NUCLEAR MEDICAL RADIOSOTOPE HOOD (JACC) SPECIFICATIONS May 10, 2013

VA Gulf Coast Veterans Health Care System Joint Ambulatory Care Center (JACC) 790 Veterans Way Pensacola, FL 39507

> By JMZ Group 200 East Government St. Pensacola, FL 32502 (850) 433-3023 With: Kariher Daughtry Architects PL (850) 433-3023 H.M. Yonge and Associates (850) 434 2661 Bagwell Yates and Associates (850) 462 8040

Nuclear Medical Radioisotope Hood (JACC)

Joint Ambulatory Care Center

Table of Contents

SECTION 1 GENERAL REQUIREMENTS

- 00 01 15 List of Drawing Sheets
- 01 00 00 General Requirements
- 01 33 23 Shop Drawings, Product Data, and Samples

SECTION 7 THERMAL AND MOISTURE PROTECTON

07 84 00 Firestopping

SECTION 9 FINISHES

- 09 29 00 Gypsum Wall Board
- 09 51 00 Acoustical Ceilings
- 09 91 00 Painting

SECTION 23 HEATING VENTILATION AND AIR CONDITIONING

- 23 05 11 Common Work Results for HVAC
- 23 05 12 General Motor Requirements for HVAC and Steam Generation Equipment
- 23 05 93 Testing, Adjusting, and Balancing for HVAC
- 23 09 23 Direct Digital Control Systems for HVAC
- 23 31 00 HVAC Ducts and Casings

SECTION 26 ELECTRICAL

- 26 05 11 Requirements for Electrical Installations
- 26 05 21 Low-Voltage Electrical Power Conductors & Cables (600 Volts & Below)
- 26 05 26 Grounding and Bonding for Electrical Systems
- 26 05 33 Raceway and Boxes for Electrical Systems

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.	Title			
	ARCHITECTURAL			
Al	TITLE PAGE			
A2	Plans & Sections			
	MECHANICAL			
MlOl	HVAC Demolition Plan			
M201	HVAC New Work Plan			
M301	HVAC Schedules Legend and Details			
	ELECTRICAL			
El	Partial 3 rd Floor Electrical Plan			
E2	Partial 2 nd Floor Electrical Plan			

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

	1					
1.2 STATEMENT OF BID ITEM(S)	1					
1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR1						
1.4 CONSTRUCTION SECURITY REQUIREMENTS	1					
1.5 FIRE SAFETY	3					
1.6 OPERATIONS AND STORAGE AREAS	4					
1.7 ALTERATIONS	8					
1.8 INFECTION PREVENTION MEASURES	9					
1.9 DISPOSAL AND RETENTION	9					
1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENT						
9						
1.11 RESTORATION	9					
1.11 RESTORATION	9 10					
1.11 RESTORATION 1.12 PHYSICAL DATA 1.13 LAYOUT OF WORK	9 					
1.11 RESTORATION 1.12 PHYSICAL DATA 1.13 LAYOUT OF WORK 1.14 AS-BUILT DRAWINGS	9 					
 1.11 RESTORATION 1.12 PHYSICAL DATA 1.13 LAYOUT OF WORK 1.14 AS-BUILT DRAWINGS 1.15 USE OF ROADWAYS 	9 					
 1.11 RESTORATION 1.12 PHYSICAL DATA 1.13 LAYOUT OF WORK 1.14 AS-BUILT DRAWINGS 1.15 USE OF ROADWAYS 1.16 TEMPORARY TOILETS 						
 1.11 RESTORATION 1.12 PHYSICAL DATA 1.13 LAYOUT OF WORK 1.14 AS-BUILT DRAWINGS 1.15 USE OF ROADWAYS 1.15 USE OF ROADWAYS 1.16 TEMPORARY TOILETS 1.17 AVAILABILITY AND USE OF UTILITY SERVICES 	9 10 10 12 12 12 12 					
 1.11 RESTORATION 1.12 PHYSICAL DATA						

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for Project VA-256-11-RP-0207 "Install Nuclear Medical Radioisotope Hood, VA Gulf Coast Veterans Health Care System, Joint Ambulatory Care Center (JACC), 790 Veterans Way, Pensacola, FL" as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the COTR.
- C. All employees of general contractor and subcontractors shall comply with Navy and VA security management program and obtain permission of the Navy police, be identified by project and employer, and restricted from unauthorized access.
- D. Prior to commencing work, general contractor shall provide proof that a OSHA certified "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.
- E. Training:
 - All employees of general contractor or subcontractors shall have the 10-hour OSHA certified Construction Safety course and /or other relevant competency training, as determined by VA CP with input from the ICRA team.
 - 2. Submit training records of all such employees for approval before the start of work.

1.2 STATEMENT OF BID ITEM(S)

A.ITEM I, GENERAL CONSTRUCTION: Refer to Scope of Work.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, <u>4</u> sets of specifications and drawings will be furnished.
- B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from reproducible sepia prints furnished by Issuing Office. Such sepia prints shall be returned to the Issuing Office immediately after printing is completed.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Procedures:

- General Contractor's employees shall not enter the base project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security/escort arrangements and extended base access can be provided. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA or base premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- B. Document Control:
 - The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
 - 3. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
 - 4. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
 - 5. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".

- 6. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to email provided all VA encryption procedures are followed.
- C. Motor Vehicle Restrictions: IAW VA requirements; as a minimum, proper state drivers license, proof of insurance, and proof of vehicle registration required to operate motor vehicle on VA premises.

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced.
 Publications are referenced in text by basic designations only.
 - 1. American Society for Testing and Materials (ASTM):

E84-2007.....Surface Burning Characteristics of Building Materials

- 2. National Fire Protection Association (NFPA):
 - 10-2006......Standard for Portable Fire Extinguishers
 - 30-2003.....Flammable and Combustible Liquids Code
 - 51B-2003Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2005.....National Electrical Code

- 241-2004Standard for Safeguarding Construction, Alteration, and Demolition Operations
- 3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926.....Safety and Health Regulations for Construction

- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Egress Routes: Maintain free and unobstructed egress. Inspect daily.
- D. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- F. Existing Fire Protection: Do not impair any fire protection systems in the accomplishment of work. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with COTR and base facility Safety Officer.
- G. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COTR. Obtain permits from facility Safety Officer at least <u>72</u> hours in advance.
- H. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly.
 Coordinate with, and report findings and corrective actions on construction progress reports (aka "daily logs"), which are part of the construction contract record documents.
- I. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. Comply with all base smoking restrictions.
- J. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings/site daily.
- K. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.

1.6 OPERATIONS AND STORAGE AREAS

A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.

- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.
- D. Working space and space available for storing materials shall be as determined by the COTR and base.
- E. Workmen are subject to rules of VA applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Base as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by government personnel, and Contractor's personnel, except as permitted by COTR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - Schedule delivery of materials and equipment to immediate construction working areas outside or within buildings in use by Government in quantities sufficient for not more than two work days. Provide unobstructed access to base areas required to remain in operation.
- G. Utilities Services Impact: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such

indication, where directed by COTR. All such actions shall be coordinated with the Utility Company involved:

- Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- H. Phasing: To insure such executions, Contractor shall furnish the COTR with a schedule of approximate phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COTR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing dates to insure accomplishment of this work in successive phases mutually agreeable to COTR, CO, and Contractor.
- I. Contractor will be allowed space on VA grounds to park temporary storage trailers. Coordinate with VA Resident Engineer. Construction Fence if required to secure materials: Before construction operations begin, Contractor shall provide a chain link construction fence, 2100 mm (seven feet) minimum height, around the construction storage area. Provide gates as required for access with necessary hardware, including hasps and padlocks. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 15 inches. Bottom of fences shall extend to one inch above grade. Remove the fence when directed by COTR.
- J. Utilities Services: Maintain existing utility services for base at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COTR.
 - No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COTR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an

electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval.

- Contractor shall submit a request to interrupt any such services to COTR, in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of base. Interruption time approved by COTR may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COTR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of COTR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- K. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- L. To minimize interference of construction activities with flow of base traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross or bore beneath existing roads, at least one lane must be open to traffic at all times.

- 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COTR.
- M. Coordinate the work for this contract with other construction operations as directed by COTR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COTR, and a base rep, of areas and within/outside of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by all three, to the Contracting Officer. This report shall list:
 - 1. Existing conditions found of areas not required to be altered.
 - 2. Shall note any discrepancies between drawings and existing conditions at site.
 - 3. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COTR.
- B. Re-Survey: Fourteen days before expected partial or final inspection date, the Contractor and Resident Engineer together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- C. Protection: Provide the following protective measures:
 - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.

- Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
- 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 INFECTION PREVENTION MEASURES

A. Establish and maintain a dust control program as part of the contractor's infection

preventive measures.

1.9 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition or parts thereof, shall be disposed of as follows:
 - Items not reserved shall become property of the Contractor and be removed by Contractor from base property.

1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

1.11 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COTR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COTR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2) of Section 00 72 00, GENERAL CONDITIONS.

1.12 PHYSICAL DATA

A. If required for trenching and under-road boring operations, Bidders are expected to examine site of work and logs of borings; and, after investigation, decide for themselves character of materials and make their bids accordingly. Upon proper application to Department of Veterans Affairs, bidders will be permitted to make subsurface explorations of their own at site.

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Government until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COTR's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the COTR within 15 calendar days after each completed phase and after the acceptance of the project by the COTR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COTR.

1.16 TEMPORARY TOILETS

A. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by COTR. Contractor shall keep such places clean and be responsible for

any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.17 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.
- C. Electricity (for Construction and Testing and Storage Trailers): Furnish all temporary electric services.
 - Obtain electricity by connecting to the VA electrical distribution system. The Contractor shall
 meter and pay for electricity required for electric cranes and hoisting devices, electrical
 welding devices and any electrical heating devices providing temporary heat. Electricity for
 all other uses is available at no cost to the Contractor.
- D. Water (for Construction and Testing):
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted.
 Failure to stop leakage or other wastes will be cause for revocation (at COTR's discretion) of use of water from base system.

1.18 TESTS

- A. Pre-test systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.19 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals (four copies each) for each separate piece of material or equipment shall be delivered to the COTR coincidental with the delivery to the job site. Manuals shall be complete, detailed guides for the maintenance and operation. They shall include complete information necessary for maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals

referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions if required: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Navy and Department of Veterans Affairs personnel in the operation and complete maintenance. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COTR and shall be considered concluded only when the COTR is satisfied in regard to complete and thorough coverage.

---END---

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR

52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit color samples required in quadruplicate. Submit other samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
 - 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
 - C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the

specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.

- Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
- Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
- 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
- Contractor shall send a copy of transmittal letter to both Resident Engineer and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory.
- 5. Laboratory test reports shall be sent directly to Resident Engineer for appropriate action.
- 6. Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report.
- 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.
- D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- E. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission

by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.

- 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
- 2. Reproducible shall be full size.
- 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
- 4. A space 4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
- 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
- 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
- 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

Kariher Daughtry Architects PL

(Architect-Engineer)

200 East Government St. Suite 240-A

(A/E P.O. Address)

Pensacola, Florida 32502

(City, State and Zip Code)

1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

- - - E N D - - -

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION

- A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

A Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- C. List of FM, UL, or WH classification number of systems installed.
- D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 WARRANTY

Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.6 QUALITY ASSURANCE

FM, UL, or WH or other approved laboratory tested products will be acceptable.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

E84-10.....Surface Burning Characteristics of Building Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

- C. Factory Mutual Engineering and Research Corporation (FM): Annual Issue Approval Guide Building Materials
- D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

1479-10.....Fire Tests of Through-Penetration Firestops

E. Warnock Hersey (WH): Annual Issue Certification Listings

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier.
- D. Firestop sealants used for firestopping or smoke sealing shall have following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Have no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
 - 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant.
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- H. Materials to be asbestos free.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Use mineral fiber filler and bond breaker behind sealant.
- B. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84.
- C. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

- A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

- A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Resident Engineer.
- C. Clean up spills of liquid type materials.

- - - E N D - - -

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

A. Lay in gypsum board ceiling panels: Section 09 51 00, ACOUSTICAL CEILINGS.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.
- C. Shop Drawings:
 - 1. Typical gypsum board installation, showing corner details, edge trim details and the like.
 - 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
 - 3. Typical shaft wall assembly.
 - 4. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.

D. Samples:

- 1. Cornerbead.
- 2. Edge trim.
- 3. Control joints.
- E. Test Results:
 - 1. Fire rating test, each fire rating required for each assembly.
 - 2. Sound rating test.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society For Testing And Materials (ASTM):

E84-04.....Surface Burning Characteristics of Building Materials

E497-99.....Installing Sound Isolating Lightweight

Partitions

- C. Underwriters Laboratories Inc. (UL): Latest Edition.....Fire Resistance Directory
- D. Inchcape Testing Services (ITS): Latest Editions.....Certification Listings

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise.
- B. Coreboard or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X.

- 2. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Water Resistant Gypsum Backing Board: ASTM C620, Type X, 16 mm (5/8 inch) thick.

2.2 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.3 ACOUSTICAL (SOUND ATTENUATION) INSULATION:

- A. Mineral Fiber Batt or Blankets: ASTM C665. Maximum flame spread of 25 and smoke development of 450 when tested in accordance with ASTM E84.
- B. Thickness as shown; of widths and lengths to fit tight against framing.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Sound rated partitions.
 - c. Full height partitions shown (FHP).
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.

- 3. Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- D. Bring gypsum board into contact, but do not force into place.
- E. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- F. Walls (Except Shaft Walls):
 - When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
 - 2. When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except

use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.

