100% CD

July 11, 2014

VANCHCS HIGH EFFICIENCY CHILLER INSTALLATION

VA Project #612A4-14-006

SPECIFICATIONS

US Department Of Veterans Affairs VANCHCS, MATHER, CA

HILLIARD ARCHITECTS, INC 251 POST STREET, SUITE 620 SAN FRANCISCO, CA 94108

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 15	List of Drawing Sheets	07-11
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	07-11
01 32 16.15	Project Schedules	07-11
01 33 23	Shop Drawings, Product Data, and Samples	07-11
01 42 19	Reference Standards	07-11
01 45 29	Testing Laboratory Services	07-11
01 45 01	Waterproofing Work Coordination	07-11
01 45 29	Testing Laboratory Services	07-11
01 57 19	Temporary Environmental Controls	07-11
01 58 16	Temporary Interior Signage	07-11
01 74 19	Construction Waste Management	07-11
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	07-11
	DIVISION 03 - CONCRETE	
03 10 00	Concrete Formwork	07-11
03 21 00	Reinforcing Steel	07-11
03 30 00	Cast-in-Place Concrete	07-11
	DIVISION 04 - MASONRY	
	Not Used	
	DIVISION 05 - METALS	
05 50 00	Metal Fabrications	07-11
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
	Not Used	
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 84 00	Firestopping	07-11
07 92 00	Joint Sealants	07-11

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

	DIVISION 08 - OPENINGS	
	Not Used	
	DIVISION 09 - FINISHES	
09 91 00	Painting	07-11
	DIVISION 10 - SPECIALTIES	
	Not Used	
	DIVISION 11 - EQUIPMENT	
	Not Used	
	DIVISION 12 - FURNISHINGS	
	Not Used	
	DIVISION 13 - SPECIAL CONSTRUCTION	
13 05 41	Seismic Restraint Requirements	07-11
	DIVISION 14- CONVEYING EQUIPEMENT	
	Not Used	
	DIVISION 21- FIRE SUPPRESSION	
	Not Used	
	DIVISION 22 - PLUMBING	
	Not Used	
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	07-11
23 05 12	General Motor Requirements for HVAC and Steam Generation Equipment	07-11
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	07-11
23 05 93	Testing, Adjusting, and Balancing for HVAC	07-11
23 07 11	HVAC Insulation	07-11
23 08 00	Commissioning of HVAC	07-11
23 09 23	Direct-Digital Control System for HVAC	07-11
23 21 13	Hydronic Piping	07-11
23 21 23	Hydronic Pumps	07-11

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

100% CD July 11, 2014

23 25 00	HVAC Water Treatment	07-11
23 64 00	Packaged Water Chillers	07-11
	DIVISION 25 - INTEGRATED AUTOMATION	
	Not Used	
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	07-11
26 05 19	Low-Voltage Electrical Power Conductors and Cables	07-11
26 05 26	Grounding and Bonding for Electrical Systems	07-11
26 05 33	Raceway and Boxes for Electrical Systems	07-11
26 05 73	Overcurrent Protective Device Coordination Study	07-11
26 29 11	Motor Controllers	07-11
26 29 21	Enclosed Switches and Circuit Breakers	07-11
26 36 23	Automatic Transfer Switches	07-11
	DIVISION 27 - COMMUNICATIONS	
	Not Used	
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
	Not Used	
	DIVISION 31 - EARTHWORK	
	Not Used	
	DIVISION 32 - EXTERIOR IMPROVEMENTS	
	Not Used	
	DIVISION 33 - UTILITIES	
	PIATOTOM 22 - OIIDIIIRD	
	Not Used	
	DIVISION 34 - TRANSPORTATION	
	DIVISION 34 - IRANSPORTATION	
	Net Heed	
	Not Used	
	DIVISION 48 - Electrical Power Generation	
	Not Used	

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of

the contract.

Drawing No.	Title
	GENERAL
G-000	COVER SHEET
	ARCHITECTURAL
A-001	ROOF PENETRATION DETAILS
	STRUCTURAL
S-001	GENERAL NOTES AND TYPICAL DETAILS
702-S-101	FOUNDATIONS AND ROOF FRAMING PLAN
S-501	DETAILS
	HEATING, VENTILATING, AIR
	CONDITIONING AND REFRIGERATION
M-001	MECHANICAL LEGEND, SYMBOLS AND ABBREVIATIONS
MS-101	MECHANICAL PARTIAL SITE PLAN
702-MD-101	MECHANICAL DEMOLITION PLAN - PHASE 0 - BLDG 702 - LEVEL 1
702-MH-101	MECHANICAL HVAC NEW WORK PLAN - PHASE 0 - BLDG 702 - LEVEL 1
702-MD-111	MECHANICAL DEMOLITION PLAN - PHASE 1 - BLDG 702 - LEVEL 1
702-MD-112	MECHANICAL DEMOLITION PLAN - PHASE 1 - BLDG 702 - ROOF
702-MH-111	MECHANICAL HVAC NEW WORK PLAN - PHASE 1 - BLDG 702 - LEVEL 1
702-MH-112	MECHANICAL HVAC NEW WORK PLAN - PHASE 1 - BLDG 702 - ROOF
702-MD-121	MECHANICAL DEMOLITION PLAN - PHASE 2 - BLDG 702 - LEVEL 1
702-MD-122	MECHANICAL DEMOLITION PLAN - PHASE 2 - BLDG 702 - ROOF
702-MH-121	MECHANICAL HVAC NEW WORK PLAN - PHASE 2 - BLDG 702 - LEVEL 1
702-MH-122	MECHANICAL HVAC NEW WORK PLAN - PHASE 2 - BLDG 702 - ROOF
702-MD-131	MECHANICAL DEMOLITION PLAN - PHASE 3 - BLDG 702 - LEVEL 1
702-MH-131	MECHANICAL HVAC NEW WORK PLAN - PHASE 3 - BLDG 702 - LEVEL 1
702-MD-141	MECHANICAL DEMOLITION PLAN - PHASE 4 - BLDG 702 - LEVEL 1
702-MD-142	MECHANICAL DEMOLITION PLAN - PHASE 4 - BLDG 702 - ROOF
702-MH-141	MECHANICAL HVAC NEW WORK PLAN - PHASE 4 - BLDG 702 - LEVEL 1
702-MH-142	MECHANICAL HVAC NEW WORK PLAN - PHASE 4 - BLDG 702 - ROOF
702-MH-151	MECHANICAL HVAC PIPE ANCHORAGE PLAN - BLDG 702 - LEVEL 1
702-MH-152	MECHANICAL HVAC PIPE ANCHORAGE PLAN - BLDG 702 - ROOF
702-MH-301	MECHANICAL HVAC SECTIONS - BLDG 702
MH-501	MECHANICAL HVAC DETAILS
MH-502	MECHANICAL HVAC DETAILS

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006		
MD-601	MECHANICAL DEMOLITION DIAGRAM - BLDG 702, 703	
MH-601	MECHANICAL HVAC DIAGRAM - BLDG 702, 703	
MH-602	MECHANICAL HVAC SCHEDULES - BLDG 702	
MI-601	MECHANICAL INSTRUMENTATION DIAGRAM - BLDG 702, 703	
	ELECTRICAL	
E-001	ELECTRICAL LEGEND, SYMBOLS AND ABBREVIATIONS	
ES-101	ELECTRICAL PARTIAL SITE PLAN	
701-ED-101	ELECTRICAL DEMOLITION PLAN - BLDG 701 - LEVEL 1	
702-ED-101	ELECTRICAL DEMOLITION PLAN - BLDG 702 - LEVEL 1	
702-ED-102	ELECTRICAL POWER PLAN - BLDG 702 - ROOF	
701-EP-101	ELECTRICAL POWER PLAN - BLDG 701 - LEVEL 1	
702-EP-101	ELECTRICAL POWER PLAN - BLDG 702 - LEVEL 1	
702-EP-102	ELECTRICAL POWER PLAN - BLDG 702 - ROOF	
E-501	ELECTRICAL DETAILS	
ED-601	ELECTRICAL DEMOLITION SINGLE LINE DIAGRAM	
EP-601	ELECTRICAL POWER SINGLE LINE DIAGRAM	
EP-602	ELECTRICAL SCHEDULES	

- - - END - - -

VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for new construction for the VANCHCS Veterans Affairs Northern California Health Care System, Mather Campus, high efficiency chiller install as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. Offices of Hilliard Architects, Inc. as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the Resident Engineer in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the Resident Engineer.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Prior to commencing work, general contractor shall provide proof that a OSHA designated "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.
- G. Training:

Project No. 612A4-14-006

- All employees of general contractor or subcontractors shall have the 10-hour or 30-hour OSHA Construction Safety course and other relevant competency training, as determined by RE/COR acting as the Construction Safety Officer with input from the facility Construction Safety Committee.
- 2. Submit training records of all such employees for approval before the start of work.
- H. VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section

1.2 STATEMENT OF BID ITEM(S)

A. BASE BID, GENERAL CONSTRUCTION: Replace 430 ton chiller No. 1 with new 700 ton high efficiency chiller. Increase size of primary chilled water and condenser water loop pumps and piping to accommodate larger 700 ton chiller No. 1 flow rates and future 700 ton replacement of chiller No.
2. Increase size of secondary chilled water pumps and piping to accommodate future increase in chilled water demand. Accomplish scope of work without major outage of chilled water services.

Work includes general construction, mechanical and electrical work, utility systems, necessary removal of existing structures and construction and certain other items. Some work will need to be performed outside regular business hours if deemed disruptive by the COR. Costs associated with this requirement shall be included in the base bid and will not be billable separately to the VA.

- B. DEDUCTIVE ALTERNATE NUMBER 1-COOLING TOWER EQUALIZER AND SWEEPER PIPING: Do not install cooling tower equalizer header in the chiller room shown on sheet 702-MH-141. Do not install the cooling tower equalizer branch for each cooling tower between the cooling tower isolation valve on roof level (sheet 702-MH-142) and the cooling tower equalizer header. Install a bland flange on the cooling tower isolation valve instead. Do not install associated pipe support and seismic bracing, roof penetrations, or wall penetrations.
- C. DEDUCTIVE ALTERNATE NUMBER 2-SECONDARY CHILLER WATER SYSTEM: Do not install secondary chilled water pumps SCHP-1,2,3 shown on sheet 702-MH-

Project No. 612A4-14-006

121. Install new 10" CHS pump drops (typ 3) and connect to secondary chilled water pumps. Do not install new 14" CHS secondary chilled water supply header shown on sheet 702-MH-121. Do not demolish existing 10" CHS secondary chilled water supply header and branches to building distribution shown on sheet 702-MD-131. Do not provide temporary hose for phasing secondary branches shown on sheet 702-MD-131. Do not isolate buildings, demolish pipe segments, and install phasing valves for branches to building distribution shown on sheets 702-MD-101 and 702-MH-101. Do not install new connections between new secondary chilled water supply header and branches to building distribution shown on 702-MH-131.

Do not demolish power connections from existing secondary chilled water pumps SCHP-1,2,3 back to Distribution Panel 'NHD654A' shown on sheets 702-ED-101 and ED-601. Do not provide power connections to secondary chilled water pumps SCHP-1,2,3 shown on sheets 702-EP-101 and EP-601. Do not provide new 125A/3P breakers at Distribution Panel 'NHD654A' shown on sheet EP-601. Do not provide new VFD units to serve secondary chilled water pumps SCHP-1,2,3 shown on sheets 702-EP-101 and EP-601.

D. DEDUCTIVE ALTERNATE NUMBER 3-PRIMARY CHILLER WATER AND CONDENSER WATER PUMPS: Do not demolish secondary chilled water pumps SCHP-1,2,3 shown on sheet 702-MD-121. Do not demolish primary chilled water pumps PCHP-2,3 shown on sheets 702-MD-111 and 702-MD-121. Do not install new primary chilled water pumps PCHP-2,3 shown on sheets 702-MH-111 and 702-MH-121. Do not demolish condenser water pumps CTP-1,2 shown on sheets 702-MD-112 and 702-MD-122. Do not install new condenser water pumps CTP-1,2 shown on sheets 702-MH-112 and 702-MH-122.

Do not demolish power connections from existing primary chilled water pumps PCHP-2,3, back to 'MCC654A' shown on sheets 702-ED-102 and ED-601. Do not provide new power connections to new primary chilled water pumps PCHP-2,3, shown on sheets 702-EP-102 and EP-601. Do not provide new 100A/3P breakers at Distribution Panel 'NHD654A' shown on sheet EP-601. Do not provide new VFD units to serve primary chilled water pumps PCHP-2,3 shown on sheets 702-EP-102 and EP-601.

Do not demolish power connections from condenser water pumps CTP-2,3 back to `MCC654A' shown on sheets 702-ED-102 and ED-601. Do not disconnect and remove MCC unit (MCP, motor starter, and motor overload

01 00 00 -3

VA NORTHERN CALIFORNIA HEALTH CARE SYSTEM

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

device) in 'MCC654A' buckets serving existing condenser water pumps CTP-2,3 shown on sheet ED-601. Do not provide new power connections to condenser water pumps CTP-2,3 shown on sheets 702-EP-102 and EP-601. Do not provide new fused disconnect switches shown on sheets 702-EP-102 and EP-601. Do not provide new MCC unit (MCP, motor starter, and motor overload device) in 'MCC654A' buckets to serve condenser water pumps CTP-2,3 shown on sheet EP-601.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, one set of printed specifications and drawings and one CD with specifications and drawings in PDF format will be furnished to the Contractor.
- B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from provided CD.
- C. Contractor shall maintain on site one printed set of specifications, one printed set of drawings, one printed set of all RFI's, FRP;s, and other documents that modify the original specifications and drawings.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the

01 00 00 -4

Project No. 612A4-14-006

employees. This notice is separate from any notices required for utility shutdown described later in this section.

- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- C. Guards:
 - 1. The General Contractor shall provide unarmed guards at the project site 24 hours a days, 7 days a week.
 - 2. The guard shall have communication devices to report events as directed by VA police.
 - 3. The general Contractor shall install equipment for recording guard rounds to ensure systematic checking of the premises.
- D. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the Resident Engineer for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.
- E. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This

Project No. 612A4-14-006

information shall be shared only with those with a specific need to accomplish the project.

- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

Project No. 612A4-14-006

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - 1. American Society for Testing and Materials (ASTM):

E84-2009.....Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

10-2010.....Standard for Portable Fire Extinguishers

30-2008.....Flammable and Combustible Liquids Code

51B-2009..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2011.....National Electrical Code

101-2012....Life Safety Code

241-2009.....Standard for Safeguarding Construction, Alteration, and Demolition Operations

3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926.....Safety and Health Regulations for Construction

- 4. VHA Directive 2005-007
- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Resident Engineer and Facility Safety Manager for review for compliance with VHA Directive 2005-007, NFPA 101 and NFPA 241.Prior to beginning work, all employees of the contractor and/or any subcontractors shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Provide documentation to the

VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

Resident Engineer that all construction workers have undergone contractor's safety briefing.

- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20
- F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Project Engineer and facility Safety Officer
- H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Project Engineer and facility Safety Officer
- I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- J. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- K. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241. Do not charge wet standpipes subject to freezing until weather protected.
- L. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.
- N. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Project Engineer and facility Safety Officer.
- O. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Project Engineer. Obtain permits from facility Safety Officer at least 48 hours in advance. Designate

01 00 00 -8

VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

contractor's responsible project-site fire prevention program manager to permit hot work.

- P. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Project Engineer and facility Safety Officer.
- Q. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- R. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- S. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.
- T. If required, submit documentation to the Resident Engineer that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways

Project No. 612A4-14-006

constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

- D. Working space and space available for storing materials shall be as shown on the drawings.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. When it is necessary to temporarily disconnect any utilities, the Contractor shall coordinate with and receive written approval from the COR.

1. Do not store materials and equipment in other than assigned areas.

- G. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height, around the construction area indicated on the drawings. Provide gates as required for access with necessary hardware, including hasps and padlocks. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one
- H. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times.

Project No. 612A4-14-006

- Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the Resident Engineer.
- I. Coordinate the work for this contract with other construction operations as directed by Project Engineer. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 INFECTION PREVENTION MEASURES

- A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded.
- B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to Project Engineer and Facility ICRA team for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- C. Medical center Infection Control personnel shall monitor for airborne disease (e.g. aspergillosis) as appropriate during construction. A baseline of conditions may be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality. In addition:
 - 1. The RE and VAMC Infection Control personnel shall review pressure differential monitoring documentation to verify that pressure differentials in the construction zone and in the patient-care rooms are appropriate for their settings. The requirement for negative air pressure in the construction zone shall depend on the location and type of activity. Upon notification, the contractor shall implement

Project No. 612A4-14-006

corrective measures to restore proper pressure differentials as needed.

- 2. In case of any problem, the medical center, along with assistance from the contractor, shall conduct an environmental assessment to find and eliminate the source.
- D. In general adopt preventive measures during construction to keep down dust and prevent mold.
- E. Final Cleanup:
 - Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All air ducts shall be cleaned prior to final inspection.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by Resident Engineer.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be

VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

- 4. PCB Transformers and Capacitors: The Contractor shall be responsible for disposal of the Polychlorinated Biphenyl (PCB) transformers and capacitors. The transformers and capacitors shall be taken out of service and handled in accordance with the procedures of the Environmental Protection Agency (EPA) and the Department of Transportation (DOT) as outlined in Code of Federal Regulation (CFR), Titled 40 and 49 respectively. The EPA's Toxic Substance Control Act (TSCA) Compliance Program Policy Nos. 6-PCB-6 and 6-PCB-7 also apply. Upon removal of PCB transformers and capacitors for disposal, the "originator" copy of the Uniform Hazardous Waste Manifest (EPA Form 8700-22), along with the Uniform Hazardous Waste Manifest Continuation Sheet (EPA Form 8700-22A) shall be returned to the Contracting Officer who will annotate the contract file and transmit the Manifest to the Medical Center's Chief.
 - a. Copies of the following listed CFR titles may be obtained from the Government Printing Office:
 - 40 CFR 261.....Identification and Listing of Hazardous Waste
 - 40 CFR 262.....Standards Applicable to Generators of Hazardous Waste
 - 40 CFR 263..... Standards Applicable to Transporters of Hazardous Waste
 - 40 CFR 761.....PCB Manufacturing, Processing, Distribution in Commerce, and use Prohibitions
 - 49 CFR 172.....Hazardous Material tables and Hazardous Material Communications Regulations
 - 49 CFR 173.....Shippers General Requirements for Shipments and Packaging
 - 49 CRR 173.....Subpart A General
 - 49 CFR 173.....Subpart B Preparation of Hazardous Material for Transportation

VA NORTHERN CALIFORNIA HEALTH CARE SYSTEM

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

49 CFR 173.....Subpart J Other Regulated Material; Definitions and Preparation

TSCA.....Compliance Program Policy Nos. 6-PCB-6 and 6-PCB-7

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.
- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. Refer to FAR clause 52.236-7, "Permits and Responsibilities," which is included in General Conditions. A National Pollutant Discharge Elimination System (NPDES) permit is required for this project. The Contractor is considered an "operator" under the permit and has extensive responsibility for compliance with permit requirements. VA

01 00 00 -14

Project No. 612A4-14-006

will make the permit application available at the (appropriate medical center) office. The apparent low bidder, contractor and affected subcontractors shall furnish all information and certifications that are required to comply with the permit process and permit requirements. Many of the permit requirements will be satisfied by completing construction as shown and specified. Some requirements involve the Contractor's method of operations and operations planning and the Contractor is responsible for employing best management practices. The affected activities often include, but are not limited to the following:

- Designating areas for equipment maintenance and repair;
- Providing waste receptacles at convenient locations and provide regular collection of wastes;
- Locating equipment wash down areas on site, and provide appropriate control of wash-waters;
- Providing protected storage areas for chemicals, paints, solvents, fertilizers, and other potentially toxic materials; and
- Providing adequately maintained sanitary facilities.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Resident Engineer before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone)

Project No. 612A4-14-006

which are indicated on drawings and which are not scheduled for discontinuance or abandonment.

D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 PHYSICAL DATA

- A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.
- B. Subsurface conditions have been developed by core borings and test pits. Logs of subsurface exploration are shown diagrammatically on drawings.
- C. A copy of the soil report will be made available for inspection by bidders upon request to the Engineering Officer at the VA Medical Center, and shall be considered part of the contract documents.
- D. Government does not guarantee that other materials will not be encountered nor that proportions, conditions or character of several materials will not vary from those indicated by explorations. Bidders are expected to examine site of work and logs of borings; and, after investigation, decide for themselves character of materials and make their bids accordingly. Upon proper application to Department of Veterans Affairs, bidders will be permitted to make subsurface explorations of their own at site.

1.12 PROFESSIONAL SURVEYING SERVICES

A registered professional land surveyor or registered civil engineer whose services are retained and paid for by the Contractor shall perform services specified herein and in other specification sections. The Contractor shall certify that the land surveyor or civil engineer is not one who is a regular employee of the Contractor, and that the land surveyor or civil engineer has no financial interest in this contract.

Project No. 612A4-14-006

1.13 LAYOUT OF WORK

- A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.
- B. Establish and plainly mark center lines for building, and such other lines and grades that are reasonably necessary to properly assure that location, orientation, and elevations established for each such structure and/or roads and parking lots, are in accordance with lines and elevations shown on contract drawings.
- C. Following completion of general mass excavation and before any other permanent work is performed, establish and plainly mark (through use of appropriate batter boards or other means) sufficient additional survey control points or system of points as may be necessary to assure proper alignment, orientation, and grade of all major features of work. Survey shall include, but not be limited to, location of lines and grades of footings, exterior walls, center lines of columns in both directions, major utilities and elevations of floor slabs:
 - Such additional survey control points or system of points thus established shall be checked and certified by a registered land surveyor or registered civil engineer. Furnish such certification to the Resident Engineer before any work (such as footings, floor slabs, columns, walls, utilities and other major controlling features) is placed.
- D. During progress of work, and particularly as work progresses from floor to floor, Contractor shall have line grades and plumbness of all major

Project No. 612A4-14-006

form work checked and certified by a registered land surveyor or registered civil engineer as meeting requirements of contract drawings. Furnish such certification to the Resident Engineer before any major items of concrete work are placed. In addition, Contractor shall also furnish to the Project Engineer certificates from a registered land surveyor or registered civil engineer that the following work is complete in every respect as required by contract drawings.

- 1. Lines of building.
- 2. Elevations of bottoms of footings and tops of floors.
- 3. Lines and elevations of sewers and of all outside distribution systems.
- 4. Lines of elevations of all swales and interment areas.
- 5. Lines and elevations of roads, streets and parking lots.
- E. Whenever changes from contract drawings are made in line or grading requiring certificates, record such changes on a reproducible drawing bearing the registered land surveyor or registered civil engineer seal, and forward these drawings upon completion of work to Project Engineer.
- E'. Upon completion of the work, the Contractor shall furnish the Project Engineer, reproducible drawings at the scale of the contract drawings, showing the finished grade on the grid developed for constructing the work, including burial monuments and fifty foot stationing along new road centerlines. These drawings shall bear the seal of the registered land surveyor or registered civil engineer.
- F. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

1.14 AS-BUILT DRAWINGS

A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.

Project No. 612A4-14-006

- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the Resident Engineer within 15 calendar days after each completed phase and after the acceptance of the project by the Resident Engineer.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 USE OF ROADWAYS

- A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the Project Engineer, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.

1.16 PROJECT ENGINEER'S FIELD OFFICE

- A. The Contractor shall, within fifteen (15) days after receipt of Notice to Proceed, provide where shown on the drawings a temporary field office, furniture, and two inch deep gravel surfaced area for use of the Project Engineer. Office and furniture shall be new.
- B. The field office shall provide not less than 67 square meters (720 gross square feet) of floor area in one unit. Installation of the office shall meet all local codes.
- C. Provide office with two, 900 mm (three foot) wide exterior doors, including hardware and OSHA approved platform and stairs leading to grade.
- D. Enclose the entire perimeter of the office from the floor to the ground and finish to match exterior. Provide R7 insulation and seal tight to ground with a painted 19 mm (3/4 inch) exterior grade plywood skirt.

Project No. 612A4-14-006

- E. Exterior finishes shall be manufacturer's standards.
- F. Provide floor, wall, and roof with not less than R5 insulation.
- G. Interior finishes shall consist of resilient flooring, plywood paneling or painted wallboard on walls, and acoustical tile ceilings. Interior doors may be either painted or stained.
- H. Interior shall be subdivided with full height partitions to provide one office, one sample room, and one toilet. Provide each space with 900 mm (three foot) wide door with master keyed locks. Section off an area with a low partition and counter for the secretary's desk.
- I. Provide 750 mm (2-1/2 feet) wide by 900 mm (3 feet) high operable windows; two in each room (none required in sample room), except provide only one 600 mm (2 foot) high window in toilet room(s). Window openings shall be fitted with security bars to prevent any forced entry. The door of field office shall have a hasp and padlock and also deadbolts keyed from both sides.
- J. Provide sufficient fluorescent lighting in each room to deliver 750 lux (70 foot-candles) of light at desk top height without the aid of daylight. Provide one light switch in each room.
- K. Provide one duplex receptacle in each wall of each room. If a wall is 3.0 m (10 feet) long or more, provide two receptacles for each 3.0 m (10 feet), or portion thereof, of wall. Provide two duplex receptacles in low partition at secretary's desk.
- L. The Contractor shall provide the following:
 - Electricity, hot and cold water, and necessary utility services (except telephone).
 - 2. All necessary piping, power circuits network cabling, cat 5e or better cabling for phones and computers, electrical fixtures, lighting, and other items necessary to provide a habitable structure for the purpose intended. The number of network and electrical receptacles will be as per attached drawing of the field office.
 - 3. Thermostatically controlled, centralized heating and air conditioning system designed to maintain the temperature between 21 and 27 degrees

Project No. 612A4-14-006

C (70 and 80 degrees F) with 50 percent relative humidity maintained during the air conditioning season.

- One water closet, lavatory, mirror, toilet paper dispenser, paper towel dispenser, soap dispenser, towel bar, and two-prong coat hooks for each toilet room.
- 5. The contractor to install a suitable alarm system for the field office.
- M. Contractor shall, for the duration of the Project Engineer's occupancy, provide the following:
 - Satisfactory conditions in and around the field office and parking area.
 - 2. Maintenance of gravel surfaced area, including the area for parking, in an acceptable condition for vehicle and foot traffic at all times.
 - 3. Maintenance of utility services.
 - Potable water, fuel and electric power for normal office uses, including lights, heating and air conditioning.
- N. The Contractor shall provide the following new items:

QUANTITY REQUIRED

- 1 Secretary workstation with adjustable keying desk or drawer 738 mm H x 1.5 m W x 760 mm D (size 29-1/2" H x 60" W x 30" D)
- 2 Printer stand 663 mm H x 1.5 m W x 750 mm D (size 26-1/2" H x 60" W x 30" D)
- 3 Office desk, double pedestal
- 4 Conference table 900 mm x 1.8 m (size 3' x 6')
- 5 Plan table 1.2 m x 2.1 m (4' x 7')
- 6 Secretary chair
- 7 Swivel chair with arms
- 8 Conference chairs

01 00 00 -21

Project No. 612A4-14-006

- 9 Lockable 5 drawer file cabinets, letter size
- 10 Drawing rack, with 12-750 mm (12-30 inch) "Plan Hold" drawing holders, freestanding
- 11 Shelves for sample room, 7 adjustable Shelves, 305 mm W x 900 mm L (12" W x 3' L)
- 12 Bookcases
- 13 Electric water cooler
- 14 Metal storage cabinet, 900 mm x 450 mm x 1.8 m (36" x 18" x 72") with six shelves
- O. Project Engineer's field office and facilities shall be relocated once after its initial installation at the Contractor's expense. Relocation consists of moving the field office and facilities to a location within the VA site designated by the Resident Engineer together with providing and maintaining utilities, parking area, sanitary facilities and janitorial service in new location until completion and final acceptance of project.
- P. At the completion of all work, including the punch list, the Project Engineer's field office and facilities shall become the property of the Contractor and Contractor shall remove same, including utility connections, from the Medical Center. The site shall be restored to original condition and finished in accordance with contract requirements.
- Q. The Contractor shall furnish floor plans for approval by the Project Engineer prior to furnishing the field office.

1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - Permission to use each unit or system must be given by Resident Engineer. If the equipment is not installed and maintained in accordance with the following provisions, the Resident Engineer will withdraw permission for use of the equipment.

Project No. 612A4-14-006

- 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
- Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government. Boilers, pumps, feedwater heaters and auxiliary equipment must be operated as a complete system and be fully maintained by operating personnel. Boiler water must be given complete and continuous chemical treatment.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.

Project No. 612A4-14-006

1.18 TEMPORARY USE OF NEW ELEVATOR

- A. The Contractor and his personnel shall be permitted use of new elevator subject to the following provisions:
 - 1. Contractor shall make arrangements with the Resident Engineer for use of elevator. Contractor may obtain elevator for exclusive use.
 - Prior to the use of elevator, the Contractor shall have the elevator inspected and accepted by an ASME accredited, certified elevator safety inspector. The acceptance report shall be submitted to the Resident Engineer.
 - 3. Submit to the Project Engineer the schedule and procedures for maintaining equipment. Indicate the day or days of the week and total hours required for maintenance. A report shall be submitted to the Project Engineer monthly indicating the type of maintenance conducted, hours used, and any repairs made to the elevator(s).
 - 4. The Contractor shall be responsible for enforcing the maintenance procedures.
 - 5. During temporary use of elevator all repairs, equipment replacement and cost of maintenance shall be the responsibility of the Contractor.
 - 6. Personnel for operating elevator shall not be provided by the Department of Veterans Affairs.
 - 7. Contractor shall cover and provide maximum protection of the entire elevator installation.
 - 8. The Contractor shall arrange for the elevator company to perform operation of the elevator so that an ASME accredited, certified elevator safety inspector can evaluate the equipment. The Contractor shall be responsible for any costs of the elevator company.
 - 9. All elevator parts worn or damaged during temporary use shall be removed and replaced with new parts. This shall be determined by an ASME accredited certified elevator safety inspector after temporary use and before acceptance by the Government. Submit report to the Project Engineer for approval.

Project No. 612A4-14-006

 Elevator shall be tested as required by the testing section of the elevator specifications before acceptance by the Department of Veterans Affairs.

1.19 TEMPORARY TOILETS

A. Provide for use of all Contractor's workmen ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by Project Engineer, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.20 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.

