cables
	467-07	.Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND CONNECTIONS

A. Above Grade:

 Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with //zinc-plated//cadmium-plated// steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with //zinc-plated//cadmium-plated// steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. Equipment Grounding: Metallic piping, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - Metallic conduits which terminate without mechanical connection to an electrical
 equipment housing by means of locknut and bushings or adapters, shall be provided
 with grounding bushings. Connect bushings with a equipment grounding conductor
 to the equipment ground bus.
- B. Branch Circuits: Install equipment grounding conductors with all power branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).

- 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

---END---

SECTION 26 05 33 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Shop Drawings:
 - 1. Size and location of pull-boxes.
 - 3. Layout of required conduit penetrations through structural elements.
- C. Certifications:

- 1. Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):

C80.3-05.....Steel Electrical Metal Tubing

C. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

50-95.....Enclosures for Electrical Equipment

360-093.....Liquid-Tight Flexible Steel Conduit

467-07.....Grounding and Bonding Equipment

514A-04.....Metallic Outlet Boxes

514B-04.....Conduit, Tubing, and Cable Fittings

797-07.....Electrical Metallic Tubing

E. National Electrical Manufacturers Association (NEMA):

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit,

Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.

- 2. Flexible galvanized steel conduit: Shall conform to UL 1.
- 3. Liquid-tight flexible metal conduit: Shall conform to UL 360.

C. Conduit Fittings:

- 1. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew couplings and connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 2. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 3. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 4. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.

- 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

E. Junction, and Pull Boxes:

- 1. UL-50 and UL-514A.
- 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.

PART 3 - EXECUTION

3.1 PENETRATIONS

A. Cutting or Holes:

- 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the //Resident Engineer// //COTR// prior to drilling through structural elements.
- Cut holes through concrete and masonry in new and existing structures with a
 diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or
 manual hammer-type drills are not allowed, except where permitted by the //Resident
 Engineer// //COTR// as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

A. In accordance with UL, NEC, as shown, and as specified herein.

B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems.

C. Install conduit as follows:

- In complete mechanically and electrically continuous runs before pulling in cables or wires.
- 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
- 7. Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

1. Install conduit with wiring, including homeruns, as shown on drawings.

Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the //Resident Engineer// //COTR//.

3.3 CONCEALED WORK INSTALLATION

- A. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors 600 V and below: EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - 2. Align and run conduit parallel or perpendicular to the building lines.
 - 3. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.

3.5 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.6 EXPANSION JOINTS

A. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion

and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.

B. Install expansion and deflection couplings where shown.

3.7 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-guarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.8 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- E. On all branch circuit junction box covers, identify the circuits with black marker.

--- E N D ---

SECTION 26 29 21 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.//
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

IBC-12 International Building Code

C. National Electrical Manufacturers Association (NEMA):

FU I-07 Low Voltage Cartridge Fuses

D. National Fire Protection Association (NFPA):

70-11 National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

248-00 Low Voltage Fuses

489-09 Molded Case Circuit Breakers and Circuit Breaker

Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.

- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.3 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits Class RK5, time delay.
- C. Control Circuits: Class CC, time delay.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.

B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torquewrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Resident Engineer.

---END---