- No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
- 8. Installing Two Layer Assembly Over Sound Deadening Board:
 - a. Apply face layer of wallboard vertically with joints staggered from joints in sound deadening board over framing members.
 - b. Fasten face layer with screw, of sufficient length to secure to framing, spaced 300 mm (12 inches) on center around perimeter, and 400 mm (16 inches) on center in the field.
- 9. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- G. Acoustical or Sound Rated Partitions, Fire Partitions:
 - Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.
 - 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
 - 3. Follow ASTM E497 for sound rated partitions. STC minimum values as shown.
- H. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.
 - b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.

- c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
- d. Where shown.
- 3. Sound Attenuation (Acoustic) Insulation: Install full width of stud cavities and to achieve STC ratings indicated. Cut and pack tight without voids around equipment, outlets and boxes penetrating the assembly.
 - a. To hold sound attenuation batts in position, staple batts to back side of gypsum board to comply with manufacturer's recommendations.
 - b. Fit closely around penetrations.

3.3 CAVITY SHAFT WALL

3.4 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 5 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated fire rated and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the fire rated and sound rated construction. Sanding is not required of non decorated surfaces.

3.5 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non decorated surface to provide fire

protection equivalent to the fire rated construction and STC equivalent to the sound rated construction.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Metal ceiling suspension system for acoustical ceilings.
- B. Acoustical units.
- C. Adhesive application.

1.2 RELATED WORK

1.3 SUBMITTAL

- A. Samples:
 - Acoustical units, each type, with label indicating conformance to specification requirements, including units specified to match existing.
- C. Manufacturer's Literature and Data:
 - Ceiling suspension system, each type, showing complete details of installation, including suspension system specified to match existing
 - 2. Acoustical units, each type
- D. Manufacturer's Certificates: Acoustical units, each type, in accordance with specification requirements.

1.4 DEFINITIONS

- A. Standard definitions as defined in ASTM C634.
- B. Terminology as defined in ASTM E1264.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A641/A641M-98....Zinc-coated (Galvanized) Carbon Steel Wire A653/A653M-01....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process C423-01.....Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method C634-01.....Standard Terminology Relating to Environmental Acoustics C635-00.....Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings C636-96.....Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels

E84-01.....Surface Burning Characteristics of Building Materials E119-00.....Fire Tests of Building Construction and Materials E413-87 (R1999)...Classification for Rating Sound Insulation. E1264-98.....Classification for Acoustical Ceiling Products

PART 2 - PRODUCTS

2.1 METAL SUSPENSION SYSTEM

- A. ASTM C635, heavy-duty system, except as otherwise specified.
 - Ceiling suspension system members may be fabricated from either of the following unless specified otherwise.
 - a. Galvanized cold-rolled steel, bonderized.
 - b. Extruded aluminum.
 - c. Fire resistant plastic (glass fiber) having a flame spread and smoke developed rating of not more than 25 when tested in accordance with ASTM E84.
 - Use same construction for cross runners as main runners. Use of lighter-duty sections for cross runners is not acceptable.
- B. Exposed grid suspension system for support of lay-in panels:
 - Exposed grid width not less than 24 mm (15/16 inch) with not less than 8 mm (5/16 inch) panel bearing surface.
 - 2. Fabricate wall molding and other special molding from the same material with same exposed width and finish as the exposed grid members.
 - 3. On exposed metal surfaces apply baked-on enamel flat texture finish in color to match adjacent acoustical units.

2.2 PERIMETER SEAL

- A. Vinyl, polyethylene or polyurethane open cell sponge material having density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
- B. Thickness as required to fill voids between back of wall molding and finish wall.
- C. Not less than 9 mm (3/8 inch) wide strip.

2.3 WIRE

- A. ASTM A641.
- B. For wire hangers: Minimum diameter 2.68 mm (0.1055 inch).
- C. For bracing wires: Minimum diameter 3.43 mm (0.1350 inch).

2.4 ANCHORS AND INSERTS

- A. Use anchors or inserts to support twice the loads imposed by hangers attached thereto.
- B. Hanger Inserts:

- Fabricate inserts from steel, zinc-coated (galvanized after fabrication).
- 2. Flush ceiling insert type:
 - a. Designed to provide a shell covered opening over a wire loop to permit attachment of hangers and keep concrete out of insert recess.
 - b. Insert opening inside shell approximately 16 mm (5/8 inch) wide by9 mm (3/8 inch) high over top of wire.
 - c. Wire 5 mm (3/16 inch) diameter with length to provide positive hooked anchorage in concrete.
- C. Clips:
 - 1. Galvanized steel.
 - Designed to clamp to steel beam or bar joists, or secure framing member together.
 - 3. Designed to rigidly secure framing members together.
 - 4. Designed to sustain twice the loads imposed by hangers or items supported.
- D. Tile Splines: ASTM C635.

2.5 CARRYING CHANNELS FOR SECONDARY FRAMING

- A. Fabricate from cold-rolled or hot-rolled steel, black asphaltic paint finish, free of rust.
- B. Weighing not less than the following, per 300 m (per thousand linear feet):

Size mm	Size Inches	Cold Kg	-rolled Pound	Hot-1 Kg	rolled Pound
38	1 1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

2.6 ADHESIVE

- A. ASTM D1779, having flame spread index of 25 or less when tested in accordance with ASTM E84.
- B. Developing minimum strength of 5 kg/m² (one psi) of contact surface 48 hours after installation in temperature of 21 °C (70 °F).

2.7 ACOUSTICAL UNITS

- A. General:
 - 1. ASTM E1264, weighing 3.6 kg/m^2 (1.05 psf) minimum for mineral fiber panels or tile.
 - 2. Class A Flame Spread: ASTM 84
 - 3. Minimum NRC (Noise Reduction Coefficient): 0.50 unless specified otherwise: ASTM C423.
- 4. Minimum CAC (Ceiling Attenuation Class): 35 range unless specified otherwise: ASTM E413.
- 5. Manufacturers standard finish, minimum Light Reflectance (LR) coefficient of 0.87 on the exposed surfaces, color to match existing as closely as possible, submit sample for approval.
- 6. Lay-in panels: 609 x 609 mm (2 x 2 feet), with beveled tegular edges.
- B. Type III Units Mineral base with painted finish, Form 2 Water felted, minimum 16 mm (5/8 inch) thick.

2.8 ACCESS IDENTIFICATION

- A. Markers:
 - 1. Use colored markers with pressure sensitive adhesive on one side.
 - Make colored markers of paper of plastic, 6 to 9 mm (1/4 to 3/8 inch) in diameter.
- B. Use markers of the same diameter throughout building.
- C. Color Code: Use following color markers for service identification: Color.....Service

Red.....Sprinkler System: Valves and Controls Green.....Domestic Water: Valves and Controls Yellow.....Chilled Water and Heating Water Orange.....Ductwork: Fire Dampers Blue....Ductwork: Dampers and Controls Black.....Gas: Laboratory, Medical, Air and Vacuum

PART 3 EXECUTIONS

3.1 CEILING TREATMENT

- A. Treatment of ceilings shall include sides and soffits of ceiling beams, furred work 600 mm (24 inches) wide and over, and vertical surfaces at changes in ceiling heights unless otherwise shown.
- B. Lay out acoustical units symmetrically about center lines of each room or space unless shown otherwise on reflected ceiling plan.
- C. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- D. Perimeter Seal:
 - 1. Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.

3.2 CEILING SUSPENSION SYSTEM INSTALLATION

A. General:

- 1. Install metal suspension system for acoustical tile and lay-in panels in accordance with ASTM C636, except as specified otherwise.
- 2. Use direct or indirect hung suspension system or combination thereof as defined in ASTM C635.
- 3. Support a maximum area of 1.48 m^2 (16 sf) of ceiling per hanger.
- 4. Prevent deflection in excess of 1/360 of span of cross runner and main runner.
- 5. Provide extra hangers, minimum of one hanger at each corner of each item of mechanical, electrical and miscellaneous equipment supported by ceiling suspension system not having separate support or hangers.
- 6. Provide not less than 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown,
- 7. Use main runners not less than 1200 mm (48 inches) in length.
- 8. Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Anchorage to Structure:
 - 1. Steel:
 - a. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels for attachment of hanger wires.
 - Size and space carrying channels to insure that the maximum deflection specified will not be exceeded.
 - (2) Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.
 - b. Attach carrying channels to the bottom flange of steel beams spaced not 1200 mm (4 feet) on center before fireproofing is installed. Weld or use steel clips to attach to beam to develop full strength of carrying channel.
 - c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists, and securely wire tie or clip to joist.
- C. Direct Hung Suspension System:
 - 1. As illustrated in ASTM C635.

- 2. Support main runners by hanger wires attached directly to the structure overhead.
- 3. Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- D. Indirect Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - 2. Space carrying channels for indirect hung suspension system not more than 1200 mm (4 feet) on center. Space hangers for carrying channels not more than 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.
 - 3. Support main runners by specially designed clips attached to carrying channels.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Install lay-in acoustic panels in exposed grid with not less than 6 mm (1/4 inch) bearing at edges on supports.
 - 1. Install tile to lay level and in full contact with exposed grid.
 - 2. Replace cracked, broken, stained, dirty, or tile not cut for minimum bearing.
- C. Markers:
 - 1. Install markers of color code specified to identify the various concealed piping, mechanical, and plumbing systems.
 - 2. Attach colored markers to exposed grid on opposite sides of the units providing access.
 - 3. Attach marker on exposed ceiling surface of upward access acoustical unit.

3.4 CLEAN-UP AND COMPLETION

- A. Replace damaged, discolored, dirty, cracked and broken acoustical units.
- B. Leave finished work free from defects.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats that may be applied in shop under other sections.
- C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

1.3 SUBMITTALS

A. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- C. Sample Panels:
 - After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.
 - Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
 - 3. Panel to show transparent finishes: Wood of same species and grain pattern as wood approved for use, 100 by 250 by 3 mm (4 inch by 10 inch face by 1/4 inch) thick minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 by 50 mm (2 by 2 inch) minimum or actual wood member to show complete finish.
 - 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Section, 09 06 00, SCHEDULE FOR FINISHES.
 - c. Product type and color.

d. Name of project.

- 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- D. Sample of identity markers if used.
- E. Manufacturers' Certificates indicating compliance with specified requirements:
 - Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. Epoxy coating.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference Of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-1992....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIS)

ACGIH TLV-DOC.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Sixth Edition)

- C. American National Standards Institute (ANSI): A13.1-96......Scheme for the Identification of Piping Systems
- D. American Society for Testing and Materials (ASTM):

D260-86.....Boiled Linseed Oil E. Commercial Item Description (CID): A-A-1272..... Plaster, Gypsum (Spackling Compound) A-A-1555......Water Paint, Powder (Cementitious, White and Colors) (WPC) (cancelled) F. Federal Specifications (Fed Spec): P-W-155C..... Wax Floor, Water-Emulsion INT AMD 1 TT-F-322D.....Filler, Two-Component Type, For Dents, Cracks INT AMD 1.....Small-Hole and Blow-Holes TT-F-340C.....Filler, Wood, Plastic G. Master Painters Institute (MPI): No. 18-02.....Organic Zinc Rich Coating No. 26-02..... Cementitious Galvanized Metal Primer No. 31-02.....Polyurethane, Moisture Cured, Clear Gloss (PV) No. 36-02.....Knot Sealer No. 43-02..... Interior Satin Latex No. 44-02..... Interior Low Sheen Latex No. 45-02..... Interior Primer Sealer No. 46-02.....Interior Enamel Undercoat No. 47-02..... Interior Alkyd, Semi-Gloss (AK) No. 48-02..... Interior Alkyd, Gloss (AK) No. 49-02.....Interior Alkyd, Flat (AK) No. 50-02..... Interior Latex Primer Sealer No. 51-02..... Interior Alkyd, Eggshell No. 52-02.....Interior Latex, MPI Gloss Level 3 (LE) No. 53-02.....Interior Latex, Flat, MPI Gloss Level 1 (LE) No. 54-02.....Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE) No. 71-02.....Polyurethane, Moisture Cured, Clear, Flat (PV) No. 77-02..... Epoxy Cold Cured, Gloss (EC) No. 79-02..... Marine Alkyd Metal Primer No. 90-02.....Interior Wood Stain, Semi-Transparent (WS) No. 91-02.....Wood Filler Paste No. 94-02..... Exterior Alkyd, Semi-Gloss (EO) No. 95-02..... Fast Drying Metal Primer No. 98-02.....High Build Epoxy Coating No. 101-02.....Cold Curing Epoxy Primer No. 108-02.....High Build Epoxy Marine Coating (EC) No. 114-02.....Interior Latex, Gloss (LE) and (LG) No. 119-02.....Exterior Latex, High Gloss (acrylic) (AE)

No. MPI 135-02.....Non-Cementitious Galvanized Primer

- H. Steel Structures Painting Council (SSPC): SSPC SP 1-00.....Solvent Cleaning SSPC SP 2-00....Hand Tool Cleaning
 - SSPC SP 3-00.....Power Tool Cleaning
- I. Western Wood Products Association (WWPA): Research Note 312- Revised Jan 30, 1985 Painting Over Knots

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Floor Wax: Fed Spec P-W-155 (Wax Floor, Water-Emulsion).
- B. Putty: Fed Spec A-A-378, Type II (Putty, Linseed Oil Type).
- C. Cementitious Paint (CEP): TT-P-1411A [Paint, Copolymer-Resin, Cementitious (CEP)], Type II for interior use.
- D. Wood Sealer: MPI 31 (gloss) or MPI 71 (flat) thinned with thinner recommended by manufacturer at rate of about one part of thinner to four parts of varnish.
- E. Plastic Tape:
 - Pigmented vinyl plastic film in colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Pressure sensitive adhesive back.
 - 3. Widths as shown.
- F. Identity markers options:
 - 1. Pressure sensitive vinyl markers.
 - 2. Snap-on coil plastic markers.
- G. Organic Zinc rich Coating (HR): MPI 22.
- H. Cementitious Galvanized Metal Primer: MPI 26.
- I. Knot Sealer: MPI 36.
- J. Interior Satin Latex: MPI 43.
- K. Interior Low Sheen Latex: MPI 44.
- L. Interior Primer Sealer: MPI 45.
- M. Interior Enamel Undercoat: MPI 47.
- N. Interior Alkyd, Semi-Gloss (AK): MPI 47.
- O. Interior Alkyd, Gloss (AK): MPI 49.
- P. Interior Latex Primer Sealer: MPI 50.
- Q. Interior Alkyd, Eggshell: MPI 51
- R. Interior Latex, MPI Gloss Level 3 (LE): MPI 52.
- S. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53.
- T. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.
- U. Epoxy Cold Cured, Gloss (EC): MPI 77.
- V. Marine Alkyd Metal primer: MPI 79.