Project No. 612A4-14-006

- Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at Project Engineer's discretion) of use of water from Medical Center's system.
- G. Steam: Furnish steam system for testing required in various sections of specifications.
 - 1. Obtain steam for testing by connecting to the Medical Center steam distribution system. Steam is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve steam-use so none is wasted. Failure to stop leakage or other waste will be cause for revocation (at Project Engineer's discretion), of use of steam from the Medical Center's system.
- H. Fuel: Natural and LP gas and burner fuel oil required for boiler cleaning, normal initial boiler-burner setup and adjusting, and for performing the specified boiler tests will be furnished by the Government. Fuel required for prolonged boiler-burner setup, adjustments, or modifications due to improper design or operation of boiler, burner, or control devices shall be furnished by the Contractor at Contractor's expense.

1.21 NEW TELEPHONE EQUIPMENT

The contractor shall coordinate with the work of installation of telephone equipment by others. This work shall be completed before the building is turned over to VA.

Project No. 612A4-14-006

1.22 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.23 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with

01 00 00 -27

Project No. 612A4-14-006

the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the Resident Engineer and shall be considered concluded only when the Resident Engineer is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Resident Engineer, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

Project No. 612A4-14-006

1.24 GOVERNMENT-FURNISHED PROPERTY

- A. The Government shall deliver to the Contractor, the Government-furnished property shown on the drawings.
- B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Medical Center.
- C. Contractor shall be prepared to receive this equipment from Government and store or place such equipment not less than 90 days before Completion Date of project.
- D. Notify Project Engineer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment.
 - Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages.
 - 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government.
- E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government.
- F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings.

Project No. 612A4-14-006

G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer.

1.25 CONSTRUCTION SIGN

- A. Provide a Construction Sign where directed by the Resident Engineer. All wood members shall be of framing lumber. Cover sign frame with 0.7 mm (24 gage) galvanized sheet steel nailed securely around edges and on all bearings. Provide three 100 by 100 mm (4 inch by 4 inch) posts (or equivalent round posts) set 1200 mm (four feet) into ground. Set bottom of sign level at 900 mm (three feet) above ground and secure to posts with through bolts. Make posts full height of sign. Brace posts with 50 x 100 mm (two by four inch) material as directed.
- B. Paint all surfaces of sign and posts two coats of white gloss paint. Border and letters shall be of black gloss paint, except project title which shall be blue gloss paint.
- C. Maintain sign and remove it when directed by the Resident Engineer.
- D. Detail Drawing of construction sign showing required legend and other characteristics of sign is shown on the drawings.

1.26 SAFETY SIGN

- A. Provide a Safety Sign where directed by Project Engineer. Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide two 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground.
- B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of white gloss paint. Letters and design shall be painted with gloss paint of colors noted.
- C. Maintain sign and remove it when directed by Resident Engineer.
- D. Standard Detail Drawing Number SD10000-02(Found on VA TIL) of safety sign showing required legend and other characteristics of sign is shown on the drawings.
- E. Post the number of accident free days on a daily basis.

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

1.27 PHOTOGRAPHIC DOCUMENTATION

- A. During the construction period through completion, provide photographic documentation of construction progress and at selected milestones including electronic indexing, navigation, storage and remote access to the documentation, as per these specifications. The commercial photographer or the subcontractor used for this work shall meet the following qualifications:
 - Demonstrable minimum experience of three (3) years in operation providing documentation and advanced indexing/navigation systems including a representative portfolio of construction projects of similar type, size, duration and complexity as the Project.
 - Demonstrable ability to service projects throughout North America, which shall be demonstrated by a representative portfolio of active projects of similar type, size, duration and complexity as the Project.
- B. Photographic documentation elements:
 - Each digital image shall be taken with a professional grade camera with minimum size of 6 megapixels (MP) capable of producing 200x250mm (8 x 10 inch) prints with a minimum of 2272 x 1704 pixels and 400x500mm (16 x 20 inch) prints with a minimum 2592 x 1944 pixels.
 - Indexing and navigation system shall utilize actual AUTOCAD construction drawings, making such drawings interactive on an on-line interface. For all documentation referenced herein, indexing and navigation must be organized by both time (date-stamped) and location throughout the project.
 - 3. Documentation shall combine indexing and navigation system with inspection-grade digital photography designed to capture actual conditions throughout construction and at critical milestones. Documentation shall be accessible on-line through use of an internet connection. Documentation shall allow for secure multiple-user access, simultaneously, on-line.
 - 4. Before construction, the building pad, adjacent streets, roadways, parkways, driveways, curbs, sidewalks, landscaping, adjacent utilities and adjacent structures surrounding the building pad and

01 00 00 -31

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

site shall be documented. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings. If site work or pad preparation is extensive, this documentation may be required immediately before construction and at several predetermined intervals before building work commences.

- 5. Construction progress for all trades shall be tracked at predetermined intervals, but not less than once every thirty (30) calendar days ("Progressions"). Progression documentation shall track both the exterior and interior construction of the building. Exterior Progressions shall track 360 degrees around the site and each building. Interior Progressions shall track interior improvements beginning when stud work commences and continuing until Project completion.
- 6. As-built condition of pre-slab utilities and site utilities shall be documented prior to pouring slabs, placing concrete and/or backfilling. This process shall include all underground and in-slab utilities within the building(s) envelope(s) and utility runs in the immediate vicinity of the building(s) envelope(s). This may also include utilities enclosed in slab-on-deck in multi-story buildings. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive site utility plans.
- 7. As-built conditions of mechanical, electrical, plumbing and all other systems shall be documented post-inspection and pre-insulation, sheet rock or dry wall installation. This process shall include all finished systems located in the walls and ceilings of all buildings at the Project. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- 8. As-built conditions of exterior skin and elevations shall be documented with an increased concentration of digital photographs as directed by the Resident Engineer in order to capture pre-determined focal points, such as waterproofing, window flashing, radiused steel work, architectural or Exterior Insulation and Finish Systems (EIFS) detailing. Overlapping photographic techniques shall be used to

VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

insure maximum coverage. Indexing and navigation accomplished through interactive elevations or elevation details.

- 9. As-built finished conditions of the interior of each building including floors, ceilings and walls shall be documented at certificate of occupancy or equivalent, or just prior to occupancy, or both, as directed by the Resident Engineer. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- 10. Miscellaneous events that occur during any Contractor site visit, or events captured by the Department of Veterans Affairs independently, shall be dated, labeled and inserted into a Section in the navigation structure entitled "Slideshows," allowing this information to be stored in the same "place" as the formal scope.
- 11. Customizable project-specific digital photographic documentation of other details or milestones. Indexing and navigation accomplished through interactive architectural plans.
- 12. Monthly (29 max) exterior progressions (360 degrees around the project) and slideshows (all elevations and building envelope). The slideshows allow for the inclusion of Department of Veterans Affairs pictures, aerial photographs, and timely images which do not fit into any regular monthly photopath.
- 13. Weekly (21 Max) Site Progressions Photographic documentation capturing the project at different stages of construction. These progressions shall capture underground utilities, excavation, grading, backfill, landscaping and road construction throughout the duration of the project.
- 14. Regular (8 max) interior progressions of all walls of the entire project to begin at time of substantial framed or as directed by the Resident Engineer through to completion.
- 15. Detailed Exact-Built of all Slabs for all project slab pours just prior to placing concrete or as directed by the Resident Engineer.
- 16. Detailed Interior exact built overlapping photos of the entire building to include documentation of all mechanical, electrical and

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

plumbing systems in every wall and ceiling, to be conducted after rough-ins are complete, just prior to insulation and or drywall, or as directed by Resident Engineer.

- 17. Finished detailed Interior exact built overlapping photos of all walls, ceilings, and floors to be scheduled by Resident Engineer prior to occupancy.
- 18. In event a greater or lesser number of images than specified above are required by the Resident Engineer, adjustment in contract price will be made in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Images shall be taken by a commercial photographer and must show distinctly, at as large a scale as possible, all parts of work embraced in the picture.
- D. Coordination of photo shoots is accomplished through Resident Engineer. Contractor shall also attend construction team meetings as necessary. Contractor's operations team shall provide regular updates regarding the status of the documentation, including photo shoots concluded, the availability of new Progressions or Exact-Builts viewable on-line and anticipated future shoot dates.
- E. Contractor shall provide all on-line domain/web hosting, security measures, and redundant server back-up of the documentation.
- F. Contractor shall provide technical support related to using the system or service.
- G. Upon completion of the project, final copies of the documentation (the "Permanent Record") with the indexing and navigation system embedded (and active) shall be provided in an electronic media format, typically a DVD or external hard-drive. Permanent Record shall have Building Information Modeling (BIM) interface capabilities. On-line access terminates upon delivery of the Permanent Record.

1.28 FINAL ELEVATION DIGITAL IMAGES

A. A minimum of four (4) images of each elevation shall be taken with a minimum 6 MP camera, by a professional photographer with different settings to allow the Resident Engineer to select the image to be printed. All images are provided to the RE on a CD.

01 00 00 -34

VA NORTHERN CALIFORNIA HEALTH CARE SYSTEM

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

- B. Photographs shall be taken upon completion, including landscaping. They shall be taken on a clear sunny day to obtain sufficient detail to show depth and to provide clear, sharp pictures. Pictures shall be 400 mm x 500 mm (16 by 20 inches), printed on regular weight paper, matte finish archival grade photographic paper and produced by a RA4 process from the digital image with a minimum 300 PPI. Identifying data shall be carried on label affixed to back of photograph without damage to photograph and shall be similar to that provided for final construction photographs.
- C. Furnish six (6) 400 mm x 500 mm (16 by 20 inch) color prints of the following buildings constructed under this project (elevations as selected by the RE from the images taken above). Photographs shall be artistically composed showing full front elevations. All images shall become property of the Government. Each of the selected six prints shall be place in a frame with a minimum of 2 inches of appropriate matting as a border. Provide a selection of a minimum of 3 different frames from which the SRE will select one style to frame all six prints. Photographs with frames shall be delivered to the Project Engineer in boxes suitable for shipping.

1.29 VA TRIRIGA CPMS

VA contractors, selected by award to perform work, are required to get access to the VA TRIRIGA CPMS. The TRIRIGA CPMS is the management and collaborative environment that the VA uses for all Major, Minor and Non-Recurring Maintenance (NRM) projects within the Office of Construction & Facilities Management (CFM), Veterans Health Administration (VHA), National Cemetery Administration (NCA), and the Veterans Benefits Administration (VBA).

The contractor is solely responsible for acquiring access to the VA TRIRIGA CPMS.

To gain access to the VA TRIRIGA CPMS the contractor is encouraged to follow the licensing process outline as specified below:

- A. Requirement: TRIRIGA is the management and collaborative environment that VA uses for all construction projects. VA requires its contractors to procure TRIRIGA access as part of the cost of performance for a VA construction related contract.
- B. Access Request and Payment can be made through the following URL

VA NORTHERN CALIFORNIA HEALTH CARE SYSTEM

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

https://valicensing.oncfi.com/

Inquiries or to request additional services, contact the following:

Craig Alsheimer, Federal Account Manager

Computerized Facility Integrations, LLC

18000 West Nine Mile Road

Suite 700

Southfield, MI 48075

Email: calsheimer@gocfi.com

Phone: 248-557-4234 Extension 6010; 410-292-7006

- C. Process:
 - Once the contractor has been notified by VA of the award and a unique contract number, the contractor can enter a request for access to TRIRIGA at URL https://valicensing.oncfi.com/
 - 2. CFI will process the request for access and payment. CFI will create the USER ID and a password. Security provisions required to align the contractor to the Contract Number will be entered and an email will be generated and submitted to the requestor.
 - 3. CFI will also provide standard terms and conditions related to the transaction and use agreement.

- - - E N D - - -

SECTION 01 32 16.15 PROJECT SCHEDULES

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant

within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work

100% CD July 11, 2014

activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule

until subsequently revised in accordance with the requirements of this section.

F. The Complete Project Schedule shall contain approximately _____work activities/events.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.

- b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
- c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
- e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
- 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
- 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:

- Actual start and/or finish dates for updated/completed activities/events.
- Remaining duration for each activity/event started, or scheduled to start, but not completed.
- 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
- Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
- 5. Completion percentage for all completed and partially completed activities/events.
- Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined

above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.

D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:

- Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
- 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
- 3. The schedule does not represent the actual prosecution and progress of the project.
- When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 - 4 (Changes) and VAAR 852.236 - 88 (Changes -Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.

- B. Actual delays in activities/events which, according to the computerproduced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 - 4 (Changes) and VAAR 852.236 -88 (Changes - Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. SUBMITTAL SCHEDULE. Within 30 days of execution of construction contract provide SUBMITTAL SCHEDULE for all required items specifically mentioned under the separate sections of the specification. The SUBMITTAL SCHEDULE shall be fully synchronized with the ARCHITECTRUAL AND ENGINEERING CPM SCHEDULE 01 32 16.01 List each submittal item. For each item in calendar days and dates list:
 - A. Date Contractor receives submittal-1 from Material Supplier.
 - B. 2 weeks for Contractor to review and stamp approval on submittal-1.
 - C. Date COR/ Architect-Engineer receives submittal-1.
 - D. 2 weeks for COR/ Architect-Engineer to review submittal-1 and return to Contractor. If required by comments:
 - E. 2 weeks for Material Supplier to revise submittal-2.
 - F. Date Contractor receives submittal-2.
 - G. 2 weeks for Contractor to review and stamp approval on submittal-2.
 - H. Date COR/ Architect-Engineer receives submittal-2.
 - I. 2 weeks for COR/ Architect-Engineer to review submittal-2 and return to Contractor. If required by comments:
 - J. 2 weeks for Material Supplier to revise submittal-3.
 - K. Date Contractor receives submittal-3.
 - L. 2 weeks for Contractor to review and stamp approval on submittal-3.
 - M. Date COR/ Architect-Engineer receives submittal-3.

- N. 2 weeks for COR/ Architect-Engineer to review submittal-3 and return to Contractor.
- O. Date Contractor orders material.
- P. Order processing time and time of manufacture if product is not a stock item.
- Q. Shipping time from product supplier to construction site.
- R. Date product is required on construction site (from ARCHITECTRUAL AND ENGINEERING CPM SCHEDULE 01 32 16.01).
- 1-4. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-5. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-6. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-7. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-8. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional

submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-9. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-10. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in electronically.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall include a statement that Contractor has reviewed the submittals and certifies that the Contractor has reviewed the submittals and they comply with the requirements of the Contract Documents, to be sent via Newforma Info Exchange and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or

Federal Specification Number as applicable and location(s) on project.

- 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.
 - Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
 - Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
 - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
 - Contractor shall send a copy of transmittal letter to both Resident Engineer and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory.
 - 5. Laboratory test reports shall be sent directly to Resident Engineer for appropriate action.
 - Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report.
 - Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.
- D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- E. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in

technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.

- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.

1-11. Samples (except laboratory samples), shop drawings, test reports,

certificates and manufacturers' literature and data, shall be submitted in electronic/digital format in Newforma Info Exchange for review to

HILLIARD ARCHITECTS, INC.

251 Post Street, Suite 620

San Francisco, CA 94108

1-12. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

1-13 ELECTRONIC DOCUMENT PROCESSING SOFTWARE

To expedite the electronic documentation process, the Contractor shall process all documents including submittals, RFIs, punch lists, field reports and document revisions using Newforma Info Exchange.

Newforma Info Exchange (no additional license required)

Newforma Info Exchange is a web-based system for the Contractor to download data and submit information to Architect.

IMPORTANT: Newforma Info Exchange does not provide Contractor with tools for generating logs, distributing documents or collaborating with Subcontractors. It is the responsibility of the Contractor to manage documentation independently with Subcontractors.

There is no additional cost to the Contractor or Owner to access Newforma Info Exchange via a web browser.

Architect shall provide logins to construction team and Owner.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council http://www.aabchq.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AAN American Nursery and Landscape Association http://www.anla.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org
- AGA American Gas Association http://www.aga.org
- AGC Associated General Contractors of America http://www.agc.org

- AGMA American Gear Manufacturers Association, Inc. http://www.agma.org
- AHAM Association of Home Appliance Manufacturers http://www.aham.org
- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute http://www.steel.org
- AITC American Institute of Timber Construction http://www.aitc-glulam.org
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANLA American Nursery & Landscape Association http://www.anla.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- APA The Engineered Wood Association http://www.apawood.org
- ARI Air-Conditioning and Refrigeration Institute http://www.ari.org
- ASAE American Society of Agricultural Engineers http://www.asae.org
- ASCE American Society of Civil Engineers http://www.asce.org
- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org
- ASME American Society of Mechanical Engineers http://www.asme.org

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

100% CD July 11, 2014

- ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org
- ASTM American Society for Testing and Materials http://www.astm.org
- AWI Architectural Woodwork Institute http://www.awinet.org
- AWS American Welding Society http://www.aws.org
- AWWA American Water Works Association http://www.awwa.org
- BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com
- BIA Brick Institute of America http://www.bia.org
- CAGI Compressed Air and Gas Institute http://www.cagi.org
- CGA Compressed Gas Association, Inc. http://www.cganet.com
- CI The Chlorine Institute, Inc. http://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute http://www.cispi.org
- CLFMI Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org
- CPMB Concrete Plant Manufacturers Bureau http://www.cpmb.org
- CRA California Redwood Association http://www.calredwood.org

CRSI	Concrete Reinforcing Steel Ins	stitute
	http://www.crsi.org	

- CTI Cooling Technology Institute http://www.cti.org
- DHI Door and Hardware Institute http://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org
- EEI Edison Electric Institute http://www.eei.org
- EPA Environmental Protection Agency http://www.epa.gov
- ETL ETL Testing Laboratories, Inc. http://www.etl.com
- FAA Federal Aviation Administration http://www.faa.gov
- FCC Federal Communications Commission http://www.fcc.gov
- FPS The Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.cssinfo.com/info/gana.html/
- FM Factory Mutual Insurance http://www.fmglobal.com
- GA Gypsum Association http://www.gypsum.org
- GSA General Services Administration http://www.gsa.gov
- HI Hydraulic Institute http://www.pumps.org

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

- HPVA Hardwood Plywood & Veneer Association http://www.hpva.org
- ICBO International Conference of Building Officials http://www.icbo.org
- ICEA Insulated Cable Engineers Association Inc. http://www.icea.net
- \ICAC Institute of Clean Air Companies http://www.icac.com
- IEEE Institute of Electrical and Electronics Engineers
 http://www.ieee.org\
- IMSA International Municipal Signal Association http://www.imsasafety.org
- IPCEA Insulated Power Cable Engineers Association
- NBMA Metal Buildings Manufacturers Association http://www.mbma.com
- MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc. http://www.mss-hq.com
- NAAMM National Association of Architectural Metal Manufacturers http://www.naamm.org
- NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org
- NBS National Bureau of Standards See - NIST
- NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org
- NEC National Electric Code See - NFPA National Fire Protection Association
- NEMA National Electrical Manufacturers Association http://www.nema.org

NFPA	National	Fire	Protection	Association
	http://ww	ww.nfr	pa.org	

- NHLA National Hardwood Lumber Association http://www.natlhardwood.org
- NIH National Institute of Health http://www.nih.gov
- NIST National Institute of Standards and Technology http://www.nist.gov
- NLMA Northeastern Lumber Manufacturers Association, Inc. http://www.nelma.org
- NPA National Particleboard Association 18928 Premiere Court Gaithersburg, MD 20879 (301) 670-0604
- NSF National Sanitation Foundation http://www.nsf.org
- NWWDA Window and Door Manufacturers Association http://www.nwwda.org
- OSHA Occupational Safety and Health Administration Department of Labor http://www.osha.gov
- PCA Portland Cement Association http://www.portcement.org
- PCI Precast Prestressed Concrete Institute http://www.pci.org
- PPI The Plastic Pipe Institute http://www.plasticpipe.org
- PEI Porcelain Enamel Institute, Inc. http://www.porcelainenamel.com
- PTI Post-Tensioning Institute http://www.post-tensioning.org

RFCI	The Resilient Floor Covering Institute http://www.rfci.com
RIS	Redwood Inspection Service See - CRA
RMA	Rubber Manufacturers Association, Inc. http://www.rma.org
SCMA	Southern Cypress Manufacturers Association http://www.cypressinfo.org
SDI	Steel Door Institute http://www.steeldoor.org
IGMA	Insulating Glass Manufacturers Alliance
SJI	Steel Joist Institute http://www.steeljoist.org
SMACNA	Sheet Metal and Air-Conditioning Contractors National Association, Inc. <u>http://www.smacna.org</u>
SSPC	The Society for Protective Coatings http://www.sspc.org
STI	Steel Tank Institute http://www.steeltank.com
SWI	Steel Window Institute http://www.steelwindows.com
TCA	Tile Council of America, Inc. http://www.tileusa.com
TEMA	Tubular Exchange Manufacturers Association
TPI	Truss Plate Institute, Inc. 583 D'Onofrio Drive; Suite 200 Madison, WI 53719 (608) 833-5900

100% CD July 11, 2014

- UBC The Uniform Building Code See ICBO
- UL Underwriters' Laboratories Incorporated http://www.ul.com
- ULC Underwriters' Laboratories of Canada http://www.ulc.ca
- WCLIB West Coast Lumber Inspection Bureau 6980 SW Varns Road, P.O. Box 23145 Portland, OR 97223 (503) 639-0651
- WRCLA Western Red Cedar Lumber Association
 P.O. Box 120786
 New Brighton, MN 55112
 (612) 633-4334
- WWPA Western Wood Products Association http://www.wwpa.org

- - - E N D - - -

SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by Department of Veterans.

1.2 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): T27-11.....Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates T96-02 (R2006).....Standard Method of Test for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine T99-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 Kg (5.5 lb.) Rammer and a 305 mm (12 in.) Drop T104-99 (R2007).....Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate T180-10.....Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb.) Rammer and a 457 mm (18 in.) Drop T191-02(R2006).....Standard Method of Test for Density of Soil In-Place by the Sand-Cone Method C. American Concrete Institute (ACI): 506.4R-94 (R2004).....Guide for the Evaluation of Shotcrete D. American Society for Testing and Materials (ASTM): A325-10.....for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength A370-12.....Standard Test Methods and Definitions for Mechanical Testing of Steel Products
 - A416/A416M-10.....Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete

100% CD July 11, 2014

A490-12 Standard Specification for Heat Treated Steel
Structural Bolts, 150 ksi Minimum Tensile
Strength
C31/C31M-10Standard Practice for Making and Curing Concrete
Test Specimens in the Field
C33/C33M-11aStandard Specification for Concrete Aggregates
C39/C39M-12Standard Test Method for Compressive Strength of
Cylindrical Concrete Specimens
C109/C109M-11bStandard Test Method for Compressive Strength of
Hydraulic Cement Mortars
C136-06 Standard Test Method for Sieve Analysis of Fine
and Coarse Aggregates
C138/C138M-10bStandard Test Method for Density (Unit Weight),
Yield, and Air Content (Gravimetric) of Concrete
C140-12 and Test Methods for Sampling and Testing
Concrete Masonry Units and Related Units
C143/C143M-10aStandard Test Method for Slump of Hydraulic
Cement Concrete
C172/C172M-10Standard Practice for Sampling Freshly Mixed
Concrete
C173/C173M-10bStandard Test Method for Air Content of freshly
Mixed Concrete by the Volumetric Method
C330/C330M-09Standard Specification for Lightweight
Aggregates for Structural Concrete
C567/C567M-11Standard Test Method for Density Structural
Lightweight Concrete
C780-11Standard Test Method for Pre-construction and
Construction Evaluation of Mortars for Plain and
Reinforced Unit Masonry
C1019-11 and Test Method for Sampling and Testing
Grout
C1064/C1064M-11Standard Test Method for Temperature of Freshly
Mixed Portland Cement Concrete
C1077-11cStandard Practice for Agencies Testing Concrete
and Concrete Aggregates for Use in Construction
and Criteria for Testing Agency Evaluation
C1314-11aStandard Test Method for Compressive Strength of
Masonry Prisms

100% CD July 11, 2014

```
D422-63(2007).....Standard Test Method for Particle-Size Analysis
                      of Soils
D698-07e1..... Standard Test Methods for Laboratory Compaction
                      Characteristics of Soil Using Standard Effort
D1140-00(2006).....Standard Test Methods for Amount of Material in
                      Soils Finer than No. 200 Sieve
D1143/D1143M-07e1.....Standard Test Methods for Deep Foundations Under
                      Static Axial Compressive Load
D1188-07e1.....Standard Test Method for Bulk Specific Gravity
                      and Density of Compacted Bituminous Mixtures
                      Using Coated Samples
D1556-07.....Standard Test Method for Density and Unit Weight
                      of Soil in Place by the Sand-Cone Method
D1557-09.....Standard Test Methods for Laboratory Compaction
                      Characteristics of Soil Using Modified Effort
                      (56,000ft lbf/ft3 (2,700 KNm/m3))
D2166-06.....Standard Test Method for Unconfined Compressive
                      Strength of Cohesive Soil
D2167-08).....Standard Test Method for Density and Unit Weight
                      of Soil in Place by the Rubber Balloon Method
D2216-10.....Standard Test Methods for Laboratory
                      Determination of Water (Moisture) Content of
                      Soil and Rock by Mass
D2974-07a......Standard Test Methods for Moisture, Ash, and
                      Organic Matter of Peat and Other Organic Soils
D3666-11..... Standard Specification for Minimum Requirements
                      for Agencies Testing and Inspecting Road and
                      Paving Materials
D3740-11.....Standard Practice for Minimum Requirements for
                      Agencies Engaged in Testing and/or Inspection
                      of Soil and Rock as used in Engineering Design
                      and Construction
D6938-10.....Standard Test Method for In-Place Density and
                      Water Content of Soil and Soil-Aggregate by
                      Nuclear Methods (Shallow Depth)
E94-04(2010).....Standard Guide for Radiographic Examination
E164-08.....Standard Practice for Contact Ultrasonic Testing
                      of Weldments
```

E329-11c	.Standard Specification for Agencies Engaged in
	Construction Inspection, Testing, or Special
	Inspection
E543-09	.Standard Specification for Agencies Performing
	Non-Destructive Testing
E605-93(R2011)	.Standard Test Methods for Thickness and Density
	of Sprayed Fire Resistive Material (SFRM)
	Applied to Structural Members
E709-08	.Standard Guide for Magnetic Particle Examination
E1155-96(R2008)	.Determining FF Floor Flatness and FL Floor
	Levelness Numbers

E. American Welding Society (AWS):

D1.D1.1M-10.....Structural Welding Code-Steel

1.3 REQUIREMENTS:

- A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office."
- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by Resident Engineer. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of Resident Engineer to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to Resident Engineer, Contractor, unless other arrangements are agreed to in writing by the Resident Engineer. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- D. Verbal Reports: Give verbal notification to Resident Engineer immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EARTHWORK:

- A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following:
 - 1. Observe fill and subgrades during proof-rolling to evaluate suitability of surface material to receive fill or base course. Provide recommendations to the Resident Engineer regarding suitability or unsuitability of areas where proof-rolling was observed. Where unsuitable results are observed, witness excavation of unsuitable material and recommend to Resident Engineer extent of removal and replacement of unsuitable materials and observe proofrolling of replaced areas until satisfactory results are obtained.
 - 2. Provide part time observation of fill placement and compaction and field density testing in building areas and provide part time observation of fill placement and compaction and field density testing in pavement areas to verify that earthwork compaction obtained is in accordance with contract documents.
 - 3. Provide supervised geotechnical technician to inspect excavation, subsurface preparation, and backfill for structural fill.
- B. Testing Compaction:
 - Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used, in compliance with ASTM D698 and/or ASTM D1557.
 - 2. Make field density tests in accordance with the primary testing method following ASTM D6938 wherever possible. Field density tests utilizing ASTM D1556 shall be utilized on a case by case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative methods, they should provide satisfactory explanation to the Resident Engineer before the tests are conducted.
 - a. Building Slab Subgrade: At least one test of subgrade for every 185 m² (2000 square feet) of building slab, but in no case fewer than three tests. In each compacted fill layer, perform one test

for every 185 $\rm m^2$ (2000 square feet) of overlaying building slab, but in no case fewer than three tests.

- b. Foundation Wall Backfill: One test per 30 m (100 feet) of each layer of compacted fill but in no case fewer than two tests.
- c. Pavement Subgrade: One test for each 335 $\rm m^2$ (400 square yards), but in no case fewer than two tests.
- d. Curb, Gutter, and Sidewalk: One test for each 90 m (300 feet), but in no case fewer than two tests.
- e. Trenches: One test at maximum 30 m (100 foot) intervals per 1200 mm (4 foot) of vertical lift and at changes in required density, but in no case fewer than two tests.
- f. Footing Subgrade: At least one test for each layer of soil on which footings will be placed. Subsequent verification and approval of each footing subgrade may be based on a visual comparison of each subgrade with related tested subgrade when acceptable to Resident Engineer. In each compacted fill layer below wall footings, perform one field density test for every 30 m (100 feet) of wall. Verify subgrade is level, all loose or disturbed soils have been removed, and correlate actual soil conditions observed with those indicated by test borings.
- c. Testing for Footing Bearing Capacity: Evaluate if suitable bearing capacity material is encountered in footing subgrade.
- D. Testing Materials: Test suitability of on-site and off-site borrow as directed by Resident Engineer.

3.2 LANDSCAPING:

- A. Test topsoil for organic materials, pH, phosphate, potash content, and gradation of particles.
 - 1. Test for organic material by using ASTM D2974.
 - 2. Determine percent of silt, sand, clay, and foreign materials such as rock, roots, and vegetation.
- B. Submit laboratory test report of topsoil to Resident Engineer.

3.3 ASPHALT CONCRETE PAVING:

- A. Aggregate Base Course:
 - 1. Determine maximum density and optimum moisture content for aggregate base material in accordance with ASTM D1557, Method D.
 - 2. Make a minimum of three field density tests on each day's final compaction on each aggregate course in accordance with ASTM D1556.
 - 3. Sample and test aggregate as necessary to insure compliance with specification requirements for gradation, wear, and soundness as

specified in the applicable state highway standards and specifications.

- B. Asphalt Concrete:
 - Aggregate: Sample and test aggregates in stock pile and hot-bins as necessary to insure compliance with specification requirements for gradation (AASHTO T27), wear (AASHTO T96), and soundness (AASHTO T104).
 - 2. Temperature: Check temperature of each load of asphalt concrete at mixing plant and at site of paving operation.
 - 3. Density: Make a minimum of two field density tests in accordance with ASTM D1188 of asphalt base and surface course for each day's paving operation.

3.4 SITE WORK CONCRETE:

Test site work concrete including materials for concrete as required in Article CONCRETE of this section.

