SECTION 23 65 00 COOLING TOWERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Packaged, open circuit cooling tower complete with fill, fan, louvers and associated accessories and equipment.

1.2 RELATED WORK

- A. Section 03 30 00, CAST IN PLACE CONCRETE: Requirements for concrete inertia bases.
- B. Seismic Restraint for Equipment: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one item.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Requirements for vibration isolation.
- E. Section 23 25 00, HVAC WATER TREATMENT: Requirements for condenser water treatment.
- F. Section 23 21 13, HYDRONIC PIPING: Requirements for water piping and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Design Criteria:
 - 1. Design to withstand 1436 Pa (30 psf) wind load.
 - 2. Free water drift loss shall not be greater than five hundredths of one percent (0.005) of the water circulated to tower.
 - 3. Sound levels at 15 meters (50 feet) in any direction from the tower shall not exceed 70 dB (A). Provide sound attenuators if necessary to meet the noise criteria.

C. Performance Criteria:

1. Manufacturer shall certify that performance of cooling towers will meet contract requirements, stating entering air wet bulb temperature, entering and leaving condenser water temperatures, water flow rates, fan kW

(horsepower), and pump head at base of tower. Certification shall be made at the time of submittal.

- Cooling Technology Institute (CTI) Certified Towers: These towers shall have been tested, rated, and certified in accordance with Cooling Technology Institute (CTI) Standard 201, and shall bear the CTI certification label, and shall be listed in the CTI directory of certified cooling towers.
- 3. Non-CTI certified Cooling towers: If CTI certification is not available, manufacturer for towers of 700 kW (200 tons) or larger, shall submit curves showing predicted performance as required in ASME PTC-23, or CTI Bulletin ATC-105 for Water Cooling Towers, and CTI Bulletin ATC-105S for Closed Circuit Cooling Towers. These towers shall be tested in the field as specified in Part 3 of this specification.
- The alignment and balancing of the fans, motors and drive shaft as installed shall operate within the vibration tolerance specified in specification Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings
 - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Include rated capacities, pressure drop, fan performance and rating curves, dimensions, weights, mounting details, front view, side view, equipment and device arrangement.
 - 3. Include electrical rating, detail wiring for power, signals and controls.
 - 4. Pump characteristic curve for the closed loop cooling tower.
 - 5. Sound curves and characteristics of sound attenuators if required to meet the noise criteria.

C. Certification:

- Submit four copies of performance curves, for CTI certified cooling towers, showing compliance with actual conditions specified, to the COTR two weeks prior to delivery of the equipment.
- Two weeks prior to final inspection, submit four copies of the following to the COTR:
 - a. Certification from the manufacturer that the cooling tower(s), accessories, and components will withstand the seismic forces

listed by the CBC for the region contained in the vase medical center and that the unit will be fully operational after the seismic event at the project site.

- b. Certification by the manufacturer that the cooling towers conform to the requirements of the drawings and specifications.
- c. Certification by the Contractor that the cooling towers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A.	The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B.	American National Standard Institute (ANSI):
	A10.18-96 Construction and Demolition Operations - Temporary Floor Holes, Wall Openings, Stairways and Other Unprotected Edges
C.	American Society of Mechanical Engineers (ASME):
	PTC 23-03 Performance Test Codes on Atmospheric Water Cooling Equipment
D.	American Society for Testing Materials (ASTM):
	A385-05 Standard Practice for Providing High-Quality Zinc Coatings (Hot-Dip)
	B117-03 Standard Practice for Operating Salt Spray (Fog) Apparatus
	B209-06 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
	E84-06 Standard Test Method for Surface Burning Characteristics of Building Materials
E.	Cooling Technology Institute (CTI):
	ATC-105-00 Acceptance Test Code for Water-Cooling Towers (CTI Code Tower Standard Specifications)
	ATC-105S-96 Acceptance Test Code for Closed Circuit Cooling Towers (CTI Code Tower Standard Specifications)
	201-02 (Rev. 04) Standard for Certification of Water Cooling Tower Thermal Performance (CTI Code Tower Standard Specifications)
F.	National Electrical Manufacturers Association (NEMA):

MG 1-06..... Motors and Generators (ANSI)

250-03..... Enclosures for Electrical Equipment (1000 Volts Maximum)

