SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping and equipment.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
- 8. Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. CHS: Chilled water supply.
- CHR: Chilled water return.
- 15. CWS: Condenser water supply.
- 16. CWR: Condenser water return.

17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT
- D. Section 23 21 23, HYDRONIC PUMPS
- E. Section 23 64 00, PACKAGED WATER CHILLERS: Compressor, evaporator and piping.
- F. Section 23 21 13, HYDRONIC PIPING: Chilled water piping.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - 4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
 - 4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See4.2.4.2)
 - 4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
 - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
 - (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
 - 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

- 4.3.3.3.1 In no case shall the test temperature be below 121 °C (250 °F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2)- 99	Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and
	Poly (Vinyl Chloride - Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):

MIL-A-3316C (2)-90	Adhesives, Fire-Resistant, Thermal Insulation
MIL-A-24179A (1)-87	Adhesive, Flexible Unicellular-Plastic
	Thermal Insulation
MIL-C-19565C (1)-88	Coating Compounds, Thermal Insulation, Fire-and Water-
	Resistant, Vapor-Barrier
MIL-C-20079H-87	Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-
	Reinforced Glass
American Society for Testing an	d Materials (ASTM):

D. American Society for Testing and Materials (ASTM):

A167-99(2004) Standard Specification for Stainless and Heat-Resisting				
	Chromium-Nickel Steel Plate, Sheet, and Strip			
B209-07	. Standard Specification for Aluminum and Aluminum-Alloy Sheet			
	and Plate			

E.

C411-05	Standard test method for Hot-Surface Performance of
	High-Temperature Thermal Insulation
C449-07	Standard Specification for Mineral Fiber Hydraulic-Setting
	Thermal Insulating and Finishing Cement
C533-09	Standard Specification for Calcium Silicate Block and Pipe
	Thermal Insulation
C534-08	Standard Specification for Preformed Flexible Elastomeric
	Cellular Thermal Insulation in Sheet and Tubular Form
C547-07	Standard Specification for Mineral Fiber pipe Insulation
C552-07	Standard Specification for Cellular Glass Thermal Insulation
C553-08	Standard Specification for Mineral Fiber Blanket Thermal
	Insulation for Commercial and Industrial Applications
C585-09	Standard Practice for Inner and Outer Diameters of Rigid
	Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS
	System) R (1998)
C612-10	Standard Specification for Mineral Fiber Block and Board
	Thermal Insulation
C1126-04	Standard Specification for Faced or Unfaced Rigid Cellular
	Phenolic Thermal Insulation
C1136-10	Standard Specification for Flexible, Low Permeance Vapor
	Retarders for Thermal Insulation
D1668-97a (2006)	Standard Specification for Glass Fabrics (Woven and Treated)
	for Roofing and Waterproofing
E84-10	Standard Test Method for Surface Burning Characteristics of
	Building
	Materials
E119-09c	Standard Test Method for Fire Tests of Building Construction
	and Materials
E136-09b	Standard Test Methods for Behavior of Materials in a Vertical
	Tube Furnace at 750 degrees C (1380 F)
National Fire Protection Assoc	iation (NFPA):
90A-09	Standard for the Installation of Air Conditioning and Ventilating
	Systems
96-08	Standards for Ventilation Control and Fire Protection of
	Commercial Cooking Operations
101-09	
	·

	251-06	. Standard methods of Tests of Fire Endurance of Building			
		Construction Materials			
	255-06	. Standard Method of tests of Surface Burning Characteristics of			
		Building Materials			
F.	F. Underwriters Laboratories, Inc (UL):				
	723	. UL Standard for Safety Test for Surface Burning Characteristics			
		of Building Materials with Revision of 09/08			
G.	Manufacturer's Standardization	Society of the Valve and Fitting Industry (MSS):			
	SP58-2009	. Pipe Hangers and Supports Materials, Design, and Manufacture			

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBERGLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.4 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.

- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- D. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-535, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.5 REMOVABLE INSULATION JACKETS

- A. Removable insulation jackets shall be provided for all valves, control valves, and other chilled water equipment that is not insulated due to maintenance accessibility concerns.
- B. Insulation and Jacket:
 - 1. Jacket Material: Silicon impregnated fiberglass composite.
 - 2. Core blanket shall meet ASTM C 1086-88.
 - 3. Construction: Insulating blanket with permanent Velcro straps shall be used. The removable jacket shall reduce a 350 F pipe down to 93 F (ambient 76 F) and a 180 F pipe to 79 F (ambient 72 F), but in no case shall the insulation thickness be less than 3" of ET insulation. One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket.
 - 4. For large equipment, no piece shall weigh over 40 lbs. All large tanks shall come in at least two interlocking pieces. The blanket shall be custom designed for the piece of equipment being used.

2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass insulation of the same thickness as adjacent insulation.

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
Up through 125 (5)	150 (6) long			
150 (6)	150 (6) long			
200 (8), 250 (10), 300 (12)	225 (9) long			
350 (14), 400 (16)	300 (12) long			
450 through 600 (18 through 24)	350 (14) long			

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation.

2.7 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.8 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.9 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F), provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.10 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.11 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 QUALITY ASSURANCE.

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the COR prior to application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, and piping (pipe, fittings, valves, accessories) systems. Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- H. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- I. Firestop Pipe insulation:

- 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
- 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- c. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
 - a. Chilled water pumps, water filter, chemical feeder pot or tank.

B. Flexible Mineral Fiber Blanket:

- 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
- C. Molded Mineral Fiber Pipe and Tubing Covering:

- Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic..
- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

D. Rigid Cellular Phenolic Foam:

- 1. Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
- 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.001 perms.
- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet.

E. Flexible Elastomeric Cellular Thermal Insulation:

 Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.

- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Chilled water pumps
- Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch)
 thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.001
 perms.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal Pipe Size Millimeters (Inches)			
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 – 32 (1 – 11/4)	38 – 75 (1½ - 3)	100 (4) and Above
4-16 degrees C (40-60 degrees F) (CHS, CHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

HVAC AND BOILER PLANT INSULATION 05-11

4-16 degrees C	Mineral Fiber	25 (1)	25 (1)	25 (1)	38 (1.5)
(40-60 degrees F)					
(CHS, CHR)					
4-16 degrees C	Flexible	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Elastomeric Cellular Thermal				
(CHS, CHR)	Condia Thomas				

---END---