3.5 CONCRETE:

- A. Batch Plant Inspection and Materials Testing:
 - Perform continuous batch plant inspection until concrete quality is established to satisfaction of Resident Engineer with concurrence of Contracting Officer and perform periodic inspections thereafter as determined by Resident Engineer.
 - 2. Periodically inspect and test batch proportioning equipment for accuracy and report deficiencies to Resident Engineer.
 - 3. Sample and test mix ingredients as necessary to insure compliance with specifications.
 - 4. Sample and test aggregates daily and as necessary for moisture content. Test the dry rodded weight of the coarse aggregate whenever a sieve analysis is made, and when it appears there has been a change in the aggregate.
 - 5. Certify, in duplicate, ingredients and proportions and amounts of ingredients in concrete conform to approved trial mixes. When concrete is batched or mixed off immediate building site, certify (by signing, initialing or stamping thereon) on delivery slips (duplicate) that ingredients in truck-load mixes conform to proportions of aggregate weight, cement factor, and water-cement ratio of approved trial mixes.
- B. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.

- 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
- 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type. After good concrete quality control has been established and maintained as determined by Resident Engineer make three cylinders for each 80 m³ (100 cubic yards) or less of each concrete type, and at least three cylinders from any one day's pour for each concrete type. Label each cylinders from any one day's pour for each concrete type. Label each cylinder with an identification number. Resident Engineer may require additional cylinders to be molded and cured under job conditions.
- 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the beginning of each day's pumping operations to determine change in slump.
- 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
- 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 9. Verify that specified mixing has been accomplished.

- 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:
 - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
 - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.
- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.
- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for levelness and flatness as follows:
 - a. Perform Floor Tolerance Measurements F_F and F_L in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.
 - b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.

- c. Provide the Contractor and the Resident Engineer with the results of all profile tests, including a running tabulation of the overall F_F and F_L values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Other inspections:
 - a. Grouting under base plates.
 - b. Grouting anchor bolts and reinforcing steel in hardened concrete.
- C. Laboratory Tests of Field Samples:
 - Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by Resident Engineer. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.
 - 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
 - 3. Furnish certified compression test reports (duplicate) to Resident Engineer. In test report, indicate the following information:
 - a. Cylinder identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Type of concrete, slump, and percent air.
 - d. Compressive strength of concrete in MPa (psi).
 - e. Weight of lightweight structural concrete in kg/m³ (pounds per cubic feet).
 - f. Weather conditions during placing.
 - g. Temperature of concrete in each test cylinder when test cylinder was molded.
 - h. Maximum and minimum ambient temperature during placing.
 - i. Ambient temperature when concrete sample in test cylinder was taken.
 - j. Date delivered to laboratory and date tested.

3.6 REINFORCEMENT:

- A. Review mill test reports furnished by Contractor.
- B. Make one tensile and one bend test in accordance with ASTM A370 from each pair of samples obtained.
- C. Written report shall include, in addition to test results, heat number, manufacturer, type and grade of steel, and bar size.

 $01 \ 45 \ 29 \ - \ 10$

D. Perform tension tests of mechanical and welded splices in accordance with ASTM A370.

3.7 ARCHITECTURAL PRECAST CONCRETE:

- A. Inspection at Plant: Forms, placement of reinforcing steel, concrete cover, and placement and finishing of concrete.
- B. Concrete Testing: Test concrete including materials for concrete as required in Article CONCRETE of this section, except make two test cylinders for each day's production of each strength of concrete produced.
- C. Inspect members to insure specification requirements for curing and finishes have been met.

3.8 STRUCTURAL STEEL:

- A. General: Provide shop and field inspection and testing services to certify structural steel work is done in accordance with contract documents. Welding shall conform to AWS D1.1 Structural Welding Code.
- B. Prefabrication Inspection:
 - Review design and shop detail drawings for size, length, type and location of all welds to be made.
 - 2. Approve welding procedure qualifications either by pre-qualification or by witnessing qualifications tests.
 - 3. Approve welder qualifications by certification or retesting.
 - 4. Approve procedure for control of distortion and shrinkage stresses.
 - 5. Approve procedures for welding in accordance with applicable sections of AWS D1.1.
- C. Fabrication and Erection:
 - 1. Weld Inspection:
 - a. Inspect welding equipment for capacity, maintenance and working condition.
 - b. Verify specified electrodes and handling and storage of electrodes in accordance with AWS D1.1.
 - c. Inspect preparation and assembly of materials to be welded for conformance with AWS D1.1.
 - d. Inspect preheating and interpass temperatures for conformance with AWS D1.1.
 - e. Measure 25 percent of fillet welds.
 - f. Welding Magnetic Particle Testing: Test in accordance with ASTM E709 for a minimum of:
 - 20 percent of all shear plate fillet welds at random, final pass only.

- 20 percent of all continuity plate and bracing gusset plate fillet welds, at random, final pass only.
- 100 percent of tension member fillet welds (i.e., hanger connection plates and other similar connections) for root and final passes.
- 20 percent of length of built-up column member partial penetration and fillet welds at random for root and final passes.
- 5) 100 percent of length of built-up girder member partial penetration and fillet welds for root and final passes.
- g. Welding Ultrasonic Testing: Test in accordance with ASTM E164 and AWS D1.1 for 100 percent of all full penetration welds, braced and moment frame column splices, and a minimum of 20 percent of all other partial penetration column splices, at random.

SPEC WRITER NOTE: Specify radiographic testing only for very large jobs or those with complicated full penetration welds.

- h. Welding Radiographic Testing: Test in accordance with ASTM E94, and AWS D1.1 for 5 percent of all full penetration welds at random.
- i. Verify that correction of rejected welds are made in accordance with AWS D1.1.
- j. Testing and inspection do not relieve the Contractor of the responsibility for providing materials and fabrication procedures in compliance with the specified requirements.
- 2. Bolt Inspection:
 - a. Inspect high-strength bolted connections in accordance AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts.
 - b. Slip-Critical Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in each connection in accordance with AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.
 - c. Fully Pre-tensioned Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in 25 percent of connections in accordance with AISC Specification for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.

- d. Bolts installed by turn-of-nut tightening may be inspected with calibrated wrench when visual inspection was not performed during tightening.
- e. Snug Tight Connections: Inspect 10 percent of connections verifying that plies of connected elements have been brought into snug contact.
- f. Inspect field erected assemblies; verify locations of structural steel for plumbness, level, and alignment.
- D. Submit inspection reports, record of welders and their certification, and identification, and instances of noncompliance to Resident Engineer.

3.9 STEEL DECKING:

- A. Provide field inspection of welds of metal deck to the supporting steel, and testing services to insure steel decking has been installed in accordance with contract documents and manufacturer's requirements.
- B. Qualification of Field Welding: Qualify welding processes and welding operators in accordance with "Welder Qualification" procedures of AWS D1.1. Refer to the "Plug Weld Qualification Procedure" in Part 3 "Field Quality Control."
- C. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

3.10 SHEAR CONNECTOR STUDS:

- A. Provide field inspection and testing services required by AWS D.1 to insure shear connector studs have been installed in accordance with contract documents.
- B. Tests: Test 20 percent of headed studs for fastening strength in accordance with AWS D1.1.
- C. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

3.11 SPRAYED-ON FIREPROOFING:

- A. Provide field inspection and testing services to certify sprayed-on fireproofing has been applied in accordance with contract documents.
- B. Obtain a copy of approved submittals from Resident Engineer.
- C. Use approved installation in test areas as criteria for inspection of work.
- D. Test sprayed-on fireproofing for thickness and density in accordance with ASTM E605.
 - Thickness gauge specified in ASTM E605 may be modified for pole extension so that overhead sprayed material can be reached from floor.

- E. Location of test areas for field tests as follows:
 - Thickness: Select one bay per floor, or one bay for each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests. Take thickness determinations from each of following locations: Metal deck, beam, and column.
 - 2. Density: Take density determinations from each floor, or one test from each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests, from each of the following areas: Underside of metal deck, beam flanges, and beam web.
- F. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

- - - E N D - - -

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
 - 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
 - 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Resident Engineer to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's

proposed operations and the requirements imposed by those laws, regulations, and permits.

- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the Resident Engineer. Do not fasten or attach ropes, cables, or guys to

trees for anchorage unless specifically authorized, or where special emergency use is permitted.

- Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
- Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
- 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of the local design year storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.
 - b. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the

Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.

- Manage borrow areas on and off Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- Manage and control spoil areas on and off Government property to limit spoil to areas shown on the Environmental Protection Plan and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- 8. Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the Resident Engineer.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.

- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of California and California Air Pollution Statue, Rule, or Regulation and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
 - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
 - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Resident Engineer. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m unless otherwise permitted by local ordinance or the Resident Engineer. Repetitive

impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA):

EARTHMOVING		MATERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75		
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.

- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the Resident Engineer noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Resident Engineer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 58 16 TEMPORARY INTERIOR SIGNAGE

PART 1 GENERAL

DESCRIPTION

This section specifies temporary interior signs.

PART 2 PRODUCTS

2.1 TEMPORARY SIGNS

- A. Fabricate from 50 Kg (110 pound) mat finish white paper.
- B. Cut to 100 mm (4-inch) wide by 300 mm (12 inch) long size tag.
- C. Punch 3 mm (1/8-inch) diameter hole centered on 100 mm (4-inch) dimension of tag. Edge of Hole spaced approximately 13 mm (1/2-inch) from one end on tag.
- D. Reinforce hole on both sides with gummed cloth washer or other suitable material capable of preventing tie pulling through paper edge.
- E. Ties: Steel wire 0.3 mm (0.0120-inch) thick, attach to tag with twist tie, leaving 150 mm (6-inch) long free ends.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install temporary signs attached to room door frame or room door knob, lever, or pull for doors on corridor openings.
- B. Mark on signs with felt tip marker having approximately 3 mm (1/8-inch) wide stroke for clearly legible numbers or letters.
- C. Identify room with numbers as designated on floor plans.

3.2 LOCATION

- A. Install on doors that have room, corridor, and space numbers shown.
- B. Doors that do not require signs are as follows:
 - 1. Corridor barrier doors (cross-corridor) in corridor with same number.
 - 2. Folding doors or partitions.
 - 3. Toilet or bathroom doors within and between rooms.
 - 4. Communicating doors in partitions between rooms with corridor entrance doors.
 - 5. Closet doors within rooms.
- C. Replace missing, damaged, or illegible signs.

- - - E N D - - -

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 02 41 00, DEMOLITION.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.

-

- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.

J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.

- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- 0. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

 $01 \ 74 \ 19 \ - \ 4$

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

01 74 19 - 5

1.6 APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):

LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations. B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 02 41 00 DEMOLITION FOR ARCHITECTURAL WORK

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown and as required for completion of project as indicated.

1.2 RELATED WORK:

- A. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- E. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- F. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.

- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - 1. No wall or part of wall shall be permitted to fall outwardly from structures.
 - Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 3. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.
- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously.
- D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.
- E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 03 10 00 CONCRETE FORMWORK

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Requirements of Division 1 apply to all work of this section.

1.2 SCOPE

A. Design, furnish and install forms for concrete as indicated on drawings and specified here. Remove forms and shores at specified time. Clean up.

1.3 RELATED WORK (See also Table of Contents)

- A. Rough Carpentry: Section 06 10 00.
- B. Structural Steel: Section 05 12 00.
- C. Metal Fabrications: Section 05 50 00.
- D. Items relating solely to mechanical or electrical work are included under those Divisions, except as specifically indicated otherwise on Drawings.
- E. Reinforcing Steel: Section 03 21 00.
- F. Cast-In-Place Concrete: Section 03 30 00.

1.4 QUALITY ASSURANCE

- A. General:
 - 1. Conform to all requirements of ACI 347 and CBC Section 1906A.1 and 1906A.2.
 - 2. Concrete formwork shall be designed and constructed to safely support fluid concrete and superimposed construction loads without excessive deflection or concrete leakage. Provide bracing to maintain accurate alignment and to resist all anticipated lateral loads. Forms shall conform with drawings as to shape, line, and dimension. Design, engineering and construction of forms shall be Contractor's responsibility. Formwork for exposed concrete shall be constructed to tolerances indicated in ACI 303R.
 - 3. Cooperate and coordinate with other trades who furnish and/or install piping, conduit, reglets, anchors, inserts, sleeves, hangers, etc., as their work requires; including provisions for recesses and chases.
- B. Submittals: (Submit under provisions of Section 01 33 00)1. Product Data. Provide manufacturers data and installation instructions for the following:
 - a. Tie rods and spreaders.
 - b. Formwork for exposed concrete.
 - c. Form coatings and release agents.
- C. Standards and References: (Latest Edition unless otherwise noted)

- 1. 2010 California Building Code (CBC) with State of California Amendments.
- 2. "Recommended Practice for Concrete Formwork", ACI 347, American Concrete Institute, latest edition.
- 3. Standard Grading and Dressing Rules #17, West Coast Lumber Inspection Bureau (For Douglas Fir Form Lumber).
- 4. U.S. Product Standard PS 1-83 (For Plywood Form Lumber).
- 5. "Guide to Cast-In-Place Architectural Concrete Practice", ACI 303R, American Concrete Institute, latest edition.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Form Material:
 - 1. Smooth Concrete exposed to view: 5/8 inch minimum APA Plyform or steel.
 - 2. Concrete concealed from view: 5/8 inch minimum APA Plyform, steel or clean and sound 1 x 8 Standard Grade Douglas Fir.
- B. Fiber Forms: Tubular column forms spirally constructed of laminated plies of fiber. Plies shall be laminated using a non-water sensitive adhesive and surface wax impregnated for moisture protection. Forms shall give a smooth and seamless appearance to the cast concrete. Provide reveals, as shown on the drawings, as supplied by the form manufacturer. Forms shall be as manufactured by Sonoco Products, plastic lined; Burke Smoothtube by Burke Co.; or approved equal.
- C. Form Clamps: Assembly to have cone washers, (1 inch break back) 3/8" inch center rod.
- D. Form Ties:
 - 1. Concrete exposed to view: Snap ties allowing full 1 inch break back.
 - 2. Concrete concealed from view: Snap ties or wire.
 - 3. Verify special spacing requirements with architectural drawings at exposed concrete.
- E. Spreaders: Metal (no wood).
- F. Form Coating: Non-grain and non-staining types of form coating that will not leave a residual matter on the face of the concrete or adversely affect proper bonding of any subsequent paint or other surface applications.
 - 1. Form coating containing mineral oils or other non-drying materials will not be permitted for any concrete work.
- G. Joint Tape: No. 471 plastic film tape 3 inches wide, as manufactured by the Industrial Tape Division of 3M Company.
- H. Expansion Joint Filler (Preformed): ½ inch thick; Flexcell by Celotex Corporation, Elastic Fiber Expansion Joint by Phillip Carey Mfg. Co., or Sealtight Fiber Expansion Joint by W.R. Meadows, Inc.
- I. Extruded Polystyrene Foam: ASTM C578 type IV. Dow Chemical Corp. "Styrofoam", UC Industries "Foamular", or approved equal.

PART 3 - EXECUTION

3.1 FORM CONSTRUCTION

- A. Construct substantial forms to the shapes, lines, grades and elevations shown, sufficiently tight to prevent leakage of mortar, and tied, clamped and braced to prevent spreading, shifting or settling. Plywood joints shall be square and tight; plywood shall be arranged in such manner as to minimize number of joints and to provide a smooth, attractive finished concrete surface.
- B. Apply form coating to forms before reinforcing steel is in place.
- C. Sleeves, anchors and bolts, including those for angle frames, supports, ties and other materials in connection with concrete construction, shall be secured in position before the concrete is placed.
- D. Proper provisions shall be made for openings, blockouts, sleeves, offsets, sinkages, recesses and depressions required by other trades and suppliers prior to placing concrete.
 - 1. The Contractor shall also see that sleeves have been installed and other provisions have been made for the installation of mechanical, electrical and other equipment.
 - 2. Coordinate with all trades to insure proper placement of all items in forms and to provide proper blockouts wherever required.
- E. Concrete work out of alignment, level or plumb will be cause for rejection of the whole work affected and, if so rejected, such work shall be removed and replaced, as directed by Architect, with no additional cost to the Owner.
- F. Form Not Required: Concrete footings may be poured directly against cut earth where feasible and when the Architect's approval has been obtained.
 - 1. See structural drawings for requirements for placing concrete footings directly against earth without forms.
- G. Use ¾ inch minimum wood chamfer strips typical at all exposed corners unless noted otherwise on drawings.

3.2 CLEANING OF FORMS

- A. All dirt, chips, sawdust, rubbish, water, etc. shall be completely removed from form by water hosing and air pressure before any concrete is deposited therein. No wooden ties or blocking shall be left in concrete except where indicated for attachment of other work.
- B. Thoroughly clean and patch all holes in formwork and re-coat as required before reusing. Forms not suited to obtain concrete surfaces and tolerances in conformity with Contract requirements will be rejected by Architect.
 - 1. Reuse of forming materials shall be limited only as required to produce the finishes as specified, free from blemishes and other defects unless covered by other building materials in which case blemish free concrete is not required.

3.3 INSPECTION OF FORMS

A. Notify the Architect at least 48 hours in advance of the beginning of pouring operations and at the completion of formwork and location of all construction joints. An inspection of forms and joints will be made for approval of finished work and general layout only. The foregoing inspection shall in no way relieve the Contractor of responsibility of design and safety or formwork, bulkheads and shorings.

3.4 REMOVAL OF FORMS AND SHORING

- A. Do not remove forms until concrete has attained sufficient strength to support its weight and any construction loading. Concrete must be allowed to cure long enough to avoid damage during form removal. Contractor or his representative in charge of concrete construction shall be present during removal of forms and shores, and shall be personally responsible for safety of this operation at all times and under all conditions.
- B. As a minimum, formwork and shoring shall remain in place for the following periods:
 - 1. Concrete on grade: 24 hours
 - 2. Walls and Columns: 3 days
 - 3. Formwork may be removed and reshores installed before the times indicated above, provided the concrete has cured sufficiently to avoid damage when formwork is removed. Shores must be immediately replaced with reshores in a sequence designed to avoid inducing stress in the concrete member.

3.5 ADJUSTING AND CLEANING

- A. Upon completion of this Work, clean up and remove from Site all equipment and debris resulting from this work.
- B. Surfaces to be painted shall be smooth and free of substances such as dirt, wax, excessive latence, grease or materials that would prevent proper bonding of finishes.
 - 1. Removal of foregoing contaminants, and complete removal of parting and curing compounds affecting proper paint bond, shall be responsibility of this Section of Work. Sandblast cleaning shall not be employed without specific approval of Structural Engineer.

END OF SECTION 03 10 00

SECTION 03 21 00 REINFORCING STEEL

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Requirements of Division 1 apply to all work of this Section.

1.2 SCOPE

A. Unless noted otherwise, furnish and install reinforcing for all concrete, including dowels, chairs, spacers, bolsters, etc., necessary for supporting and fastening reinforcement in place as shown on the Drawings and specified herein.

1.3 RELATED WORK (See also Table of Contents)

- A. Concrete Formwork: Section 03 10 00.
- B. Cast-In-Place Concrete: Section 03 30 00.
- C. Concrete Unit Masonry: Section 04 22 00.
- D. Clay Unit Masonry: Section 04 21 00.

1.4 QUALITY ASSURANCE

- A. General:
 - 1. Acceptable Manufacturers: Regularly engaged in the manufacture of steel bar and welded wire fabric reinforcing.
 - 2. Installer Qualifications: Installation shall be done only by an installation firm normally engaged in this business. All work shall be performed by qualified mechanics working under an experienced supervisor.
 - 3. Welding Qualifications: Welding procedures, welding operators and welders shall be qualified in accordance with AWS D1.4 "Structural Welding Code Reinforcing Steel".
 - a. Welders whose work fails to pass inspection shall be requalified before performing further welding.
 - 4. Reinforcement Work shall conform to ACI 301 and CBC Section 1907A, as minimum standards.
 - 5. Allowable Tolerances:
 - a. Fabrication:
 - 1) Sheared length: 1 inch.
 - 2) Depth of truss bars: Plus 0., minus ½-inch.
 - 3) Ties: Plus or minus ½-inch.
 - 4) All other bends: Plus or minus 1 inch.
 - b. Placement:
 - 1) Concrete cover to form surfaces: Plus or minus ¼-inch.
 - 2) Minimum spacing between bars: Plus or minus ¼-inch.
 - 3) Crosswise of members: Spaced evenly within 2 inches of stated separation.
 - 4) Lengthwise of members: Plus or minus 2 inches.
 - c. Maximum bar movement to avoid interference with other reinforcing steel, conduits, or embedded items: 2 bar diameters.

- B. Standards and References: (Latest Edition unless otherwise noted): 1. American Concrete Institute (ACI).
 - a. ACI 301 "Specifications for Structural Concrete for Buildings".
 - b. ACI 315 "Details and Detailing of Concrete Reinforcing".
 - c. ACI 318 "Building Code Requirements for Reinforced Concrete"
 - 2. American Society for Testing and Materials (ASTM).
 - a. ASTM A82 "Cold Drawn Wire for Concrete Reinforcement". b. ASTM A185 - "Welded Steel Wire Fabric for Concrete
 - Reinforcement".
 - c. ASTM A615 "Deformed and Plain Billet-Steel Bars for Concrete Reinforcement".
 - d. ASTM A706 "Low Alloy Steel Deformed Bars for Concrete Reinforcement".
 - 3. Concrete Reinforcing Steel Institute (CRSI) "Manual of Standard Practice".
 - 4. 2010 California Building Code (CBC) with State of California Amendments.
- C. Submittals: (Submit under provisions of Section 01 33 00)
 - Shop Drawings: Prepare in accordance ACI 315. Indicate bending diagrams, assembly diagrams, splicing and laps of bars and shapes, dimensions and details of bar reinforcing and assemblies. Correctness of all reinforcing requirements and work is the responsibility of Contractor. Identify such shop drawings with reference thereon to sheet and detail numbers from Contract Drawings.
 - a. Do not use scaled dimensions from Contract Drawings in determining the lengths of reinforcing bars.
 - b. No reinforcing steel shall be fabricated without approved shop drawings.
 - c. Any deviations from the contract documents must be clearly indicated as a deviation on the shop drawings.
 - d. Areas of high congestion, including member joints and embed locations shall be fully detailed to verify clearances and assembly parameters and coordination with other trades.
 - 2. Certified mill test reports of supplied reinforcing indicating chemical and physical analysis. Tensile and bend tests shall be performed by the mill in accordance with ASTM A615.
 - 3. Product Data:
 - a. Manufacturer's specifications and installation instructions for splice devices.
 - b. Bar Supports.
 - 4. Certificates of Compliance with specified standards:
 - a. Reinforcing bars.
 - b. Welded wire fabric.
 - c. Welding electrodes.
 - 5. Samples: Only as requested by Architect.
- D. Tests and Inspections:
 - 1. All reinforcing steel whose properties are not identifiable by mill test reports shall be tested in accordance with ASTM A615. One Series of tests for each missing report to be borne by the Contractor.
 - 2. When inspections are indicated for reinforcement placement on the

Structural drawings, a special inspector shall be employed to inspect reinforcing placement per CBC Section 1704A.

- 3. When tests are indicated for reinforcing steel on the structural drawings, the reinforcing steel used shall be tested in accordance with ASTM A615. One tensile and one bend test for each 2-1/2 tons of steel or fraction thereof, shall be made.
- 4. Inspect shop and field welding in accordance with AWS D1.4, including checking materials, equipment, procedure and welder qualification as well as the welds. Inspector will use nondestructive testing or any other aid to visual inspection that he deems necessary to assure himself of the adequacy of the weld.
- 5. Tests and inspection shall be performed by Owners testing agency except when needed to justify rejected work, in which case the cost of retests and reinspection shall be borne by the Contractor.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver reinforcement to project site in bundles marked with metal tags indicating bar size and length.
- B. Handle and store materials to prevent contamination.
 - 1. Store reinforcement in a manner that will prevent excessive rusting or coating with grease, oil, dirt, and other objectionable materials. Storage shall be in separate piles or racks so as to avoid confusion or loss of identification after bundles are broken.
- C. Deliver and store welding electrodes in accordance with AWS D12.1.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Reinforcement Bars: ASTM A615, Grade 60 for all bars.
 - 1. Bar reinforcement to be welded shall meet chemical requirements of ASTM A706.
 - 2. Longitudinal reinforcement in columns and beams of special momentresisting frames shall meet the chemical requirements of ASTM A706.
- B. Stirrups and Ties: ASTM A615, Grade 60 for all bars.
- C. Steel Dowels: Same grade as bars to which dowels are connected.
- D. Welded wire Fabric: ASTM A185.
- E. Tie Wires: FS-QQ-W-461, annealed steel, black, 16 gauge minimum.
- F. Welding Electrodes: AWS D1.4, low hydrogen, E70XX series.
- G. Bar Supports:
 - Typical, unless noted otherwise; CRSI Class 2 wire supports.
 a. Do not use wood, brick or other objectionable materials.
 b. Do not use galvanized supports.
 - 2. Supports placed against ground: Pre-cast concrete blocks not less than 4 inches square with embedded wire.
- H. Mechanical Couplers: Comply with CBC section 1908A.1.6 and ACI 318

section 12.14.3.

PART 3 - EXECUTION

3.1 FABRICATION

- A. Shop fabricate reinforcement to meet requirements of Drawings.
- B. Fabricate reinforcement in accordance with the requirements of ACI 315 where specific details are not shown or where Drawings and Specifications are not more demanding.
- C. Steel reinforcement shall not be bent or straightened in a manner that will injure the material. Bars with kinks or bends not shown on the Drawings shall not be used. Heating of bars for bending will not be permitted.
- D. Reinforcing shall not be field bent or straightened without structural engineer's review.
- E. Provide offsets in rebar (1:6 maximum) where required to maintain clearances.

3.2 CONDITION OF SURFACES

A. Examine surfaces and conditions receiving or affecting the work. Do not proceed until unsuitable conditions have been corrected.

3.3 GENERAL

A. Concrete shown without reinforcing shall be reinforced as similar parts shown with reinforcing except where concrete is specifically noted to be unreinforced.

3.4 PLACEMENT

- A. All reinforcement shall be accurately set in place, lapped, spliced, spaced rigidly and securely held in place and tied with specified wire at all splices and crossing points. All wire tie ends shall point away from the form. Carefully locate all dowel steel to align with wall and column steel.
 - Bars shall be in long lengths with laps and splices as shown. Offset laps in adjacent bars. Place steel with clearances and cover as shown. Bar laps shall be as indicated on the Drawings. Tie all laps and intersections with the specified wire.
 - 2. Maintain clear space between parallel bars not less than 1-1/2 times nominal diameter, but in no case shall clear space be less than 1-1/2 times maximum size concrete aggregate.
 - 3. Reinforcing dowels for slabs shall be placed as detailed. Sleeves may be used if reviewed by the Structural Engineer before installation. Install dowel through all construction and expansion joints for all slabs on grade.
- B. Bar Supports: Support and securely fasten bars with chairs, spacers and ties to prevent displacement by construction loads or placement of concrete beyond the tolerances specified. Conform to CRSI as a minimum standard.

- C. Steel Adjustment:
 - 1. Move within allowable tolerances to avoid interference with other reinforcing steel, conduits, or embedded items.
 - 2. Do not move bars beyond allowable without concurrence of Structural Engineer.
 - 3. Do not heat, bend, or cut bars without concurrence of Structural Engineer.
 - 4. Reinforcement shall not be bent after being embedded in hardened concrete.
- D. Splices:
 - 1. Splice reinforcing as shown.
 - 2. Lap Splices: Tie securely with wire to prevent displacement of splices during placement of concrete.
 - 3. Splice Devices: Install in accordance with manufacturer's written instructions. Obtain Structural Engineer's review before using.
 - 4. Do not splice bars except at locations shown without concurrence of Structural Engineer.
 - a. Where splices in addition to those indicated are required, indicate location on shop drawings clearly and highlight "for Engineer's approval".
- E. Welding:
 - 1. Welding is not permitted unless specifically detailed on Drawings or approved by Engineer.
 - 2. Employ shielding metal-arc method and meet requirements of AWS D1.4.
 - 3. Welding is not permitted on bars where the carbon equivalent is unknown or is determined to exceed 0.55.
 - 4. Welding shall not be done within two bar diameters of any bent portion of a bar which has been bent cold.
 - 5. Welding of crossing bars is not permitted.
- F. Welded Wire Fabric: Install in long lengths, lapping 24 inches at end splices and one mesh at side splices. Offset laps in adjacent widths. Place fabric in approximately the middle of the slab thickness unless shown otherwise on the Drawings by dimension. Wire tie lap joints at 12-inch centers. Use concrete blocks to support mesh in proper position.
- G. Reinforcement shall be free of mud, oil or other materials that may reduce bond at the time concrete is placed. Reinforcement with tightly adhered rust or mill scale will be accepted without cleaning provided that rusting has not reduced dimensions and weights below applicable standards. Remove loose rust.
- H. Protection against rust:
 - Where there is danger of rust staining adjacent surfaces, wrap reinforcement with impervious tape or otherwise prevent rust staining.
 - 2. Remove protective materials and clean reinforcement as required before proceeding with concrete placement.
- I. Drawing Notes: Refer to notes on Drawings for additional reinforcement requirements.

J. Mechanical and Electrical Drawings: Refer to Mechanical and Electrical Drawings for formed concrete requiring reinforcing steel. All such steel shall be included under the work of this Section.

END OF SECTION 03 21 00

SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Requirements of Division 1 apply to all Work of this Section.

1.2 SCOPE

- A. Furnish, place and finish cast in place concrete and related work as indicated on the Drawings and specified here.
 - 1. Install miscellaneous metal and other items furnished by other trades to be installed in concrete work.
 - 2. Provide facilities for job curing of test cylinders and transporting to Testing Laboratory.
- B. Provide grouting of steel base plates as indicated on the Drawings and specified here.

1.3 RELATED WORK (See also Table of Contents)

- A. Concrete Formwork: Section 03 10 00.
- B. Reinforcing Steel: Section 03 21 00.
- C. Mortar and Grout: 04 05 00.
- D. Structural Steel: Section 05 12 00.
- E. Metal Decking: Section 05 30 00.
- F. Metal Fabrications: Section 05 50 00.