G. National Fire Protection Association (NFPA):

70-05..... National Electrical Code

PART 2 - PRODUCTS

2.1 CROSS FLOW COOLING TOWER:

- A. Casing: Heavy gage Stainless Steel
 - 1. Stainless Steel: ASTM A666, Type 304.
 - Fasteners: Zinc or cadmium coated bolts or tapping screws for assembly.
 Use stainless steel washers with neoprene backing where required for preventing leaks.
 - 3. Joints and Seams: Sealed watertight.
 - 4. Welded connections: Continuous and watertight.
- B. Framing: Stainless Steel Structure
- C. Louvers:
 - Spaced to minimize air resistance and prevent splash out. Louver materials shall be similar to the casings or may be polyvinyl chloride (PVC) if formed integral with the fill material.
 - 25 mm (1 inch) inlet screen, stainless steel. Attach the screen securely to air intakes.
- D. Fill:
 - 1. PVC resistant to rot, decay and biological attack; with a maximum flame spread rating of five per ASTM E84 and fabricated, formed and installed by manufacturer to ensure that water breaks up into droplets.
- E. Drift Eliminators: Same as fill material. Effectively trap water droplets entrained in discharge air stream and limit drift loss to less than 0.005 percent of the total water circulated. Sections shall be assembled into easily removable racks of the same material as the casing. Eliminators can be PVC neoprene honeycomb type.
- F. Hot Water Distribution System: Stainless Steel, open basin, flume and troughs, or a pipe system with nozzles spaced for even distribution of water over fill material. Provide access door. System shall be self-draining and non-clogging. Spray nozzles, if used, shall be cleanable stainless steel, non-clog, removable type properly spaced for even distribution. Provide cover for entire nozzle area or flume/trough area.
- G. Cold Water Collection Basin: Heavy gauge, stainless steel. Overflow, drain not less than DN 50 (NPS 2), and a 304 stainless steel strainer assembly with

- openings smaller than nozzle orifices and with built-in vortex baffling to prevent cavitation and air entrainment in the water basin circulating pump.
- H. Accessories: Make-up water, overflow and drain connections, Equalizer connection (multiple cooling tower systems) Flume plate between adjacent cells (multi-cell units only).
- I. Collection Basin Water Level Control: Mechanically operated bronze adjustable make-up water float valve
- J. Tower Water Distribution Circulating Pump: Close coupled bronze fitted centrifugal circulating pump with mechanical seal suitable for outdoor use, suction strainer, and flow balancing valve. Pump shall be completely piped to suction strainer and water distribution system, mounted to drain completely when tower basin is drained. Include a bleed line with valve between pump discharge and overflow pipe. For pump motor, see specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- K. Fans: Low sound fan with aluminum blades furnished with single speed motor mounted outside air steam. The fan drive and moving parts shall be completely enclosed by removable hot-dip galvanized screens and panels complying with OSHA regulations. Fan shaft bearings of the self aligning, grease-lubricated ball or roller bearings with moisture proof seals and premium, moisture-resistant grease suitable for temperatures between minus 29 and 149 degrees C (minus 20 and plus 300 degrees F). Bearings designed for an L-10 life of 50,000 hours and with extended lubrication lines to an easily accessible location outside of the wet air stream. Provide access doors for inspection and cleaning.
 - The alignment and balancing of the fans, motors and drive shaft as installed shall operate within the vibration limits specified in specification Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
 - 2. In addition to the requirements of specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, the following shall apply:
 - a. Motors: Totally enclosed or epoxy encapsulated NEMA MG 1. Protect fan, bearings, and appurtenances from damage by weather, corrosion, water spray and grit. Provide motors with severe duty rating with the rotor and stator protected with corrosion-inhibiting epoxy resin, double shielded, vacuum-degassed bearings lubricated with premium moisture-resistant grease suitable for temperatures between minus 29 and plus 149 degrees C (minus 20 and plus 300 degrees F), and an internal heater automatically energized when motor is de-energized. Provide an adjustable motor base or other suitable provision for adjusting belt tension.
 - b. Fans shall be driven through a gear reducer. Gear reducer drive: Specially designed by manufacturer for this cooling tower operation, with dynamically balanced drive shaft assembly or shock absorbent flexible coupling requiring no lubrication, cast iron case with readily accessible oil drum and fill, and self-contained oil reservoir sealed against water entrance. Gear reducer shall have a minimum warranty of 5 years by cooling

tower manufacturer. The alignment and balancing of the fans, motors and drive shaft as installed shall operate within the vibration tolerance specified in specification Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- L. Motors and Motor Controllers: Provide variable speed motors and controllers, if shown on drawings for cooling tower fans. See specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. In addition to the requirements of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, the following shall apply:
 - 1. Motors: Totally enclosed or epoxy encapsulated NEMA MG 1. Protect fan, bearings, and appurtenances from damage by weather, corrosion, water spray and grit. Provide motors with severe duty rating with the rotor and stator protected with corrosion-inhibiting epoxy resin, double shielded, vacuum-degassed bearings lubricated with premium moisture-resistant grease suitable for temperatures between minus 29 and plus 149 degrees C (minus 20 and plus 300 degrees F), and an internal heater automatically energized when motor is de-energized. Provide an adjustable motor base or other suitable provision for adjusting belt tension.
 - 2. Lubrication fittings shall be readily accessible outside the wet air stream. Provide access doors for inspection and cleaning.
- M. Fans over 1500 mm (60 inches) in diameter include a vibration cutout switch located in a protected position to effectively monitor fan vibration. Vibration switch shall be solid-state with adjustable time delay in NEMA 250, Type 4 enclosure. It shall stop fan motor under excessive fan vibration.
- N. Safety: Provide fan guards, ladders, handrails and platform in conformance with the ANSI A10.18 as follows:
 - 1. Fan Guard: Removable fan discharge with a rigid framed screen guard, installed over the fan cylinder.
 - Ladders: Vertical hot-dip galvanized steel or aluminum ladder for each tower located outdoors. Ladders higher than 3.6 meters (12 feet) shall have safety cage. Ladders shall extend to within 300 mm (one foot) of the grade or the roof deck surface.
 - 3. Hand Railing: Steel or aluminum hand railings not less than 1070 mm (42 inches) high around perimeter of each fan-deck, or working surface 3.6 meters (12 feet) or more above ground, roof or other supporting construction. Handrails shall meet OSHA Standards.
 - 4. Platform: Galvanized steel with a bar grating floor.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cooling tower according to equipment manufacturer's written instruction.