- W. Interior Wood Stain, Semi-Transparent (WS): MPI 90.
- X. Wood Filler Paste: MPI 91.
- Y. Fast Drying Metal Primer: MPI 95.
- Z. High Build Epoxy Coating: MPI 98.
- AA. Cold Curing Epoxy Primer: MPI 101.
- BB. High Build Epoxy Marine Coating (EC): MPI 108.
- CC. Interior latex, Gloss (LE) and (LG): MPI 114.
- DD. Exterior Latex, High Gloss (acrylic) (AE): MPI 119.
- EE. Waterborne Galvanized Primer: MPI 134.
- FF. Non-Cementitious Galvanized Primer: MPI 135.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - 1. Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed local, state or district requirements.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
 - 3. Asbestos: Materials shall not contain asbestos.
 - Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
 - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
 - 4. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - 5. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.
 - c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.

- 3. See other sections of specifications for specified surface conditions and prime coat.
- Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used.

C. Wood:

- 1. Sand to a smooth even surface and then dust off.
- 2. Sand surfaces showing raised grain smooth between each coat.
- 3. Wipe surface with a tack rag prior to applying finish.
- 4. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.
- 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with TT-F-340C (Filler, Wood, Plastic) or A-A-378 (Putty, Linseed Oil Type). Use TT-F-340C (Filler, Wood, Plastic) for transparent finish, to match wood. Sand the surface to make smooth and finish flush with adjacent surface.
- 6. Before applying finish coat, reapply TT-340C (Filler, Wood, Plastic) or A-A-378 (Putty, Linseed Oil Type) if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
- Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - a. Thin filler in accordance with manufacturer's instructions for application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.
- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, and similar items specified to have semi-gloss or gloss finish with TT-F-322D

(Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.

- a. This includes flat head countersunk screws used for permanent anchors.
- b. Do not fill screws of item intended for removal such as glazing beads.
- 4. Spot prime abraded and damaged areas in shop prime coat that expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- Spot prime abraded and damaged areas that expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Zinc-Coated (Galvanized) Metal Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.
- F. Gypsum Board:
 - 1. Remove finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.

E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Resident Engineer.
- E. Finish surfaces to show solid even color, free from runs, lumps, brush marks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by Resident Engineer, except in spaces sealed from existing occupied spaces.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.
- H. Do not paint in closed position operable items such as access doors and panels, and similar items.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- E. Wood:
 - 1. Use same kind of primer specified for exposed face surface.

- a. Interior wood except for transparent finish: MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), thinned if recommended by manufacturer.
- b. Transparent finishes as specified under Transparent Finishes on Wood except Floors.
- 2. Apply one coat of primer MPI 7 (Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) as soon as delivered to site to surfaces of unfinished woodwork, except concealed surfaces of shop fabricated or assembled millwork and surfaces specified to have varnish, stain or natural finish.
- F. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Steel and iron: MPI 95 (Fast Drying Metal Primer).
 - Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non-Cementitious Galvanized Primer).
- G. Gypsum Board:
 - Surfaces scheduled to have MPI 53 (Interior Latex, Flat), MPI Gloss Level 1 LE)), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) and MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) finish: Use MPI 53 (Interior Latex, MPI Gloss Level 3 (LE)), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)), and MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)).
 - Primer: MPI 50(Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) in shower and bathrooms.
 - Surfaces scheduled to receive vinyl coated fabric wallcovering: Use MPI 45 (Interior Primer Sealer).
 - Use MPI 101 (Cold Curing Epoxy Primer) for surfaces scheduled to receive MPI 77 (Epoxy Cold Cured, Gloss (EC) or MPI 98 (High Build Epoxy Coating).

3.6 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
- C. Gypsum Board:

- One coat of MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)).
- 2. Two coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)).
- 3. One coat of MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)).

D. Wood:

- 1. Sanding:
 - a. Use 220-grit sandpaper.
 - b. Sand sealers and varnish between coats.
 - c. Sand enough to scarify surface to assure good adhesion of subsequent coats, to level roughly applied sealer and varnish, and to knock off "whiskers" of any raised grain as well as dust particles.
- 2. Sealers:
 - a. Apply sealers specified except sealer may be omitted where pigmented, penetrating, or wiping stains containing resins are used.
 - b. Allow manufacturer's recommended drying time before sanding, but not less than 24 hours or 36 hours in damp or muggy weather.
 - c. Sand as specified.
- 3. Paint Finish:
 - a. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) (SG).
- 4. Transparent Finishes on Wood Except Floors.
 - a. Natural Finish:
 - 1) One coat of sealer as written in 2.1 E.
 - Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV).
 - b. Stain Finish:
 - One coat of MPI 90 (Interior Wood Stain, Semi-Transparent (WS)).
 - Use wood stain of type and color required to achieve finish specified. Do not use varnish type stains.
 - 3) One coat of sealer as written in 2.1 E.
 - 4) Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV).
 - c. Varnish Finish:

- 1) One coat of sealer as written in 2.1 E.
- Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV).
- E. Miscellaneous:
 - 1. Apply where specified in Section 09 06 00, SCHEDULE FOR FINISHES.

3.7 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- H. Sand or dull glossy surfaces prior to painting.
- I. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.8 PAINT COLOR

- A. Color and gloss of finish coats shall be selected to match adjacent surfaces and components in color and finish as closely as possible. Provide three samples of each color and finish for approval by the Contracting Officer or their Representative prior to application of any coatings.
- B. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- C. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.9 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. Paint various systems specified in Divisions 23, and 24.
- C. Paint after tests have been completed.
- D. Omit prime coat from factory prime-coated items.
- E. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- F. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED.
- G. Color:
 - 1. Paint items to match surrounding surfaces.
 - 2. Paint colors to match surrounding, except for following:
 - a. White: Exterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.
 - b. Gray: Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.
 - c. Aluminum Color:. Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).
 - d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
 - e. Federal Safety Orange: .Entire lengths of electrical conduits containing feeders 600 volts or more.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Interior Locations:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) to following items:

- Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports.
- Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards.
- 3) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.
- b. Paint electrical conduits containing cables rated 600 volts or more using two coats of MPI 94 (Exterior Alkyd, Semi-gloss (EO)) in the Federal Safety Orange color in exposed and concealed spaces full length of conduit.
- 2. Other exposed locations:
 - a. Cloth jackets of insulation of ducts and pipes in connection with plumbing, air conditioning, ventilating refrigeration and heating systems: One coat of MPI 50 (Interior Latex Primer Sealer) and one coat of MPI 10 (Exterior Latex, Flat (AE)).

3.10 BUILDING AND STRUCTURAL WORK FIELD PAINTING

3.11 IDENTITY PAINTING SCHEDULE

- A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.
 - Legend may be identified using 2.1 F options or by stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 Kpa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.

6. Legend n	ame in full or in	abbreviated	form as follo	ows:
	COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	BBREVIATIONS
Blow-off		Yellow	Black	Blow-off
Boiler Feedwater		Yellow	Black	Blr Feed
A/C Condenser Wat	er Supply	Green	White	A/C Cond Wtr Sup
A/C Condenser Wat	er Return	Green	White	A/C Cond Wtr Ret
Chilled Water Sup	ply	Green	White	Ch. Wtr Sup
Chilled Water Ret	urn	Green	White	Ch. Wtr Ret
Shop Compressed A	ir	Yellow	Black	Shop Air
Air-Instrument Co:	ntrols	Green	White	Air-Inst Cont
Drain Line		Green	White	Drain
Emergency Shower		Green	White	Emg Shower
High Pressure Ste	am	Yellow	Black	H.P*
High Pressure Con	densate Return	Yellow	Black	H.P. Ret*
Medium Pressure S	team	Yellow	Black	M. P. Stm*
Medium Pressure C	ondensate Return	Yellow	Black	M.P. Ret*
Low Pressure Steam	m	Yellow	Black	L.P. Stm*
Low Pressure Cond	ensate Return	Yellow	Black	L.P. Ret*
High Temperature	Water Supply	Yellow	Black	H. Temp Wtr Sup
High Temperature	Water Return	Yellow	Black	H. Temp Wtr Ret
Hot Water Heating	Supply	Yellow	Black	H. W. Htg Sup
Hot Water Heating	Return	Yellow	Black	H. W. Htg Ret
Gravity Condensat	e Return	Yellow	Black	Gravity Cond Ret
Pumped Condensate	Return	Yellow	Black	Pumped Cond Ret
Vacuum Condensate	Return	Yellow	Black	Vac Cond Ret
Fuel Oil - Grade		Green	White	Fuel Oil-Grade*
Boiler Water Samp	ling	Yellow	Black	Sample
Chemical Feed		Yellow	Black	Chem Feed
Continuous Blow-D	own	Yellow	Black	Cont. B D
Pumped Condensate		Black		Pump Cond
Pump Recirculating	g	Yellow	Black	Pump-Recirc.
Vent Line		Yellow	Black	Vent
Alkali		Yellow	Black	Alk
Bleach		Yellow	Black	Bleach
Detergent		Yellow	Black	Det
Liquid Supply		Yellow	Black	Liq Sup
Reuse Water		Yellow	Black	Reuse Wtr
Cold Water (Domes	tic) White	Green	White	C.W. Dom

Hot Water (Domestic)				
Supply	White	Yellow	Black	H.W. Dom
Return	White	Yellow	Black	H.W. Dom Ret
Tempered Water	White	Yellow	Black	Temp. Wtr
Ice Water				
Supply	White	Green	White	Ice Wtr
Return	White	Green	White	Ice Wtr Ret
Reagent Grade Water		Green	White	RG
Reverse Osmosis		Green	White	RO
Sanitary Waste		Green	White	San Waste
Sanitary Vent		Green	White	San Vent
Storm Drainage		Green	White	St Drain
Pump Drainage		Green	White	Pump Disch
Chemical Resistant Pipe				
Waste		Yellow	Black	Acid Waste
Vent		Yellow	Black	Acid Vent
Atmospheric Vent		Green	White	ATV
Silver Recovery		Green	White	Silver Rec
Oral Evacuation		Green	White	Oral Evac
Fuel Gas		Yellow	Black	Gas
Fire Protection Water				
Sprinkler		Red	White	Auto Spr
Standpipe		Red	White	Stand
Sprinkler		Red	White	Drain

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50 mm (2 inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6100 mm (20 foot) intervals in between. Use labels with yellow background with black border and words Danger High Voltage Class, Refer to ELECTRICAL for Voltages.
- B. Fire Partitions:
 - Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: "FIRE PARTITION" as applicable.
 - Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition.

4. Use semigloss paint of color that contrasts with color of substrate.

C. Identify columns in pipe basements and interstitial space:

- 1. Apply stenciled number and letters to correspond with grid numbering and lettering shown.
- Paint numbers and letters 100 mm (4 inches) high, locate 450 mm (18 inches) below overhead structural slab.
- 3. Apply on four sides of interior columns and on inside face only of exterior wall columns.
- 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

3.12 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work that was damaged or discolored.

APPENDIX

Coordinate the following abbreviations used in SECTION 09 91 00, PAINTING, with other Sections, and other COATING SECTIONS listed. Use the same abbreviation and terms consistently.

Paint or coating	Abbreviation
Acrylic Emulsion	AE (MPI 10 - flat/MPI 11 - semigloss/MPI 119 -
	gloss)
Alkyd Flat	Ak (MPI 49)
Alkyd Gloss Enamel	G (MPI 48)
Alkyd Semigloss Enamel	SG (MPI 47)
Cementitious Paint	CEP (TT-P-1411)
Exterior Latex	EL (MPI 10 / 11 / 119)
Exterior Oil	EO (MPI 9 - gloss/MPI 8 - flat/MPI 94 -
	semigloss)
Latex Emulsion	LE (MPI 53, flat/MPI 52, eggshell/MPI 54,
	semigloss/MPI 114, gloss
Latex Flat	LF (MPI 138)
Latex Gloss	LG (MPI 114)
Latex Semigloss	SG (MPI 141)
Latex Low Luster	LL (MPI 139)
Polyurethane Varnish	PV (MPI 31 - gloss/MPI 71 - flat)

Water Paint, Cement	WPC (CID-A-A-1555 - Water Paint	, Powder).
Wood Stain	WS (MPI 90)	

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS
- B. Section 01 00 00, GENERAL REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- G. Section 23 31 00, HVAC DUCTS and CASINGS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices,

software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.

- All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.
- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:

- 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
- Provide complete layout drawings required by Paragraph, SUBMITTALS.
 Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.

- 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
- 2. Submit electric motor data and variable speed drive data with the driven equipment.
- 3. Equipment and materials identification.
- 4. Fire-stopping materials.
- 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
- 6. Wall, floor, and ceiling plates.
- G. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- H. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2007.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA):

IP-20-2007.....Specifications for Drives Using Classical V-Belts and Sheaves

IP-21-2009.....Specifications for Drives Using Double-V (Hexagonal) Belts

IP-22-2007.....Specifications for Drives Using Narrow V-Belts

and Sheaves

E. Air Movement and Control Association (AMCA): 410-96......Recommended Safety Practices for Air Moving

Devices

F. American Society of Mechanical Engineers (ASME):
Boiler and Pressure Vessel Code (BPVC):
Section I-2007.....Power Boilers

Section IX-2007......Welding and Brazing Qualifications Code for Pressure Piping: B31.1-2007.....Power Piping G. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application I. National Electrical Manufacturers Association (NEMA): MG-1-2009.....Motors and Generators J. National Fire Protection Association (NFPA): 31-06..... of Oil-Burning Equipment 54-09.....National Fuel Gas Code 70-08.....National Electrical Code 85-07.....Boiler and Combustion Systems Hazards Code 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 101-09....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

 Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.

- Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Phasing of Work: Comply with all requirements shown on drawings or specified.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- E. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to

the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).

- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch //or fixed-pitch// drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.

- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals.
 - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
 - C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
 - D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.

2.7 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.9 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.

- B. Attachment to existing structure: Support from existing floor/roof frame.
- C. Attachment to Wood Construction: Wood screws or lag bolts.
- D. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- E. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- F. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.

- 2) For vertical runs use epoxy painted or plastic coated riser clamps.
- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.

2.10 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing

through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.

- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.11 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.12 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.13 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.14 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type

drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.

- 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00

00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- M. Work in Animal Research Areas: Seal all pipe and duct penetrations with silicone sealant to prevent entrance of insects.
- N. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
- O. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 PIPE AND EQUIPMENT SUPPORTS

A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend
the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.

- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.3 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and

equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.4 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
 - Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.

- b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.5 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.

3.6 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.7 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.8 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.9 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.10 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.

C. Manuals:

- Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 ..Motors and Generators

MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators

- C. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code (NEC)
- D. Institute of Electrical and Electronics Engineers (IEEE):
 112-04.....Standard Test Procedure for Polyphase Induction
 Motors and Generators
- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2007.....Energy Standard for Buildings Except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Poly-phase Motors: Explosion Proof Design
- D. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt systems: 460 volts.

- e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- E. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- F. Motors shall be designed for operating the connected loads continuously in a 40°C (104°F) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 40°C (104°F), the motors shall be rated for the actual ambient temperatures.
- G. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- H. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows: a. Provide TEFC explosion proof motor enclosures.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- I. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:

- a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
- b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
- c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- J. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- K. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum Premium Efficiencies				Minimum Premium Efficiencies				
Open Drip-Proof				Totally Enclosed Fan-Cooled				
Rating	1200	1800	3600	Rating	1200	1800	3600	
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM	
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%	
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%	
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%	
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%	
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%	
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%	
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%	
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%	
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%	
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%	
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%	

							-
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

L. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - Balancing air distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 2. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.
- C. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- D. Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.

- 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.

05-11

- c. Would follow all TAB work through its satisfactory completion.
- d. Shall provide final markings of settings of all HVAC adjustment devices.
- e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Radioisotope hoods/cabinets: 0 percent to plus 10 percent.
 - d. Minimum outside air: 0 percent to plus 10 percent.
 - e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - f. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.

- g. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
- h. Chilled water coils: Minus 0 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - 1. Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 2. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.

- B. American Society of Heating, Refrigerating and Air Conditioning
 Engineers, Inc. (ASHRAE):
 2007HVAC Applications ASHRAE Handbook, Chapter 37,
 - Testing, Adjusting, and Balancing and Chapter
 - 47, Sound and Vibration Control
- C. Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration

- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 TAB REPORTS

- A. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- B. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- C. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.3 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project.
- D. Allow 2 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include fans, terminal units, room diffusers/outlets/inlets, and laboratory radioisotope hoods.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section
 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
 - 5. Record final measurements for air handling equipment performance data sheets.

3.4 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.5 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.6 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

- - E N D - - -

SECTION 23 09 23.13 20

DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC

PART 1 - GENERAL

1.1 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA) AMCA 500-D (1998) Laboratory Methods of Testing Dampers for Rating
- C. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI/ATA 878.1 (1999) ARCNET - Local Area Network: Token Ring
- D. AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS(ASHRAE) ASHRAE 135 (2004; Interpretations 1 thru 18; Addenda A 2004; Errata 2005; Addenda C 2006; Addenda D 2006; Errata to Addenda D 2006; Addenda F 2007; Addenda E 2007; Errata 2007)
- E. ASME INTERNATIONAL (ASME)

ASME B16.18 (2001; R 2005) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.22 (2001; R 2005) Standard for Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

ASME B16.26 (2006) Standard for Cast Copper Alloy Fittings for Flared Copper Tubes

ASME B16.34 (2004) Valves - Flanged, Threaded and Welding End ASME B16.5 (2003) Standard for Pipe Flanges and Flanged Fittings: NPS 1/2 Through NPS 24

ASME B31.1 (2007) Power Piping

ASME B40.100 (2006) Pressure Gauges and Gauge Attachments ASME BPVC (2007) Boiler and Pressure Vessel Codes

F. ASTM INTERNATIONAL (ASTM)

ASTM A 126 (2004) Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings ASTM B 117 (2007) Standing Practice for Operating Salt Spray (Fog) Apparatus ASTM B 32 (2004) Standard Specification for Solder Metal ASTM B 75 (2002) Standard Specification for Seamless Copper Tube ASTM B 88 (2003) Standard Specification for Seamless Copper Water Tube

ASTM B 88M (2005) Standard Specification for Seamless Copper Water Tube (Metric) ASTM D 1238 (2004c) Melt Flow Rates of Thermoplastics by Extrusion Plastometer ASTM D 1693 (2007a) Standard Test Method for Environmental Stress-Cracking of Ethylene Plastics ASTM D 635 (2006) Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position ASTM D 638 (2003) Standard Test Method for Tensile Properties of Plastics ASTM D 792 (2000) Density and Specific Gravity (Relative Density) of Plastics by Displacement G. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) IEEE C57.13 (1993; R 2003) Standard Requirements for Instrument Transformers IEEE C62.41.1 (2002) IEEE Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits IEEE C62.41.2 (2002) IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits IEEE C62.45 (2002) Surge Testing for Equipment Connected to Low-Voltage (1000v and less)AC Power Circuits H. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO) ISO/IEC 8802 (2000) Telecommunications and Information Exchange Between Systems I. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (2007) National Electrical Code - 2008 Edition NFPA 72 (2006) National Fire Alarm Code NFPA 90A (2002; Errata 2003; Errata 2005) Standard for the Installation of Air Conditioning and Ventilating Systems J. NATIONAL FLUID POWER ASSOCIATION (NFLPA) NFLPA C12.10 (2004) Watthour Meters SHEET METAL AND AIR CONDITIONING K. CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) SMACNA HVAC Duct Const Stds (1995; Addendum 1997, 2nd Ed) HVAC Duct Construction Standards - Metal and Flexible L. UNDERWRITERS LABORATORIES (UL) UL 1449 (2006) Surge Protective Devices UL 506 (2000; Rev thru May 2006) Standard for Specialty Transformers

UL 508A (2001; Rev thru Dec 2007) Standard for Industrial Control Panels

UL 916 (2007) Energy Management Equipment

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
- B. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection for motors.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Fume Hoods: Section 11 53 13, LABORATORY FUME HOODS.
- E. Testing and Balancing of Air Flows: Section 23 05 93, TESTING,
- F. Section 23 31 00, HVAC DUCTS AND CASINGS.

1.3 DEFINITIONS

- A. BAS
 - Building Automation Systems, including DDC (Direct Digital Controls) used for facility automation and energy management.
- B. BAS Owner
 - The regional or local user responsible for managing all aspects of the BAS operation, including: network connections, workstation management, submittal review, technical support, control parameters, and daily operation.
- C. Bridge
 - 1. Network hardware that connects two or more network segments at the physical and data link layers. A bridge may also filter messages.
- D. Broadcast
 - 1. A message sent to all devices on a network segment.
- E. Device
 - 1. Any control system component, usually a digital controller.
- F. Digital Controller
 - An electronic controller, usually with internal programming logic and digital and analog input/output capability, which performs control functions.
- G. Direct Digital Control (DDC)
 - Digital controllers performing control logic. Usually the controller directly senses physical values, makes control decisions with internal programs, and outputs control signals to directly operate switches, valves, dampers, and motor controllers.
- H. DDC System

 A network of digital controllers, communication architecture, and user interfaces. A DDC system may include programming, sensors, actuators, switches, relays, factory controls, operator workstations, and various other devices, components, and attributes.

I. Ethernet

- A family of local-area-network technologies providing high-speed networking features over various media.
- J. Firmware
 - Software programmed into read only memory (ROM), flash memory, electrically erasable programmable read only memory (EEPROM), or erasable programmable read only memory (EPROM) chips.
- K. Gateway
 - Communication hardware connecting two or more different protocols, similar to human language translators. The Gateway translates one protocol into equivalent concepts for the other protocol.
- L. Half Router
 - A device that participates as one partner in a BACnet point-to-point (PTP) connection. Two half-routers in an active PTP connection combine to form a single router.
- M. Hub
 - 1. A common connection point for devices on a network.
- N. Internet Protocol (IP, TCP/IP, UDP/IP)
 - 1. A communication method, the most common use is the World Wide Web. At the lowest level, it is based on Internet Protocol (IP), a method for conveying and routing packets of information over various LAN media. Two common protocols using IP are User Datagram Protocol (UDP) and Transmission Control Protocol (TCP). UDP conveys information to well-known "sockets" without confirmation of receipt. TCP establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- 0. Input/Output (I/O)
 - 1. Physical inputs and outputs to and from a device, although the term sometimes describes software, or "virtual" I/O. See also "Points".
- P. I/O Expansion Unit
 - An I/O expansion unit provides additional point capacity to a digital controller.
- Q. IP subnet
 - 1. Internet protocol (IP) identifies individual devices with a 32-bit number divided into four groups from 0 to 255. Devices are often

grouped and share some portion of this number. For example, one device has IP address 209.185.47.68 and another device has IP address 209.185.47.82. These two devices share Class C subnet 209.185.47.00

- R. Local-Area Network (LAN)
 - A communication network that spans a limited geographic area and uses the same basic communication technology throughout.
- S. Network
 - 1. Communication technology for data communications.
- T. Network Number
 - 1. A site-specific number assigned to each network segment to identify for routing.
- U. Peer-to-Peer
 - Peer-to-peer refers to devices where any device can initiate and respond to communication with other devices.
- V. Performance Verification Test (PVT)
 - The procedure for determining if the installed BAS meets design criteria prior to final acceptance. The PVT is performed after installation, testing, and balancing of mechanical systems. Typically the PVT is performed by the Contractor in the presence of the Government.
- W. PID
 - Proportional, integral, and derivative control; three parameters used to control modulating equipment to maintain a setpoint. Derivative control is often not required for HVAC systems (leaving "PI" control).
- X. Points

1. Physical and virtual inputs and outputs. See also "Input/Output".

- Y. Stand-Alone Control
 - Refers to devices performing equipment-specific and small system control without communication to other devices or computers for physical I/O, excluding outside air and other common shared conditions. Devices are located near controlled equipment, with physical input and output points limited to 64 or less per device, except for complex individual equipment or systems. Failure of any single device will not cause other network devices to fail.
- 1.4 DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC DESCRIPTION
 - A. Provide a **Siemens Lab Apogee DDC system.** including associated equipment and accessories. All new devices are accessible without the use of

gateways, unless gateways are shown on the design drawings and specifically requested.

- B. The existing server and operator workstations are located at the Pensacola VA Facility.
 - 1. Design Requirements
 - a. Control System Drawings Title Sheet Provide a title sheet for the control system drawing set. Include the project title, project location, contract number, the controls contractor preparing the drawings, an index of the control drawings in the set, and a legend of the symbols and abbreviations used throughout the control system drawings.
 - b. List of I/O Points Also known as a Point Schedule, provide for each input and output point physically connected to a digital controller: point name, point description, point type (Analog Output (AO), Analog Input (AI), Binary Output (BO), Binary Input (BI)), point sensor range, point actuator range, point address, and point connection terminal number. Typical schedules for multiple identical equipment are allowed unless otherwise requested in design or contract criteria.
 - c. Control System Components List Provide a complete list of control system components installed on this project. Include for each controller and device: control system schematic name, control system schematic designation, device description, manufacturer, and manufacturer part number. For sensors, include point name, sensor range, and operating limits. For valves, include body style, Cv, design flow rate, pressure drop, valve characteristic (linear or equal percentage), and pipe connection size. For actuators, include point name, spring or non-spring return, modulating or two-position action, normal (power fail) position, nominal control signal operating range (0-10 volts DC or 4-20 milliamps), and operating limits.
 - d. Control System Schematics Provide control system schematics. Typical schematics for multiple identical equipment are allowed unless otherwise requested in design or contract criteria. Include the following:
 - 1) Location of each input and output device
 - 2) Flow diagram for each piece of HVAC equipment
 - Name or symbol for each control system component, such as V-1 for a valve

23 09 23 - 6

4) Setpoints, with differential or proportional band values

- 5) Written sequence of operation for the HVAC equipment
- 6) Valve and Damper Schedules, with normal (power fail) position
- e. HVAC Equipment Electrical Ladder Diagrams Provide HVAC equipment electrical ladder diagrams. Indicate required electrical interlocks.
- f. Component Wiring Diagrams Provide a wiring diagram for each type of input device and output device. Indicate how each device is wired and powered; showing typical connections at the digital controller and power supply. Show for all field connected devices such as control relays, motor starters, actuators, sensors, and transmitters.
- g. Terminal Strip Diagrams Provide a diagram of each terminal strip. Indicate the terminal strip location, termination numbers, and associated point names.
- h. Communication Architecture Schematic Provide a schematic showing the project's entire communication network, including addressing used for LANS, LAN devices including routers and bridges, gateways, controllers, workstations, and field interface devices. If applicable, show connection to existing networks.