1.4 QUALITY ASSURANCE

- A. Standards and References: (Latest Edition unless otherwise noted) 1. 2010 California Building Code (CBC), with State of California
 - Amendments.
 - 2. AMERICAN CONCRETE INSTITUTE (ACI)
 - ACI 117 Standard Tolerances for Concrete Construction and Materials
 - b. ACI 211.1 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete
 c. ACI 211.2 Standard Practice for Selecting
 - Proportions for Structural
 - Lightweight Concrete
 - d. ACI 301 Structural Concrete for Buildings
 - e. ACI 302 Guide for Concrete Floor and Slab
 - Construction
 - f. ACI 305R Hot Weather Concreting
 - g. ACI 306R Cold Weather Concreting
 - h. ACI 318 Building Code Requirements for Reinforced

Concrete

- i. ACI 360 Design of Slabs-On-Ground
- 3. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

a.	ASTM C 31	Making and Curing Concrete Test Specimens in the Field	
b.	ASTM C 33	Concrete Aggregates	
с.	ASTM C 39	Compressive Strength of Cylindrical	
	Concrete Specimens		
d.	ASTM C 42	Obtaining and Testing Drilled Cores and Sawed	
		Beams of Concrete	
e.	ASTM C 94	Ready-Mixed Concrete	
f.	ASTM C109	Test of Hydraulic Cement Concrete	
g.	ASTM C 143	Slump of Hydraulic Cement Concrete	
h.	ASTM C 150	Portland Cement	
i.	ASTM C 172	Sampling Freshly Mixed Concrete by the	
		Volumetric Method	
j.	ASTM C 192	Making and Curing Concrete Test Specimens in the	
		Laboratory	
k.	ASTM C 260	Air-Entraining Admixtures for Concrete	
l.	ASTM C 330	Lightweight Aggregates for Structural Concrete	
m.	ASTM C 494	Chemical Admixtures for Concrete	
n.	ASTM C 618	Fly Ash and Raw or Calcined Natural Pozzolan for	
		Use as a Mineral Admixture in	
	Portland Cement Concrete		
ο.	ASTM C 685	Volumetric Batching and continuous mixing.	
p.	ASTM C1157	Hydraulic-Cement Concrete	

- B. Submittals: (Submit under provisions of Section 01 33 00)
 - 1. Concrete mix designs. See "Mix Design" below. Include results of test data used to establish proportions.
 - 2. Certificates of Compliance from Manufacturer
 - a. Cement per CBC Section 1916A.1. Cement without certificate shall not be used.
 - b. Aggregates
 - c. Admixtures.
 - 3. Data regarding hardeners and sealers.
 - 4. Grout samples for sacked surface textures and colors upon Architects request only.
 - 5. Layout drawings for construction, control and expansion joints.
 - 6. Transit-mix delivery slips:
 - a. Keep record at the job site showing time and place of each pour of concrete, together with transit-mix delivery slips certifying contents of the pour.
 - b. Make the record available to the Architect for his inspection upon request.
 - c. Upon completion of this portion of the work, deliver the record and the delivery slips to the Architect.
 - 7. See Section 03 21 00 for reinforcing steel submittals.
- C. Tests and Inspections:
 - 1. A testing program is required prior to start of construction. Testing program to be done in Compliance with the 2010 CBC requirements and in collaboration with Testing Laboratory, Design team, contractor, owner and submitted for review by the agency in charge of building enforcement. Requirements below are minimum requirements; additional requirements may be required in final testing program.
 - 2. The following tests shall be made by a recognized testing laboratory selected by the Owner and approved by the governing agency. All tests shall be in accordance with the previously

mentioned standards and CBC Section 1916A. A complete record of all tests and inspections shall be kept per CBC Section 1916A. a. Compressive Strength: Make and cure in accordance with ASTM

- C-31. Test in accordance with ASTM C-39 and CBC Section 1905A.6.
 - 1) A record shall be made of time and of locations of concrete from which samples were taken.
 - 2) Four identical cylinders shall be taken from each pour of 50 cubic yards or 2000 square feet or part thereof, being placed each day per CBC Section 1905A.6.2.1. One cylinder shall be tested at age 7 days, and two at age 28 days unless otherwise specified. Preserve remaining cylinder for future use.
- b. Drying Shrinkage: (applies to lightweight concrete only unless noted otherwise)
 - 1) A record shall be made of time cylinders and of locations of concrete from which samples were taken.
 - 2) Three identical 4" x 4" x 11" specimens shall be made from same concrete as used in structure. Percent of shrinkage shall be reported at 21 days after 7 day moist curing period. Average results of 3 specimens shall be used as the accepted value. The value for laboratory cast specimens shall not exceed .075%. If field test specimens are used in lieu of laboratory specimens, a tolerance of +33% may be used.
 - 3) Test specimens in accordance with ASTM C157.
- c. Concrete consistency (slump) shall be tested in accordance with ASTM C143.
- 3. Provide full time inspection per CBC Section 1704A during the taking of test specimens and during the placing of all concrete and embedded steel.
- 4. See Section 03 21 00 for reinforcing steel tests and inspections.
- 5. Provide concrete batch plant inspections per CBC Sections 1704A.4.2.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Portland Cement: ASTM C 150, Type I or Type II. One brand of cement shall be used throughout to maintain uniform color for all exposed concrete.
- B. Concrete Aggregate: Fine and coarse aggregates shall be regarded as separate ingredients. Each size of coarse aggregate, as well as combination of sizes when two or more are used, shall conform to grading requirements of appropriate ASTM Standards and CBC Section 1903A.5.
 - 1. Concrete Aggregates for Standard Weight Concrete: ASTM C 33. Aggregate shall be crushed granite or Perkins type.
 - 2. Concrete Aggregates for Lightweight Concrete: ASTM C330 to produce concrete weighing no more than 115 pcf at 28 days. Aggregate shall be vacuum saturated expanded shale as produced through the rotary kiln method.
- C. Water: Clean and free from injurious amounts of oil, acids, alkali, organic matter and other deleterious substances; suitable for domestic consumption.

- D. Admixtures shall be subject to prior approval by the Engineer, in accordance with ACI 318 Section 3.6. Calcium Chloride is not permitted.
 1. Water Reducing
 - a. ASTM C494 Type A for use in cool weather.
 - b. ASTM C494 Type D for use in hot weather.
 - Air Entraining

 Conform to ASTM C 260
 - a. Conform to ASTM C 260
 - Fly Ash
 a. Conform to ASTM C 618
 - 4. Mid-Range Water-Reducers
 - a. Master Builders "Polyheed" or approved equal.
 - 5. Fly Ash Pozzolan
 - a. Conforming to ASTM A-618 Class F
- E. Slab on Grade Vapor Retarder
 - 1. Vapor Retarder must have the following qualities:
 - a. 15 mil thickness minimum
 - b. WVTR less than 0.008 as tested by ASTM E 96
 - c. ASTM E 1745 Class A (Plastics)
 - 2. Vapor Retarder Products
 - a. Stego Wrap Vapor Retarder by STEGO INDUSTRIES LLC.
 - b. W.R. Meadows Premoulded Membrane with Plasmatic Core.
 - c. Zero-Perm by Alumiseal.
 - 3. Vapor Retarder Tape
 - a. Water Vapor Transmission Rate :ASTM E 96, 0.3 perms or lower
 - b. Minimum 8-mils thick
 - c. Minimum 3 3/4 inches wide
 - d. Manufactured from High Density Polyethylene
 - e. Pressure Sensitive Adhesive
- F. Sand: Clean, dry, well graded.
- G. Abrasive aggregate for non-slip finish: Fused aluminum oxide grits, graded 12/30. Use factory-graded rustproof and non-glazing material that is unaffected by freezing, moisture and cleaning materials.
 - Products offered by manufacturers to comply with the above requirements include: A-H Alox; Anti-Hydro Waterproofing Co., Toxgrip; Toch Div. - Carboline, or approved equal.
- H. Expansion Joint Filler:
 - Joint fill shall be a preformed non-extruded resilient filler, saturated with bituminous materials and conforming to ASTM D 1751. Products shall be equivalent to Burke "Fiber Expansion Joint", W.R. Meadows "Fibrated Expansion Joint Filler", or approved equal.
- I. Bonding Agent: Sonneborn "Sonobond"; the Euclid Chemical Company "Euco-Weld"; Larsen Products Corp., "Weld-Crete" or approved equivalent.
- J. Concrete Sealer: Cure and Seal, as manufactured by the Euclid Chemical Company "Aqua-Cure VOX", Sonneborn "Kure-N-Seal WB", Burke

"Spartan-Cote",W.R. Meadows "Intex" or approved equal conforming to ASTM C-309, Type I, Class B requirements, and conforming to State of California Air Resources Board VOC Regulations.

- K. Concrete Hardener/Sealer: Clear, water soluble, sprayable in-organic silicate based hardener/sealer or acrylic co-polymer resin. Products shall be equal to Euclid Chemical Company "Eucosil", Burke "Spartan-Cote", Sonneborn "Sonosil", W.R. Meadows "Pena-Lith", or approved equal and must conform to State of California Air Resources Board VOC Regulations.
- L. Concrete Cure: Water based curing compound conforming to ASTM C-309, Type 1, Class A and B, and AASHTO Specification M-148; Type 1, Class A and B requirements, and State of California Air Resources Board VOC Regulations. Product shall be equivalent to Euclid Chemical Company "Kurez VOX", Burke "No. 1127" or "Aqua-Resin Cure", W.R. Meadows "1100 Clear", or approved equal.
- M. Non-Shrink Grout: See Section 2.2.A.7

2.2 CONCRETE

A. Concrete Mixes: 1. Type A Concrete: Strength: 3000 lbs. per square inch at 28 days. Maximum Aggregate Size: 1-1/2 inch. Cement Content: As required by mix design (CBC Section 1905A.3). 5.0 sacks per yard minimum. Maximum Water to Cement Ratio: 0.58 Admixture: Water Reducing. Weight: 145 lbs. per cubic foot Use for unexposed foundation concrete except as otherwise specified. At Contractor's option, Type B concrete may be substituted for this.

2. Type B Concrete: Strength: 3500 lbs. per square inch at 28 days. Maximum Aggregate Size: 1 inch. Minimum Cement Content: As required by mix design (CBC Section 1905A.3). 5.5 sacks per yard minimum. Maximum Water to Cement Ratio: 0.45 Admixture: Water reducing. Weight: 145 lbs. per cubic foot Use for building slab on grade Maximum Fly Ash content as a percentage of total cementitious material: 15%

3. Type C Concrete: Strength: 4000 lbs. per square inch at 28 days. Maximum Aggregate Size: 1 inch. Minimum Cement Content: As required by mix design (CBC Section 1905A.3). 6.5 sacks per yard minimum.

Maximum Water to Cement Ratio: 0.50 Admixture: Water reducing. Weight:145 lbs. per cubic foot Use for columns, beams, walls and overhead structural slabs except as otherwise specified
4. Type D Concrete: Strength: 3500 lbs. per square inch at 28 days. Maximum Aggregate Size: 3/4 inch. Minimum Cement Content: As required by mix design (CBC Section 1905A.3). 6.0 sack per cubic yard minimum. Maximum Water to Cement Ratio: 0.52 Admixture: Water reducing. Weight:145 lbs. per cubic foot Use for normal weight concrete over metal deck

5. Type E Concrete:

Strength: 3,000 lbs. per square inch at 28 days. Maximum Aggregate Size: 3/4 inch. Minimum Cement Content: As required by mix design (CBC Section 1905A.3). 6.0 sacks per yard minimum. Maximum Water to Cement Ratio: 0.52 Admixture: Water reducing. Entrained Air - 4% to 7%. Weight: 115 <u>+</u> 3 lbs. per cubic foot. Use for lightweight concrete over metal deck.

- 6. Grout shall be non-shrink, non-metallic, flowable Type "713" or "928" by Master Builders.
 a. Metallic grout equivalent to Master Builders "Embeco" may be used only where covered by earth, concrete, or masonry.
 b. Acceptance by Architect required before using.
- B. Consistency of Concrete: Concrete slump, measured in accordance with ASTM C 143, shall fall within following limits.
 - 1. For General concrete placement: 3 inch plus or minus 1 inch.
 - 2. Mixes employing the specified mid-range water reducer shall provide a measured slump not to exceed 7 inch <u>+1</u> inch after dosing, 2 inch +1 inch before dosing.
 - 3. Concrete slump shall be taken at point of placement. Use water reducing admixtures as required to provide a workable consistency for pump mixers. Water shall not be added at the jobsite without written review by the structural engineer.
- C. Mix Design:
 - Mix design shall be prepared for all concrete in accordance with CBC 1905A.2 by recognized testing laboratory (approved by Architect). Mix proportions shall be determined in accordance with CBC Section 1905A.3 or CBC Section 1905A.4. In the event that additional mix designs are required due to depletion of aggregate sources, aggregate not conforming to Specifications, or at request of Contractor, these mixes shall be prepared as above.
 - 2. Contractor shall notify the Testing Laboratory and Architect of intent to use concrete pumps to place concrete so that mix designs can be modified accordingly.
 - 3. Fly ash shall not exceed fifteen percent of the total cementitious material.
 - 4. Provide 3% air entrainment typical, 6% for mixes exposed to freeze-thaw cycles.

- 5. Owner's testing laboratory shall review all mix design before submittal.
- D. Mixing:
 - 1. Equipment: All concrete shall be machine mixed. Provide adequate equipment and facilities for accurate measurement and control of materials.
 - 2. Method of Mixing:
 - a. Transit Mixing: Comply with ASTM C 94. Ready mixed concrete shall be used throughout, except as specified below.
 - b. On-Site Mixing: Use only if method of storing material, mixing of material and type of mixing equipment is approved by Architect. Approval of site mixing does not relieve Contractor of any other requirements of Specifications.
 - c. Mixing shall be in accordance with CBC Section 1905A.8.
 - Mixing Time: After mix water has been added, concrete shall be mixed not less than 1-1/2 minutes nor more than 1-1/2 hours. Concrete shall be rejected if not deposited within the time specified.
 - 4. Admixtures:
 - a. Air entraining and chemical admixtures shall be charged into mixer as a solution and shall be dispensed by an automatic dispenser or similar metering device. Powdered admixtures shall be weighed or measured by volume as recommended by manufacturer. Accuracy of measurement of any admixture shall be within plus or minus 3%.
 - b. Two or more admixtures may be used in same concrete, provided such admixtures are added separately during batching sequence, and provided further that admixtures used in that combination retain full efficiency and have no deleterious effect on concrete or on properties of each other.
 - c. All admixtures are to be approved by Structural Engineer prior to commencing this work.
 - 5. Retempering:
 - a. Concrete shall be mixed only in quantities for immediate use. Concrete which has set shall be discarded, not retempered.
 - b. Indiscriminate addition of water to increase slump is prohibited.
 - c. When concrete arrives at project with slump below that suitable for placing, water may be added only if neither maximum permissible water-cement ratio nor maximum slump is exceeded. Water shall be incorporated by additional mixing equal to at least half of total mixing time required. Any addition of water above that permitted by limitation of water-cement ratio shall be accompanied by a quantity of cement sufficient to maintain proper water-cement ratio. Such additions shall only be used if approved by Architect. In any event, with or without addition of cement, not more than 2 gallons of water per cubic yard of concrete, over that specified in design mix, shall be added.
 - 6. Cold Weather Batching: When average of the highest and lowest air temperature falls below 40 degrees F for more than three consecutive days, provide adequate equipment for heating concrete materials. No frozen materials or materials containing ice shall be used. When placed in forms, concrete placed in these temperatures shall have a minimum temperature based on dimensions of concrete sections placed per ACI 301.

7. Hot Weather Batching: Concrete deposited in hot weather shall have a placing temperature below 90 degrees F per ACI 301. If necessary, ingredients shall be cooled to accomplish this.

2.3 FLOOR LEVELING AND FILL MATERIALS

- A. Epoxy Concrete Mortar: Floor leveling, non-shrink trowel applied epoxy concrete mortar; TPM 115 General Polymers Corp., A-H Emery Epoxy Topping #170 Anti-Hydro Corp., or approved equal, where areas to fill are less than 1/4 inch thick.
- B. Concrete Mortar: Floor leveling, patching and repair, non-shrink trowel applied concrete mortar; Master Builders EMBECO 411-A, Euclid EUCO, or approved equal, where areas of fill are greater than 1/4 inch thick.
- C. Cementitious Floor Leveling Material: Shall be self-leveling or trowelable with a minimum 28 day compressive strength of 3000 psi in accordance with ASTM C-109. Material shall be equal to Quickrete No. 1249, Ardex V-800/K-55, Mapei "Ultra/Flex" or approved equal.

PART 3 - EXECUTION

3.1 PLACEMENT

- A. Before any concrete is placed, the following items of work shall have been completed in the area of placing.
 - 1. Forms shall have been erected, adequately braced, cleaned, sealed, lubricated if required, and bulkheaded where placing is to stop.
 - 2. Any wood forms other than plywood shall be thoroughly water soaked before placing any concrete. The wetting of forms shall be started at least 12 hours before concreting.
 - 3. Reinforcing steel shall have been placed, tied and supported.
 - 4. Embedded work of all trades shall be in place in the forms and adequately tied and braced.
 - 5. The entire place of deposit shall have been cleaned of wood chips, sawdust, dirt, debris, hardened concrete and other foreign matter. No wooden ties or blocking shall be left in the concrete except where indicated for attachment of other work.
 - 6. Reinforcing steel, at the time the concrete is placed around it, shall be cleaned of scale, mill scale or other contaminants that will destroy or reduce bond.
 - 7. Concrete surfaces to which fresh concrete is to be bonded shall be brush cleaned to remove all dust and foreign matter and to expose the aggregate, and then coated with the bonding adhesive herein specified.
 - 8. Prior to placing concrete for any slabs on grade, the moisture content of the subgrade below the slabs shall be adjusted to at least optimum moisture.
 - 9. No concrete shall be placed until formwork and reinforcement has been approved by Architect. Clean forms of all debris and remove standing water. Thoroughly clean reinforcement and all handling equipment for mixing and transporting concrete. Concrete shall not be placed against reinforcing steel that is hot to the touch. Notify Architect 48 hours in advance of concrete pour.
- B. Conveying: Handle concrete from mixer to place of final deposit by methods which will prevent separation or loss of ingredients. Deposit

concrete in forms as nearly as practicable at its final position in a manner which will insure that required quality is obtained. Chutes shall slope not less than 4 inches and not more than 6 inches per foot of horizontal run.

- C. Depositing: Deposit concrete into forms in horizontal layers not exceeding 24 inches in thickness around building, proceeding along forms at a uniform rate and consolidating into previous pour. In no case shall concrete be poured into an accumulation of water ahead of pour, nor shall concrete be flowed along forms to its final place of deposit. Fresh concrete shall not be permitted to fall from a height greater than 6 feet without use of adjustable length pipes or, in narrow walls, of adjustable flexible hose sleeves. Concrete shall be scheduled so that placing is a continuous operation for the completion of each section between predetermined construction joints. If any concreting operation, once planned, cannot be carried on in a continuous operation, concreting shall stop at temporary bulkheads, located where resulting construction joints will least impair the strength of the structure. Location of construction joints shall be as shown on the drawings or as approved by Structural Engineer. The rate of rise in walls shall not be less than 2 feet per hour.
 - Consolidation: Concrete shall be thoroughly compacted and worked to all points with solid continuous contact to forms and reinforcement to eliminate air pockets and honeycombing. Power vibrators of approved type shall be used immediately following pour. Spading by hand, hammering of forms or other combination of methods will be allowed only where permitted by Structural Engineer. In no case shall vibrators be placed against reinforcing steel or used for extensive shifting of deposited fresh concrete. Provide and maintain standby vibrators, ready for immediate use.
 - Hot Weather Concreting: Unless otherwise directed by the Architect, perform all work in accordance with ACI 305 when air temperature rises above 75 degrees F and the following:
 - a. Mixing Water: Keep water temperature as low as necessary to provide for the required concrete temperature at time of placing. Ice may be required to provide for the design temperature. Aggregate: Keep aggregate piles continuously moist by sprinkling with water. Temperature of Concrete: The temperature of the concrete mix at the time it is being placed in the forms shall not exceed 90 degrees F per ACI 301. The method employed to provide this temperature shall in no way alter or endanger the design mix or the design strength required. Dampen subgrade and formwork before placing concrete. Remove all excess water before placing concrete. Keep concrete continuously wet when air temperature exceeds 85 degrees F for a minimum of 48 hours after placing concrete. For slab on grade construction, see Section 3.1.E. Protection: Minimize evaporation from concrete in place by providing shade and windbreaks. Maintain such protection in place for 14 days minimum.
 - 3. Cold Weather Concreting: Follow recommended ACI 306 procedures when average of the highest and lowest air temperature falls below 40 degrees F for more than three consecutive days, as approved by Architect. Concrete placed in these temperatures shall have a minimum temperature based on dimensions of concrete sections placed as shown in ACI 301. No chemicals or salts shall be used to

prevent freezing and no accelerating agents shall be used without prior approval from Architect.

- D. Construction Joints: Install only as indicated and noted on Drawings. Joints not indicated on Drawings shall be so located, when approved, as to least impair strength of structure, and shall conform to typical details. Construction joints shall have level tops, vertical sides. Horizontal construction joints shall be thoroughly cleaned and roughened by removing entire surface film and exposing clean aggregate solidly embedded in mortar matrix. Joints between concrete and masonry shall be considered construction joints. Vertical construction joints need not be roughened. See Drawings for doweling and required keys.
 - Roughen construction joints by any of following methods:
 a. By sandblasting joint.
 - b. By thoroughly washing joint, using a high pressure hose, after concrete has taken initial set. Washing shall be done not less than 2 hours nor more than 4 hours after concrete has been poured, depending upon setting time.
 - c. By chipping and wire brushing.
 - 2. All decisions pertaining to adequacy of construction joint surfaces and to compliance with requirements pertaining to construction joints shall be reviewed with the Structural Engineer.
 - 3. Just before starting new pour, horizontal and vertical joint surfaces shall be dampened (but not saturated).
 - 4. Before placing regular concrete mix, horizontal construction joint surfaces shall be covered with a layer of mortar composed of cement and fine aggregate of same proportions as that used in prescribed mix, but omitting coarse aggregate.
 - 5. For slabs, construction joints shall be in locations shown on plan. If not shown, locate at intervals not exceeding 150 feet in each direction. Refer to drawings for proper details for reinforcing at construction joints.
- E. Concrete Slabs on Grade:
 - 1. Exterior and interior concrete slabs on grade shall be poured as required under this Section. Base shall be accurately leveled and compacted prior to placing of concrete.
 - 2. Typically, interior slabs on grade shall be poured over a minimum of four (4 inch) inches of compacted crushed rock, unless otherwise indicated, over a vapor retarder.
 - 3. Protect slab on grade subbase from moisture prior to placing concrete. Avoid wetting rock layer to allow adequate concrete curing and avoid future vapor transmission. If the subbase has been wet excessively, verify that water has been eliminated prior to placement of concrete.
 - 4. Vapor Retarder installation shall be in accordance with manufacturer's instructions and ASTM E 1643-98.
 - a. Unroll Vapor Retarder with the longest dimension parallel with the direction of the pour.
 - b. Lap Vapor Retarder over footings and seal to foundation walls.
 - c. Overlap joints 6 inches and seal with specified tape.
 - d. Seal all penetrations (including pipes) per manufacturer's instructions.
 - e. No penetration of the Vapor Retarder is allowed except for reinforcing steel and permanent utilities.

- f. Repair damaged areas by cutting patches of Vapor Retarder, overlapping damaged area 6 inches and taping all four sides with tape.
- F. Control Jointing Slabs on Grade:
 - 1. Joints shall be in locations indicated on Drawings, or as directed by Architect.
 - 2. Joints in interior slabs shall be made by one of following methods:
 - a. By use of construction joints laid out in checkerboard pattern; pour and allow alternate slabs to set; fill out balance of checkerboard pattern with second pour.
 - b. By use of dummy groove joints at least 1/4 depth of slab, and at least 1/8 inch wide. These joints may be sawcut as soon as wet concrete can support the weight of the equipment and operator. Delaying sawcutting past this point will make jointing ineffective.
 - 3. Control jointing in exterior paving slabs shall be laid out in a checkerboard pattern; pour as described above, but with joint edges tooled to provide a uniform joint at least 3/8 inch in depth.
 - 4. Slab reinforcing need not be terminated at control joints.
 - 5. Construction and expansion joints shall be counted as control joints.
- G. Expansion Joints:
 - 1. Unless otherwise indicated, use 3/8 inch thick expansion joint filler. See Section 2.1 H
 - 2. Joints in interior slabs on grade shall be only in locations indicated.
 - 3. Joints in exterior slabs on grade shall be installed at each side of structures, at curb transitions opposite apron joints, at ends of curb returns, at back of curb when adjacent to sidewalk, and at uniformly spaced intervals not exceeding 20 feet.
 - 4. Edges of concrete at joints shall be edger finished to approximately 3/8 inch radius.
 - 5. Interrupt reinforcing at all expansion joints.
- H. Score markings on exterior slabs on grade shall be located as indicated. Where not indicated, mark slabs into rectangles of not less than 12 square feet nor more than 20 square feet using a scoring tool which will leave edges of score markings rounded.

3.2 CURING AND PROTECTION

- A. Curing: Exposed surfaces of all concrete used in structure shall be maintained in a moist condition for at least 7 days after placing. The following final curing processes shall normally be considered to accomplish this. Concrete shall be maintained at not less than 50 degrees F nor more than 100 degrees F for a period of 72 hours after being deposited.
 - 1. Flatwork to be exposed, stained, or painted shall have curing process submitted and approved by the architect prior to construction
 - 2. Initial Curing Process Flat Work:
 - a. Mist Spraying: As soon as troweling of concrete surfaces is completed, exposed concrete shall be sprayed continuously with a special atomizer spray nozzle, capable of producing a fine

mist. Spraying shall be done without any dripping of water from nozzle. Amount of spraying shall be such as to maintain surface of concrete moist without any water accumulating on surface. Maintain spraying for a minimum of 12 hours, or until such time as hereinafter described curing process is applied. Mist spraying will not normally be required when the ambient air temperature is below 90 degrees F.

- 3. Final Curing Process Flatwork: Except as noted, use any of following:
 - a. Water Curing: Concrete shall be kept wet by mechanical sprinklers or by any other approved method which will keep surfaces continuously wet.
 - b. Saturated Burlap Curing: Finished surfaces shall be covered with a minimum of two layers of heavy burlap which shall be kept saturated during the curing period.
 - c. Curing Compounds: Membrane curing compounds of chlorinated rubber or resin type conforming to ASTM C309 may be used only if specifically approved by Architect. Use of membrane curing compound will not be permitted on surfaces to be painted, or to receive ceramic tile, membrane water-proofing or hardeners and sealers. Membrane curing compound may be used in areas to receive resilient floor tile, provided it is wax-free, compatible with adhesive used and approved by adhesive manufacturer. Agitate curing compounds thoroughly by mechanical means continuously during use and spray or brush uniformly in accordance with manufacturer's recommendations. Apply immediately following final finishing operation. All curing compounds shall conform to State of California Air Resources Board VOC Regulations.
 - d. Waterproof paper conforming to ASTM C 171, or opaque polyethylene film, may be used. Concrete shall be covered immediately following final finishing operation. Anchor paper or film securely and seal all edges in such a manner as to prevent moisture escaping from concrete.
- 4. Curing Process Formed Surfaces: Forms heated by sun shall be kept moist during curing period. If forms are to be removed during curing period, curing as described for flatwork shall be commenced immediately.
- B. Refer to Drawings for areas of concrete slab not to receive curing compounds or hardening compounds. Where concrete floors are to receive heavy duty coatings, waterproof coatings and the like, verify with coating installer the type of finish required for specified coating.
- C. Protection: Contractor shall be responsible for protection of finished concrete against injury by rain, cold, vibration, animal tracks, marking by visitors, vandalism, etc.
- D. Provide additional curing agents or compounds, not necessarily listed herein, but as recommended and or required for use with shake type hardeners or other special coatings and coverings by their manufacturers for a complete and proper installation.

3.3 FINISHES

A. Formed Surfaces:

- Rough Form Finish: Surfaces shall be reasonably true to line and plane with no specified requirements for selected facing materials. Tie holes and defects shall be patched and fins exceeding 1/4 inch in height shall be rubbed down with wooden blocks. Fins and other rough spots at surfaces to receive membrane waterproofing shall be completely removed and the surfaces rubbed smooth. Otherwise, surfaces shall be left with the texture imparted by forms.
 - a. Rough finish shall be used for the following areas:1) Below grade and unexposed surfaces.
- 2. Smooth Plywood Form Finish: Finish shall be true to line and plane. Tie holes and defects shall have been patched and ground with surface fins removed. Arrangement of plywood sheets shall be orderly, symmetrical, as large as practical and free of torn grain or worn edges. Surface concrete shall be treated with 1 part muriatic acid, in three parts water solution, followed immediately by a thorough rinsing with clear water. Surfaces which are glazed, have efflorescence, or traces of form oil, curing compounds or parting compounds shall be cleaned or treated to match other formed surfaces, except as otherwise indicated or specified.
 - a. Smooth Plywood Form Finish shall be used for the following areas:
 - 1) All surfaces above grade unless otherwise specified.
 - 2) At Contractor's option, may also be used in lieu of rough form finish.
- 3. Smooth Plastic Liner Finish: Surface shall be smooth, concrete free of honeycombing, air pockets larger than 1/8 inch in diameter, and fins.
 - a. This finish shall be used only where indicated on the Drawings.
- B. Flatwork (Slabs and Floors):
 - 1. Unless otherwise indicated or specified, flatwork shall have an integral monolithic finish.
 - 2. Integral Monolithic Finish: Apply as soon as freshly poured concrete slabs will bear weight of workers. Pour slabs full thickness to finish floor elevations indicated. At proper time, tamp surface repeatedly with a wire mesh or grid tamper in a manner to force aggregate down below surface and to bring sufficient mortar to surface to provide for a smooth coating of cement mortar over entire surface. Allow surface mortar to partially set, then float with wooden floats and finish with one of following, as required.
 - a. Broom Finish: Steel trowel surface to a smooth dense surface free of lines, tool marks, cat faces and other imperfections. After troweling, and before final set, give surface a broom finish, brushing in direction noted on Drawings, or as directed. Broom finish shall be used typically on exterior flatwork except as otherwise indicated or specified and shall be "medium" texture as approved by Architect.
 - b. Smooth Steel Trowel Finish: Apply 2 steel trowelings to obtain hard, smooth surface. All lips, irregularities, uneven levels, etc. shall be worked out before last troweling. All interior flatwork shall have a smooth steel trowel finish unless specified otherwise.
 - 3. Tolerances:
 - a. For tolerances not indicated, refer to ACI 117.