- B. Install cooling towers plumb, level and anchored on structure provided.

 Coordinate steel structure with cooling tower mounting requirements. If installed on concrete base, refer to Division 3 of specification for concrete materials and installation requirements.
- C. Install vibration controls according to manufacturer's recommendations.
- D. Install anchor bolts to elevations required for proper attachment to supported equipment
- E. Maintain manufacturer's recommended clearances for service and maintenance.

F. Piping:

- 1. Install piping, including flanges or union adjacent to cooling towers to allow for service and maintenance.
- Install flexible pipe connectors at connections to cooling towers mounted on vibration isolators.
- 3. Install shutoff/balancing valves at cooling tower inlet connections.
- 4. Install piping adjacent to cooling towers to allow service and maintenance.
- 5. Provide drain piping with valve at cooling tower drain connections and at low points in piping.
- 6. Connect cooling tower overflows and drains, and piping drains to sanitary sewage system.
- 7. Domestic Water Piping: Comply with applicable requirements in Section 22 11 00, FACILITY WATER DISTRIBUTION. Connect to water-level control with shutoff valve and union, flange, or mechanical coupling at each connection.
- 8. Supply and Return Piping: Comply with applicable requirements in Section 23 21 13, HYDRONIC PIPING. Connect to entering cooling tower connections with shutoff valve, balancing valve, thermometer, plugged tee with pressure gage, flow meter and drain connection with valve. Connect to leaving cooling tower connection with shutoff valve. Make connections to cooling tower with a union, flange, or mechanical coupling.
- 9. Equalizer Piping: Piping requirements to match supply and return piping. Connect an equalizer pipe, full size of cooling tower connection, between tower cells. Connect to cooling tower with shutoff valve.
- G. Seismic Restraints: Provide in accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- H. Electrical Wiring: Install electrical devices, components and accessories furnished loose by manufacturer, including remote flow switches and variable frequency drives.

3.2 FIELD QUALITY CONTROL

- A. Provide the services of an independent testing and inspection agency to perform the field tests and inspections of non-CTI certified cooling towers, 700 kW (200 tons) and larger, according to ASME PTC-23 "Performance Test Code on Cooling Tower Equipment" Submit qualification of the independent testing agency to the COTR two weeks prior to the inspection for approval.
- B. If the cooling tower does not meet the specified performance, the Contractor shall make the tower corrections necessary to bring the tower into compliance with the specified performance including replacing the tower if necessary. Additional tests will be required until the tower meets the specified performance. Costs for the tower corrections or replacement, and tests shall be borne by the Contractor. However, the VA will pay for the initial test, when requested, if the cooling tower of less than 200 tons meets the specified performance.

3.3 STARTUP AND TESTING

- A. Provide the services of a factory-authorized and qualified representative to perform start up service.
- B. Clean entire unit including basin.
- C. Inspect field-assembled components and equipment installation, including piping and electrical connections.
- D. Verify that accessories are properly installed.
- E. Obtain and review performance curves and tables.
- F. Perform startup checks, according to manufacturer's written instructions, and as noted below:
 - 1. Check clearances for airflow and tower servicing.
 - 2. Check for vibration isolation and structural support.
 - 3. Verify fan rotation for correct direction and for vibration or binding and correct problems.
 - 4. Adjust belts to proper alignment and tension.
 - 5. Lubricate rotating parts and bearings.
 - 6. Verify proper oil level in gear-drive housing. Fill with oil to proper level.
 - Operate variable-speed fans through entire operating range and check for harmonic vibration imbalance. Set motor controller to skip speeds resulting in abnormal vibration.
 - 8. Check vibration switch setting. Verify operation.
 - 9. Verify operation of basin heater and control.
 - 10. Operate equipment controls and safeties.

- 11. Verify that tower discharge is high enough and it does not recirculate into HVAC air intakes. Recommend corrective action.
- G. Adjust water level for proper operating level and balance condenser water flow to each tower inlet.
- H. Check water treatment water system, including blow down for proper operation of the tower. Check makeup water-level control and valve.
- I. Start cooling tower, including condenser water pumps and verify the tower operation.
- J. Prepare and submit a written report of startup and inspection service to the COTR.
- K. Replace defective and malfunctioning units.

3.4 TRAINING:

A. Furnish the services of a competent, factory-trained engineer or technician for a 2-hour period for instructing VA personnel in operation and maintenance of the equipment, including review of the operation and maintenance manual, on a date requested by the COTR. Coordinate this training with that of the chiller, if furnished together.

END OF SECTION 23 65 00