1.5 SUBMITTALS

- A. Submit detailed and annotated manufacturer's data, drawings, and specification sheets for each item listed, that clearly show compliance with the project specifications.
- 1.6 QUALITY ASSURANCE
 - A. Standard Products Provide material and equipment that are standard manufacturer's products currently in production and supported by a local service organization.
 - B. Delivery, Storage, and Handling Handle, store, and protect equipment and materials to prevent damage before and during installation according to manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.
 - C. Operating Environment Protect components from humidity and temperature variation, dust, and contaminants. If components are stored before installation, keep them within the manufacturer's limits.
 - D. Finish of New Equipment New equipment finishing shall be factory provided. Manufacturer's standard factory finishing shall be proven to withstand 125 hours in a salt-spray fog test. Equipment located outdoors shall be proven to withstand 500 hours in a salt-spray fog

23 09 23 - 7

test. Salt-spray fog test shall be according to ASTM B 117, with acceptance criteria as follows: immediately after completion of the test, the finish shall show no signs of degradation or loss of adhesion beyond 0.125 inch on either side of the scratch mark.

- E. Verification of Dimensions The contractor shall verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing work.
- F. Contractor's Qualifications Submit documentation certifying the controls Contractor performing the work has completed at least three DDC systems installations of a similar design to this project, and programmed similar sequences of operation for at least two years.
- G. Modification of References The advisory provisions in ASME B31.1 and NFPA 70 are mandatory. Substitute "shall" for "should" wherever it appears and interpret all references to the "authority having jurisdiction" and "owner" to mean the Contracting Officer.
- PART 2 PRODUCTS

2.1 DDC SYSTEM

- A. The Laboratory Control System (LCS) shall be fully integrated to the existing Siemens HVAC Instrumentation and Controls System to maintain laboratory room supply and exhaust airflows, room pressurization, room ambient temperature and the laboratory exhaust system functionality as specified herein
 - 1. The LCS shall include all new laboratory room supply airflow terminals, reheat coils, reheat coil valves, air terminal actuators, sensors, associated instrumentation and the control units and associated interconnecting wiring and pneumatic tubing as described on plans. Any and all associated components required to implement a fully functioning and integrated system as specified herein shall also be provided. System verification and other documentation as specified under the Sections referenced herein shall also be included.
 - 2. All LCS data shall be capable of being accessed by authorized persons via the facility's Siemens HVAC control system.
 - 3. APPROVED LABORATORY CONTROL SYSTEM MANUFACTURERS The following is the approved LCS manufacturer and product line: Manufacturer Product Line

Siemens Industry, Building Technologies Apogee System

- B. LABORATORY CONTROLLERS
 - 1. CONSTANT VOLUME FUME HOOD MONITOR

- a. Furnish and install a UL 916 listed individual constant volume fume hood monitor for each fume hood which shall display the required average face velocity. Documentation verifying the UL 916 Listing for the fume hood monitor shall be included in any proposal as well as the submittal.
- b. The fume hood monitor shall also interface to an Operator Display Panel (ODP) at the designated measurement location on the front of the fume hood as shown on the project plans. The ODP shall provide a continuous digital display of average fume hood face velocity. The fume hood face velocity display shall be the true average face velocity as calculated by the fume hood monitor based upon actual measured fume hood exhaust differential pressure.
- c. The ODP shall also include separate colored pilot lights that shall illuminate to indicate fume hood operational status as:1) Green indicating normal operation.

2) Red indicating alarm condition or OFF.

- d. The ODP shall sound an audible alarm device in response to face velocity alarm conditions and the ODP digital display shall change to "LOW FACE VELOCITY" or "HIGH FACE VELOCITY" appropriate to the alarm condition. A SILENCE pushbutton on the ODP shall allow the user to silence the audible alarm which shall then remain silent until a subsequent alarm occurs.
- e. All fume hood control and ODP display and operational parameters shall be established and be changeable only by authorized personnel using a portable operator's terminal. These operational parameters shall include:
 - Face velocity high and low alarm limits and associated alarm time delay to avoid transient alarms.
 - 2) Face velocity high and low warning limits.
- f. A portable operator's terminal shall plug into the ODP as well as into the laboratory room controller. In addition, all laboratory fume hood and laboratory room control parameters along with all other facility control and monitoring functions shall be accessible to authorized personnel from designated terminals on the BAS control and monitoring network.
- g. Momentary or extended losses of power shall not change or affect any CV fume hood monitoring setpoints, operational parameters or stored data. Upon resumption of power after a power failure, fume

hood monitors shall resume full normal operation exactly as before the power failure and without any need for manual intervention.

- 2. CONTROLLERS FOR CONSTANT VOLUME TERMINALS
 - a. All CV terminal control applications shall be field-selectable such that a single controller may be used in conjunction with other types of terminal units to perform the specified sequences of control. Application Specific Controllers (ASCs) that require factory application changes are not acceptable. The CV terminal ASC shall support CV with hot water reheat
 - b. The controller shall include a differential pressure transducer that shall connect to the terminal unit manufacturer's standard averaging air velocity sensor to measure the average differential pressure in the duct. The controller shall convert this value to actual airflow. Single point air velocity sensing is not acceptable. The differential pressure transducer shall have a measurement range of 0 to 4000 fpm (0 to 20.4 m/s) and measurement accuracy of +5% at 400 to 4000 fpm (2 to 20 m/s), insuring primary airflow conditions shall be controlled and maintained to within +5% of setpoint at the specified parameters. The BMS contractor shall provide the velocity sensor if required to meet the specified functionality.
- C. Direct Digital Controllers
 - 1. Direct digital controllers shall be UL 916 rated.
 - a. I/O Point Limitation

The total number of I/O hardware points used by a single standalone digital controller, including I/O expansion units, shall not exceed 64, except for complex individual equipment or systems. Place I/O expansion units in the same cabinet as the digital controller.

b. Environmental Limits

Controllers shall be suitable for, or placed in protective enclosures suitable for the environment (temperature, humidity, dust, and vibration) where they are located.

c. Stand-Alone Control

Provide stand-alone digital controllers.

d. Internal Clock

Provide internal clocks for all Building Controllers . Automatically synchronize system clocks daily from an operatordesignated controller. The system shall automatically adjust for daylight saving time.

e. Memory

Provide sufficient memory for each controller to support the required control, communication, trends, alarms, and messages. Protect programs residing in memory with EEPROM, flash memory, or by an uninterruptible power source (battery or uninterruptible power supply). The backup power source shall have capacity to maintain the memory during a 72-hour continuous power outage. Rechargeable power sources shall be constantly charged while the controller is operating under normal line power. Batteries shall be replaceable without soldering. Trend and alarm history collected during normal operation shall not be lost during power outages less than 72 hours long.

- f. Immunity to Power Fluctuations Controllers shall operate at 90% to 110% nominal voltage rating.
- g. Transformer

The controller power supply shall be fused or current limiting and rated at 125% power consumption.

h. Wiring Terminations

Use screw terminal wiring terminations for all field-installed controllers. Provide field-removable modular terminal strip or a termination card connected by a ribbon cable for all controllers other than terminal units.

i. Input and Output Interface

Provide hard-wired input and output interface for all controllers as follows:

- Protection: Shorting an input or output point to itself, to another point, or to ground shall cause no controller damage. Input or output point contact with sources up to 24 volts AC or DC for any duration shall cause no controller damage.
- Binary Inputs: Binary inputs shall have a toggle switch and monitor on and off contacts from a "dry" remote device without external power, and external 5-24 VDC voltage inputs.
- Pulse Accumulation Inputs: Pulse accumulation inputs shall conform to binary input requirements and accumulate pulses at a resolution suitable to the application.

- 4) Analog Inputs: Analog inputs shall monitor low-voltage (0-10 VDC), current (4-20 mA), or resistance (thermistor or RTD) signals.
- 5) Binary Outputs: Binary outputs shall have a toggle switch and send a pulsed 24 VDC low-voltage signal for modulation control, or provide a maintained open-closed position for onoff control. For HVAC equipment and plant controllers, provide for manual overrides, either with three-position (on-off-auto) override switches and status lights, or with an adjacent operator display and interface. Where appropriate, provide a method to select normally open or normally closed operation.
- j. Analog Outputs: Analog outputs shall send modulating 0-10 VDC or 4-20 mA signals to control output devices.
- k. Tri-State Outputs: Tri-State outputs shall provide three-point floating control of terminal unit electronic actuators.
- 1. Communications Ports
 - Direct-Connect Interface Ports: Provide at least one extra communication port at each local panel for direct connecting a notebook computer or hand-held terminal so all network objects and properties may be viewed and edited by the operator.
 - Telecommunications Interface Port: Provide one telecommunication port per building, permitting remote communication via point-to-point (PTP) protocol over telephone lines.
- m. Digital Controller Cabinet

Provide each digital controller in a factory fabricated cabinet enclosure. Cabinets located indoors shall protect against dust and have a minimum NEMA 1 rating, except where indicated otherwise. Cabinets located outdoors or in damp environments shall protect against all outdoor conditions and have a minimum NEMA 4 rating. Outdoor control panels and controllers must be able to withstand extreme ambient conditions, without malfunction or failure, whether or not the controlled equipment is running. If necessary, provide a thermostatically controlled panel heater in freezing locations, and an internal ventilating fan in locations exposed to direct sunlight. Cabinets shall have a hinged lockable door and an offset removable metal back plate, except controllers integral with terminal units, like those mounted on VAV boxes. Provide like-keyed locks for all hinged panels provided and a set of two keys at each panel, with one key inserted in the lock.

n. Main Power Switch and Receptacle

Provide each control cabinet with a main external power on/off switch located inside the cabinet. Also provide each cabinet with a separate 120 VAC duplex receptacle.

D. DDC Software

1. Programming

Provide programming to execute the sequence of operation indicated. Provide all programming and tools to configure and program all controllers. Provide programming routines in simple, easy-to-follow logic with detailed text comments describing what the logic does and how it corresponds to the project's written sequence of operation.

- a. Graphic-based programming shall use a library of function blocks made from pre-programmed code designed for BAS control. Function blocks shall be assembled with interconnecting lines, depicting the control sequence in a flowchart. If providing a computer with device programming tools as part of the project, graphic programs shall be viewable in real time showing present values and logical results from each function block.
- b. Menu-based programming shall be done by entering parameters, definitions, conditions, requirements, and constraints.
- c. For line-by-line and text-based programming, declare variable types (local, global, real, integer, etc.) at the beginning of the program. Use descriptive comments frequently to describe the programming.
- d. If providing a computer with device programming tools as part of the project, provide a means for detecting program errors and testing software strategies with a simulation tool. Simulation may be inherent within the programming software suite, or provided by physical controllers mounted in a NEMA 1 test enclosure. The test enclosure shall contain one dedicated controller of each type provided under this contract, complete with power supply and relevant accessories.
- 2. Parameter Modification

All writeable properties, and all other programming parameters needed to comply with the project specification shall be adjustable for devices at any network level, including those accessible with web-browser communication, and regardless of programming methods used to create the applications.

- Short Cycling Prevention
 Provide setpoint differentials and minimum on/off times to prevent equipment short cycling.
- 4. Equipment Status Delay

Provide an adjustable delay from when equipment is commanded on or off and when the control program looks to the status input for confirmation.

5. Run Time Accumulation

Use the Elapsed Time Property to provide re-settable run time accumulation for each Binary Output Object connected to mechanical loads greater than 1 HP, electrical loads greater than 10 KW, or wherever else specified.

- Timed Local Override
 Provide an adjustable override time for each push of a timed local override button.
- 7. Time Synchronization

Provide time synchronization, including adjustments for leap years, daylight saving time, and operator time adjustments.

8. Scheduling

Provide operating schedules as indicated, with equipment assigned to groups. Changing the schedule of a group shall change the operating schedule of all equipment in the group. Groups shall be capable of operator creation, modification, and deletion. Provide capability to view and modify schedules in a seven-day week format. Provide capability to enter holiday and override schedules one full year at a time.

9. Alarms and Events

Alarms and events shall be capable of having programmed time delays and high-low limits. When a computer workstation or web server is connected to the internetwork, alarms/events shall report to the computer, printer, as defined by an authorized operator. Otherwise alarms/events shall be stored within a device on the network until connected to a user interface device and retrieved. Provide alarms/events in agreement with the point schedule, sequence of operation, and the BAS Owner. At a minimum, provide programming to initiate alarms/events any time a piece of equipment fails to operate, a control point is outside normal range or condition shown on schedules, communication to a device is lost, a device has failed, or a controller has lost its memory.

10. Trending

Provide trend services capable of trending all object present values set points, and other parameters indicated for trending on project schedules. Trends may be associated into groups, and a trend report may be set up for each group. Trends are stored within a device on the network, with operator selectable trend intervals from 15 seconds up to 60 minutes. The minimum number of consecutive trend values stored at one time shall be 100 per variable. When trend memory is full, the most recent data shall overwrite the oldest data. The operator workstation shall upload trends automatically upon reaching 3/4 of the device buffer limit , by operator request, or by time schedule for archiving. Archived and real-time trend data shall be available for viewing numerically and graphically for at the workstation.

11. Device Diagnostics

Each controller shall have diagnostic LEDs for power, communication, and device fault condition. The DDC system shall recognize and report a non-responsive controller.

12. Power Loss

Upon restoration of power, the DDC system shall perform an orderly restart and restoration of control.

2.2 SENSORS AND INPUT HARDWARE

Coordinate sensor types with the BAS Owner to keep them consistent with existing installations.

A. Field-Installed Temperature Sensors

Where feasible, provide the same sensor type throughout the project. Avoid using transmitters unless absolutely necessary.

1. Thermistors

Precision thermistors may be used in applications below 200 degrees F. Sensor accuracy over the application range shall be 0.36 degree F or less between 32 to 150 degrees F. Stability error of the thermistor over five years shall not exceed 0.25 degree F cumulative. A/D conversion resolution error shall be kept to 0.1 degree F. Total error for a thermistor circuit shall not exceed 0.5 degree F.