- b. Slabs on grade Comply with F_F & F_L as specified by Architect, or at a minimum shall be sufficiently even to contact a 10' long straightedge with a tolerance of 1/8 inch.
- c. Concrete over metal deck Refer to Section 05 30 00 for minimum requirements.
- d. Elevated slabs Comply with Architectural requirements.
- e. Finished surfaces of exterior integral finished flatwork shall not vary more than 1/4 inch from a 10' long straightedge, except at grade changes.
- C. Sacked Surfaces: Exposed surfaces that are unacceptable in appearance to the Architect shall be sacked.
 - 1. Prepare concrete surfaces in accordance with the referenced standards. Remove any form release materials by stoning by hand, power grinding or other method approved by the Architect.
 - 2. Prepare concrete surfaces to receive sack finishing with a light sand blasting.
 - 3. For best results, grout application and rubbing should be performed when areas to be treated are shaded and during cool, damp weather. When work is to be performed in hot and dry weather, a fog spray should be available for continuous use.
 - 4. Prepare grout samples for matching of concrete surfaces for approval by the Architect. These shall be made in the following proportions of gray cement to white cement to sand: 1:1:2, 1:2:3, and 2:1:3, etc. until the correct matching color is obtained on the test areas. Sand should be fine enough to pass the Number 30 sieve. Mixes should be made to a good workable consistency in a clean container and the mix with the best color chosen, or modified if needed.
 - 5. Provide sufficient qualities of sand and cement from the same source for the complete work at the job site.
 - 6. Mixing and Application:
 - a. Mixing of grout on the job should be timed for it to be used up within 1 to 1-1/2 hours.
 - b. Let the grout stand 20 to 30 minutes after mixing, and then remixed before applying.
 - c. Soak the concrete surface thoroughly with water at least 15 minutes before applying grout and again just before application so that the surface is adequately wet during the operation.
 - d. Apply grout with plasterer's trowel or sponge rubber float in sweeping strokes from the bottom up. Brush or spray gun applications may be used when approved by the Architect.
 - e. Work in freshly applied grout vigorously with a sponge rubber float, then let sit until some of its plasticity is gone but not until it loses its damp appearance. At this point it shall be rubbed with clean, dry burlap to remove the excess grout, leaving no visible film on the surface but filling all air holes.
 - f. Keep the surface wet for a day after grouting and sack rubbing are completed.
 - 7. Alternate methods of application and materials shall be subject to the approval of the Architect.

3.4 PATCHING

A. Formed Surfaces:

- 1. Promptly upon removal of contact forms and after concrete surfaces have been inspected, form ties shall be removed and all necessary patching and pointing shall be expertly done.
- 2. Honeycombed areas shall be removed down to sound concrete, coated with a bonding grout or approved compound and patched using a low shrinkage high bond mortar. Patched areas shall be cured by being kept damp for at least 5 days.
- 3. Tie holes shall be cleaned, dampened and filled solid with patching mortar or cement plugs of an approved variety.
- B. Slabs on Grade: After entire slab is finished, shrinkage cracks that may appear shall be patched as follows:
 - 1. Where slab is not exposed or where appearance is not important, cracks larger than 1/32 inch wide shall be filled with cement grout and struck off level with surface.
 - 2. Where slab is exposed and appearance is important, unsightly cracks shall be repaired in a manner satisfactory in appearance to Architect. If this cannot be accomplished, concrete shall be considered defective.

3.5 DEFECTIVE CONCRETE

- A. Defective concrete shall mean any of the following:
 - 1. Concrete not meeting 100 percent of the specified 28 day compressive strength.
 - Concrete exhibiting rock pockets, voids, spalls, streaks, cracks, exposed reinforcing to extent that strength, durability, or appearance is adversely affected.
 - 3. Concrete significantly out of place, line, or level.
 - 4. Concrete not containing the required embedded items.
- B. Upon determination that concrete strength is defective:
 - 1. Should cylinder tests fall below minimum strength specified, concrete mix for remainder of work shall be adjusted to produce required strength. Core samples shall be taken and tested from cast-in-place concrete where cylinders and samples indicate inferior concrete with less than minimum specified strength.
 - a. Cores of hardened concrete shall be taken and tested in accordance with ASTM C 42 and C 39. Number and location of such cores shall be subject to the approval of Architect.
 - b. Cost of core sampling and testing will be paid for by the Contractor.
 - c. "85 percent" reduction in ACI 318 Section 5.6.5.4 will not justify low cylinder tests.
- C. Upon determining that concrete surface is defective, Contractor may restore concrete to acceptable condition by cutting, chipping, pointing, patching, grinding, if this can be done without significantly altering strength of structure. Permission to patch defective areas will not be considered a waiver of the right to require removal if patching does not, in the opinion of the Architect, satisfactorily restore quality and appearance.
- D. If core tests indicate that concrete is below the strength specified, or if patching does not restore concrete to specified quality and appearance, the concrete shall be deemed defective, and shall be removed and replaced without additional cost to the Owner.

E. No repair work shall begin until procedure has been reviewed by the Architect and Structural Engineer.

3.6 SURFACE HARDENER AND SEALER

- A. Seal all interior exposed flatwork with clear sealer, except surfaces receiving ceramic tile, quarry tile, poured flooring or other special finishes specified, or as scheduled on the Drawings.
 - 1. Apply sealer in 2 or 3 coats, in accordance with manufacturer's directions, using the maximum quantity recommended.
 - a. Concrete floors must be thoroughly cured for a minimum of 30 days and completely dry before treatment.
 - b. Surfaces to be treated must be clean, free of membrane curing compounds, dust, oil, grease and other foreign matter.
 - c. Upon completion, concrete surfaces shall be clean and without discoloration or traces of excess hardener left on the surface.
- B. Apply sprayable hardener/sealer at locations as scheduled or as indicated on the Drawings. Apply in accordance with the manufacturer's favorably reviewed application instructions and recommendations.

3.7 GROUTING

- A. Prepare and place grout materials at locations as indicated on the Drawings in accordance with the manufacturer's recommendations and installation instructions.
- B. Pack grout materials solidly between bearing surfaces and bases or plates as indicated and to ensure no voids.

3.8 ADJUSTING AND CLEANING

A. Remove all debris, excess materials, tools and equipment resulting from or used in this operation at completion of this work.

END OF SECTION 03 30 00

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Requirements of Division 1 apply to all Work of this Section.

1.2 SCOPE

A. Shop fabricated metal items and miscellaneous metal work.

B. Refer to Schedule at end of this Section.

1.3 RELATED WORK (See also Table of Contents)

A. Structural Steel: Section 05 12 00.

1.4 QUALITY ASSURANCE

- A. Standards and References: (Latest Edition unless otherwise noted)
 1. 2010 California Building Code (CBC), with State of California Amendments
 - 2. American Society for Testing and Materials (ASTM) Specifications as listed in the Section.
- B. Submittals: (Submit under provisions of Section 01 33 00)
 - 1. Shop Drawings: Submit shop drawings indicating profiles, sizes, connection attachments, reinforcing, anchorage, size and type of fasteners, and accessories. Include erection drawings, elevation, and details where applicable. Indicate welded connections using standard AWS welding symbols. Indicate net weld lengths.
- 2. Manufacturer's descriptive data: Submit for manufacturer's items.

1.5 DELIVERY, STORAGE AND HANDLING

A. Deliver all parts ready for erection; store in close proximity to final locations.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Steel Sections: ASTM A36.
- B. Steel Tubing: ASTM A500, Grade B.
- C. Steel Pipe: ASTM A53, Type E or S, Grade. B.
- D. Steel Bolts, Nuts, and Washers: ASTM A307.
- E. Welding Materials: AWS D1.1; type required for materials being welded.
- F. Galvanizing: Hot-dip process ASTM A123 typical and ASTM A153 for threaded fasteners performed after fabrication into largest practical section. Weight of coating not less than 2 oz. per sq. ft. of

surface. Where damaged, repair surface with one coat of hot process galvanizing repair compound, "Galvalloy", Galvweldalloy", or approved equal.

- G. Primer: Tnemec Company "Series V10 Red Primer", Sherwin-Williams "Kern Primer"; or approved equal.
- H. Dissimilar Materials: Separate dissimilar surfaces in contact with or in close proximity to non-compatible metals, concrete masonry, or plaster with neoprene gasket; or other approved means.
- I. Expansion Bolts: Hilti "Kwik Bolt TZ" Expansion Anchor Bolts, galvanized unless otherwise indicated.
- J. Non-shrink Grout: Master builders 928 or equal.

2.2 FABRICATION

- A. Verify dimensions on site prior to shop fabrication.
- B. Fabricate items with joints tightly fitted and secured.
- C. Fit and shop assemble in largest practical sections, for delivery to jobsite.
- D. Grind exposed welds flush and smooth adjacent finished surfaces. Ease exposed edges to small uniform radius.
- E. Exposed Mechanical Fastenings: Flush countersunk screws or bolts; unobtrusively located; consistent with design of structure, except where specifically noted otherwise.
- F. Make exposed joints butt tight, flush and hairline.
- G. Supply components required for anchorage of metal fabrications. Fabricate anchorage and related components of same material and finish as metal fabrication, except where specifically noted otherwise.

2.3 FINISH

- A. Clean surfaces of rust, scale, grease, and foreign matter prior to finishing.
- B. Do not prime surfaces in direct contact bond with concrete or where field welding is required.
- C. Prime paint interior items with one coat unless scheduled to be galvanized.
- D. Galvanize exterior items and scheduled interior items to minimum 2.00 oz/sq ft zinc coating.

PART 3 - EXECUTION

3.1 PREPARATION

A. Obtain Architect's approval prior to site cutting or making

adjustments not scheduled.

- B. Clean and strip primed steel items to bare metal where site welding is scheduled.
- C. Make provision for erection loads with temporary bracing. Keep work in alignment.
- D. Supply items required to be cast into concrete with setting templates, for installation under appropriate Sections.

3.2 INSTALLATION

- A. Install items plumb and level, accurately fitted, free from distortion or defects.
- B. Perform field welding in accordance with AWS D1.1.
- C. After installation, touch-up field welds, scratched or damaged surfaces with primer, except repair exposed galvanized work (not to be painted) with hot process field galvanizing, in accord with manufacturer's published directions.

3.3 SCHEDULE

- A. Provide and install items listed in Schedule and shown on Drawings with anchorage and attachment necessary for installation. The following Schedule lists principal items only. Refer to drawing details for items not specifically scheduled.
 - 1. Miscellaneous plates or angles not attached to structural steel; complete with anchorage for embedment.
 - 2. Exterior mounted ladders.
 - 3. Handrails and guardrails.
 - 4. Bollards.
 - 5. Gates for trash enclosure.

END OF SECTION 05 50 00

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION

- A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

A. Sealants and application: Section 07 92 00, JOINT SEALANTS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- C. List of FM, UL, or WH classification number of systems installed.
- D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 WARRANTY

Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.6 QUALITY ASSURANCE

FM, UL, or WH or other approved laboratory tested products will be acceptable.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

E84-10.....Surface Burning Characteristics of Building Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

C. Factory Mutual Engineering and Research Corporation (FM):

Annual Issue Approval Guide Building Materials

D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

1479-10.....Fire Tests of Through-Penetration Firestops

E. Warnock Hersey (WH):

Annual Issue Certification Listings

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier.
- D. Firestop sealants used for firestopping or smoke sealing shall have following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Have no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
 - Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant.
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- H. Materials to be asbestos free.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Use silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Use mineral fiber filler and bond breaker behind sealant.
- C. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

- A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the

firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

- A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Resident Engineer.
- C. Clean up spills of liquid type materials.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK:

- A. Firestopping penetrations: Section 07 84 00, FIRESTOPPING.
- D. Mechanical Work: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.3 QUALITY CONTROL:

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in jointsealant installations with a record of successful in-service performance.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - Test elastomeric joint sealants according to SWRI's Sealant Validation Program for compliance with requirements specified by reference to ASTM C920 for adhesion and cohesion under cyclic movement, adhesion-in peel, and indentation hardness.
 - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.
- D. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color where required to match adjacent material.
- D. Manufacturer's Literature and Data:
 - 1. Caulking compound
 - 2. Primers
 - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other.

1.5 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 °C (40 $^{\circ}$ F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.6 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F).

1.7 DEFINITIONS:

A. Definitions of terms in accordance with ASTM C717 and as specified.

- B. Back-up Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.8 WARRANTY:

- A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years.
- B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

	-	-
	C509-06	.Elastomeric Cellular Preformed Gasket and
		Sealing Material.
	C612-10	.Mineral Fiber Block and Board Thermal
		Insulation.
	C717-10	.Standard Terminology of Building Seals and
		Sealants.
	C834-10	.Latex Sealants.
	C919-08	.Use of Sealants in Acoustical Applications.
	C920-10	.Elastomeric Joint Sealants.
	C1021-08	Laboratories Engaged in Testing of Building.
		Sealants.
	C1193-09	.Standard Guide for Use of Joint Sealants.
	C1330-02 (R2007)	.Cylindrical Sealant Backing for Use with Cold
		Liquid Applied Sealants.
	D1056-07	.Specification for Flexible Cellular Materials-
		Sponge or Expanded Rubber.
	E84-09	.Surface Burning Characteristics of Building
		Materials.
C.	Sealant, Waterproofing	and Restoration Institute (SWRI).

The Professionals' Guide

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. S-1:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 20-40
- B. S-2:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade P.
 - 5. Shore A hardness of 25-40.

C. S-3:

- 1. ASTM C920, polyurethane or polysulfide.
- 2. Type S.
- 3. Class 25, joint movement range of plus or minus 50 percent.
- 4. Grade NS.
- 5. Shore A hardness of 15-25.
- 6. Minimum elongation of 700 percent.
- D. S-4:
 - 1. ASTM C920 polyurethane or polysulfide.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-40.
- E. S-6:
 - 1. ASTM C920, silicone, neutral cure.
 - 2. Type S.
 - 3. Class: Joint movement range of plus 100 percent to minus 50 percent.
 - 4. Grade NS.
 - 5. Shore A hardness of 15-20.
 - 6. Minimum elongation of 1200 percent.

F. S-9:

1. ASTM C920 silicone.

- 2. Type S.
- 3. Class 25.
- 4. Grade NS.
- 5. Shore A hardness of 25-30.
- 6. Non-yellowing, mildew resistant.
- J. S-10:
 - 1. ASTMC C920, coal tar extended fuel resistance polyurethane.
 - 2. Type M/S.
 - 3. Class 25.
 - 4. Grade P/NS.
 - 5. Shore A hardness of 15-20.

K. S-12:

- 1. ASTM C920, polyurethane.
- 2. Type M/S.
- 3. Class 25, joint movement range of plus or minus 50 percent.
- 4. Grade P/NS.
- 5. Shore A hardness of 25 to 50.

2.2 CAULKING COMPOUND:

- A. C-1: ASTM C834, acrylic latex.
- B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber.

2.3 COLOR:

- A. Sealants used with exposed masonry shall match color of mortar joints.
- B. Sealants used with unpainted concrete shall match color of adjacent concrete.
- C. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise.
- D. Caulking shall be light gray or white, unless specified otherwise.

2.4 JOINT SEALANT BACKING:

A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing. B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:

1. Type C: Closed-cell material with a surface skin.

- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiber board: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POUROUS SURFACES:

Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

A. Prepare joints in accordance with manufacturer's instructions and SWRI.

B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.

- Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
- 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Unglazed surfaces of ceramic tile.
- 3. Remove laitance and form-release agents from concrete.
- Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).
 - Do not use sealant type listed by manufacture as not suitable for use in locations specified.
 - Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 4. Avoid dropping or smearing compound on adjacent surfaces.
 - 5. Fill joints solidly with compound and finish compound smooth.
 - 6. Tool joints to concave surface unless shown or specified otherwise.
 - 7. Finish paving or floor joints flush unless joint is otherwise detailed.
 - 8. Apply compounds with nozzle size to fit joint width.
 - 9. Use sealants certified by manufacturer as being compatible with adjacent surfaces and materials.

- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.
- C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.
- C. Leave adjacent surfaces in a clean and unstained condition.

3.8 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Threshold Setting Bed: Type S-1, S-3, S-4
- B. Metal Reglets and Flashings:
 - 1. Flashings to Wall: Type S-6
 - 2. Metal to Metal: Type S-6
- C. Sanitary Joints:
 - 1. Walls to Plumbing Fixtures: Type S-9
 - 2. Counter Tops to Walls: Type S-9

- 3. Pipe Penetrations: Type S-9
- D. Horizontal Traffic Joints:
 - 1. Concrete Paving: S-12
- E. Interior Caulking:
 - Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1 and C-2.
 - 2. Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1 and C-2.
 - 6. Exposed Acoustical Joint at Sound Rated Partitions Type C-2.
 - 7. Concealed Acoustic Sealant Types S-4, C-1 and C-2.

- - - E N D - - -

Project No. 612A4-14-006

SECTION 09 91 00

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

A. Shop prime painting of steel and ferrous metals: Division 23 - HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- C. Sample Panels:
 - 1. After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.
 - Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
 - 3. Panel to show transparent finishes: Wood of same species and grain pattern as wood approved for use, 100 by 250 by 3 mm (4 inch by 10 inch face by 1/4 inch) thick minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 by 50 mm (2 by 2 inch) minimum or actual wood member to show complete finish.
 - 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.

Project No. 612A4-14-006

- b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- c. Product type and color.
- d. Name of project.
- 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- D. Sample of identity markers if used.
- E. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. High temperature aluminum paint.
 - 3. Epoxy coating.
 - 4. Intumescent clear coating or fire retardant paint.
 - 5. Plastic floor coating.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH):

Project No. 612A4-14-006 ACGIH TLV-BKLT-2008.....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs) ACGIH TLV-DOC-2008.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition) C. American National Standards Institute (ANSI): A13.1-07.....of Piping Systems D. American Society for Testing and Materials (ASTM): D260-86.....Boiled Linseed Oil E. Commercial Item Description (CID): A-A-1555......Water Paint, Powder (Cementitious, White and Colors) (WPC) (cancelled) A-A-3120.....Paint, For Swimming Pools (RF) (cancelled) F. Federal Specifications (Fed Spec): TT-P-1411A.....Paint, Copolymer-Resin, Cementitious (For Waterproofing Concrete and Masonry Walls) (CEP) G. Master Painters Institute (MPI): No. 1-07..... Aluminum Paint (AP) No. 4-07......Interior/ Exterior Latex Block Filler No. 5-07..... Exterior Alkyd Wood Primer No. 7-07..... Exterior Oil Wood Primer No. 8-07..... Exterior Alkyd, Flat MPI Gloss Level 1 (EO) No. 9-07.....Exterior Alkyd Enamel MPI Gloss Level 6 (EO) No. 10-07.....Exterior Latex, Flat (AE) No. 11-07..... Exterior Latex, Semi-Gloss (AE) No. 18-07.....Organic Zinc Rich Primer No. 22-07.....Aluminum Paint, High Heat (up to 590% - 1100F) (HR) No. 26-07..... Cementitious Galvanized Metal Primer No. 27-07.....Exterior / Interior Alkyd Floor Enamel, Gloss (FE) No. 31-07.....Polyurethane, Moisture Cured, Clear Gloss (PV) No. 36-07.....Knot Sealer No. 43-07.....Interior Satin Latex, MPI Gloss Level 4 No. 44-07.....Interior Low Sheen Latex, MPI Gloss Level 2 No. 45-07.....Interior Primer Sealer No. 46-07..... Interior Enamel Undercoat No. 47-07.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK) No. 48-07.....Interior Alkyd, Gloss, MPI Gloss Level 6 (AK) No. 49-07.....Interior Alkyd, Flat, MPI Gloss Level 1 (AK)

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

	No.	50-07I	interior Latex Primer Sealer
	No.	51-07I	nterior Alkyd, Eggshell, MPI Gloss Level 3
	No.	52-07I	Interior Latex, MPI Gloss Level 3 (LE)
	No.	53-07I	Interior Latex, Flat, MPI Gloss Level 1 (LE)
	No.	54-07I	Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)
	No.	59-07I	nterior/Exterior Alkyd Porch & Floor Enamel, Low
		G	Gloss (FE)
	No.	60-07I	nterior/Exterior Latex Porch & Floor Paint, Low
		G	Gloss
	No.	66-07I	nterior Alkyd Fire Retardant, Clear Top-Coat (ULC
		A	approved) (FC)
	No.	67-07I	Interior Latex Fire Retardant, Top-Coat (ULC
		A	approved) (FR)
	No.	68-07I	nterior/ Exterior Latex Porch & Floor Paint,
		G	Gloss
	No.	71-07P	Polyurethane, Moisture Cured, Clear, Flat (PV)
	No.	74-07I	nterior Alkyd Varnish, Semi-Gloss
	No.	77-07E	Epoxy Cold Cured, Gloss (EC)
	No.	79-07M	Marine Alkyd Metal Primer
	No.	90-07I	nterior Wood Stain, Semi-Transparent (WS)
	No.	91-07W	Nood Filler Paste
	No.	94-07E	Exterior Alkyd, Semi-Gloss (EO)
	No.	95-07F	ast Drying Metal Primer
	No.	98-07H	High Build Epoxy Coating
	No.	101-07E	poxy Anti-Corrosive Metal Primer
	No.	108-07H	High Build Epoxy Coating, Low Gloss (EC)
	No.	114-07I	Interior Latex, Gloss (LE) and (LG)
	No.	119-07E	Exterior Latex, High Gloss (acrylic) (AE)
	No.	135-07N	Ion-Cementitious Galvanized Primer
	No.	138-07I	interior High Performance Latex, MPI Gloss Level 2
		(LF)
	No.	139-07I	Interior High Performance Latex, MPI Gloss Level 3
		(LL)
	No.	140-07I	nterior High Performance Latex, MPI Gloss Level 4
	No.	141-07I	nterior High Performance Latex (SG) MPI Gloss
		L	Jevel 5
H.	Ste	el Structures Painting	g Council (SSPC):
	SSP	C SP 1-04 (R2004)S	Solvent Cleaning
	SSP	C SP 2-04 (R2004)H	Hand Tool Cleaning

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

SSPC SP 3-04 (R2004)....Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Cementitious Paint (CEP): TT-P-1411A [Paint, Copolymer-Resin, Cementitious (CEP)], Type 1 for exterior use, Type II for interior use.
- B. Wood Sealer: MPI 31 (gloss) or MPI 71 (flat) thinned with thinner recommended by manufacturer at rate of about one part of thinner to four parts of varnish.
- C. Plastic Tape:
 - 1. Pigmented vinyl plastic film in colors as specified.
 - 2. Pressure sensitive adhesive back.
 - 3. Widths as shown.
- D. Identity markers options:
 - 1. Pressure sensitive vinyl markers.
 - 2. Snap-on coil plastic markers.
- E. Aluminum Paint (AP): MPI 1.
- F. Interior/Exterior Latex Block Filler: MPI 4.
- G. Exterior Alkyd Wood Primer: MPI 5.
- H. Exterior Oil Wood Primer: MPI 7.
- I. Exterior Alkyd, Flat (EO): MPI 8.
- J. Exterior Alkyd Enamel (EO): MPI 9.
- K. Exterior Latex, Flat (AE): MPI 10.
- L. Exterior Latex, Semi-Gloss (AE): MPI 11.
- M. Organic Zinc rich Coating (HR): MPI 22.
- N. High Heat Resistant Coating (HR): MPI 22.
- O. Cementitious Galvanized Metal Primer: MPI 26.
- P. Exterior/ interior Alkyd Floor Enamel, Gloss (FE): MPI 27.
- Q. Knot Sealer: MPI 36.
- R. Interior Satin Latex: MPI 43.
- S. Interior Low Sheen Latex: MPI 44.
- T. Interior Primer Sealer: MPI 45.
- U. Interior Enamel Undercoat: MPI 47.
- V. Interior Alkyd, Semi-Gloss (AK): MPI 47.
- W. Interior Alkyd, Gloss (AK): MPI 49.
- x. Interior Latex Primer Sealer: MPI 50.
- Y. Interior Alkyd, Eggshell: MPI 51
- Z. Interior Latex, MPI Gloss Level 3 (LE): MPI 52.
- AA. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53.
- BB. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

- DD. Interior / Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE): MPI 59. EE. Interior/ Exterior Latex Porch & Floor Paint, Low Gloss: MPI 60. FF. Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC): MPI 66. GG. Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR): MPI 67. HH. Interior/ Exterior Latex Porch & Floor Paint, gloss: MPI 68. II. Epoxy Cold Cured, Gloss (EC): MPI 77. JJ. Marine Alkyd Metal primer: MPI 79. KK. Interior Wood Stain, Semi-Transparent (WS): MPI 90. LL. Wood Filler Paste: MPI 91. MM. Exterior Alkyd, Semi-Gloss (EO): MPI 94. NN. Fast Drying Metal Primer: MPI 95. OO. High Build Epoxy Coating: MPI 98. PP. Epoxy Anti-Corrosive Metal Primer: MPI 101. QQ. High Build Epoxy Marine Coating (EC): MPI 108. RR. Interior latex, Gloss (LE) and (LG): MPI 114. SS. Exterior Latex, High Gloss (acrylic) (AE): MPI 119. TT. Waterborne Galvanized Primer: MPI 134. UU. Non-Cementitious Galvanized Primer: MPI 135. VV. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138. WW. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139. XX. Interior High Performance Latex, MPI Gloss Level 4: MPI 140. YY. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141. 2.2 PAINT PROPERTIES
 - A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
 - B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.

Project No. 612A4-14-006

- b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
- c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- 3. Asbestos: Materials shall not contain asbestos.
- Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
- 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints, where possible.
- 7. VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
 - 5. Apply only on clean, dry and frost free surfaces except as follows:

Project No. 612A4-14-006

- a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
- b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.
- 6. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.
 - c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - 3. See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.
- C. Wood:
 - 1. Sand to a smooth even surface and then dust off.
 - 2. Sand surfaces showing raised grain smooth between each coat.
 - 3. Wipe surface with a tack rag prior to applying finish.
 - 4. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.
 - 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.

Project No. 612A4-14-006

- Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
- Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - a. Thin filler in accordance with manufacturer's instructions for application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.
- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
 - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Zinc-Coated (Galvanized) Metal, Aluminum, Copper and Copper Alloys Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized

Project No. 612A4-14-006

Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.

- F. Masonry, Concrete, Cement Board, Cement Plaster and Stucco:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.
 - Replace mortar and fill open joints, holes, cracks and depressions with new mortar specified. Do not fill weep holes. Finish to match adjacent surfaces.
 - 5. Neutralize Concrete floors to be painted by washing with a solution of 1.4 Kg (3 pounds) of zinc sulfate crystals to 3.8 L (1 gallon) of water, allow to dry three days and brush thoroughly free of crystals.
 - Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods.
- G. Gypsum Plaster and Gypsum Board:
 - Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.

 $09 \ 91 \ 00 \ - \ 10$

Project No. 612A4-14-006

E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Resident Engineer.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by Resident Engineer, except in spaces sealed from existing occupied spaces.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.
- I. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- E. Wood and Wood Particleboard:

09 91 00 - 11

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

- 1. Use same kind of primer specified for exposed face surface.
 - a. Exterior wood: MPI 7 (Exterior Oil Wood Primer) for new construction and MPI 5(Exterior Alkyd Wood Primer) for repainting bare wood primer except where MPI 90 (Interior Wood Stain, Semi-Transparent (WS)) is scheduled.
 - b. Interior wood except for transparent finish: MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), thinned if recommended by manufacturer.
 - c. Transparent finishes as specified under Transparent Finishes on Wood except Floors.
- 2. Apply two coats of primer MPI 7 (Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) to surfaces of wood doors, including top and bottom edges, which are cut for fitting or for other reason.
- 3. Apply one coat of primer MPI 7 (Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) as soon as delivered to site to surfaces of unfinished woodwork, except concealed surfaces of shop fabricated or assembled millwork and surfaces specified to have varnish, stain or natural finish.
- 4. Back prime and seal ends of exterior woodwork, and edges of exterior plywood specified to be finished.
- 5. Apply MPI 67 (Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) to wood for fire retardant finish.
- F. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Steel and iron: MPI 95 (Fast Drying Metal Primer).
 - Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non-Cementitious Galvanized Primer).
 - 3. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer).
 - 4. Terne Metal: MPI 95 (Fast Drying Metal Primer).
 - 5. Copper and copper alloys scheduled to be painted: MPI 95 (Fast Drying Metal Primer).
 - 6. Machinery not factory finished: MPI 9 (Exterior Alkyd Enamel (EO)).
 - 7. Asphalt coated metal: MPI 1 (Aluminum Paint (AP)).
 - Metal over 94 degrees C. (200 degrees F), Boilers, Incinerator Stacks, and Engine Exhaust Pipes: MPI 22 (High Heat Resistant Coating (HR)).

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

- G. Gypsum Board and Hardboard:
 - 1. Surfaces scheduled to have MPI 53 (Interior Latex, Flat), MPI Gloss Level 1 LE)), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)), MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)), MPI 114 (Interior Latex, Gloss (LE) and (LG))
 - Primer: MPI 50(Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer).
- H. Concrete Masonry Units except glazed or integrally colored and decorative units:
 - 1. MPI 4 (Block Filler) on interior surfaces.
 - 2. Prime exterior surface as specified for exterior finishes.
- I. Cement Plaster or stucco, Concrete Masonry, Brick Masonry, and Cement board, Interior Surfaces of Ceilings and Walls:
 - MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 LE)), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)), MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)), MPI 114 (Interior Latex, Gloss (LE) and (LG)), except use two coats where substrate has aged less than six months.
 - 2. Use MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)), MPI 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)), MPI 140 (Interior High Performance latex, MPI Gloss Level 4), MPI 141 (Interior High Performance Latex (SG) MPI Gloss Level 5), MPI 114 (Interior Latex, Gloss (LE) and (LG)), TT-P-1411A (Paint, Copolymer Resin, Cementitious (CEP)) Type II, MPI 77 (Epoxy Cold Cured, Gloss (EC), MPI 98 (High Build Epoxy Coating), MPI 108 (High Build Epoxy Marine Coating (EC)) or CID-A-A-1555 (Water, Paint, Powder) as scheduled.
- J. Concrete Floors: MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss) or MPI 60 (Interior/ Exterior Latex Porch & Floor Paint, Low Gloss).

3.6 EXTERIOR FINISHES

- A. Apply following finish coats.
- B. Steel and Ferrous Metal:
 - Two coats of MPI 8 (Exterior Alkyd, Flat (EO)), MPI 9 (Exterior Alkyd Enamel (EO)), PI 94 (Exterior Alkyd, Semi-Gloss (EO)) on exposed surfaces, except on surfaces over 94 degrees C (200 degrees F).
 - One coat of MPI 22 (High Heat Resistant Coating (HR)) on surfaces over 94 degrees K (200 degrees F) and on surfaces of boiler, incinerator, stacks, engine exhaust pipes.

Project No. 612A4-14-006

- C. Machinery without factory finish except for primer: One coat MPI 8 (Exterior Alkyd, Flat (EO)), MPI 9 (Exterior Alkyd Enamel (EO)), MPI 94 (Exterior Alkyd, Semi-Gloss (EO)).
- D. Concrete Masonry Units, Concrete:
 - 1. General:
 - a. Where shown.
 - b. Mix as specified in manufacturer's printed directions.
 - c. Do not mix more paint at one time than can be used within four hours after mixing. Discard paint that has started to set.
 - d. Dampen warm surfaces above 24 degrees C (75 degrees F) with fine mist of water before application of paint. Do not leave free water on surface.
 - e. Cure paint with a fine mist of water as specified in manufacturer's printed instructions.
 - Use two coats of TT-P-1411 (Paint, Co-polymer-Resin, Cementitious (CEP)), unless specified otherwise.

3.7 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified:
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
 - b. Two coats of MPI 48 (Interior Alkyd Gloss (AK)) or MPI 51 (Interior Alkyd, Eggshell (AK)).
 - c. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) on exposed interior surfaces of alkyd-amine enamel prime finished windows.
 - d. Two coats of CID-A-A3120 Type E (RP) on exposed surfaces in battery rooms.
 - e. Machinery: One coat MPI 9 (Exterior Alkyd Enamel (EO)).
 - f. Asphalt Coated Metal: One coat MPI 1 (Aluminum Paint (AP)).
 - g. Ferrous Metal over 94 degrees K (200 degrees F): Boilers,
 - Incinerator Stacks, and Engine Exhaust Pipes: One coat MPI 22 (High Heat Resistant Coating (HR).

 $09 \ 91 \ 00 \ - \ 14$

Project No. 612A4-14-006

- C. Gypsum Board:
 - One coat of MPI 45 (Interior Primer Sealer), MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)).
 - Two coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level
 2 (LF)).
 - 3. One coat of MPI 45 (Interior Primer Sealer), MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) or MPI 114 (Interior Latex, Gloss (LE) and (LG)).
 - One coat of MPI 45 (Interior Primer Sealer), MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 48 (Interior Alkyd Gloss (AK)).
- E. Masonry and Concrete Walls:
 - 1. Over MPI 4 (Interior/Exterior Latex Block Filler) on CMU surfaces.
 - 2. Two coats of MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 (LE)), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)), MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)), MPI 114 (Interior Latex, Gloss (LE) and (LG)).
 - 3. Two coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)), MPI 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)), MPI 140 (Interior High Performance Latex MPI Gloss level 4), MPI 141 (Interior High Performance Latex (SG) MPI Gloss level 5), MPI 114 (Interior Latex, Gloss (LE) and (LG)).
- H. Concrete Floors: One coat of MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss (FE)).
- I. Miscellaneous:
 - 1. Apply where specified.
 - 2. MPI 1 (Aluminum Paint): Two coats of aluminum paint.
 - 3. Gold Paint (GP): Two coats of gold paint.
 - 4. Existing acoustical units scheduled to be repainted except acoustical units with a vinyl finish:
 - a. Clean units free of dust, dirt, grease, and other deterrents to paint adhesion.
 - b. Mineral fiber units: One coat of MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 (LE)), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE))
 MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)), MPI 114 (Interior Latex, Gloss (LE) and (LG)).
 - c. Units of organic fiber or other material not having a class A rating: One coat of MPI 66 (Interior Alkyd Fire Retardant, Clear

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

Top-Coat (ULC Approved) (FC)), MPI 67 (Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR)) fire retardant paint.

5. Interstitial floor markings: One coat MPI 27 (Exterior/ Interior Alkyd Floor Enamel, Gloss (FE)), MPI 59 ((Interior/ Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE)), MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss), MPI 60 (interior/ Exterior Latex Porch & Floor Paint, Low Gloss (FR)).

3.8 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. In existing rooms and areas where alterations occur, clean existing stained and natural finished wood retouch abraded surfaces and then give entire surface one coat of MPI 31 (Polyurethane, Moisture Cured, Clear Gloss)or MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV)).
- G. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- H. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- I. Sand or dull glossy surfaces prior to painting.
- J. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.9 PAINT COLOR

- A. Color and gloss of finish.
- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.

Project No. 612A4-14-006

- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.10 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. In spaces not scheduled to be finish painted, paint as specified under paragraph H, colors.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 23 - HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 -ELECTRICAL.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- G. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED.
- H. Color:
 - 1. Paint items having no color to match surrounding surfaces.
 - 2. Paint colors except for following:
 - a. WhiteExterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.

 - c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

- d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
- e. Federal Safety Orange: .Entire lengths of electrical conduits containing feeders 600 volts or more.
- f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Exterior Locations:
 - Apply two coats of MPI 8 (Exterior Alkyd, Flat (EO)), MPI 94 (Exterior Alkyd, Semi-gloss (EO)), MPI 9 (Exterior Alkyd Enamel (EO)) to the following ferrous metal items:
 Vent and exhaust pipes with temperatures under 94 degrees C (200 degrees F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping and similar items.
 - b. Apply two coats of MPI 10 (Exterior Latex, Flat (AE)), MPI 11 (Exterior Latex, Semi Gloss (AE)), MPI 119 (Exterior Latex, High Gloss (acrylic) (AE)) to the following metal items: Galvanized and zinc-copper alloy metal.
 - c. Apply one coat of MPI 22 (High Heat Resistant Coating (HR)), 650 degrees C (1200 degrees F) to incinerator stacks, boiler stacks, and engine generator exhaust.
 - 2. Interior Locations:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) to following items:
 - Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports.
 - Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards.
 - Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.
 - b. Apply one coat of MPI 50 (Interior Latex Primer Sealer) and one coat of MPI 44 (Interior Low Sheen Latex), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)), MPI 43 (Interior Satin Latex), MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)), MPI 114 (Interior Latex, Gloss (LE) and (LG)) on finish of insulation on boiler breeching and uptakes inside boiler house, drums, drumheads, oil heaters, feed water heaters, tanks and piping.

Project No. 612A4-14-006

- c. Apply two coats of MPI 22 (High Heat Resistant Coating (HR)) to ferrous metal surface over 94 degrees K (200 degrees F) of following items:
 - 1) Garbage and trash incinerator.
 - 2) Medical waste incinerator.
 - Exterior of boilers and ferrous metal in connection with boiler settings including supporting members, doors and door frames and fuel oil burning equipment.
 - Steam line flanges, bare pipe, fittings, valves, hangers and supports over 94 degrees K (200 degrees F).
 - 5) Engine generator exhaust piping and muffler.
- d. Paint electrical conduits containing cables rated 600 volts or more using two coats of MPI 9 (Exterior Alkyd Enamel (EO)), MPI 8(Exterior Alkyd, Flat (EO)), MPI 94 (Exterior Alkyd, Semi-gloss (EO)), in the Federal Safety Orange color in exposed and concealed spaces full length of conduit.
- 3. Other exposed locations:
 - a. Metal surfaces, except aluminum, of cooling towers exposed to view, including connected pipes, rails, and ladders: Two coats of MPI 1 (Aluminum Paint (AP)).
 - b. Cloth jackets of insulation of ducts and pipes in connection with plumbing, air conditioning, ventilating refrigeration and heating systems: One coat of MPI 50 (Interior Latex Primer Sealer) and one coat of MPI 10 (Exterior Latex, Flat (AE)), MPI 11 (Exterior Latex Semi-Gloss (AE), MPI 119 (Exterior Latex, High Gloss (acrylic)(AE)).

3.11 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B.
 - 1. Painting of ferrous metal and galvanized metal.
 - 2. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.

VANCHCS High Efficiency Chiller Installation

Project No. 612A4-14-006

- b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
- c. Signs, fixtures, and other similar items integrally finished.
- 3. Concealed surfaces:
 - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
- 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
- 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
- 6. Galvanized metal:
 - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Gas Storage Racks.
 - c. Except where specifically specified to be painted.
- 7. Metal safety treads and nosings.
- 8. Gaskets.
- 9. Concrete curbs, gutters, pavements, retaining walls, exterior exposed foundations walls and interior walls in pipe basements.
- 10. Face brick.
- 11. Structural steel encased in concrete, masonry, or other enclosure.
- 12. Structural steel to receive sprayed-on fire proofing.
- 13. Ceilings, walls, columns in interstitial spaces.
- 14. Ceilings, walls, and columns in pipe basements.
- 15. Wood Shingles.

3.12 IDENTITY PAINTING SCHEDULE

A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings,

Project No. 612A4-14-006

piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.

- 1. Legend may be identified using 2.1 G options or by stencil applications.
- Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
- 3. Locate Legends clearly visible from operating position.
- 4. Use arrow to indicate direction of flow.
- 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
- 6. Legend name in full or in abbreviated form as follows:

	COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	BBREVIATIONS
Blow-off		Yellow	Black	Blow-off
Boiler Feedwater	Yellow	Black	Blr Feed	
A/C Condenser Water	Green	White	A/C Cond Wtr Sup	
A/C Condenser Water	Green	White	A/C Cond Wtr Ret	
Chilled Water Supp	Green	White	Ch. Wtr Sup	
Chilled Water Retur	Green	White	Ch. Wtr Ret	
Shop Compressed Air	Yellow	Black	Shop Air	
Air-Instrument Cont	Green	White	Air-Inst Cont	
Drain Line	Green	White	Drain	
Emergency Shower	Green	White	Emg Shower	
High Pressure Steam	Yellow	Black	H.P*	
High Pressure Conde	Yellow	Black	H.P. Ret*	
Medium Pressure Ste	Yellow	Black	M. P. Stm*	
Medium Pressure Con	Yellow	Black	M.P. Ret*	
Low Pressure Steam		Yellow	Black	L.P. Stm*

VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

Low Pressure Condensat	e Return	Yellow	Black	L.P. Ret*
High Temperature Water	Supply	Yellow	Black	H. Temp Wtr Sup
High Temperature Water	Return	Yellow	Black	H. Temp Wtr Ret
Hot Water Heating Supp	ly	Yellow	Black	H. W. Htg Sup
Hot Water Heating Retu	rn	Yellow	Black	H. W. Htg Ret
Gravity Condensate Ret	urn	Yellow	Black	Gravity Cond Ret
Pumped Condensate Retu	rn	Yellow	Black	Pumped Cond Ret
Vacuum Condensate Retu	rn	Yellow	Black	Vac Cond Ret
Fuel Oil - Grade		Green	White	Fuel Oil-Grade*
Boiler Water Sampling		Yellow	Black	Sample
Chemical Feed		Yellow	Black	Chem Feed
Continuous Blow-Down		Yellow	Black	Cont. B D
Pumped Condensate		Black		Pump Cond
Pump Recirculating		Yellow	Black	Pump-Recirc.
Vent Line		Yellow	Black	Vent
Alkali		Yellow	Black	Alk
Bleach		Yellow	Black	Bleach
Detergent		Yellow	Black	Det
Liquid Supply		Yellow	Black	Liq Sup
Reuse Water		Yellow	Black	Reuse Wtr
Cold Water (Domestic)	White	Green	White	C.W. Dom
Hot Water (Domestic)				
Supply	White	Yellow	Black	H.W. Dom
Return	White	Yellow	Black	H.W. Dom Ret
Tempered Water	White	Yellow	Black	Temp. Wtr
Ice Water				
Supply	White	Green	White	Ice Wtr
Return	White	Green	White	Ice Wtr Ret
Reagent Grade Water		Green	White	RG
Reverse Osmosis		Green	White	RO
Sanitary Waste		Green	White	San Waste
Sanitary Vent		Green	White	San Vent
Storm Drainage		Green	White	St Drain
Pump Drainage		Green	White	Pump Disch
Chemical Resistant Pipe				
Waste		Yellow	Black	Acid Waste
Vent		Yellow	Black	Acid Vent
Atmospheric Vent		Green	White	ATV

VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

Silver Recovery	Green	White	Silver Rec
Oral Evacuation	Green	White	Oral Evac
Fuel Gas	Yellow	Black	Gas
Fire Protection Water			
Sprinkler	Red	White	Auto Spr
Standpipe	Red	White	Stand
Sprinkler	Red	White	Drain

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50 mm (2 inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6100 mm (20 foot) intervals in between. Use labels with yellow background with black border and words Danger High Voltage Class.
- 8. See Sections for methods of identification, legends, and abbreviations of the following:
 - a. Conduits containing high voltage feeders over 600 volts: Section 26
 05 33, RACEWAY AND BOXES FOR ELECTRICAL
- B. Fire and Smoke Partitions:
 - Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
 - Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition.
 - 4. Use semigloss paint of color that contrasts with color of substrate.
- C. Identify columns in pipe basements and interstitial space:
 - 1. Apply stenciled number and letters to correspond with grid numbering and lettering shown.
 - Paint numbers and letters 100 mm (4 inches) high, locate 450 mm (18 inches) below overhead structural slab.
 - 3. Apply on four sides of interior columns and on inside face only of exterior wall columns.
 - 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

Project No. 612A4-14-006

3.14 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 13 05 41 SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide seismic restraint in accordance with the requirements of this section in order to maintain the integrity of nonstructural components of the building so that they remain safe and functional in case of seismic event.
- B. The design to resist seismic load shall be based on Seismic Design Categories per section 4.0 of the VA Seismic Design Requirements (H-18-8) dated August 2013, http://www.cfm.va.gov/til/etc/seismic.pdf.
- C. Definitions: Non-structural building components are components or systems that are not part of the building's structural system whether inside or outside, above or below grade. Non-structural components of buildings include:
 - 1. Architectural Elements: Facades that are not part of the structural system and its shear resistant elements; cornices and other architectural projections and parapets that do not function structurally; glazing; nonbearing partitions; suspended ceilings; stairs isolated from the basic structure; cabinets; bookshelves; medical equipment; and storage racks.
 - 2. Electrical Elements: Power and lighting systems; substations; switchgear and switchboards; auxiliary engine-generator sets; transfer switches; motor control centers; motor generators; selector and controller panels; fire protection and alarm systems; special life support systems; and telephone and communication systems.
 - 3. Mechanical Elements: Heating, ventilating, and air-conditioning systems; medical gas systems; plumbing systems; sprinkler systems; pneumatic systems; boiler equipment and components.
 - 4. Transportation Elements: Mechanical, electrical and structural elements for transport systems, i.e., elevators and dumbwaiters, including hoisting equipment and counterweights.

1.2 QUALITY CONTROL:

- A. Shop-Drawing Preparation:
 - Have seismic-force-restraint shop drawings and calculations prepared by a professional structural engineer experienced in the area of seismic force restraints. The professional structural engineer shall be registered in the state where the project is located.

- 2. Submit design tables and information used for the design-force levels, stamped and signed by a professional structural engineer registered in the State where project is located.
- B. Coordination:
 - 1. Do not install seismic restraints until seismic restraint submittals are approved by the Resident Engineer.
 - 2. Coordinate and install trapezes or other multi-pipe hanger systems prior to pipe installation.
- C. Seismic Certification:

In structures assigned to IBC Seismic Design Category C, D, E, or F, permanent equipments and components are to have Special Seismic Certification in accordance with requirements of section 13.2.2 of ASCE 7 except for equipment that are considered rugged as listed in section 2.2 OSHPD code application notice CAN No. 2-1708A.5, and shall comply with section 13.2.6 of ASCE 7.

1.3 SUBMITTALS:

- A. Submit a coordinated set of equipment anchorage drawings prior to installation including:
 - Description, layout, and location of items to be anchored or braced with anchorage or brace points noted and dimensioned.
 - Details of anchorage or bracing at large scale with all members, parts brackets shown, together with all connections, bolts, welds etc. clearly identified and specified.
 - 3. Numerical value of design seismic brace loads.
 - 4. For expansion bolts, include design load and capacity if different from those specified.
- B. Submit prior to installation, a coordinated set of bracing drawings for seismic protection of piping, with data identifying the various supportto-structure connections and seismic bracing structural connections, include:
 - 1. Single-line piping diagrams on a floor-by-floor basis. Show all suspended piping for a given floor on the same plain.
 - Type of pipe (Copper, steel, cast iron, insulated, non-insulated, etc.).
 - 3. Pipe contents.
 - 4. Structural framing.
 - 5. Location of all gravity load pipe supports and spacing requirements.
 - 6. Numerical value of gravity load reactions.
 - 7. Location of all seismic bracing.

13 05 41 - 2

- 8. Numerical value of applied seismic brace loads.
- 9. Type of connection (Vertical support, vertical support with seismic brace etc.).
- 10. Seismic brace reaction type (tension or compression): Details illustrating all support and bracing components, methods of connections, and specific anchors to be used.
- C. Submit prior to installation, bracing drawings for seismic protection of suspended ductwork and suspended electrical and communication cables, include:
 - 1. Details illustrating all support and bracing components, methods of connection, and specific anchors to be used.
 - Numerical value of applied gravity and seismic loads and seismic loads acting on support and bracing components.
 - 3. Maximum spacing of hangers and bracing.
 - 4. Seal of registered structural engineer responsible for design.
- D. Submit design calculations prepared and sealed by the registered structural engineer specified above in paragraph 1.3A.
- E. Submit for concrete anchors, the appropriate ICBC evaluation reports, OSHPD pre-approvals, or lab test reports verifying compliance with OSHPD Interpretation of Regulations 28-6.

1.4 APPLICABLE PUBLICATIONS:

- A. The Publications listed below (including amendments, addenda revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI): 355.2-07.....Qualification for Post-Installed Mechanical Anchors in Concrete and Commentary
- C. American Institute of Steel Construction (AISC): Load and Resistance Factor Design, Volume 1, Second Edition
- D. American Society for Testing and Materials (ASTM):

A36/A36M-08.....Standard Specification for Carbon Structural Steel

A53/A53M-10.....Standard Specification for Pipe, Steel, Black

and Hot-Dipped, Zinc-Coated, Welded and Seamless

A307-10.....Standard Specification for Carbon Steel Bolts and Studs; 60,000 PSI Tensile Strength.

100% CD July 11, 2014

	A325-10Bolts,			
	Steel, Heat Treated, 120/105 ksi Minimum Tensile			
	Strength			
	A325M-09Biandard Specification for High-Strength Bolts			
	for Structural Steel Joints [Metric]			
	A490-10for Heat-Treated Steel			
	Structural Bolts, 150 ksi Minimum Tensile			
	Strength			
	A490M-10Standard Specification for High-Strength Steel			
	Bolts, Classes 10.9 and 10.9.3, for Structural			
	Steel Joints [Metric]			
	A500/A500M-10Standard Specification for Cold-Formed Welded			
	and Seamless Carbon Steel Structural Tubing in			
	Rounds and Shapes			
	A501-07 Welded and Seamless			
	Carbon Steel Structural Tubing			
	A615/A615M-09Standard Specification for Deformed and Plain			
	Billet-Steel Bars for Concrete Reinforcement			
	A992/A992M-06Standard Specification for Steel for Structural			
	Shapes for Use in Building Framing			
	A996/A996M-09Standard Specification for Rail-Steel and Axel-			
	Steel Deformed Bars for Concrete			
	Reinforcement			
	E488-96(R2003)Standard Test Method for Strength of Anchors in			
_	Concrete and Masonry Element			
	. American Society of Civil Engineers (ASCE 7) Latest Edition.			
	California Building Code (CBC) Latest Edition			
	VA Seismic Design Requirements, H-18-8, August 2013			
	National Uniform Seismic Installation Guidelines (NUSIG)			
⊥.	Sheet Metal and Air Conditioning Contractors National Association			
	(SMACNA): Seismic Restraint Manual - Guidelines for Mechanical Systems, 1998 Edition and Addendum			
1 5 5				
	EGULATORY REQUIREMENT: CBC Latest Edition.			
	Exceptions: The seismic restraint of the following items may be omitted:			
в.				
	 Equipment weighing less than 400 pounds, which is supported directly on the floor or roof. 			
	2. Equipment weighing less than 20 pounds, which is suspended from the			
	roof or floor or hung from a wall.			
	LOOL OF FLOOP OF Many Flow & watt.			

- 3. Gas and medical piping less than 2 ½ inches inside diameter.
- 4. Piping in boiler plants and equipment rooms less than 1 ¼ inches inside diameter.
- 5. All other piping less than 2 ½ inches inside diameter, except for automatic fire suppression systems.
- All piping suspended by individual hangers, 12 inches or less in length from the top of pipe to the bottom of the support for the hanger.
- 7. All electrical conduits, less than 2 ½ inches inside diameter.
- 8. All rectangular air handling ducts less than six square feet in cross sectional area.
- 9. All round air handling ducts less than 28 inches in diameter.

10. All ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of support for the hanger.part 2 - products $% \left({\left({{{\left({{{}}}} \right)}}}}} \right.$

2.1 STEEL:

- A. Structural Steel: ASTM A36.
- B. Structural Tubing: ASTM A500, Grade B.
- C. Structural Tubing: ASTM A501.
- D. Steel Pipe: ASTM A53/A53M, Grade B.
- E. Bolts & Nuts: ASTM A325.

2.2 CAST-IN-PLACE CONCRETE:

- A. Concrete: 28 day strength, f'c = 25 MPa (3,000 psi.
- B. Reinforcing Steel: ASTM A615/615M or ASTM A996/A996M deformed.

PART 3 - EXECUTION

3.1 CONSTRUCTION, GENERAL:

- A. Provide equipment supports and anchoring devices to withstand the seismic design forces, so that when seismic design forces are applied, the equipment cannot displace, overturn, or become inoperable.
- B. Provide anchorages in conformance with recommendations of the equipment manufacturer and as shown on approved shop drawings and calculations.
- C. Construct seismic restraints and anchorage to allow for thermal expansion.
- D. Testing Before Final Inspection:
 - Test 10-percent of anchors in masonry and concrete per ASTM E488, and ACI 355.2 to determine that they meet the required load capacity. If any anchor fails to meet the required load, test the next 20 consecutive anchors, which are required to have zero failure, before resuming the 10-percent testing frequency.

2. Before scheduling Final Inspection, submit a report on this testing indicating the number and location of testing, and what anchor-loads were obtained.

3.2 EQUIPMENT RESTRAINT AND BRACING:

A. See drawings for equipment to be restrained or braced.

3.3 MECHANICAL DUCTWORK AND PIPING; ELECTRICAL BUSWAYS, CONDUITS, AND CABLE TRAYS; AND TELECOMMUNICATION WIRES AND CABLE TRAYS

- A. Support and brace mechanical ductwork and piping; electrical busways, conduits and cable trays; and telecommunication wires and cable trays including boiler plant stacks and breeching to resist directional forces (lateral, longitudinal and vertical).
- B. Brace duct and breeching branches with a minimum of 1 brace per branch.
- D. Provide supports and anchoring so that, upon application of seismic forces, piping remains fully connected as operable systems which will not displace sufficiently to damage adjacent or connecting equipment, or building members.
- E. Seismic Restraint of Piping:
 - 1. Design criteria:
 - a. Piping resiliently supported: Restrain to support // 120 // -percent of the weight of the systems and components and contents.
 - b. Piping not resiliently supported: Restrain to support // 60 // -percent of the weight of the system components and contents.
- F. Piping Connections: Provide flexible connections where pipes connect to equipment. Make the connections capable of accommodating relative differential movements between the pipe and equipment under conditions of earthquake shaking.

3.4 PARTITIONS

- A. In buildings with flexible structural frames, anchor partitions to only structural element, such as a floor slab, and separate such partition by a physical gap from all other structural elements.
- B. Properly anchor masonry walls to the structure for restraint, so as to carry lateral loads imposed due to earthquake along with their own weight and other lateral forces.

3.5 CEILINGS AND LIGHTING FIXTURES

A. At regular intervals, laterally brace suspended ceilings against lateral and vertical movements, and provide with a physical separation at the walls.

3.6 FACADES AND GLAZING

A. Install attachments to structure for all façade materials as shown on construction drawings to ensure strength against applicable seismic forces at the project location.

3.7 CABINETS

A. Anchor filing cabinets that are more than 2 drawers high to the floor or walls, and equip all drawers with properly engaged, lockable latches.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout
- D. Section 05 50 00, METAL FABRICATIONS
- E. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations
- F. Section 07 92 00, JOINT SEALANTS
- G. Section 09 91 00, PAINTING
- H. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- I. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC
- J. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- K. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- L. Section 23 07 11, HVAC Insulation
- M. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- N. Section 23 21 13, HYDRONIC PIPING
- O. Section 23 21 23, HYDRONIC PUMPS
- P. Section 23 25 00, HVAC WATER TREATMENT
- Q. Section 23 64 00, PACKAGED WATER CHILLERS
- R. Section 23 65 00, COOLING TOWERS
- S. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training
- T. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- U. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.
 - Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
 - 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.

- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.

- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Samples: Samples will not be required, except for insulation or where materials offered differ from specification requirements. Samples shall be accompanied by full description of characteristics different from specification. The Government, at the Government's expense, will perform evaluation and testing if necessary.
- H. Layout Drawings:
 - 1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - In addition, for HVAC systems, provide details of the following:
 a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.

- d. Duct, pipe or equipment penetrations of floors, walls, ceilings, or roofs.
- I. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2007.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA):

IP-20-2007.....Specifications for Drives Using Classical V-Belts and Sheaves

IP-21-2009..... Specifications for Drives Using Double-V

(Hexagonal) Belts

IP-22-2007..... Specifications for Drives Using Narrow V-Belts and Sheaves

VANCHO	ANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM CS High Efficiency Chiller Installation 100% CD July 11, 2014 ct No. 612A4-14-006						
Ε.	Air Movement and Control Association (AMCA):						
	410-96 for Air Moving						
	Devices						
F.	American Society of Mechanical Engineers (ASME):						
	Boiler and Pressure Vessel Code (BPVC):						
	Section I-2007Power Boilers						
	Section IX-2007Welding and Brazing Qualifications						
	Code for Pressure Piping:						
	B31.1-2007Power Piping						
G.	American Society for Testing and Materials (ASTM):						
	A36/A36M-08Standard Specification for Carbon Structural						
	Steel						
	A575-96(2007)Standard Specification for Steel Bars, Carbon,						
	Merchant Quality, M-Grades						
	E84-10Burning						
	Characteristics of Building Materials						
	E119-09c Standard Test Methods for Fire Tests of Building						
	Construction and Materials						
н.	Manufacturers Standardization Society (MSS) of the Valve and Fittings						
	Industry, Inc:						
	SP-58-2009Pipe Hangers and Supports-Materials, Design and						
	Manufacture, Selection, Application, and						
	Installation						
	SP 69-2003Pipe Hangers and Supports-Selection and						
	Application						
	SP 127-2001Bracing for Piping Systems, Seismic - Wind -						
-	Dynamic, Design, Selection, Application						
1.	National Electrical Manufacturers Association (NEMA):						
т	MG-1-2009Motors and Generators National Fire Protection Association (NFPA):						
υ.	31-06Standard for Installation of Oil-Burning						
	Equipment						
	54-09National Fuel Gas Code						
	70-08National Electrical Code						
	85-07Boiler and Combustion Systems Hazards Code						
	90A-09Standard for the Installation of Air						
	Conditioning and Ventilating Systems						
	101-09Life Safety Code						
ות 1,6	1.6 DELIVERY, STORAGE AND HANDLING						
Di							

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Chilled Water Service Interruptions: Limited chilled water service interruptions, as required for interconnections of new and existing systems, will be permitted by the Resident Engineer during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 12 am and 5 am Saturday and Sunday in the appropriate off-season (winter). Provide at least one week advance notice to the Resident Engineer.

- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.4 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.5 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications.
- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for

Project No. 612A4-14-006 minimum 65,000 AIC. Provide AC input line reactors (3% impedance)on incoming power line.

2.6 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. HVAC Plant: Provide for all valves.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.7 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum

height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.

- Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- G. Attachment to existing structure: Support from existing floor/roof frame.
- I. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- J. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.

- K. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- L. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.

- a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
- b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
- Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- M. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.8 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions.
- E. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- F. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.9 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.10 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.11 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access,

without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.

- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- M. Work in Existing Building:
 - As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 2. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- O. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
- P. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling

under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure

that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.

- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3. Tubing and capillary systems shall be supported in channel troughs.

- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government

property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
 - 6. Paint shall withstand the following temperatures without peeling or discoloration:

- a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
- b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation.Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.11 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.13 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
- B. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection for motors.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 21 23, HYDRONIC PUMPS.
- E. Section 23 64 00, PACKAGED WATER CHILLERS.
- F. Section 23 65 00, COOLING TOWERS.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician

and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 ..Motors and Generators MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric
 - Motors and Generators
- C. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code (NEC)
- D. Institute of Electrical and Electronics Engineers (IEEE): 112-04.....Standard Test Procedure for Polyphase Induction Motors and Generators
- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2007.....Energy Standard for Buildings Except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

2. Three phase:

- a. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 40°C (104°F) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 40°C (104°F), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.

23 05 12 - 3

- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	Efficie	ncies	Minimum Premium Efficiencies				
	Open Drip	-Proof		Totally Enclosed Fan-Cooled				
Rating	1200	1800	3600	Rating	1200	1800	3600	
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM	
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%	
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%	
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%	
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%	
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%	
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%	
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%	
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%	
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%	
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%	

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

100% CD July 11, 2014

22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

23 05 12 - 5

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, seismic restraints for equipment, vibration tolerance and vibration isolation for HVAC work.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete inertia bases.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- G. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
- I. SECTION 23 21 23, HYDRONIC PUMPS: vibration isolation requirements for pumps.
- K. SECTION 23 65 00, COOLING TOWERS: requirements for sound and vibration isolation for cooling towers.
- M. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Seismic Restraint Requirements:
- 1. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
 - 2. Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and

axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Seismic restraint provisions and bolting.
 - 4. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- D. Seismic Requirements: Submittals are required for all equipment anchors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

Vibration

C. American Society for Testing and Materials (ASTM):

A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength D2240-05(2010)....Standard Test Method for Rubber Property -Durometer Hardness VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

D. Manufacturers Standardization (MSS): SP-58-2009.....Pipe Hangers and Supports-Materials, Design and

Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):
 ASCE 7-10Minimum Design Loads for Buildings and Other

Structures.

- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC): 2009 IBC.....International Building Code.
- I. Department of Veterans Affairs (VA): H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENT

A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
 - Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
 - Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.

3.2 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 5. Systems Readiness Report.
 - Balancing water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes // chilled water, // condenser water, // heating hot water // and glycol-water systems. //
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- D. Section 23 07 11, HVAC INSULATION: Piping and Equipment Insulation.
- E. Section 23 64 00, PACKAGED WATER CHILLERS: Testing Refrigeration Equipment.
- F. Section 23 65 00, COOLING TOWERS: Cooling Tower Performance Testing.

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- O. Section 23 21 23, HYDRONIC PUMPS
- T. Section 23 21 13, HYDRONIC PIPING
- W. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training
- X. Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of

disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.

- Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - g. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
 - h. Chilled water coils: Minus 0 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one hydronic system as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report // within 90 days for conventional design projects // and within 60 days for design-build projects // after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 4. Systems Readiness Report.
 - Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006								
E. Prior to request for Final or Partial Final inspection, submit								
completed Test and Balance report for the area.								
1.5 APPLICABLE PUBLICATIONS								
A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are								
B. American Society of Heating, Refrigerating and Air Conditioning								
Engineers, Inc. (ASHRAE):								
2007								
Testing, Adjusting, and Balancing and Chapter								
47, Sound and Vibration Control								
C. Associated Air Balance Council (AABC):								
2002AABC National Standards for Total System								
Balance								
D. National Environmental Balancing Bureau (NEBB):								
7 th Edition 2005Procedural Standards for Testing, Adjusting,								
Balancing of Environmental Systems								
2nd Edition 2006Procedural Standards for the Measurement of								
Sound and Vibration								
3 rd Edition 2009Procedural Standards for Whole Building Systems								
Commissioning of New Construction								
E. Sheet Metal and Air Conditioning Contractors National Association								
(SMACNA):								
3 rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing								
PART 2 - PRODUCTS								
2.1 PLUGS								
Provide plastic plugs to seal holes drilled in ductwork for test								
purposes.								
2.2 INSULATION REPAIR MATERIAL								
See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for								
repair of insulation removed or damaged for TAB work.								
PART 3 - EXECUTION								
3.1 GENERAL								

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 21 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- F. Water Balance and Equipment Test: Include circulating pumps, chillers, and cooling towers:
 - Coordinate water chiller flow balancing with Section 23 64 00, PACKAGED WATER CHILLERS.
 - Adjust flow rates for equipment. Set evaporator to values on equipment submittals, if different from values on contract drawings.
 - 3. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - Provide cooling tower sound measurements. Refer to Section 23 65 00, COOLING TOWERS.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More	
FACTOR:	10	7	4	3	2	1	0	

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:

a. Perform steps 1.a. thru 1.d., as above.

- b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
- c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use // 10 meters (30 feet) // 13 meters (40 feet) // 16 meters (50 feet) // for sound level location.
- 3. Where sound pressure levels are specified in terms of dB(A), as in Section 23 65 00, COOLING TOWERS, measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, and electrical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published

permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- C. Section 23 21 23, HYDRONIC PUMPS
- D. Section 23 64 00, PACKAGED WATER CHILLERS: Compressor, evaporator and piping.
- E. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13: Piping and equipment.
- F. Section 23 21 13, HYDRONIC PIPING: Chilled water piping.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or

smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

C. Samples:

- Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
- Each type of facing and jacket: Minimum size 100 mm (4 inches square).
- Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): C449-07.....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C534-08.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in

Sheet and Tubular Form

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEMVANCHCS High Efficiency Chiller Installation100% CD July 11, 2014Project No. 612A4-14-006100% CD July 11, 2014
C552-07Gtandard Specification for Cellular Glass
Thermal Insulation
C553-08Standard Specification for Mineral Fiber
Blanket Thermal Insulation for Commercial and
Industrial Applications
C585-09Standard Practice for Inner and Outer Diameters
of Rigid Thermal Insulation for Nominal Sizes
of Pipe and Tubing (NPS System) R (1998)
C1136-10Standard Specification for Flexible, Low
Permeance Vapor Retarders for Thermal
Insulation
D1668-97a (2006)Standard Specification for Glass Fabrics (Woven
and Treated) for Roofing and Waterproofing
E84-10Standard Test Method for Surface Burning
Characteristics of Building
Materials
E119-09cStandard Test Method for Fire Tests of Building
Construction and Materials
E136-09bof Materials
in a Vertical Tube Furnace at 750 degrees C
(1380 F)
E. National Fire Protection Association (NFPA):
90A-09Standard for the Installation of Air
Conditioning and Ventilating Systems
96-08Standard s for Ventilation Control and Fire
Protection of Commercial Cooking Operations
101-09Life Safety Code
251-06Standard methods of Tests of Fire Endurance of
Building Construction Materials
255-06Standard Method of tests of Surface Burning
-
Characteristics of Building Materials
F. Underwriters Laboratories, Inc (UL):
723UL Standard for Safety Test for Surface Burning
Characteristics of Building Materials with
Revision of 09/08
G. Manufacturer's Standardization Society of the Valve and Fitting
Industry (MSS):

SP58-2009......Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C553 (Blanket, Flexible) Type I, // Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) // Class B-5, Density 32 kg/m³ (2 pcf), k = 0.04 (0.27) // at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.

2.2 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.4 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.5 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - 4. Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.//

2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)		
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)	
Up through 125 (5)	150 (6) long	
150 (6)	150 (6) long	
200 (8), 250 (10), 300 (12)	225 (9) long	
350 (14), 400 (16)	300 (12) long	
450 through 600 (18 through 24)	350 (14) long	

2.7 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.

- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.8 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching // monel or // galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.9 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.10 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment, such as chilled water pumps and heads of chillers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.

- G. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- H. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- I. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Fire partitions
- J. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(1inch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- K. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
- L. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 5. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
 - a. Chilled water pumps, water filter, chemical feeder pot or tank.
- E. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- G. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 a. Chilled water pumps
 - b. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.

3.7 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room)	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements. ----- END -----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide a direct-digital control system as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system shall consist of high-speed, peerto-peer network of DDC controllers, a control system server, and an Engineering Control Center.
 - 2. The direct-digital control system shall be native BACnet. All new controllers, devices and components shall be listed by BACnet Testing Laboratories. All new controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
 - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor

administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.

- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
- C. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - 1. Chiller controls. These controls, if not native BACnet, will require a BACnet Gateway.
 - Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- D. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure	23	23	N/A	N/A

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

100% CD July 11, 2014

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
stations.				
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Interface with chiller controls	23 09 23	23 09 23	23 09 23	26
Chiller controls interface with control system	23	23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Chiller/starter interlock wiring	N/A	N/A	26	26
Chiller Flow Switches	23	23	23	N/A
VFDs	23 09 23	26	23 09 23	26
Starters, HOA switches	23	23	N/A	26

- E. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's

area control through an Ethernet connection provided by the Control System Integrator.

- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
- 4. Responsibility Table:

Item/Task	Section	Control	VA
	23 09 23	system	
	contactor	integrator	
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	X		
and equipment			
Point addressing: all hardware and	X		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	X		
ECC Graphics		Х	
Controller programming and sequences	X		
Integrity of LAN communications	X		
Electrical wiring	X		
Operator system training		Х	
LAN connections to devices	X		
LAN connections to ECC		X	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 64 00, Packaged Water Chillers.
- C. Section 26 05 11, Requirements for Electrical Installations.
- D. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- E. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- F. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- G. Section 26 29 11, Motor Starters.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one

bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).

- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- 0. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are

generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side. FF. GIF: Abbreviation of Graphic interchange format.

- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- 00. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.

- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.
- 1.4 QUALITY ASSURANCE

A. Criteria:

- 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
- Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as

required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
 - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.

9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Water temperature	±0.5°C [±1°F]
Water flow	±1% of reading
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical

connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.

- 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
- 3. Control valves schedule, including the size and pressure drop.
- 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
- 5. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 6. Color prints of proposed graphics with a list of points for display.
- 7. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 8. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 9. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.

- 11. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 12. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 13. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.

- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 48 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 48 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
 - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.

4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- B. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- C. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
- D. American Society of Testing Materials (ASTM):

B32-08	Standard Specification for Solder Metal
B88-09	Standard Specifications for Seamless Copper
	Water Tube
B88M-09	Standard Specification for Seamless Copper
	Water Tube (Metric)
B280-08	Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	Standard Specification for Polyethylene (PE)
	Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE): 802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications
- G. National Fire Protection Association (NFPA):

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006 70-11......National Electric Code 90A-09.....Standard for Installation of Air-Conditioning and Ventilation Systems H. Underwriter Laboratories Inc (UL): 94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10....Access Control System Units 486A/486B-10.....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10.....Energy Management Equipment 1076-10....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.

- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.

- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.6 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.

```
VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM
VANCHCS High Efficiency Chiller Installation
Project No. 612A4-14-006
```

- 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP.
 STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the

controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller

shall share data with its building controller and the other networked advanced application controllers.

- 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against

electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
 - 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
 - Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - 1. The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system

and support the use of software application that operates under DOS or Microsoft Windows.

- All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
- 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital

controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.

- a. Chilled water Plant Operation: This program shall have the ability to sequence the multiple chillers to minimize energy consumption. The program shall provide sequence of operation as described on the drawings and include the following as a minimum:
 - Automatic start/stop of chillers and auxiliaries in accordance with the sequence of operation shown on the drawings, while incorporating requirements and restraints, such as starting frequency of the equipment imposed by equipment manufacturers.
 - 2) Secondary chilled water pumps and controls.
 - Generate chilled water plant load profiles for different seasons for use in forecasting efficient operating schedule.
 - 4) Cooling Tower Operation Program: The objective of cooling tower control is to optimize chiller/tower energy use within the equipment restraints and minimum condenser water temperature limit recommended by the equipment manufacturer. Maintain chilled water plant performance records and print reports at intervals selected by the operator. It shall be possible for the operator to change the set points and the operating schedule.
 - 5) The chilled water plant program shall display the following as a minimum:
 - a) Secondary chilled flow rate.
 - b) Secondary chilled water supply and return temperature.
 - c) Condenser water supply and return temperature.
 - d) Outdoor air dry bulb temperature.
 - e) Outdoor air wet bulb temperature.
 - f) Ton-hours of chilled water per day/month/year.
 - g) On-off status for each chiller.
 - h) Chilled water flow rate.
 - i) Chilled water supply and return temperature.
 - j) Operating set points-temperature and pressure.
 - k) Kilowatts and power factor.
 - 1) Current limit set point.
 - m) Date and time.
 - n) Operating or alarm status.

o) Operating hours.

2.11 SENSORS (WATER)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature Sensors shall be electronic, vibration and corrosion resistant for immersion mounting. Provide all remote sensors as required for the systems.
 - 1. Temperature Sensors: Resistance Temperature Device (RTD) with an integral transmitter type.
 - a. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - b. Wire: Twisted, shielded-pair cable.
 - c. Output Signal: 4-20 ma.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.

SPEC WRITER NOTE: Select appropriate flow sensor depending upon application.

- D. Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
 - 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC

- Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- G. Flow switches:
 - 1. Shall be differential pressure type.
 - a. Differential pressure type switches water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:

- a. Three way modulating values shall be globe pattern. Position versus flow relation shall be equal percentage for water flow control.
- b. Two-way modulating values shall be globe pattern for 50 mm (2 inches) and smaller and butterfly type for 60 mm (2-1/2 inches) and larger. Position versus flow relation shall be equal percentage for water flow control.
- c. Two-way 2-position valves shall be ball, gate or butterfly type.
- 6. Maximum pressure drop:
 - a. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. The actuator shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.

- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- A. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.

SPEC WRITER NOTE: Include language in Electrical Specs and Drawings to provide power to all HVAC control devices requiring 120 volt power.

- Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as

applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.

- c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates.
 - g. All pipe mounted temperature sensors shall be installed in wells.
 - h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 - i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
 - 2. Pressure Sensors:

- a. Install high-pressure side of the differential switch between the pump discharge and the check valve.
- b. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - Mount and link valve actuators according to manufacturer's written instructions.
 - b. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.

SPEC WRITER NOTE: Edit the below paragraph based on communication system types specified in Part 2 of this Section of the specifications.

- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - 1. Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.

Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.

- Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved

specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

- C. Demonstration
 - 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.

SPEC WRITER NOTE: The following demonstrations are for a DDC system with some pneumatic functions. Edit as necessary to conform to project requirements.

- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.

- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

SPEC WRITER NOTE: The following demonstration is for the Operator's Terminal functions of a large-scale Building Automation System. Edit as necessary for smaller systems.

- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
 - i. Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, and drain piping.
 - 2. Extension of domestic water make-up piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for piping.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- G. Section 23 07 11, HVAC INSULATION: Piping insulation.
- H. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports. Submit calculations for constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

- 5. Valves of all types.
- 6. Strainers.
- 7. Flexible connectors for water service.
- 8. Pipe alignment guides.
- 9. All specified hydronic system components.
- 10. Water flow measuring devices.
- 11. Gages.
- 12. Thermometers and test wells.
- 13. Seismic bracing details for piping.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Air separators.
 - 2. Expansion tanks.
- D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, and condenser water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.
- B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-06.....Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings B40.100-05.....Pressure Gauges and Gauge Attachments

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006			
C.	American National Stand	ards Institute, Inc./Fluid Controls Institute	
	(ANSI/FCI):		
	70-2-2006Control Valve Seat Leakage		
D.	D. American Society of Mechanical Engineers (ASME):		
	B16.1-98	.Cast Iron Pipe Flanges and Flanged Fittings	
	B16.3-2006	.Malleable Iron Threaded Fittings: Class 150 and	
		300	
	B16.4-2006	.Gray Iron Threaded Fittings: (Class 125 and 250)	
	B16.5-2003	.Pipe Flanges and Flanged Fittings: NPS ½	
		through NPS 24 Metric/Inch Standard	
	B16.9-07	.Factory Made Wrought Butt Welding Fittings	
	B16.11-05	.Forged Fittings, Socket Welding and Threaded	
	B16.18-01	.Cast Copper Alloy Solder Joint Pressure	
		Fittings	
	B16.22-01	.Wrought Copper and Bronze Solder Joint Pressure	
		Fittings.	
	B16.24-06	.Cast Copper Alloy Pipe Flanges and Flanged	
		Fittings	
	B16.39-06	.Malleable Iron Threaded Pipe Unions	
	B16.42-06	.Ductile Iron Pipe Flanges and Flanged Fittings	
	В31.1-08	.Power Piping	
E.	E. American Society for Testing and Materials (ASTM):		
	A47/A47M-99 (2004)	.Ferritic Malleable Iron Castings	
	A53/A53M-07	.Standard Specification for Pipe, Steel, Black	
		and Hot-Dipped, Zinc-Coated, Welded and	
		Seamless	
	A106/A106M-08	.Standard Specification for Seamless Carbon	
		Steel Pipe for High-Temperature Service	
	A126-04	.Standard Specification for Gray Iron Castings	
		for Valves, Flanges, and Pipe Fittings	
	A183-03	Standard Specification for Carbon Steel Track	
		Bolts and Nuts	
	A216/A216M-08	Standard Specification for Steel Castings,	
		Carbon, Suitable for Fusion Welding, for High	
		Temperature Service	

VANCHO	ANS AFFAIRS NORTHERN CAL CS High Efficiency Chill ct No. 612A4-14-006	IFORNIA HEALTHCARE SYSTEM er Installation 100% CD July 11, 2014	
	A234/A234M-07	Piping Fittings of Wrought Carbon Steel and	
		Alloy Steel for Moderate and High Temperature	
		Service	
	A307-07	Standard Specification for Carbon Steel Bolts	
		and Studs, 60,000 PSI Tensile Strength	
	A536-84 (2004)	Standard Specification for Ductile Iron Castings	
	A615/A615M-08	Deformed and Plain Carbon Steel Bars for	
		Concrete Reinforcement	
	A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-	
		Iron Alloy Coated (Galvannealed) By the Hot-Dip	
		Process	
	B32-08	Standard Specification for Solder Metal	
	в62-02	Standard Specification for Composition Bronze or	
		Ounce Metal Castings	
	B88-03	Standard Specification for Seamless Copper Water	
		Tube	
	B209-07	Aluminum and Aluminum Alloy Sheet and Plate	
	C177-04	Standard Test Method for Steady State Heat Flux	
		Measurements and Thermal Transmission Properties	
		by Means of the Guarded Hot Plate Apparatus	
	C533-07	Calcium Silicate Block and Pipe Thermal	
		Insulation	
	C552-07	Cellular Glass Thermal Insulation	
	C591-08	Unfaced Preformed Rigid Cellular	
		Polyisocyanurate Thermal Insulation	
F.	American Water Works As	sociation (AWWA):	
	C110-08	.Ductile Iron and Grey Iron Fittings for Water	
G.	G. American Welding Society (AWS):		
	B2.1-02	.Standard Welding Procedure Specification	
н.	Copper Development Association, Inc. (CDA):		
	CDA A4015-06Copper Tube Handbook		
J.	Manufacturers Standardization Society (MSS) of the Valve and Fitting		
	Industry, Inc.:		
	SP-67-02aButterfly Valves		
	SP-71-05	.Gray Iron Swing Check Valves, Flanged and	
		Threaded Ends	
	SP-80-08	.Bronze Gate, Globe, Angle and Check Valves	

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006

SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends

SP-110-96.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

SP-125-00.....Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

- A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.
- PART 2 PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

A. Chilled Water, Condenser Water, and Vent Piping:

1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.

- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:

- a. Water service: Weld neck (slip-on not allowed), plain face, with
 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball

with full port and Teflon seat at 2760 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.

- 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
 - c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
- F. Check Valves
 - Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.

2.10 STRAINERS

- A. Basket Type for Condenser Water or Y Type for Chilled Water.
 - 1. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.

2.13 HYDRONIC SYSTEM COMPONENTS

- A. Air Purger: Cast iron or fabricated steel, 861 kPa (125 psig) water working pressure, for in-line installation.
- B. Diaphragm Type Pre-Pressurized Expansion Tank: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, welded steel shell, rust-proof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 116 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).
- C. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 1034 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.14 WATER FILTERS AND POT CHEMICAL FEEDERS

See section 23 25 00, HVAC WATER TREATMENT, Article 2.2, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.15 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.16 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
- B. Provide one each of the following test items to the Resident Engineer:
 - 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, --100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
 - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.17 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.

- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Condenser Water: -38 degrees C (32-100 degrees F).

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment

connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.

- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.4 SEISMIC BRACING ABOVEGROUND PIPING

Provide in accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LEAK TESTING ABOVEGROUND PIPING

A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.

- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer.
 - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours.

Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.

3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.7 WATER TREATMENT

- A. Close and fill system as soon as possible after final flushing to minimize corrosion.
- B. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- C. Utilize this activity, by arrangement with the Resident Engineer, for instructing VA operating personnel.

3.8 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

RORSECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Hydronic pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 21 13, HYDRONIC PIPING.
- G. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
- H. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
 - Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.

- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- C. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI): AISI 1045.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI):

ANSI B15.1-00(R2008)..... Safety Standard for Mechanical Power Transmission Apparatus

ANSI B16.1-05.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800

D. American Society for Testing and Materials (ASTM): A48-03 (2008).....Standard Specification for Gray Iron Castings

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

B62-2009.....Standard Specification for Composition Bronze or Ounce Metal Castings

E. Maintenance and Operating Manuals in accordance with Section 01 00 00, General Requirements.

1.6 DEFINITIONS

- A. Capacity: Liters per second (L/s) (Gallons per minute (GPM) of the fluid pumped.
- B. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.

1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the Resident Engineer.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A. General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - 2. Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1½ times the designed pressure.
 - 3. Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMNTS FOR HVAC and STEAM GENERATION EQUIPMENT. Motors shall be Open Drip Proof and operate at 1750 rpm unless noted otherwise.
 - d. Provide coupling guards that meet ANSI B15.1, Section 8 and OSHA requirements.
 - e. Pump Connections: Flanged.
 - f. Pump shall be factory tested.
 - g. Performance: As scheduled on the Contract Drawings.
 - 5. Variable Speed Pumps:

- a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip-proof motor.
- b. Variable Speed Motor Controllers: Refer to Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC paragraph, Variable Speed Motor Controllers. Furnish controllers with pumps and motors.
- c. Pump operation and speed control shall be as shown on the drawings.
- B. Base Mounted End Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 850 kPa (125 psig), ANSI B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - 5. Casing Drain and Gage Taps: 15 mm (1/2-inch) plugged connections minimum size.
 - 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, AISI Type 1045 or stainless steel.
 - 8. Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
 - 11. Base Mounted Pumps:
 - a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - b. Impeller Wear Rings: Bronze.
 - c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, ANSI B15.1, bolted to the baseplate.
 - d. Bearings (Double-Suction pumps): Regreaseable ball or roller type.Provide lip seal and slinger outboard of each bearing.
 - e. Base: Cast iron or fabricated steel for common mounting to a concrete base.
 - f. Close-coupled: allowed for retro-fit project when physical dimensions limit maximum frame dimensions.
 - 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:

Project No. 612A4-14-006

- a. Body: Cast iron with steel inlet vanes and combination diffuser-strainer-orifice cylinder with 5 mm (3/16-inch) diameter openings for pump protection. Provide taps for strainer blowdown and gage connections.
- b. Provide adjustable foot support for suction piping.
- c. Strainer free area: Not less than five times the suction piping.
- d. Provide disposable start-up strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- B. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- C. Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Lubricate pumps before start-up.
- C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- F. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- G. After several days of operation, replace the disposable start-up strainer with a regular strainer in the suction diffuser.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Chemical treatment for open loop systems.

1.2 RELATED WORK

- A. Test requirements and instructions on use of equipment/system: Section 01 00 00, GENERAL REQUIREMENTS.
- B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Piping and valves: Section 23 21 13, HYDRONIC PIPING.
- D. Cooling Towers: Section 23 65 00, COOLING TOWERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. During this period perform monthly tests of the cooling tower for Legionella pneumophila and submit reports stating Legionella bacteria count per millimeter. These tests shall be conducted in a certified laboratory and not by a technician in the field. Minimum service during construction/start-up shall be 6 hours.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:

1. Cleaning compounds and recommended procedures for their use.

- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

70-2008.....National Electric Code (NEC)

C. American Society for Testing and Materials (ASTM): F441/F441M-02 (2008) ... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system

essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.

2.5 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.

I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 64 00 PACKAGED WATER CHILLERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Centrifugal water-cooled chillers, complete with accessories.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 21 23, HYDRONIC PUMPS.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 21 13, HYDRONIC PIPING.
- H. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
- I. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- J. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- K. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 DEFINITION

- A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135.
- C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- D. FTT-10: Echelon Transmitter-Free Topology Transceiver.

1.4 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and comply with the following.
- B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance.
- C. Comply with AHRI requirements for testing and certification of the chillers.
- D. Refer to paragraph, WARRANTY, Section 00 72 00, GENERAL CONDITIONS, except as noted below:

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006 1. Provide a 5-year motor, transmission, and compressor warranty to include materials, parts and labor. E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard G. Refer to ASHRAE Standard 15, Safety Standard for Refrigeration System, for refrigerant vapor detectors and monitor. **1.5 APPLICABLE PUBLICATIONS** A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 370-01.....Sound Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment 495-1999 (R2002).....Refrigerant Liquid Receivers 550/590-03.....Standard for Water Chilling Packages Using the Vapor Compression Cycle 560-00.....Absorption Water Chilling and Water Heating Packages 575-94..... Methods for Measuring Machinery Sound within Equipment Space C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): ANSI/ASHRASE-15-2007....Safety Standard for Mechanical Refrigeration Systems GDL 3-1996.....Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems D. American Society of Mechanical Engineers (ASME): 2007 ASME Boiler and Pressure Vessel Code, Section VIII, "Pressure Vessels - Division 1" E. American Society of Testing Materials (ASTM): C 534/ C 534M-2008.....Preformed, Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C 612-04......Mineral-fiber Block and Board Thermal Insulation F. National Electrical Manufacturing Association (NEMA): Maximum) G. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code

H. Underwriters Laboratories, Inc. (UL):

1995-2005..... Heating and Cooling Equipment

1.6 SUBMITTALS

- A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data.
 - Centrifugal water chillers, including motor starters, control panels, and remote condenser data shall include the following:
 - a. Rated capacity.
 - b. Pressure drop.
 - c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard.
 - d. Refrigerant
 - f. Accessories.
 - g. Installation instructions.
 - h. Start up procedures.
 - i. Wiring diagrams, including factor-installed and field-installed wiring.
 - j. Sound/Noise data report. Manufacturer shall provide sound ratings. Noise warning labels shall be posted on equipment.
- C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- D. Run test report for all chillers.
- E. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests.
- F. Provide seismic restraints for refrigeration equipment to withstand seismic forces.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL WATER-COOLED WATER CHILLERS

A. General: Chiller shall be factory-assembled, charged, and run-tested, complete with evaporator, condenser, marine water boxes for condenser and evaporator, no more than two oil-free compressors, motor, variable speed drive, economizer or intercooler, purge system (if required), refrigerant piping, instrumentation and control piping, operating and safety controls mounted on the chiller, and other auxiliaries necessary for safe and proper operation of the unit. Chiller operation shall be fully automatic. Make provision for space and design piping layout to suit the marine water boxes. VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

- B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings.
- D. Applicable Standard: Chillers shall be rated and certified in accordance with AHRI Standard 550/590. Chillers shall be AHRI stamped. Chiller efficiency shall comply with FEMP (Federal Energy Management Progress) requirements.
- E. Acoustics: Sound pressure levels shall not exceed the following specified levels. The manufacturer shall provide sound treatment if required to comply with the specified maximum levels. Testing shall be in accordance wit AHRI 575.

OCTAVE BAND							Overall	
63	125	250	500	1000	2000	4000	8000	dB(A)
42.0	59.0	68.0	73.0	75.0	72.0	85.0	72.0	87.0

- F. Semi-Hermetic: Chiller shall be semi-hermetically sealed, using one of the following refrigerants: HCFC-123, HFC-134a or HCFC-410A.
- G. Compressor (Centrifugal Type): Single or multistage, having statically and dynamically balanced impeller, either direct or gear driven. Impeller shaft shall be heat-treated carbon steel of sufficient rigidity to prevent whip or vibration at operating speed. Shaft main bearings shall be magnetic type. Casing shall be cast iron or steel plate with split sections gasketed and bolted together. Capacity control shall be by means of integrated variable speed drive operating in concert with variable inlet guide vanes in the compressor suction to modulate the chiller capacity from 100 to 10 percent of full unit rated capacity without unstable compressor operation. The inlet guide vanes shall be electrically operated upon the actuation of temperature or pressure sensor.
- J. Evaporator: Shell-and-tube type, constructed and tested and stamped in accordance with Section VIII D1 of ASME Boiler and Pressure Vessel Code where applicable for working pressure produced by refrigerant used and water system installed, but not less than 1035 kPa (150 psig) waterside working pressure. Shell shall be fabricated of carbon steel and shall have carbon steel tube sheets; drilled and reamed to accommodate the tubes. Tubes shall be externally and internally enhanced individually replaceable and shall be expanded full diameter into tube sheets, providing a leak proof seal. Intermediate tube supports sheets shall be provided as recommended by the manufacturer to minimize tube vibration, stress, and wear. Performance shall be based on a water velocity not

less than 1 m/s (3 fps) nor more then 4 m/s (12 fps), and fouling factor of 0.0000176 m² degrees C (0.0001 hr. sq. ft. degrees F/Btu). Removable marine water box shall be constructed of steel. Design working pressure shall be 1035 kPa (150 psig) pressure tested at 130 percent of working pressure. Water nozzle connections shall be flanged.

- K. Condenser: Shell-and-tube type, constructed, tested, and stamped in accordance with applicable portions of Section VIII D1 of the ASME Boiler and Pressure Vessel Code, where applicable for working pressure produced by the refrigerant used and water system installed, but not less than 1035 kPa (150 psig). Shell shall be fabricated of carbon steel and shall have carbon steel tube sheets; drilled and reamed to accommodate the tubes. Tubes shall be nonferrous metal, externally enhanced, and internally enhanced, individually replaceable, and shall be expanded full diameter into tube sheets, providing a leak proof seal. Intermediate tube support sheets shall be provided as recommended by the manufacturer to minimize tube vibration, stress and wear. Tubes shall fit tightly in the supports to prevent chafing due to vibration or pulsation. Performance of condenser shall be based on a water velocity not less than 1 m/s (3 fps) nor more than 4 m/s (12 fps), and a fouling factor of 0.000044 m² degrees C (0.00025 hr. sq. ft.) degrees F/Btu. Removable marine water box shall be constructed of steel. Design working pressure shall be 1035 kPa (150 psig); pressure tested at 130 percent of working pressure. Water nozzle connections shall be flanged.
- L. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 40 mm (1.5 inch) minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534.
- M. Economizer: Provide if required by manufacturer. Flash gas shall be piped from economizer to inlet of intermediate stage impeller wheel. In case of rotary compressor flash gas shall be piped from economizer to the intermediate compressor point. Provide a refrigerant flow control system (float valve or variable/multiple orifice system) to automatically regulate flow of liquid refrigerant through economizer. If external-type economizer is used, such economizer shall be constructed and tested in accordance with Section 8 of ASME Boiler and Pressure Vessel Code for working pressures produced by refrigerant used, unless exempt by Section U-1 of the code.
- N. Motor Load Limiter: Provide a sensing and control system, which will limit maximum load current of compressor motor to a manually selectable percentage of 40 percent to 100 percent of full load current. System

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation Project No. 612A4-14-006

shall sense compressor motor current and limit it by modulating inlet guide vanes at the compressor, overriding other controls in their ability to increase loading, but not overriding their ability to reduce loading.

0. Purge System: Chillers utilizing HCFC-123 and chillers using refrigerants with vapor pressure less than 100 kPa (14.7 psig) shall be supplied with Purge System. Purge unit shall be factory-mounted, complete with necessary, piping, operating and safety controls and refrigerant service valves to isolate the unit from the chilling unit. Purge unit shall be air, water, or refrigerant cooled. When in operation, purge system shall function automatically to remove, water vapor, and condensable gases from refrigeration system and to condense, separate, and return to system any refrigerant present therein. Purge system shall be manually or automatically started and stopped, and shall be assembled as a compact unit. As an option, a fully automatic purge system that operates continuously while main unit is operating may be furnished. Such purge system shall provide a means to signal operator of occurrence of excessive purging indicating abnormal air leakage into unit. The purge system shall be of high efficiency in recapturing the refrigerant at all load and head conditions and with capability to operate when the chiller is off. The purge unit shall be UL listed.

P. Isolation Pads: Manufacturers standard.

R. Refrigerant and Oil:

- Provide sufficient volume of dehydrated refrigerant to permit maximum unit capacity operation before and during tests. Refrigerant charge lost during the warranty period due to equipment failure shall be replaced without cost to the Government.
- The manufacturer shall certify that chiller components, such as seals, o-ring, motor windings, etc, are fully compatible with the specified refrigerants.
- S. Chillers utilizing HCFC-123 shall be supplied with a vacuum prevention system to maintain the chiller at positive pressure during non-operational cycles.
- T. Chillers using refrigerants HFC-134a shall be supplied with single or multiple reseating type, spring-loaded relief valve.
- U. Service valves shall be provided to facilitate refrigerant reclaim/removal required during maintenance.
- V. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 12 enclosure, hinged and lockable, factory wired with a single point power connection and separate control

circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.