2. Resistance Temperature Detectors (RTDs)

Provide RTD sensors with platinum elements compatible with the digital controllers. Encapsulate sensors in epoxy, series 300 stainless steel, anodized aluminum, or copper. Temperature sensor accuracy shall be 0.1 percent (1 ohm) of expected ohms (1000 ohms) at 32 degrees F. Temperature sensor stability error over five years shall not exceed 0.25 degree F cumulative. Direct connection of RTDs to digital controllers without transmitters is preferred. When RTDs are connected directly, lead resistance error shall be less than 0.25 degrees F. The total error for a RTD circuit shall not exceed 0.5 degree F.

- 3. Temperature Sensor Details
 - a. Room Type: Provide the sensing element components within a decorative protective cover suitable for surrounding decor. [Provide room temperature sensors with timed override button, setpoint adjustment lever, digital temperature display.] [Provide a communication port or 802.11x wireless support for a portable operator interface like a notebook computer or PDA.]
 - b. Duct Probe Type: Ensure the probe is long enough to properly sense the air stream temperature.
 - c. Duct Averaging Type: Continuous averaging sensors shall be one foot in length for each 4 square feet of duct cross-sectional area, and a minimum length of 6 ft.
 - d. Pipe Immersion Type: Provide minimum three-inch immersion. Provide each sensor with a corresponding pipe-mounted sensor well, unless indicated otherwise. Sensor wells shall be stainless steel when used in steel piping, and brass when used in copper piping. Provide the sensor well with a heat-sensitive transfer agent between the sensor and the well interior.
 - e. Outside Air Type: Provide the sensing element on the building's north side with a protective weather shade that positions the sensor approximately 3 inches off the wall surface, does not inhibit free air flow across the sensing element, and protects the sensor from snow, ice, and rain.
- B. Transmitters

Provide transmitters with 4 to 20 mA or 0 to 10 VDC linear output scaled to the sensed input. Transmitters shall be matched to the respective sensor, factory calibrated, and sealed. Size transmitters for an output near 50 percent of its full-scale range at normal operating conditions. The total transmitter error shall not exceed 0.1 percent at any point across the measured span. Supply voltage shall be 12 to 24 volts AC or DC. Transmitters shall have non-interactive offset and span adjustments. For temperature sensing, transmitter drift shall not exceed 0.03 degrees F a year.

1. Relative Humidity Transmitters

Provide transmitters with an accuracy equal to plus or minus 3 percent from 0 to 90% scale, and less than one percent drift per year. Sensing elements shall be the polymer type.

2. Pressure Transmitters

Provide transmitters integral with the pressure transducer.

C. Current Transducers

Provide current switches as shown on design drawings or point tables.

D. Pneumatic to Electric Transducers

Pneumatic to electronic transducers shall convert a 0 to 20 psig signal to a proportional 4 to 20 mA or 0 to 10 VDC signal (operator scaleable). Supply voltage shall be 24 VDC. Accuracy and linearity shall be 1.0 percent or better.

E. Air Quality Sensors

Provide power supply for each sensor.

1. CO2 Sensors

Provide photo-acoustic type CO2 sensors with integral transducers where shown and linear output. The devices shall read CO2 concentrations between 0 and 2000 ppm with full scale accuracy of at least plus or minus 100 ppm.

2. Air Quality Sensors

Provide full spectrum air quality sensors using a hot wire element based on the Taguchi principle where shown. The sensor shall monitor a wide range of gaseous volatile organic components common in indoor air contaminants like paint fumes, solvents, cigarette smoke, and vehicle exhaust. The sensor shall automatically compensate for temperature and humidity, have span and calibration potentiometers, operate on 24 VDC power with output of 0-10 VDC, and have a service rating of 32 to 140 degrees F and 5 to 95 percent relative humidity.

- F. Input Switches
 - 1. Timed Local Overrides

Provide buttons or switches to override the DDC occupancy schedule programming for each major building zone during unoccupied periods, and to return HVAC equipment to the occupied mode. This requirement is waived for zones clearly intended for 24 hour continuous operation.

2. Freeze Protection Thermostats

Provide special purpose thermostats with flexible capillary elements 20 feet minimum length for coil face areas up to 40 square feet. Provide longer elements for larger coils at 1-foot of element for every 4 square feet of coil face area, or provide additional thermostats. Provide switch contacts rated for the respective motor starter's control circuit voltage. Include auxiliary contacts for the switch's status condition. A freezing condition at any 18-inch increment along the sensing element's length shall activate the switch. The thermostat shall be equipped with a manual push-button reset switch so that when tripped, the thermostat requires manual resetting before the HVAC equipment can restart.

- G. Control Valves
 - 1. Valve Assembly

Valve bodies shall be designed for 125 psig minimum working pressure or 150 percent of the operating pressure, whichever is greater. Valve stems shall be Type 316 stainless steel. Valve leakage ratings shall be 0.01 percent of rated Cv value. Class 125 copper alloy valve bodies and Class 150 steel or stainless steel valves shall meet the requirements of ASME B16.5. Cast iron valve components shall meet the requirements of ASTM A 126 Class B or C.

2. Butterfly Valves

Butterfly valves shall be the threaded lug type suitable for deadend service and for modulation to the fully-closed position, with stainless steel shafts supported by bearings, non-corrosive discs geometrically interlocked with or bolted to the shaft (no pins), and EPDM seats suitable for temperatures from minus 29 degrees C to plus 121 degrees C minus 20 degrees F to plus 250 degrees F. Valves shall have a means of manual operation independent of the actuator.

3. Two-Way Valves

Two-way modulating valves shall have an equal percentage characteristic.

- 4. Three-Way Valves Three-way valves shall have an equal percentage characteristic.
- 5. Valves for Chilled Water, Condenser Water, and Glycol Fluid Service
 - a. Bodies for valves 40 mm 1 1/2 inches and smaller shall be brass or bronze, with threaded or union ends. Bodies for valves from 50

to 80 mm 2 I inches to 3 inches inclusive shall be of brass, bronze, or iron. Bodies for 50 mm 2 inch valves shall have threaded connections. Bodies for valves from 65 to 80 mm 2 1/2 to 3 inches shall have flanged connections.

- b. Internal valve trim shall be brass or bronze, except that valve stems shall be stainless steel.
- c. Unless indicated otherwise, provide modulating valves sized for 2 psi minimum and 4 psi maximum differential across the valve at the design flow rate.
- d. Valves 100 mm 4 inches and larger shall be butterfly valves, unless indicated otherwise.
- 6. Valves for Hot Water Service

Valves for hot water service below 121 degrees C 250 Degrees F:

- a. Bodies for valves 40 mm 1 1/2 inches and smaller shall be brass or bronze, with threaded or union ends. Bodies for valves from 50 to 80 mm 2 inches to 3 inches inclusive shall be of brass, bronze, or iron. Bodies for 50 mm 2 inch valves shall have threaded connections. Bodies for valves from 65 to 80 mm 2 1/2 to 3 inches shall have flanged connections.
- b. Internal trim (including seats, seat rings, modulation plugs, valve stems, and springs) of valves controlling water above 99 degrees C 210 degrees F shall be Type 316 stainless steel.
- c. Internal trim for valves controlling water 99 degrees C 210 degrees F or less shall be brass or bronze. Valve stems shall be Type 316 stainless steel.
- d. Non-metallic parts of hot water control valves shall be suitable for a minimum continuous operating temperature of 121 degrees C or 28 degrees C 250 degrees F or 50 degrees F above the system design temperature, whichever is higher.
- e. Unless indicated otherwise, provide modulating valves sized for 2 psi minimum and 4 psi maximum differential across the valve at the design flow rate.
- f. Valves 100 mm 4 inches and larger shall be butterfly valves, unless indicated otherwise.
- 7. Valves for High Temperature Hot Water Service Valves for hot water service 121 degrees C above 250 Degrees F:
 - a. Valve bodies shall conform to ASME B16.34 Class 300. Valve and actuator combination shall be normally closed. Bodies shall be carbon steel, globe type with welded ends on valves 25 mm 1 inch
and larger. Valves smaller than 25 mm 1 inch shall have socketweld ends. Packing shall be virgin polytetrafluoroethylene (PTFE).

- b. Internal valve trim shall be Type 316 stainless steel.
- c. Unless indicated otherwise, provide modulating values sized for 2 psi minimum and 4 psi maximum differential across the value at the design flow rate.
- 8. Valves for Steam Service

The entire body for valves 40 mm 1 1/2 inches and smaller shall be brass or bronze, with threaded or union ends. Bodies for valves from 50 to 80 mm 2 to 3 inches inclusive shall be of brass, bronze, or carbon steel. Bodies for valves 100 mm 4 inches and larger shall be carbon steel. Bodies for 50 mm2 inch valves shall have threaded connections. Bodies for valves 65 mm 2 1/2 inches and larger shall have flanged connections. Steam valves shall be sized for [103 kPa (gage)] [15 psig]inlet steam pressure with a maximum [90 kPa] [13 psi]differential through the valve at rated flow, except where indicated otherwise. Internal valve trim shall be Type 316 stainless steel.

H. Actuators

Provide direct-drive electric actuators for all control applications, except where indicated otherwise.

1. Electric Actuators

Each actuator shall deliver the torque required for continuous uniform motion and shall have internal end switches to limit the travel, or be capable of withstanding continuous stalling without damage. Actuators shall function properly within 85 to 110 percent of rated line voltage. Provide actuators with hardened steel running shafts and gears of steel or copper alloy. Fiber or reinforced nylon gears may be used for torques less than 16 inch-pounds. Provide twoposition actuators of single direction, spring return, or reversing type. Provide modulating actuators capable of stopping at any point in the cycle, and starting in either direction from any point. Actuators shall be equipped with a switch for reversing direction, and a button to disengage the clutch to allow manual adjustments. Provide the actuator with a hand crank for manual adjustments, as applicable. Thermal type actuators may only be used on terminal fan coil units, terminal VAV units, convectors, and unit heaters. Spring return actuators shall be provided on all control dampers and all

control valves except terminal fan coil units, terminal VAV units, convectors, and unit heaters; unless indicated otherwise. Each actuator shall have distinct markings indicating the full-open and full-closed position, and the points in-between.

- I. Output Signal Conversion
 - 1. Electronic-to-Pneumatic Transducers

Electronic to pneumatic transducers shall convert a 4 to 20 mA or 0 to 10 VDC digital controller output signal to a proportional 0 to 20 psig pressure signal (operator scaleable). Accuracy and linearity shall be 1.0 percent or better. [Transducers shall have feedback circuit that converts the pneumatic signal to a proportional 4 to 20 mA or 0 to 10 VDC signal.]

- J. Output Switches
 - 1. Control Relays

Field installed and DDC panel relays shall be double pole, double throw, UL listed, with contacts rated for the intended application, indicator light, and dust proof enclosure. The indicator light shall be lit when the coil is energized and off when coil is not energized. Relays shall be the socket type, plug into a fixed base, and replaceable without tools or removing wiring. Encapsulated "PAM" type relays may be used for terminal control applications.

2.3 VARIABLE FREQUENCY DRIVES

A. Manufacturers

- 1. VFD shall be Z1000 type, manufactured by Yaskawa America Inc.
- 2. Motors should be inverter duty rated, per NEMA MG1 parts 30 and 31, for motor-drive compatibility.
- B. Description
 - Provide enclosed variable frequency drives suitable for operation at the current, voltage, and horsepower indicated on the schedule. Conform to requirements of NEMA ICS 3.1.
- C. Ratings
 - VFD must operate, without fault or failure, when voltage varies plus 10% or minus 15% from rating, and frequency varies plus or minus 5% from rating.
 - Displacement Power Factor: 0.98 over entire range of operating speed and load.
 - 3. Service factor: 1.0
 - 4. Operating Ambient Temperature: NEMA 1 (IP20): -10°C to 40°C (14°F to 104°F)

- 5. Ambient storage temperature: -20°C to 70°C (-4°F to 158°F)
- 6. Humidity: 0% to 95% non-condensing.
- 7. Altitude: to 3,300 feet (1000m), higher altitudes achieved by derating.
- 8. Vibration: 9.81m/s2 (1 G) maximum at 10 to 20 Hz, 2.0 m/s2 (0.2 G) at 20 Hz to 55 Hz.
- 9. Minimum Efficiency: 96% at half speed; 98% at full speed.
- 10.Starting Torque: 100% starting torque shall be available from 0.5 Hz. to 60 Hz.
- 11.Overload capability: 110% of rated FLA (Full Load Amps) for 60
 seconds; 150% of rated FLA peak.
- 12.Controlled speed range of 40:1
- 13. The VFD's shall include EMI/RFI filters. The onboard RFI filter shall allow the entire VFD assembly to be CE Marked and the VFD shall meet product standard EN 61800-3 for the First Environment restricted. No Exceptions.
- 14. Total Harmonic Distortion (THD) compliance:

Given the information provided by the customer's electric power single line diagram and distribution transformer data, the VFD manufacturer shall carry out an analysis of the system. The analysis reviews the potential for the proposed equipment, and any existing equipment, to meet IEEE 519 (tables 10.2 and 10.3) recommendations at the Point of Common Coupling (PCC). The result of the analysis shall determine if additional power quality improvement measures should be included in the proposal to meet the THD recommendations of IEEE 519. The PCC shall be at the primary side of the main distribution transformer.

- 15.VFDs must be suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes.
- 2.4 ELECTRICAL POWER AND DISTRIBUTION

A. Transformers

Transformers shall conform to UL 506. For control power other than terminal level equipment, provide a fuse or circuit breaker on the secondary side of each transformer.

B. Surge and Transient Protection

Provide each digital controller with surge and transient power protection. Surge and transient protection shall consist of the following devices, installed externally to the controllers.