- 1. Following functions shall display as a minimum:
 - a. Date and Time.
 - b. Outdoor air temperature.
 - c. Operating set point temperature and pressure.
 - d. Operating hours.
 - e. Operating or alarm status.
 - f. Chilled water temperature-entering and leaving.
 - g. Condenser water temperature-entering and leaving.
 - h. Refrigerant pressure-condenser and evaporator.
 - i. Low oil pump pressure.
 - j. High oil supply pressure.
 - k. Chiller diagnostic codes.
 - 1. Current limit set point.
 - m. Number of compressor starts.
 - n. Purge suction temperature, if refrigerant HCFC-123 is used.
 - o. Purge elapsed time, if refrigerant HCFC-123 is used.
- 2. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Control set points for entering and leaving chilled temperatures.
 - c. Condenser water temperature.
 - d. Current/demand limit.
 - e. Motor load limit.
- 3. Safety Controls: Following conditions shall shut down the chiller and require manual reset to start:
 - a. High condenser pressure.
 - b. High oil temperature.
 - c. High or low oil pressure.
 - d. Loss of flow-condenser or chilled water.
 - e. Low chilled water temperature.
 - f. Low evaporator refrigerant temperature.
 - g. Sensor malfunctions.
 - h. Power fault.
 - i. Extended compressor surge.
 - j. Communication loss between the chiller and its control panel. A signal must be transmitted to Energy Control Center, if provided, for this communication loss and for any abnormal.

- 5. Leaving chilled water temperature reset, where specified in the control sequence, shall be based on 4-20 MA or 0-10 VDC signal from a building automation system.
- 6. Chillers shall be pre-wired to terminal strips for interlocked to other equipment.
- 7. Provide contacts for remote start/stop, alarm for abnormal operation or shut down, and for Engineering Control Center (ECC) interface.
- 8. Chiller control panel shall reside on the "BACnet network", and provide data using open protocol network variable types and configuration properties, BACnet interworking using ARCNET or MS/TP physical data link layer protocol for communication with building automation control system.
- 9. Auxiliary hydronic system and the chiller(s) shall be electronically interlocked to provide time delay and starting sequence as indicated on control drawings.
- 10. The chiller control panel shall utilize the following components to automatically take action to prevent unit shutdown due to abnormal operating conditions which will perform as follows.
 - a. High pressure switch that is set to 20 psig (adjustable setting) lower than factory pressure switch that will automatically unload the compressor to help prevent a high pressure condenser control trip. One switch is required for each compressor and indicating light shall also be provided.
 - b. Motor surge pressure that is set at 95% of compressor RLA that will automatically unload the compressor to prevent an over current trip. One protector is required for each compressor and indicating light shall also be provided.
 - c. Low pressure switch that is set at 5 PSIG above the factory low pressure switch that will automatically unload the compressor to help prevent a low evaporator temperature trip. One switch is required for each compressor and indicating light shall also be provided.
 - d. In all the above cases, the chiller will continue to run, in an unloaded state and will continue to produce some chilled water in an attempt to meet the cooling load. However, if the chiller reaches the trip-out limits, the chiller controls will take the chiller off line for protection, and a manual reset is required. Once the "near trip" condition is corrected, the chiller will return to normal operation and can then produce full load cooling.

- 11. With variation of +/-10% of design flow per minute, chiller shall be able to maintain +/-0.5 degrees F leaving water temperature control. The chiller must be able to withstand a +/- 30% change in flow rate per minute without unit trip. Variations in the primary flow allow for optimal system efficiency, but the chiller must be able to maintain temperature control to help ensure occupant comfort.
- 12. The chiller control panel shall provide +/-0.5 degrees F leaving water temperature control during normal operation. The chiller shall provide multiple steps leaving chilled water temperature controller to minimize part load energy use and optimize leaving chilled water temperature control. If manufacturer is unable to provide at least several steps of unloading, hot gas bypass shall be required to minimize loss of leaving water temperature control.
- 13. The chiller control panel shall provide a 2-minute stop-to-start and 5 minute start-to-start solid state timer. If the anti-recycle timers are longer than 5 minutes, then hot-gas bypass shall be provided to limit loss of leaving chilled water temperature control in low-load conditions.
- W. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Compressor motor furnished with the chiller shall be in accordance with the chiller manufacturer and the electrical specification Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT. Starting torque of the motor shall be suitable for the driven chiller machine.
- X. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide a starter for each centrifugal chiller in NEMA I enclosure, designed for unit mounting. Starter shall be a variable frequency drive type. Provide starter with the following features in addition to the ones specified in Electrical Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - Starter shall include incoming line provision for the number and size cables shown on the drawings. Incoming line lugs shall be copper mechanical type.
 - 2. Terminals connection pads shall be provided to which customers supply lugs can be attached.
 - Starters shall be coordinated with chiller packages(s) making certain all terminals are properly marked according to the chiller manufacturer's wiring diagram.
 - 4. Contactors shall be sized per NEMA requirements to the chillers for full load currents.

- 5. Ammeter(s) shall be provided, capable of displaying current to all three phases. Ammeter shall be calibrated so that inrush current can be indicated.
- 6. Chiller starter shall include an advanced motor protection system incorporating electronic three phase overloads and current transformers. This electronic motor protection system shall monitor and protect against the following conditions:
 - a. Three phase loss with under and over voltage protection.
 - b. Phase imbalance.
 - c. Phase reversal.
 - d. Motor overload.
 - e. Motor overload protection incorrectly set.
 - f. Momentary power loss protection with auto restart consisting of three phase current sensing device that monitor the status of the current.
 - g. Starter contactor fault protection.
 - h. Starter transition failure.
 - i. Distribution fault protection.
- 8. The starter shall be equipped with pilot relays to initiate the start sequence of compressor. These relays shall be a self-monitoring safety circuit, which shall indicate improper operation (slow operation, welding of contacts, etc) and shall cause the chiller unit to be shut down and a fault trip indicator be displayed. The "starter circuit fault" indicator shall be located in the door of the enclosure and shall require manual reset.
- 9. A lockout transition safety circuit shall be provided to prevent damage from prolonged energization due to malfunction of the transistor contactor. Malfunction shall cause the chiller unit to shut down and the "starter circuit fault" indicator be displayed.
- 10. A permanent nameplate shall be provided and mounted on the starter panel. It shall identify the manufacturer, serial or model number identifying the date of manufacturing and component replacement parts, and all current and voltage rating, and as built wiring schematic showing all items provided.
- 11. Non-fused main power disconnect switch.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation.

3.2 EQUIPMENT INSTALLATION

- A. Install chiller on concrete base with isolation pads or vibration isolators.
 - Concrete base is specified in Section 03 30 00, CAST-IN-PLACE CONCRETE
 - Vibration isolator types and installation requirements are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
 - 3. Anchor chiller to concrete base according to manufacturer's written instructions and for seismic restraint on vibration isolators.
 - 4. Charge the chiller with refrigerant, if not factory charged.
 - 5. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements.
 - 6. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc.
- D. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings.
- E. Piping Connections:
 - Make piping connections to the chiller for chilled water, condenser water, and other connections as necessary for proper operation and maintenance of the equipment.
 - 2. Make equipment connections with flanges for easy removal and replacement of equipment from the equipment room.
 - 3. Extend vent piping from the relief valve to the outside.

3.3 STARTUP AND TESTING

- A. Engage manufacturer's factory-trained representative to perform startup and testing service.
- B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections.
- C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the VA that the equipment operate and perform as intended.
 - 1. Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak.
 - 3. Verify proper motor rotation.

- 4. Verify pumps associated with chillers are installed and operational.
- 5. Verify thermometers and gages are installed.
- 6. Verify purge system, if installed, is functional and relief piping is routed outdoor.
- 7. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance.
- 8. Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller.
- 9. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment.
- 10. Prepare a written report outlining the results of tests and inspections, and submit it to the VA.
- D. Engage manufacturer's certified factory trained representative to provide training for 16 hours for the VA maintenance and operational personnel to adjust, operate and maintain equipment, including selfcontained breathing apparatus.

- - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction

and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COTR a minimum of 15 working days prior to the manufacturer's performing the factory tests.
 - Four copies of certified test reports shall be furnished to the COTR two weeks prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When materials and equipment fail factory tests, and re-testing and re-inspection is required, the Contractor shall be liable for all additional expenses for the Government to witness re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall

include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COTR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.

- 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the COTR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COTR.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the COTR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall

be legible and clearly identify specific materials and equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.

- b. A control sequence describing start-up, operation, and shutdown.
- c. Description of the function of each principal item of equipment.
- d. Installation instructions.
- e. Safety precautions for operation and maintenance.
- f. Diagrams and illustrations.
- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COTR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COTR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical

Insulating Tape

D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials

D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

C. National Electrical Manufacturers Association (NEMA):

WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

44-10..... Thermoset-Insulated Wires and Cables

83-08..... Thermoplastic-Insulated Wires and Cables

467-07.....Grounding and Bonding Equipment

486A-486B-03.....Wire Connectors

486C-04.....Splicing Wire Connectors

486D-05.....Sealed Wire Connector Systems

486E-09..... Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-04.....Conduit, Tubing, and Cable Fittings

SPEC WRITER NOTE: Delete between // ----// if not applicable to project. Also delete any other item or paragraph not applicable to the section and renumber the paragraphs.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

SPEC WRITER NOTE: Delete the paragraph below if these cables types are not required. These cables types are used only for temporary installation of normal power.

E. Color Code:

- 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V				
Black	A	Brown				
Red	В	Orange				
Blue	С	Yellow				
White	Neutral	Gray *				
* or white with colored (other than green) tracer.						

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COTR.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.

- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the //Resident Engineer// //COTR//.
 - 3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07.....Standard Specification for Hard-Drawn Copper Wire

- B3-07.....Standard Specification for Soft or Annealed Copper Wire
- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-83..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials

of a Ground System Part 1: Normal Measurements

- D. National Fire Protection Association (NFPA):
 - 70-11.....National Electrical Code (NEC)

70E-12.....National Electrical Safety Code

- 99-12.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):

467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2.

2.2 GROUND CONNECTIONS

- A. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.

- B. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

3.3 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- E. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.4 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.5 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the COTR prior to backfilling. The Contractor shall notify the COTR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- B. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- C. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Conduits bracing.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:

- 1) Raceway types and sizes.
- 2) Conduit bodies, connectors and fittings.
- 3) Junction and pull boxes, types and sizes.
- Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-11..... Surface Metal Raceway and Fittings 6-07..... Electrical Rigid Metal Conduit - Steel 50-95..... Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13..... Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings 514C-07...........Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006
797-07Electrical Metallic Tubing
1242-06Electrical Intermediate Metal Conduit - Steel
E. National Electrical Manufacturers Association (NEMA):
TC-2-13Electrical Polyvinyl Chloride (PVC) Tubing and
Conduit
TC-3-13PVC Fittings for Use with Rigid PVC Conduit and
Tubing
FB1-12
for Conduit, Electrical Metallic Tubing and
Cable
FB2.10-13Selection and Installation Guidelines for
Fittings for use with Non-Flexible Conduit or
Tubing (Rigid Metal Conduit, Intermediate
Metallic Conduit, and Electrical Metallic
Tubing)
FB2.20-12Selection and Installation Guidelines for
Fittings for use with Flexible Electrical
Conduit and Cable
F. American Iron and Steel Institute (AISI):
S100-2007North American Specification for the Design of

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

Cold-Formed Steel Structural Members

- B. Conduit:
 - 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
 - 5. Flexible Metal Conduit: Shall conform to UL 1.
 - 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.

C. Conduit Fittings:

- 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.

SPEC WRITER NOTE: Both compression and setscrew fittings are allowed, but one choice is to be made for a project. Fittings are to be of uniform type throughout the project.

- c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
- d. Indent-type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:

- a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
- b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

SPEC WRITER NOTE: Specify floor boxes when required by the project. Boxes shall be designed for resistance against the entrance of water and debris. Include fire rating requirements. Coordinate with other disciplines for tile, carpet, or other cover types and finishes.

- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COTR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COTR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.

26 05 33 - 6

C. Install conduit as follows:

- 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
- Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.

2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COTR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1.8
 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at

least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded

rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.6 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.7 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper bonding jumper installed.

3.8 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an

additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.9 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.

- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, indicated as the study in this section.
- B. A short-circuit and selective coordination study shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the individual device up to the utility source and the on-site generator sources.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - 2. Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 242-01.....Protection and Coordination of Industrial and Commercial Power Systems 399-97.....Industrial and Commercial Power Systems Analysis 1584a-04.....Guide for Performing Arc-Flash Hazard Calculations

1.6 STUDY REQUIREMENTS

- A. The study shall include one line diagram, short-circuit and ground fault analysis, and protective coordination plots for all overcurrent protective devices.
- B. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- C. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the

momentary and interrupting ratings of the overcurrent protective devices.

- 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- D. Coordination Curves:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
 - 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

- A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint for nonstructural components.
- B. Section 25 10 10, ADVANCED UTILITY METERING: For electricity metering installed in motor controllers.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables and terminations.
- E. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- G. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
- c. Certification from the manufacturer that representative motor controllers have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - Elementary schematic diagrams shall be provided for clarity of operation.
 - Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the

VETERANS AFFAIRS NORTHERN CALIFORNIA HEALTHCARE SYSTEM VANCHCS High Efficiency Chiller Installation 100% CD July 11, 2014 Project No. 612A4-14-006
extent referenced. Publications are referenced in the text by basic
designation only.
B. Institute of Electrical and Electronic Engineers (IEEE):
519-92 Recommended Practices and Requirements for
Harmonic Control in Electrical Power Systems
C37.90.1-02Standard Surge Withstand Capability (SWC) Tests
for Relays and Relay Systems Associated with
Electric Power Apparatus
C. International Code Council (ICC):
IBC-12International Building Code
D. National Electrical Manufacturers Association (NEMA):
ICS 1-08 Industrial Control and Systems: General
Requirements
ICS 1.1-09Safety Guidelines for the Application,
Installation and Maintenance of Solid State
Control
ICS 2-05Industrial Control and Systems Controllers,
Contactors, and Overload Relays Rated 600 Volts
ICS 4-05 Industrial Control and Systems: Terminal Blocks
ICS 6-06Industrial Control and Systems: Enclosures
ICS 7-06Industrial Control and Systems: Adjustable-
Speed Drives
ICS 7.1-06Safety Standards for Construction and Guide for
Selection, Installation, and Operation of
Adjustable-Speed Drive Systems
MG 1 Part 31Inverter Fed Polyphase Motor Standards
E. National Fire Protection Association (NFPA):
70-11National Electrical Code (NEC)
F. Underwriters Laboratories Inc. (UL):
508A-07Industrial Control Panels
508C-07Power Conversion Equipment
UL 1449-06Surge Protective Devices
PART 2 - PRODUCTS
2.1 MOTOR CONTROLLERS
A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown
on the drawings.

B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.

- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.2 below and with motor circuit protector disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
- 1. Motor Circuit Protectors:
 - a. Magnetic trip only.
 - b. Bolt-on type with a minimum interrupting rating as indicated on the drawings.
 - c. Equipped with automatic, adjustable magnetic trip. Magnetic trip shall be adjustable up to 1300% of the motor full load amperes.//
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Thermal type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.

- 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.3 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction

motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.

- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.

- e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
- f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
- g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- 8. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.

- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMArated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. In seismic areas, motor controllers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.

- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COTR before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COTR.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - c. Certification from the manufacturer that representative enclosed switches and circuit breakers have been seismically tested to International Building Code requirements. Certification shall be

based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

- 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extents referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - FU 1-07.....Low Voltage Cartridge Fuses
 - KS 1-06..... Distribution
 - Equipment Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL): 98-07.....Enclosed and Dead-Front Switches 248-00....Low Voltage Fuses

Project No. 612A4-14-006

489-09..... Molded Case Circuit Breakers and Circuit

Breaker Enclosure

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: Class RK1, Class RK5, time delay.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.

- B. In seismic areas, enclosed switches and circuit breakers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COTR.

---END---

SECTION 26 36 23 AUTOMATIC TRANSFER SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of open-transition automatic transfer switches with bypass isolation, indicated as automatic transfer switches or ATS in this section.
- B. The new automatic transfer switch will be installed on an existing concrete equipment pad, replacing an existing automatic transfer switch demolished under this contract. Take all measurements and furnish equipment as required to fit into the vacated space on the existing equipment pad.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirement for seismic restraint for nonstructural components.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personal safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. QUALITY ASSURANCE
 Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section
 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification. C. Automatic transfer switch, bypass/isolation switch, and annunciation control panels shall be products of the same manufacturer.

1.4 FACTORY TESTS

- A. Automatic transfer switches shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted per UL standards. Factory tests shall be certified, and shall include the following tests:
 - 1. Visual inspection to verify that each ATS is as specified.
 - 2. Mechanical test to verify that ATS sections are free of mechanical hindrances.
 - Insulation resistance test to ensure electrical integrity and continuity of entire system.
 - 4. Main switch contact resistance test.
 - 5. Electrical tests to verify complete system electrical operation.
- B. Furnish four (4) copies of certified manufacturer's factory test reports to the COTR prior to shipment of the ATS to ensure that the ATS has been successfully tested as specified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include voltage rating, continuous current rating, number of phases, withstand and closing rating, dimensions, weights, mounting details, conduit entry provisions, front view, side view, equipment and device arrangement, elementary and interconnection wiring diagrams, factory relay settings, and accessories.
 - c. For automatic transfer switches that are networked together to a common means of annunciation and/or control, submit interconnection diagrams as well as site and building plans, showing connections for normal and emergency sources of power, load, control and annunciation components, and interconnecting communications paths. Equipment locations on the diagrams and plans shall match the site, building, and room designations on the drawings.

- d. Complete nameplate data, including manufacturer's name and catalog number.
- e. A copy of the markings that are to appear on the automatic transfer switches when installed.
- f. Certification from the manufacturer that representative ATS have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the automatic transfer switches.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - 3) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
 - Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
 - The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
- 3. Certifications:
 - a. When submitting the shop drawings, submit a certified test report from a recognized independent testing laboratory that a representative sample has passed UL 1008 prototype testing.
 - b. Two weeks prior to final inspection, submit the following.

- 1) Certification by the manufacturer that the ATS conform to the requirements of the drawings and specifications.
- 2) Certification by the Contractor that transfer switches have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE):
 - 446-95.....Emergency and Standby Power Systems for Industrial and Commercial ApplicationsC37.90.1-02 Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
 - C62.41.1-02.....Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits
 - C62.41.2-02.....Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits
- C. International Code Council (ICC):

IBC-12.....International Building Code

- D. National Electrical Manufacturers Association (NEMA):
 - 250-08..........Enclosures for Electrical Equipment (1000 Volts Maximum)

ICS 6-06.....Enclosures

ICS 4-10..... Application Guideline for Terminal Blocks

MG 1-11.....Motors and Generators

E. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

99-12.....Health Care Facilities

110-10..... Emergency and Standby Power Systems

F. Underwriters Laboratories, Inc. (UL):

50-95..... Enclosures for Electrical Equipment

- 508-99..... Industrial Control Equipment
- 891-07.....Switchboards

1008-07.....Transfer Switch Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Automatic transfer switches shall comply with UL, NEMA, NEC, ANSI, IEEE, and NFPA, and have the following features:
 - Automatic transfer switches shall be open transition switches, 4pole, draw-out construction, electrically operated, mechanically held open contact type, without integral overcurrent protection. Automatic transfer switches utilizing automatic or non-automatic molded case circuit breakers, insulated case circuit breakers, or power circuit breakers as switching mechanisms are not acceptable.
 - 2. Automatic transfer switches shall be completely factory-assembled and wired such that only external circuit connections are required in the field.
 - 3. Each automatic transfer switch shall be equipped with an integral bypass/isolation switch.
 - 4. Ratings:
 - a. Phases, voltage, continuous current, poles, and withstand and closing ratings shall be as shown on the drawings.
 - b. Transfer switches are to be rated for continuous duty at specified continuous current rating on 60Hz systems.
 - c. Maximum automatic transfer switch rating: 800 A.
 - 5. Markings:
 - a. Markings shall be in accordance with UL 1008.
 - 6. Tests:
 - a. Automatic transfer switches shall be tested in accordance with UL 1008. The contacts of the transfer switch shall not weld during the performance of withstand and closing tests when used with the upstream overcurrent device and available fault current specified.
 - 7. Surge Withstand Test:
 - a. Automatic transfer switches utilizing solid-state devices in sensing, relaying, operating, or communication equipment or circuits shall comply with IEEE C37.90.1.
 - 8. Housing:
 - a. Enclose automatic transfer switches in wall- or floor-mounted steel cabinets, with metal gauge not less than No. 14, in accordance with UL 508, or in a switchboard assembly in accordance with UL 891, as shown on the drawings.

- b. Enclosure shall be constructed so that personnel are protected from energized bypass-isolation components during automatic transfer switch maintenance.
- c. Automatic transfer switch components shall be removable without disconnecting external source or load power conductors.
- d. Finish: Cabinets shall be given a phosphate treatment, painted with rust-inhibiting primer, and finish-painted with the manufacturer's standard enamel or lacquer finish.
- e. Viewing Ports: Provide viewing ports so that contacts may be inspected without disassembly.
- 9. Operating Mechanism:
 - a. Actuated by an electrical operator.
 - b. Electrically and mechanically interlocked so that the main contact cannot be closed simultaneously in either normal or emergency position.
 - c. Normal and emergency main contacts shall be mechanically locked in position by the operating linkage upon completion of transfer. Release of the locking mechanism shall be possible only by normal operating action.
 - d. Contact transfer time shall not exceed six cycles.
 - e. Operating mechanism components and mechanical interlocks shall be insulated or grounded.
- 10. Contacts:
 - a. Main contacts: Silver alloy.
 - b. Neutral contacts: Silver alloy, with same current rating as phase contacts.
 - c. Current carrying capacity of arcing contacts shall not be used in the determination of the automatic transfer switch rating, and shall be separate from the main contacts.
 - d. Main and arcing contacts shall be visible for inspection with cabinet door open and barrier covers removed.
- 11. Manual Operator:
 - a. Capable of operation by one person in either direction under no load.
- 12. Replaceable Parts:
 - a. Include the main and arcing contacts individually or as units, as well as relays, and control devices.

- b. Automatic transfer switch contacts and accessories shall be replaceable from the front without removing the switch from the cabinet and without removing main conductors.
- 13. Sensing Features:
 - a. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100% of nominal, and dropout voltage is adjustable from 75 to 98% of pickup value. Factory set for pickup at 90% and dropout at 85%.
 - b. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 - c. Voltage/Frequency Lockout Relay: Prevent premature transfer to the engine-generator. Pickup voltage shall be adjustable from 85 to 100% of nominal. Factory set for pickup at 90%. Pickup frequency shall be adjustable from 90 to 100% of nominal. Factory set for pickup at 95%.
 - d. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - e. Test Switch: Simulate normal-source failure.
 - f. Switch-Position Indication: Indicate source to which load is connected.
 - g. Source-Available Indication: Supervise sources via transfer switch normal- and emergency-source sensing circuits.
 - h. Normal Power Indication: Indicate "Normal Source Available."
 - i. Emergency Power Indication: Indicate "Emergency Source Available."
 - j. Transfer Override Control: Overrides automatic retransfer control so that automatic transfer switch shall remain connected to emergency power source regardless of condition of normal source. Control panel shall indicate override status.
 - k. Engine Starting Contacts: One isolated and normally closed and one isolated and normally open; rated 5 A at 30 V DC minimum.
 - Engine Shutdown Contacts: Time delay adjustable from zero to 15 minutes, and factory set for 5 minutes. Contacts shall initiate

shutdown at remote engine-generator controls after retransfer of load to normal source.

- 14. Controls:
 - a. Controls shall provide indication of switch status and be equipped with alarm diagnostics.
 - b. Controls shall control operation of the automatic transfer switches.
- 15. Factory Wiring: Train and bundle factory wiring and label either by color-code or by numbered/lettered wire markers. Labels shall match those on the shop drawings.
- 16. Annunciation, Control, and Programming Interface Components: Devices for communicating with remote programming devices, annunciators, or control panels and paralleling switchgear shall have open-protocol communication capability matched with remote device.

2.2 SEQUENCE OF OPERATION

- A. The specified voltage decrease in one or more phases of the normal power source shall initiate the transfer sequence. The automatic transfer switch shall start the engine-generator(s) after a specified time delay to permit override of momentary dips in the normal power source.
- B. The automatic transfer switch shall transfer the load from normal to emergency source when the frequency and voltage of the enginegenerator(s) have attained the specified percent of rated value.
- C. Engine Start: A voltage decrease, at any automatic transfer switch, in one or more phases of the normal power source to less than the specified value of normal shall start the engine-generator(s) after a specified time delay.
- D. Transfer to Emergency System Loads: Automatic transfer switches for Emergency System loads shall transfer their loads from normal to emergency source when frequency and voltage of the engine-generator(s) have attained the specified percent of rated value. Only those switches with deficient normal source voltage shall transfer.
- E. Transfer to Equipment Branch Loads: Automatic transfer switches for Equipment Branch loads shall transfer their loads to the enginegenerator on a time-delayed, staggered basis, after the Emergency System switches have transferred. Only those switches with deficient normal source voltage shall transfer.

F. Retransfer to Normal (All Loads): Automatic transfer switches shall retransfer the load from emergency to normal source upon restoration of normal supply in all phases to the specified percent or more of normal voltage, and after a specified time delay. Should the emergency source fail during this time, the automatic transfer switches shall immediately transfer to the normal source whenever it becomes available. After restoring to normal source, the engine-generator(s) shall continue to run unloaded for a specified interval before shutdown.

2.3 BYPASS-ISOLATION SWITCH

- A. Provide each automatic transfer switch with two-way bypass-isolation manual type switch. The bypass-isolation switch shall permit load bypass to either normal or emergency power source and complete isolation of the automatic transfer switch, independent of transfer switch position. Bypass and isolation shall be possible under all conditions including when the automatic transfer switch is removed from service.
- B. Operation: The bypass-isolation switch shall have provisions for operation by one person through the movement of a maximum of two handles at a common dead front panel in no more than 15 seconds. Provide a lock, which must energize to unlock the bypass switch, to prevent bypassing to a dead source. Provide means to prevent simultaneous connection between normal and emergency sources.
 - Bypass to normal (or emergency): Operation of bypass handle shall allow direct connection of the load to the normal (or emergency) source, without load interruption or by using a break-before-make design, or provide separate load interrupter contacts to momentarily interrupt the load.
 - a. Ensure continuity of auxiliary circuits necessary for proper operation of the system.
 - b. A red indicating lamp shall light when the automatic transfer switch is bypassed.
 - c. Bypassing source to source: If the power source is lost while in the bypass position, bypass to the alternate source shall be achievable without re-energization of the automatic transfer switch service and load connections.
 - Isolation: Operation of the isolating handle shall isolate all live power conductors to the automatic transfer switch without interruption of the load.

- a. Interlocking: Provide interlocking as part of the bypassisolation switch to eliminate personnel-controlled sequence of operation, and to prevent operation to the isolation position until the bypass function has been completed.
- b. Padlocking: Include provisions to padlock the isolating handle in the isolated position.
- c. Visual verification: The isolation blades shall be visible in the isolated position.
- 3. Testing: It shall be possible to test (normal electrical operation) the automatic transfer switch and engine-generator(s) with the isolation contacts closed and the load bypassed without interruption of power to the load.
- C. Ratings: The electrical capabilities and ratings of the bypassisolation switch shall be compatible with those of the associated automatic transfer switch, including any required additional withstand tests.

2.4 REMOTE ANNUNCIATOR SYSTEM

- A. Remote annunciator panel shall annunciate conditions for indicated automatic transfer switches. Annunciation shall include the following:
 - 1. Sources available, as defined by actual pickup and dropout settings of automatic transfer switch controls.
 - 2. Switch position.
 - 3. Switch in test mode.
 - 4. Failure of communication link.
- B. Remote annunciator panel shall be visual and audible type with LED display panel, audible signal, and silencing switch.
 - Panel shall indicate each automatic transfer switch monitored, the location of automatic transfer switch, and the identity of load it serves.
 - Mounting: Steel cabinet, flush or surface mounted, as shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install automatic transfer switches in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Anchor automatic transfer switches with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.

100% CD July 11, 2014

- C. In seismic areas, automatic transfer switches shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Mount automatic transfer switches on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the automatic transfer switch manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the COTR. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted and tested in accordance with the manufacturer's recommendations.
- B. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Confirm correct application of manufacturer's recommended lubricants.
 - d. Verify appropriate anchorage, required area clearances, and correct alignment.
 - e. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
 - f. Verify grounding connections.
 - g. Verify ratings of sensors.
 - h. Vacuum-clean enclosure interior. Clean enclosure exterior.

- i. Exercise all active components.
- j. Verify that manual transfer warning signs are properly placed.
- k. Verify the correct operation of all sensing devices, alarms, and indicating devices.
- 2. Electrical tests:
 - a. Perform insulation-resistance tests.
 - b. After energizing circuits, demonstrate the interlocking sequence and operational function for each automatic transfer switch at least three times.
 - 1) Test bypass-isolation unit functional modes and related automatic transfer switch operations.
 - Power failure of normal source shall be simulated by opening upstream protective device. This test shall be performed a minimum of five times.
 - 3) Power failure of emergency source with normal source available shall be simulated by opening upstream protective device for emergency source. This test shall be performed a minimum of five times.
 - 4) Low phase-to-ground voltage shall be simulated for each phase of normal source.
 - 5) Operation and settings shall be verified for specified automatic transfer switch operational feature, such as override time delay, transfer time delay, return time delay, engine shutdown time delay, exerciser, auxiliary contacts, and supplemental features.
 - Verify pickup and dropout voltages by data readout or inspection of control settings.
 - Verify that bypass and isolation functions perform correctly, including the physical removal of the automatic transfer switch while in bypass mode.
 - c. When any defects are detected, correct the defects and repeat the tests as requested by the COTR at no additional cost to the Government.

3.3 FIELD SETTINGS VERIFICATION

A. The automatic transfer switch settings shall be verified in the field by an authorized representative of the manufacturer.

3.4 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the automatic transfer switches are in good operating condition and properly performing the intended function.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the automatic transfer switches, on the dates requested by the COTR.

---END---

Hilliard ARCHITECTS

HilliardArchitects.com

415 989-6400

251 Post Street, Suite 620 San Francisco, CA 94108