1. Power Line Surge Protection

Provide surge suppressors on the incoming power at each controller or grouped terminal controllers. Surge suppressors shall be rated in accordance with UL 1449, have a fault indicating light, and conform to the following:

- a. The device shall be a transient voltage surge suppressor, hardwire type individual equipment protector for 120 VAC/1 phase/2 wire plus ground.
- b. The device shall react within 5 nanoseconds and automatically reset.
- c. The voltage protection threshold, line to neutral, shall be no more than 211 volts.
- d. The device shall have an independent secondary stage equal to or greater than the primary stage joule rating.
- e. The primary suppression system components shall be pure silicon avalanche diodes.
- f. The secondary suppression system components shall be silicon avalanche diodes or metal oxide varistors.
- g. The device shall have an indication light to indicate the protection components are functioning.
- h. All system functions of the transient suppression system shall be individually fused and not short circuit the AC power line at any time.
- i. The device shall have an EMI/RFI noise filter with a minimum attenuation of 13 dB at 10 kHz to 300 MHz.
- j. The device shall comply with IEEE C62.41.1 and IEEE C62.41.2, Class "B" requirements and be tested according to IEEE C62.45.
- k. The device shall be capable of operating between -20 degrees F and +122 degrees F.
- 2. Telephone and Communication Line Surge Protection Provide surge and transient protection for DDC controllers and DDC network related devices connected to phone and network communication lines, in accordance with the following:
 - a. The device shall provide continuous, non-interrupting protection, and shall automatically reset after safely eliminating transient surges.
 - b. The protection shall react within 5 nanoseconds using only solidstate silicon avalanche technology.
 - c. The device shall be installed at the distance recommended by its manufacturer.

3. Controller Input/Output Protection

Provide controller inputs and outputs with surge protection via optical isolation, metal oxide varistors (MOV), or silicon avalanche devices. Fuses are not permitted for surge protection.

C. Wiring

Provide complete electrical wiring for the DDC System. Provide all wiring in conduit. Control circuit wiring shall not run in the same conduit as power wiring over 100 volts. [Circuits operating at more than 100 volts shall be in accordance with Section 26 20 00, INTERIOR DISTRIBUTION SYSTEM.]

1. Power Wiring

The following requirements are for field-installed wiring:

- a. Wiring for 24 V circuits shall be insulated copper 24 AWG minimum and rated for 300 VAC service.
- b. Wiring for 120 V circuits shall be insulated copper 14 AWG minimum and rated for 600 VAC service.
- 2. Analog Signal Wiring

Field-installed analog signal wiring shall be 18 AWG single or multiple twisted pair. Each cable shall be 100 percent shielded and have a 20 AWG drain wire. Each wire shall have insulation rated for 300 VAC service. Cables shall have an overall aluminum-polyester or tinned-copper cable-shield tape.

PART 3 - EXECUTION

3.1 INSTALLATION

Perform the installation under the supervision of competent technicians regularly employed in the installation of DDC systems.

A. Naming and Addressing

Coordinate with the BAS Owner and provide unique naming and addressing for networks and devices.

B. Local Area Networks

Obtain Government approval before connecting new networks with existing networks. Network numbers and device instance numbers shall remain unique when joining networks. Do not change existing network addressing without Government approval.

- C. Wiring Criteria
 - a. Run all wiring in conduit.
 - b. Do not run binary control circuit wiring in the same conduit as power wiring over 100 volts. Where analog signal wiring requires

conduit, do not run in the same conduit with AC power circuits or control circuits operating at more than 100 volts.

- c. Provide circuit and wiring protection required by NFPA 70.
- d. Run all wiring located inside mechanical rooms in conduit.
- e. Do not bury aluminum-sheathed cable or aluminum conduit in concrete.
- f. Input/output identification: Permanently label each field-installed wire, cable, and pneumatic tube at each end with descriptive text using a commercial wire marking system that fully encircles the wire, cable, or tube. Locate the markers within 2 inches of each termination. Match the names and I/O number to the project's point list. Similarly label all power wiring serving control devices, including the word "power" in the label. Number each pneumatic tube every six feet. Label all terminal blocks with alpha/numeric labels. All wiring and the wiring methods shall be in accordance with UL 508A.
- g. For controller power, provide new 120 VAC circuits, with ground. Provide each circuit with a dedicated breaker, and run wiring in its own conduit, separate from any control wiring. Connect the controller's ground wire to the electrical panel ground; conduit grounds are not acceptable.
- h. Surge Protection: Install surge protection according to manufacturer's instructions. Multiple controllers fed from a common power supply may be protected by a common surge protector, properly sized for the total connected devices.
- i. Grounding: Ground controllers and cabinets to a good earth ground as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Conduit grounding is not acceptable; all grounding shall have a direct path to the building earth ground. Ground sensor drain wire shields at the controller end.
- j. The Contractor shall be responsible for correcting all associated ground loop problems.
- D. Accessibility

Install all equipment so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install digital controllers, data ports, and concealed actuators, valves, dampers, and like equipment in locations freely accessible through access doors.

- E. Digital Controllers
 - 1. Install as stand alone control devices (see definitions).

- Locate control cabinets at the locations shown on the drawings. If not shown on the drawings, install in the most accessible space, close to the controlled equipment.
- F. Hand-Off-Auto Switches

Wire safety controls such as smoke detectors and freeze protection thermostats to protect the equipment during both hand and auto operation.

G. Temperature Sensors

Install temperature sensors in locations that are accessible and provide a good representation of sensed media. Installations in dead spaces are not acceptable. Calibrate sensors according to manufacturer's instructions. Do not use sensors designed for one application in a different application.

1. Room Temperature Sensors

Mount the sensors on interior walls to sense the average room temperature at the locations indicated. Avoid locations near heat sources such as copy machines or locations by supply air outlet drafts. Mount the center of the sensor [5 feet above the finished floor][54 inches above the floor to meet ADA requirements][at the height[s] indicated].

- 2. Duct Temperature Sensors
 - a. Probe Type: Provide a gasket between the sensor housing and the duct wall. Seal the duct penetration air tight. Seal the duct insulation penetration vapor tight.
 - b. Averaging Type (and coil freeze protection thermostats): Weave the capillary tube sensing element in a serpentine fashion perpendicular to the flow, across the duct or air handler crosssection, using durable non-metal supports. Prevent contact between the capillary and the duct or air handler internals. Provide a duct access door at the sensor location. The access door shall be hinged on the side, factory insulated, have cam type locks, and be as large as the duct will permit, maximum 18 x 18 inches. For sensors inside air handlers, the sensors shall be fully accessible through the air handler's access doors without removing any of the air handler's internals.
- 3. Immersion Temperature Sensors

Provide thermowells for sensors measuring piping, tank, or pressure vessel temperatures. Locate wells to sense continuous flow conditions. Do not install wells using extension couplings. Where piping diameters are smaller than the length of the wells, provide wells in piping at elbows to sense flow across entire area of well. Wells shall not restrict flow area to less than 70 percent of pipe area. Increase piping size as required to avoid restriction. Provide thermal conductivity material within the well to fully coat the inserted sensor.

4. Outside Air Temperature Sensors

Provide outside air temperature sensors in weatherproof enclosures on the north side of the building, away from exhaust hoods and other areas that may affect the reading. Provide a shield to shade the sensor from direct sunlight.

5. Damper Actuators

Where possible, mount actuators outside the air stream in accessible

- Thermometers and Gages
 Mount devices to allow reading while standing on the floor or ground, as applicable.
- 7. Pressure Sensors

Locate pressure sensors as indicated.

8. Component Identification Labeling

Using an electronic hand-held label maker with white tape and bold black block lettering, provide an identification label on the exterior of each new control panel, control device, actuator, and sensor. Also provide labels on the exterior of each new control actuator indicating the (full) open and (full) closed positions. For labels located outdoors, use exterior grade label tape, and provide labels on both the inside and outside of the panel door or device cover. Acceptable alternatives are white plastic labels with engraved bold black block lettering permanently attached to the control panel, control device, actuator, and sensor. Have the labels and wording approved by the BAS Owner prior to installation.

9. Network and Telephone Communication Lines When telephone lines or network connections by the Government are required, provide at least 60 days advance notice of need.

3.2 TEST AND BALANCE SUPPORT

A. The controls contractor shall coordinate with and provide on-site support to the test and balance (TAB) personnel [specified under Section 23 08 00.00 20 HVAC TESTING/ADJUSTING/BALANCING.] This support shall include:

- On-site operation and manipulation of control systems during the testing and balancing.
- Control setpoint adjustments for balancing all relevant mechanical systems, including VAV boxes.
- 3. Tuning control loops with setpoints and adjustments determined by TAB personnel.
- 3.3 CONTROLS SYSTEM OPERATORS MANUALS
 - A. Provide an electronic and printed copies of a Controls System Operators Manual. The manual shall be specific to the project, written to actual project conditions, and provide a complete and concise depiction of the installed work. Provide information in detail to clearly explain all operation requirements for the control system. Provide with each manual: CDs of the project's control system drawings, control programs, data bases, graphics, and all items listed below. Include gateway backup data and configuration tools where applicable.
 - B. Provide CDs in jewel case with printed and dated project-specific labels on both the CD and the case. For text and drawings, use Adobe Acrobat or MS Office file types. When approved by the Government, AutoCAD and Visio files are allowed. Give files descriptive English names and organize in folders.
 - C. Provide printed manuals in sturdy 3-ring binders with a title sheet on the outside of each binder indicating the project title, project location, contract number, and the controls contractor name, address, and telephone number. Each binder shall include a table of contents and tabbed dividers, with all material neatly organized. Manuals shall include the following:
 - A copy of the as-built control system (shop) drawings set, with all items specified under the paragraph "Submittals." Indicate all field changes and modifications.
 - A copy of the project's mechanical design drawings, including any official modifications and revisions.
 - 3. A copy of the project's approved Product Data submittals provided under the paragraph "Submittals."
 - 4. A copy of the project's approved Performance Verification Testing Plan and Report.
 - 5. A copy of the project's approved final TAB Report.
 - Printouts of all control system programs, including controller setup pages if used. Include plain-English narratives of application programs, flowcharts, and source code.

- Printouts of all physical input and output object properties, including tuning values, alarm limits, calibration factors, and set points.
- 8. A table entitled "AC Power Table" listing the electrical power source for each controller. Include the building electrical panel number, panel location, and circuit breaker number.
- 9. The DDC manufacturer's hardware and software manuals in both print and CD format with printed project-specific labels. Include installation and technical manuals for all controller hardware, operator manuals for all controllers, programming manuals for all controllers, operator manuals for all workstation software, installation and technical manuals for the workstation and notebook, and programming manuals for the workstation and notebook software.
- 10. A list of qualified control system service organizations for the work provided under this contract. Include their addresses and telephone numbers.
- 11. A written statement entitled "Technical Support" stating the control system manufacturer or authorized representative will provide toll-free telephone technical support at no additional cost to the Government for a minimum of two years from project acceptance, will be furnished by experienced service technicians, and will be available during normal weekday working hours. Include the toll-free technical support telephone number.
- D. Controller Capability and Labeling

Test the following for each controller:

- Memory: Demonstrate that programmed data, parameters, and trend/alarm history collected during normal operation is not lost during power failure.
- 2. Direct Connect Interface: Demonstrate the ability to connect directly to each type of digital controller with a portable electronic device like a notebook computer or PDA. Show that maintenance personnel interface tools perform as specified in the manufacturer's technical literature.
- 3. Stand Alone Ability: Demonstrate controllers provide stable and reliable stand-alone operation using default values or other method for values normally read over the network.
- 4. Wiring and AC Power: Demonstrate the ability to disconnect any controller safely from its power source using the AC Power Table. Demonstrate the ability to match wiring labels easily with the

control drawings. Demonstrate the ability to locate a controller's location using the Communication Architecture Schematic and floor plans.

- 5. Nameplates and Tags: Show the nameplates and tags are accurate and permanently attached to control panel doors, devices, sensors, and actuators.
- E. Communications and Interoperability Areas Demonstrate proper interoperability of data sharing, alarm and event management, trending, scheduling, and device and network management. These requirements must be met even if there is only one manufacturer of equipment installed. Testing includes the following:
 - Data Presentation: On each existing Operator Workstation, demonstrate graphic display capabilities.
 - 2. Reading of Any Property: Demonstrate the ability to read and display any used readable object property of any device on the network.
 - 3. Setpoint and Parameter Modifications: Show the ability to modify all setpoints and tuning parameters in the sequence of control or listed on project schedules. Modifications are made with BACnet messages and write services initiated by an operator using workstation graphics, or by completing a field in a menu with instructional text.
 - 4. Peer-to-Peer Data Exchange: Show all devices are installed and configured to perform read/write services directly (without the need for operator or workstation intervention), to implement the project sequence of operation, and to share global data.
 - 5. Alarm and Event Management: Show that alarms/events are installed and prioritized according to the BAS Owner. Demonstrate time delays and other logic is set up to avoid nuisance tripping, e.g., no status alarms during unoccupied times or high supply air during cold morning start-up. Show that operators with sufficient privilege can read and write alarm/event parameters for all standard BACnet event types. Show that operators with sufficient privilege can change routing for each alarm/event including the destination, priority, day of week, time of day, and the type of transition involved (TO-OFF NORMAL, TO-NORMAL, etc.).
 - 6. Schedule Lists: Show that schedules are configured for start/stop, mode change, occupant overrides, and night setback as defined in the sequence of operations.

- 7. Schedule Display and Modification: Show the ability to display any schedule with start and stop times for the calendar year. Show that all calendar entries and schedules are modifiable from any connected workstation by an operator with sufficient privilege.
- 8. Archival Storage of Data: Show that data archiving is handled by the operator workstation/server, and local trend archiving and display is accomplished with BACnet Trend Log objects.
- 9. Modification of Trend Log Object Parameters: Show that an operator with sufficient privilege can change the logged data points, sampling rate, and trend duration.
- 10. Device and Network Management: Show the following capabilities
 - a. Display of Device Status Information
 - b. Display of Object Information
 - c. Silencing Devices that are Transmitting Erroneous Data
 - d. Time Synchronization
 - e. Remote Device Reinitialization
 - f. Backup and Restore Device Programming and Master Database(s)

F. Execution of Sequence of Operation

Demonstrate that the HVAC system operates properly through the complete sequence of operation. Use read/write property services to globally read and modify parameters over the internetwork.

G. Control Loop Stability and Accuracy

For all control loops tested, give the Government trend graphs of the control variable over time, demonstrating that the control loop responds to a 20% sudden change of the control variable set point without excessive overshoot and undershoot. If the process does not allow a 20% set point change, use the largest change possible. Show that once the new set point is reached, it is stable and maintained. Control loop trend data shall be in real-time with the time between data points 30 seconds or less.

3.5 TRAINING REQUIREMENTS

Provide a qualified instructor (or instructors) with two years minimum field experience with the installation and programming of similar DDC systems. Orient training to the specific systems installed. Coordinate training times with the Contracting Officer and BAS Owner after receiving approval of the training course documentation. Training shall take place at the job site and/or a nearby Government-furnished location. A training day shall occur during normal working hours, last no longer than 8 hours and include a one-hour break for lunch and two additional 15-minute breaks. The project's approved Controls System Operators Manual shall be used as the training text. The Contractor shall ensure the manuals are submitted, approved, and available to hand out to the trainees before the start of training.

A. Training Documentation

Submit training documentation for review 30 days minimum before training. Documentation shall include an agenda for each training day, objectives, a synopses of each lesson, and the instructor's background and qualifications. The training documentation can be submitted at the same time as the project's Controls System Operators Manual.

B. Phase I Training - Fundamentals

The Phase I training session shall last [2 hours] and be conducted in a classroom environment provided by the contractor. Provide each trainee a printed 8.5 x 11 inch hard-copy of all visual aids used. Upon completion of the Phase I Training, each trainee should fully understand the project's DDC system fundamentals. The training session shall include the following:

- DDC fundamentals (objects, services, addressing) and how/where they are used on this project
- 2. This project's list of control system components
- 3. This project's list of points and objects
- 4. This project's device and network communication architecture
- 5. This project's sequences of control, and:
- 6. Alarm capabilities
- 7. Trending capabilities
- 8. Troubleshooting communication errors
- 9. Troubleshooting hardware errors
- D. Phase II Training Operation

Provide Phase II Training shortly after completing Phase I Training. The Phase II training session shall last [2 hours] and be conducted at the DDC system workstation, at a notebook computer connected to the DDC system in the field, and at other site locations as necessary. Upon completion of the Phase II Training, each trainee should fully understand the project's DDC system operation. The training session shall include the following:

- A walk-through tour of the mechanical system and the installed DDC components (controllers, valves, dampers, surge protection, switches, thermostats, sensors, etc.)
- 2. A discussion of the components and functions at each DDC panel

- 3. Logging-in and navigating at each operator interface type
- 4. Using each operator interface to find, read, and write to specific controllers and objects
- 5. Modifying and downloading control program changes
- 6. Modifying setpoints
- 7. Creating, editing, and viewing trends
- 8. Creating, editing, and viewing alarms
- 9. Creating, editing, and viewing operating schedules and schedule objects
- 10. Backing-up and restoring programming and data bases
- 11. Modifying graphic text, backgrounds, dynamic data displays, and links to other graphics
- 12. Creating new graphics and adding new dynamic data displays and links
- 13. Alarm and Event management
- 14. Adding and removing network devices
- -- End of Section --

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Exhaust duct Radioisotope Hoods.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Round and flat oval duct construction details:

- a. Manufacturer's details for duct fittings.
- b. Duct liner.
- c. Sealants and gaskets.
- d. Access sections.
- e. Installation instructions.
- 2. Volume dampers, back draft dampers.
- 3. Upper hanger attachments.
- 4. Instrument test fittings.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other

```
Structures
```

C. American Society for Testing and Materials (ASTM):

A167-99(2009).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

- A653-09..... Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process
- A1011-09a.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength
- B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
- C1071-05e1.....Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)
- E84-09a.....Standard Test Method for Surface Burning Characteristics of Building Materials
- D. National Fire Protection Association (NFPA):
 - 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 96-08....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations

- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 2nd Edition - 2005.....HVAC Duct Construction Standards, Metal and Flexible 1st Edition - 1985.....HVAC Air Duct Leakage Test Manual 6th Edition - 2003.....Fibrous Glass Duct Construction Standards F. Underwriters Laboratories, Inc. (UL): 181-08..........Factory-Made Air Ducts and Air Connectors 555-06Standard for Fire Dampers 555S-06Standard for Smoke Dampers
- PART 2 PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- B. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- C. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
 - Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal

- D. Radioisotope H3, Hood Exhaust and Associated Ductwork: 1.3 mm (18 gage) all welded stainless steel duct.
- E. Radioisotope Hood, Exhaust and Associated Ductwork: 1.3 mm (18 gage) all welded Stainless steel.

2.3 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.

- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- E. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- F. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- G. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC GENERATION

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the utility's system shall conform to the utility's requirements. Coordinate fuses, circuit breakers and relays with the utility's system, and obtain utility approval for sizes and settings of these devices.
- D. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as

NEMA, or ANSI. Evidence of compliance shall include certified test reports and definitive shop drawings.

- B. Definitions:
 - 1. Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified; equipment or product which:
 - a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory.
 - c. Bears a label, tag, or other record of certification.
 - Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.7 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with Section 00 72 00, GENERAL CONDITIONS and Section 01 33

23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to switchgear, switchboards, panelboards, transformers, motor control centers, motor controllers, uninterruptible power systems, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories.
 - During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart K in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - 1. Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical

components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.

- 2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E.
- 3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used and exit pathways.
- 4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer.
- D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interferences.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working spaces shall not be less than specified in the NEC for all voltages specified.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and

maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers (starters), fused and unfused safety switches, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.

- B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 1/2 inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm²), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.

1.	Mark	the	submittals,	"SUBMITTED	UNDER	SECTION	۳.	

- 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
- 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.

- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

The contractor shall furnish the instruments, materials and labor for field tests.

1.15 TRAINING

- A. Training shall be provided in accordance with Article 1.25, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.

C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

- - - E N D - - -

SECTION 26 05 21

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW)

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of the low voltage power and lighting wiring.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

Low voltage cables shall be thoroughly tested at the factory per NEMA WC-70 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- Manufacturer's Literature and Data: Showing each cable type and rating.
- 2. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.

B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC) D. National Electrical Manufacturers Association (NEMA): WC 70-09..... Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy E. Underwriters Laboratories, Inc. (UL): 44-05..... Wires and Cables 83-08..... Thermoplastic-Insulated Wires and Cables 467-071......Electrical Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05.....Sealed Wire Connector Systems 486E-94......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Conduit, Tubing, and Cable Fittings 1479-03.....Fire Tests of Through-Penetration Fire Stops

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA WC-70 and as specified herein.
- B. Single Conductor:
 - 1. Shall be annealed copper.
 - Shall be stranded for sizes No. 8 AWG and larger, solid for sizes No.
 10 AWG and smaller.
 - 3. Shall be minimum size No. 12 AWG, except where smaller sizes are allowed herein.
- C. Insulation:
 - 1. XHHW-2 or THHN-THWN shall be in accordance with NEMA WC-70, UL 44, and UL 83.
- D. Color Code:
 - 1. Secondary service feeder and branch circuit conductors shall be color-coded as follows:

208/120 volt	Phase	480/277 volt		
Black	A	Brown		
Red	В	Orange		
Blue	С	Yellow		
White	Neutral	Gray *		
* or white with	colored (other	than green) tracer.		

- a. Lighting circuit "switch legs" and 3-way switch "traveling wires" shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Resident Engineer.
- Use solid color insulation or solid color coating for No. 12 AWG and No. 10 AWG branch circuit phase, neutral, and ground conductors.
- 3. Conductors No. 8 AWG and larger shall be color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified above.
 - c. Color as specified using 0.75 in [19 mm] wide tape. Apply tape in half-overlapping turns for a minimum of 3 in [75 mm] for terminal points, and in junction boxes, pull-boxes, troughs, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

2.2 SPLICES AND JOINTS

- A. In accordance with UL 486A, C, D, E, and NEC.
- B. Aboveground Circuits (No. 10 AWG and smaller):
 - Connectors: Solderless, screw-on, reusable pressure cable type, rated 600 V, 220° F [105° C], with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped wires.
 - The number, size, and combination of conductors, as listed on the manufacturer's packaging, shall be strictly followed.

- C. Aboveground Circuits (No. 8 AWG and larger):
 - Connectors shall be indent, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Field-installed compression connectors for cable sizes 250 kcmil and larger shall have not fewer than two clamping elements or compression indents per wire.
 - 3. Insulate splices and joints with materials approved for the particular use, location, voltage, and temperature. Splice and joint insulation level shall be not less than the insulation level of the conductors being joined.
 - 4. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified for power and lighting wiring, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.4 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install in accordance with the NEC, and as specified.
- B. Install all wiring in raceway systems.
- C. Splice cables and wires only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Wires of different systems (e.g., 120 V, 277 V) shall not be installed in the same conduit or junction box system.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. For panel boards, cabinets, wireways, switches, and equipment assemblies, neatly form, train, and tie the cables in individual circuits.
- G. Seal cable and wire entering a building from underground between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- H. Wire Pulling:

- Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables. Use lubricants approved for the cable.
- 2. Use nonmetallic ropes for pulling feeders.
- 3. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer.
- 4. All cables in a single conduit shall be pulled simultaneously.
- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- No more than three single-phase branch circuits shall be installed in any one conduit.

3.2 SPLICE INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure.
- B. Tighten electrical connectors and terminals according to manufacturer's published torque values.
- C. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

3.3 FEEDER IDENTIFICATION

A. In each interior pull-box and junction box, install metal tags on all circuit cables and wires to clearly designate their circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties.

3.4 EXISTING WIRING

Unless specifically indicated on the plans, existing wiring shall not be reused for a new installation.

3.5 CONTROL AND SIGNAL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.

3.6 CONTROL AND SIGNAL SYSTEM WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Feeders and branch circuits shall have their insulation tested after installation and before connection to utilization devices, such as fixtures, motors, or appliances. Test each conductor with respect to adjacent conductors and to ground. Existing conductors to be reused shall also be tested.
- B. Applied voltage shall be 500VDC for 300-volt rated cable, and 1000VDC for 600-volt rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300-volt rated cable and 100 megohms for 600-volt rated cable.
- C. Perform phase rotation test on all three-phase circuits.
- D. The contractor shall furnish the instruments, materials, and labor for all tests.

- - - E N D - - -

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the general grounding and bonding requirements for electrical equipment and operations to provide a low impedance path for possible ground fault currents.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low Voltage power and lighting wiring.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

A. American Society for Testing and Materials (ASTM): B1-07.....B1-07.....Standard Specification for Hard-Drawn Copper

Wire

- B3-07.....Standard Specification for Soft or Annealed Copper Wire
- B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- B. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 - 81-1983..... EEEE Guide for Measuring Earth Resistivity,

Ground Impedance, and Earth Surface Potentials of a Ground System

C2-07.....National Electrical Safety Code

C. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

- 99-2005.....Health Care Facilities
- D. Underwriters Laboratories, Inc. (UL):
 - 44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 44 or UL 83 insulated stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG [25 mm²] and larger shall be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be ASTM B1 solid bare copper wire.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a bare grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide 100% electrical continuity throughout the wireway system, by connecting a No. 6 AWG [16 mm²] bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG [16 mm²] bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 50 ft [16 M].
 - 3. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - 4. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 49 ft [15 M].
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

- - - E N D - - -

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Shop Drawings:
 - 1. Size and location of panels and pull-boxes.
 - 2. Layout of required conduit penetrations through structural elements.
- C. Certifications:
 - 1. Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

Α.	Publications listed below (including amendments, addenda, revisions,
	supplements, and errata) form a part of this specification to the extent
	referenced. Publications are referenced in the text by designation only.
в.	American National Standards Institute (ANSI):
	C80.1-05Electrical Rigid Steel Conduit
	C80.3-05Steel Electrical Metal Tubing
	C80.6-05Celectrical Intermediate Metal Conduit
C.	National Fire Protection Association (NFPA):
	70-08National Electrical Code (NEC)
D.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04 Surface Metal Raceway and Fittings
	6-07 Electrical Rigid Metal Conduit - Steel
	50-95 Enclosures for Electrical Equipment
	360-093Conduit
	467-07 Grounding and Bonding Equipment
	514A-04Metallic Outlet Boxes
	514B-04Conduit, Tubing, and Cable Fittings
	514C-96Nonmetallic Outlet Boxes, Flush-Device Boxes and
	Covers
	651-05Conduit and S0 Rigid PVC Conduit and
	Fittings
	651A-00Type EB and A Rigid PVC Conduit and HDPE Conduit
	797-07Electrical Metallic Tubing
	1242-06Electrical Intermediate Metal Conduit - Steel
Ε.	National Electrical Manufacturers Association (NEMA):
	TC-2-03Electrical Polyvinyl Chloride (PVC) Tubing and
	Conduit
	TC-3-04PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
	FB1-07
	for Conduit, Electrical Metallic Tubing and
	Cable

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than .75 in [13 mm] unless otherwise shown. Where permitted by the NEC, .75 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.

- B. Conduit:
 - Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
- C. Conduit Fittings:
 - 1. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew couplings and connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the Resident Engineer as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
 - Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.

- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - 4. Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.

- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:

SPEC WRITER NOTE: Edit paragraphs below per project requirements.

- 1. Conduit for conductors 600 V and below: EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
- 2. Align and run conduit parallel or perpendicular to the building lines.
- Connect recessed lighting fixtures to conduit runs with maximum 6 ft
 [1.8 M] of flexible metal conduit extending from a junction box to
 the fixture.
- 4. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

3.5 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and

locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal

conduit. 3.6 EXPANSION JOINTS

A. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.

3.7 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.

- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.8 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- G. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -