

Replace Condensate Piping System and Upgrade Pumping Capacity Malcom Randall VA Medical Center, Gainesville, FL

Contract VA248-13-C-0124, Project 573-13-602

SPECIFICATIONS Final Design Submittal

Prepared for Dept. of Veterans Affairs 1601 SW Archer Rd. Gainesville, FL 32608

Prepared by AKEA Inc. 25105 W. Newberry Rd. Newberry, FL 32669

February 28, 2014

TABLE OF CONTENTSSection 00 01 10

DIVISION 00 - SPECIAL SECTIONS

00 01 15 List of Drawing Sheets

DIVISION 01 - GENERAL REQUIREMENTS

- 01 00 00 General Requirements
- 01 33 23 Shop Drawings, Product Data, and Samples
- 01 35 26 Safety Requirements
- 01 42 19 Reference Standards
- 01 91 00 General Commissioning Requirements

DIVISION 02 - EXISTING CONDITIONS

- 02 41 00 Demolition
- 02 82 13.13 Glovebag Asbestos Abatement

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

- 23 05 11 Common Work Results for HVAC
- 23 05 93 Testing, Adjusting, and Balancing for HVAC
- 23 07 11 HVAC and Boiler Plant Insulation
- 23 08 00 Commissioning of HVAC Systems
- 23 21 11 Boiler Plant Piping Systems
- 23 22 13 Steam and Condensate Heating Piping
- 23 22 23 Steam Condensate Pumps
- 23 50 11 Boiler Plant Mechanical Equipment

- - - END - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.	Title	<u>Sheet No.</u> (of 33)
	GENERAL	
G001	TITLE PAGE, LOCATION MAP AND DRAWING INDEX	1
G002	NOTES AND PROJECT INSTRUCTIONS	2
	ASBESTOS	
HA-1	MAIN - PIPE BASEMENT OVERALL PLAN - ASBESTOS	3
HA-2	MAIN - C078A-1 - BOILER ROOM AND MAIN AC-2 ROOM PLANS - ASBESTOS	4
HA-3	MAIN - C078-1 - A/C EQUIPMENT AND CONTROL ROOM PLAN - ASBESTOS	5
HA-4	E WING - PIPE BASEMENT OVERALL PLAN - ASBESTOS	6
	MECHANICAL	
M001	BASEMENT-LEVEL WORK AREA KEY PLAN	7
M002	LEGENDS AND ABBREVIATIONS	8
M003	GENERAL NOTES AND CONSTRUCTION SEQUENCE	9
M101	MAIN - PIPE BASEMENT OVERALL PLAN	10
M102	MAIN A - PIPE BASEMENT PLAN - DEMOLITION	11
M103	MAIN B - PIPE BASEMENT PLAN - DEMOLITION	12
M104	MAIN C - PIPE BASEMENT PLAN - DEMOLITION	13
M105	MAIN D - PIPE BASEMENT PLAN - DEMOLITION	14
M106	MAIN - C078A-1 - BOILER ROOM PLAN - DEMOLITION	15
M107	MAIN - C078-1 - A/C EQUIPMENT AND CONTROL ROOM PLAN - DEMOLITION	16
M108	MAIN - AC-2 ROOM PLAN - DEMOLITION	17
M112	E WING - EBO60-1 - MECHANICAL ROOM PLAN - DEMOLITION	18
M201	MAIN PIPE BASEMENT OVERALL - NEW PLAN	19
M202	MAIN A - PIPE BASEMENT PLAN - NEW WORK	20
M203	MAIN B - PIPE BASEMENT PLAN - NEW WORK	21
M204	MAIN C - PIPE BASEMENT PLAN - NEW WORK	22
M205	MAIN D - PIPE BASEMENT PLAN - NEW WORK	23
M206	MAIN - C078A-1 BOILER ROOM PLAN - NEW WORK	24
M207	MAIN - CO78-1 - A/C EQUIPMENT AND CONTROL ROOM PLAN - NEW WORK	25
M208	MAIN - AC-2 ROOM PLAN - NEW WORK	26
M212	E WING - EB60-1 MECHANICAL ROOM PLAN - NEW WORK	27
M300	CONDENSATE PUMPING SYSTEM DIAGRAM	28
M400	DETAILS	29
M401	DETAILS	30

Replace Condensate Piping System and Upgrade Pumping Capacity VA Medical Center, Gainesville, FL

Drawing No.	Title	Sheet No. (of 33)
M402	DETAILS	31
M500	SCHEDULES	32
M501	SCHEDULES	33

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1	GENERAL INTENTION	1
1.2	STATEMENT OF BID ITEM(S)	2
1.3	SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	3
1.4	CONSTRUCTION SECURITY REQUIREMENTS	4
1.5	FIRE SAFETY	6
1.6	OPERATIONS AND STORAGE AREAS	9
1.7	DISPOSAL AND RETENTION	13
1.8	RESTORATION	13
1.9	PHYSICAL DATA	14
1.10) LAYOUT OF WORK	14
1.11	l AS-BUILT DRAWINGS	15
1.12	2 USE OF ROADWAYS	15
1.13	3 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	15
1.14	4 TEMPORARY TOILETS	16
1.15	5 AVAILABILITY AND USE OF UTILITY SERVICES	16
1.10	5 TESTS	17
1.17	7 INSTRUCTIONS	18
1.18	3 SAFETY SIGN	19

Replace Condensate Piping System and Upgrade Pumping Capacity

VA Medical Center, Gainesville, FL

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for <u>"REPLACE</u> <u>CONDENSATE PIPING SYSTEM AND UPGRADE PUMPING CAPACITY"</u> as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer
- C. Offices of <u>AKEA, Inc</u>, as Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the Contracting Officer's Representative (COR) in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the COR.
- E. Pipe basement work area height clearance from structure varies from approximately 5'-6" to 6'-0" with pipes, conduits and systems located within that space.
- F. Contractor and subcontractor work area access shall be as defined and approved by the COR.
- G. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission

 $01 \ 00 \ 00 \ - \ 1$

of the VA police, be identified by project and employer, and restricted from unauthorized access.

- H. Prior to commencing work, general contractor shall provide proof that an OSHA designated "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.
- I. Training:
- 1. All employees of general contractor or subcontractors shall have the 10-hour and one from each subcontractor shall have 30-hour (mandatory for Site Superintendent) OSHA Construction Safety course and other relevant competency training, as determined by COR and the Construction Safety Officer with input from the facility Construction Safety Committee. The site superintendent shall be an experienced and qualified specialist in industrial and institutional steam and condensate systems with at least 5 years construction experience and has successfully completed three condensate construction projects of equal or greater value.
- 2. Submit training records of all such employees for approval before the start of work.
- J. VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section

1.2 STATEMENT OF BID ITEM(S)

A. ITEM I: (BASE BID ITEM(S) Furnish all labor, materials, equipment and supervision necessary to replace condensate piping and upgrade pumping capacity for the Main Building No. 1, Main – C078A Boiler Room, Main C078 -1 – AC Equipment and Control Room, Main AC-2 Room. Work shall include replacing existing condensate pumping and flash tank systems with steam driven condensate pumps and flash tank assemblies, CP-1 (AC-2 Room), CP-6 (C078A-1 – Boiler room), and CP-7 (C078-1 – AC Equipment and Control Room). Provide new condensate pump and flash tank system CP-2 (Main

01 00 00 - 2

Building No. 1 Pipe Basement). Provide new steam driven condensate pumper trap ST-1 (E-wing - EB060 -1 Mechanical Room). Provide all mechanical and associated installation piping and components as shown on the contract documents with all necessary removal of existing systems and installation of new systems and associated work required by the drawings and specifications.

Completion Time: 360 Calendar Days.

- DEDUCTIVE ALTERNATE NO.I: Includes all work in Bid Item I, except Deduct new condensate pumping and piping CP-7 for "MAIN
 - C078-1 - AC EQUIPMENT AND CONTROL ROOM", and new piping for
 the Community Living Center (CLC) and Animal Clinic.
 Completion Time: 300 Calendar Days.
- 2. DEDUCTIVE ALTERNATE NO. II: Includes all work in Bid Item I, except Deduct new condensate pumping and piping CP-7 for "MAIN - C078-1 - AC EQUIPMENT AND CONTROL ROOM", and Deduct new piping for the Community Living Center (CLC) and Animal Clinic, and Deduct new condensate pumping and piping CP-6 for "MAIN - C078A - BOILER ROOM PLAN". Completion Time: 240 Calendar Days.
- 2. AKEA, Inc. cannot and does not warrant, guarantee or represent that proposals, bids or actual costs will not vary from a statement of probable construction cost. Furthermore, current market conditions are subject to change at any time and the actual construction costs may vary from the applied factors. This estimate has been provided for Government Internal Use Only.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. AFTER AWARD OF CONTRACT, 3 sets of specifications and drawings will be furnished.

B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from reproducible sepia prints furnished by Issuing Office. Such sepia prints shall be returned to the Issuing Office immediately after printing is completed.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - The General Contractor is responsible for assuring that all sub-contractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days' notice to the Contracting Officer so that security can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
 - 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
 - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.

- D. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the COR for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - 2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation.
- E. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
 - These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
 - 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.

- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - 1. American Society for Testing and Materials (ASTM):

E84-2009 Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

10-2010Standard for Portable Fire Extinguishers
30-2008Flammable and Combustible Liquids Code
51B-2009Standard for Fire Prevention During
Welding, Cutting and Other Hot Work
70-2011National Electrical Code
241-2009Standard for Safeguarding Construction,
Alteration, and Demolition Operations

3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926 Safety and Health Regulations for Construction

- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Documentation shall be provided to the COR that individuals have undergone contractor's safety briefing.
- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.

- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions shall be provided weekly to COR.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm system
- K. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with COR.
- L. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- M. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to COR.

01 00 00 - 8

- N. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- O. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily. All dumpsters shall have metal covers, tarps are not acceptable.
- P. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.
- Q. If required, submit documentation to the COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as

01 00 00 - 9

authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as determined by the COR.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.

- 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- G. Phasing: To insure such executions, Contractor shall furnish the COR with a schedule of approximate phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, COR and Contractor, as shown on drawings.
- H. Building (s) will not be vacated by Government.
 - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel through construction areas which serve as routes of access to such affected areas and equipment. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.
- I. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing steam, and condensate pipes, etc. of utility services, they shall be cut, valved and capped at suitable places where shown; or, in absence of such indication, where directed by COR.

01 00 00 - 11

- 1. No utility service such as steam and condensate pipe systems may be interrupted without prior approval of COR.
- Contractor shall submit a request to interrupt any such services to COR, in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- J. Abandoned Lines: All service lines pipes and the like, and their hangers or supports shall be completely removed
- K. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- L. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

- The Contractor is required to discontinue his work sufficiently in advance of Easter Sunday, Mother's Day, Father's Day, Memorial Day, Veteran's Day and/or Federal holidays, to permit him to clean up all areas of operation adjacent to existing burial plots before these dates.
- Clean-up shall include the removal of all equipment, tools, materials and debris and leaving the areas in a clean, neat condition.

1.7 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition, shall be disposed of as follows:
 - 1. Existing demolished condensate pumps are to remain property of the Government Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.

1.8 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired,

reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.

- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.9 PHYSICAL DATA

- A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.
 - The indications of physical conditions on the drawings and in the specifications are the result of site investigations by AKEA, Inc.

(FAR 52.236-4)

1.10 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the

01 00 00 - 14

Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

1.11 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.12 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR.

1.13 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

A. Use of new installed mechanical and electrical equipment to provide light and power will be permitted subject to compliance with the following provisions:

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by COR on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract

price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals shall be bound in three (3) binders by discipline (all HVAC in one book, all plumbing in another book, etc.). Bound submittals shall be separated by spec section, in numerical order, with separator tabs for each section. To expedite the process, the contractor may submit the complete binder (with all sections tabbed) with the first submittal prepared by the contractor, and then the contractor may submit other sections as they are subsequently prepared. Submittals for mechanical controls shall be in a separate submittal binder, and shall include the alarms, interlocks, set points and sequence of operations, and include all wiring diagrams, etc. All submittals are due thirty (30) days after Notice to Proceed. Resubmittals are due fourteen (14) days after Contractor receives comments. Submittals received without a binder will not be reviewed. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.

- 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
- Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- B. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.
 - Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
 - Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
 - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
 - Contractor shall send a copy of transmittal letter to both COR and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory.
 - 5. Laboratory test reports shall be sent directly to COR for appropriate action.
 - Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report.
 - Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.
- C. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other

previously specified information required on label and in transmittal letter.

- D. Approved samples will be kept on file by the COR at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- E. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center, location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
 - 8. Submittals shall be bound in three (3) ring binders by discipline (HVAC in one book, plumbing etc., separate binders). Bound submittals shall be separated by spec section, in numerical order, with separate tabs for each section. To expedite the process, the contractor may submit the complete binder (with all sections tabbed)

with the first by the contractor, and then the contractor may submit other sections as they are subsequently prepared. All submittals are due thirty (30) days after Notice to Proceed. Re-submittals are due fourteen (14) days after contractor receives comments. Submittals received without a binder will not be received.

1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

AKEA Inc.

(Architect-Engineer)

3603 NW 98th St., Suite B, Gainesville, FL 32606

(Address, City, State and Zip Code)

- 1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the COR.
- 1-12. Samples for approval shall be sent to Architect-Engineer, in care of COR, VA Medical Center,

<u>1601 SW Archer Rd., Gainesville, FL 32608-1197</u> (Address, City, State and Zip Code)

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS
1.2	DEFINITIONS4
1.3	REGULATORY REQUIREMENTS
1.4	ACCIDENT PREVENTION PLAN (APP)6
1.5	ACTIVITY HAZARD ANALYSES (AHAs)11
1.6	PRECONSTRUCTION CONFERENCE
1.7 (CP)	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON"
1.8	TRAINING14
1.9	INSPECTIONS15
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS16
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE)17
1.12	INFECTION CONTROL18
1.14	FIRE SAFETY25
1.15	ELECTRICAL
1.16	FALL PROTECTION29
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS
1.18	EXCAVATION AND TRENCHES
1.19	CRANES
1.20	CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)
1.21	CONFINED SPACE ENTRY
1.22	WELDING AND CUTTING
1.23	LADDERS

VA	Medical	Center,	Gainesville,	FL
----	---------	---------	--------------	----

1.24	FLOOR &	WALL	OPENINGS	34
------	---------	------	----------	----

Replace Condensate Piping System and Upgrade Pumping Capacity

VA Medical Center, Gainesville, FL

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning

A10.34-2012.....Protection of the Public on or Adjacent to Construction Sites

Al0.38-2013.....Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations

C. American Society for Testing and Materials (ASTM):

E84-2013.....Surface Burning Characteristics of Building Materials

D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

10-2013.....Standard for Portable Fire Extinguishers

30-2012.....Flammable and Combustible Liquids Code

- 51B-2014..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work
- 70-2014.....National Electrical Code
- 70B-2013.....Recommended Practice for Electrical Equipment Maintenance

01 35 26 -3

70E-2012Standard for Electrical Safety in the Workplace 99-2012.....Health Care Facilities Code 241-2013....Standard for Safeguarding Construction, Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification Manual

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1904Reporting and Recording Injuries & Illnesses

29 CFR 1910Safety and Health Regulations for General Industry

29 CFR 1926Safety and Health Regulations for Construction Industry

CPL 2-0.124.....Multi-Employer Citation Policy

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- B. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.

- C. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- D. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.
- E. Recordable Injuries or Illnesses. Any work-related injury or illness that results in:
 - Death, regardless of the time between the injury and death, or the length of the illness;
 - Days away from work (any time lost after day of injury/illness onset);
 - 3. Restricted work;
 - 4. Transfer to another job;
 - 5. Medical treatment beyond first aid;
 - 6. Loss of consciousness; or
 - A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (6) above.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations [____]. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer Representative.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET.** Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - Plan approver (company/corporate officers authorized to obligate the company);

- 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor;
 - 2) Contract number;
 - 3) Project name;
 - Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.

d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:

- A statement of the employer's ultimate responsibility for the implementation of his SOH program;
- Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
- Requirements that no work shall be performed unless a designated competent person is present on the job site;
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
- 6) Lines of authority;
- 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

 Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when

inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.

- Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all OSHA Recordable Incidents. The APP shall include accident/incident investigation procedure & identify person(s) responsible to provide the following to the Facility Safety Officer and Contracting Officer Representative:
 - 1) Exposure data (man-hours worked);
 - 2) Accident investigations, reports, and logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention;
 - 4) Medical Support;
 - 5) Posting of emergency telephone numbers;
 - 6) Prevention of alcohol and drug abuse;
 - 7) Site sanitation (housekeeping, drinking water, toilets);
 - 8) Night operations and lighting;
 - 9) Hazard communication program;
 - 10) Welding/Cutting "Hot" work;

- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;
- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;

27) PreCast Concrete.

- C. Submit the APP to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 [__] calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified.

E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer Representative. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public (as defined by ASSE/SAFE A10.34) and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.

- The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its

implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.

- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).

- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.

- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.

- 1. Results of the inspection will be documented with tracking of the identified hazards to abatement.
- The Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
- 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
- 4. A report of the inspection findings with status of abatement will be provided to the Contracting Officer Representative within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. Notify the Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of OSHA Recordable Injuries or Illnesses or High Visibility Accidents, property damage equal to or greater than \$5,000, or any weight handling equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Facility Safety Officer and Contracting Officer Representative determine whether a government investigation will be conducted.
- B. Conduct an accident investigation for recordable injuries and illnesses, for Medical Treatment defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162, and provide the report to the Contracting Officer Representative within 5 calendar days of the accident. The Facility Safety Officer or Contracting Officer Representative will provide copies of any required or special forms.

- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative monthly.
- D. A summation of all OSHA recordable accidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Facility Safety Officer or Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Facility Safety Officer or Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - Hard Hats unless written authorization is given by the Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - Safety glasses unless written authorization is given by the Contracting Officer Representative appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative.
 - Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Contracting Officer Representative before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Contracting Officer Representative. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class III, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:
 - 1) Notify the or Contracting Officer Representative
 - Execute work by methods to minimize raising dust from construction operations.
 - Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.

b. Upon Completion:

1) Clean work area upon completion of task

- 2) Notify the Contracting Officer Representative
- 2. Class II requirements:
 - a. During Construction Work:
 - 1) Notify the Contracting Officer Representative
 - Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
 - 3) Water mist work surfaces to control dust while cutting.
 - 4) Seal unused doors with duct tape.
 - 5) Block off and seal air vents.
 - Remove or isolate HVAC system in areas where work is being performed.
 - b. Upon Completion:
 - 1) Wipe work surfaces with cleaner/disinfectant.
 - 2) Contain construction waste before transport in tightly covered containers.
 - Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
 - 4) Upon completion, restore HVAC system where work was performed
 - 5) Notify the Contracting Officer Representative
- 3. Class III requirements:
 - a. During Construction Work:
 - 1) Obtain permit from the Contracting Officer Representative
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control

cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.

- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.
- 5) Contain construction waste before transport in tightly covered containers.
- Cover transport receptacles or carts. Tape covering unless solid lid.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative and thoroughly cleaned by the VA Environmental Services Department.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - 3) Vacuum work area with HEPA filtered vacuums.
 - 4) Wet mop area with cleaner/disinfectant.
 - 5) Upon completion, restore HVAC system where work was performed.
 - 6) Return permit to the Contracting Officer Representative

4. Class IV requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Contracting Officer Representative

- 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
- 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
- 4) Maintain negative air pressure within work site utilizing HEPA equipped air filtration units.
- 5) Seal holes, pipes, conduits, and punctures.
- 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
- All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative with thorough cleaning by the VA Environmental Services Dept.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - Contain construction waste before transport in tightly covered containers.
 - Cover transport receptacles or carts. Tape covering unless solid lid.
 - 5) Vacuum work area with HEPA filtered vacuums.
 - 6) Wet mop area with cleaner/disinfectant.

- 7) Upon completion, restore HVAC system where work was performed.
- 8) Return permit to the Contracting Officer Representative
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center) Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
 - e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
 - f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.

D. Products and Materials:

 Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes

- 2. Barrier Doors: Self Closing One-hour fire-rated solid core wood in steel frame, painted
- 3. Dust proof one-hour fire-rated drywall
- 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
- Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product
- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be establish and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to Facility CSC for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine

impact of construction activities on indoor air quality with safe thresholds established.

- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
 - 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.

Replace Condensate Piping System and Upgrade Pumping Capacity

VA Medical Center, Gainesville, FL

- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.
- I. Final Cleanup:
 - Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.14 FIRE SAFETY

A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to // Resident Engineer // Project Manager // and Facility Safety // Manager // Officer // or Contracting Officer Representative // or Government Designated Authority // for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.

- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
 - Install one-hour fire-rated temporary construction partitions as shown on drawings, or directed, to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
 - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer Representative.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative.

- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241. Do not charge wet standpipes subject to freezing until weather protected.
- K. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers, is permitted by ISLM and Contracting Officer Representative.
- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Facility Safety Officer or Contracting Officer Representative.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Facility Safety Office or Contracting Officer Representative. Obtain permits from Facility Safety Officer or Contracting Officer Representative at least two (2) hours in advance.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Facility Safety Officer or Contracting Officer Representative.

- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the Contracting Officer Representative that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Chief of Facilities Management and Contracting Officer Representative with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA specific to energized work activities will be developed, reviewed, and accepted prior to the start of that work.

- Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the Facility Safety Officer or Contracting Officer Representative.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. All 120-volt, single-phase 20-ampere receptacle outlets on construction sites shall have approved groundfault circuit interrupters for personnel protection. "Assured Equipment Grounding Conductor Program" only is not allowed.

1.16 FALL PROTECTION

A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities,

systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.

- The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
- 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
- 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
- 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green

indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:

- 1. The Competent Person's name and signature;
- 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P.
- B. All excavations and trenches 5 feet in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall be completed and provided to the Facility Safety Officer prior to commencing work for the day. At the end of the day, the permit shall be closed out and provided to the Facility Safety Officer and Contracting Officers Representative. The permit shall be maintained onsite and include the following:
 - 1. Determination of soil classification
 - Indication that utilities have been located and identified. If utilities could not be located after all reasonable attempt, then excavating operations will proceed cautiously.
 - 3. Indication of selected excavation protective system.
 - Indication that the spoil pile will be stored at least 2 feet from the edge of the excavation and safe access provided within 25 feet of the workers.
 - 5. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere.

C. If not using an engineered protective system such as a trench box, shielding, shoring, or other Professional Engineer designed system and using a sloping or benching system, soil classification cannot be Solid Rock or Type A. All soil will be classified as Type B or Type C and sloped or benched in accordance with Appendix B of 29 CFR 1926.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date of November 10, 2014.
- C. A detailed lift permit shall be submitted 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing. The lift will not be allowed without approval of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section. Replace Condensate Piping System and Upgrade Pumping Capacity

VA Medical Center, Gainesville, FL

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1910.146 except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Contracting Officer Representative and Facility Safety Officer.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer Representative and/or Facility Safety Officer. Obtain permits from Contracting Officer Representative and/or Facility Safety Officer at least two hours in advance.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with

similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. See 21.F for covering and labeling requirements. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location: DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AGC	Associated General Contractors of America
	http://www.agc.org
AISC	American Institute of Steel Construction
	http://www.aisc.org
AISI	American Iron and Steel Institute
	http://www.steel.org
ANSI	American National Standards Institute, Inc.
	http://www.ansi.org
ASCE	American Society of Civil Engineers
	http://www.asce.org
ASHRAE	American Society of Heating, Refrigerating, and Air-Conditioning
	Engineers
	http://www.ashrae.org
ASME	American Society of Mechanical Engineers
ASTM	American Society for Testing and Materials
	http://www.astm.org
AWS	American Welding Society
	http://www.aws.org
AWWA	American Water Works Association
	http://www.awwa.org
EPA	Environmental Protection Agency
	http://www.epa.gov
ETL	ETL Testing Laboratories, Inc.
	http://www.etl.com
FΜ	Factory Mutual Insurance
	http://www.fmglobal.com
GSA	General Services Administration
	http://www.gsa.gov
HI	Hydraulic Institute
	http://www.pumps.org
NAPHCC	Plumbing-Heating-Cooling Contractors Association
	http://www.phccweb.org.org
NBS	National Bureau of Standards
	See - NIST
NBBPVI	National Board of Boiler and Pressure Vessel Inspectors
	http://www.nationboard.org

Replace Condensate Piping System and Upgrade Pumping Capacity VA Medical Center, Gainesville, FL

NEC	National Electric Code
	See - NFPA National Fire Protection Association
NFPA	National Fire Protection Association
	http://www.nfpa.org
NIST	National Institute of Standards and Technology
	http://www.nist.gov
OSHA	Occupational Safety and Health Administration
	Department of Labor
	http://www.osha.gov
SMACNA	Sheet Metal and Air-Conditioning Contractors
	National Association, Inc.
	http://www.smacna.org
STI	Steel Tank Institute
	http://www.steeltank.com
UBC	The Uniform Building Code
	See ICBO
UL	Underwriters' Laboratories Incorporated
	http://www.ul.com
ULC	Underwriters' Laboratories of Canada
	http://www.ulc.ca
	E N D

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 23 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 23 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the steam and condensate systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup, performance testing and training. Commissioning during the construction, and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair new condensate pumping systems in an effective and energy-efficient manner.
- Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.
- G. The Commissioning Agent, both the firm and individual designated as the Commissioning Agent, shall be certified by at least one of the following entities: the National Environmental Balancing Bureau (NEBB), the Associated Air Balance Council Commissioning Group (AABC), and the Building Commissioning Association (BCA). Certification(s) shall be valid and active. Proof of certification(s) shall be submitted to the Contracting Officer and the COR three (3) calendar days after the Notice to Proceed.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the COR, as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this structure, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also

the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the COR.

- C. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and COR. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

Replace Condensate Piping System and Upgrade Pumping Capacity VA Medical Center, Gainesville, FL

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. The commissioning activities have been developed to support the Green Buildings Initiative Green Globes rating program and to support delivery of project performance in accordance with the VA requirements developed for the project.

1.5 DEFINITIONS

- A. <u>Architect</u>: Includes Architect identified in the Contract for Construction between the Department of Veterans Affairs and Contractor, plus consultant/design professionals responsible for design of fire suppression, plumbing, HVAC, controls for HVAC systems, electrical, communications, electronic safety and security, as well as other related systems.
- B. CxA: Commissioning Agent.
- C. <u>Commissioning Plan</u>: a document that is an overall plan that outlines the commissioning process, commissioning team responsibilities, schedule for commissioning activities, and commissioning documents.
- D. <u>Commissioning Issue</u>: a condition in the installation or function of a component, piece of equipment or system that affects the system operations, maintenance, and/or repair.
- E. <u>Commissioning Observation</u>: a condition in the installation or function of a component, piece of equipment or system that may not be in compliance with the Contract Documents, or may not be in compliance with the manufacturer's installation instruction, or may not be in compliance with generally accepted industry standards.
- F. <u>Systems Functional Performance Test</u>: a test, or tests, of the dynamic function and operation of equipment and systems using manual (direct observation) or monitoring methods. Systems Functional Performance Testing is the dynamic testing of systems (rather than just components) under full operation (e.g., the condensate pump is tested interactively with the steam functions). The Commissioning Agent develops the Systems Functional Performance Test Procedures in a sequential written form, coordinates, witnesses, and documents the actual testing.

Systems Functional Performance Testing is performed by the Contractor. Systems Functional Performance Tests are performed after startups, control systems are complete and operational, TAB functions and Pre-Functional Checklists are complete.

- G. <u>System</u>: A system is defined as the entire set of components, equipment, and subsystems which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, condensate is only one component of an entire steam system which provides comfort conditions for a building. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of the fuel supply, combustion air, controls, steam, feedwater supply, condensate return and other related components.
- H. <u>Pre-Functional Checklist</u>: a list of items provided by the Commissioning Agent to the Contractor that require inspection and elementary component tests conducted to verify proper installation of equipment. Pre-Functional Checklists are primarily static inspections and procedures to prepare the equipment or system for initial operation.
- I. <u>VA</u>: Includes the Contracting Officer, COR, or other authorized representative of the Department of Veterans Affairs.
- J. TAB: Testing, Adjusting, and Balancing.

1.6 SYSTEMS TO BE COMMISSIONED

- A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
- B. The following systems will be commissioned as part of this project:1. HVAC (Division 23)
 - a. Condensate Return Systems (Condensate pumps, condensate flash tanks, pressure reducing steam valves, condensate steam traps, vents, float switch, and safeties).

1.7 COMMISSIONING TEAM

- A. Members Appointed by Contractor:
 - Contractor: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
- 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by VA:
 - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - 2. Representatives of the facility user and operation and maintenance personnel.
 - 3. Architect and engineering design professionals.

1.8 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.9 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and

that subcontractors comply with the requirements of these specifications.

- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - Participate in meetings to coordinate Systems Functional Performance Testing.
 - 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
 - 8. Provide information to the Commissioning Agent for developing commissioning plan.
 - 9. Participate in training sessions for VA's operation and maintenance personnel.
 - 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.10 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment,

including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.

- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents. Operation and maintenance documentation requirements are specified in Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.

Replace Condensate Piping System and Upgrade Pumping Capacity VA Medical Center, Gainesville, FL

- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.11 COMMISSIONING DOCUMENTATION

- A. Commissioning Agent's Certification(s): Commissioning Agent shall submit evidence of valid and current certification(s), as required in Section 1.1(G), to the Contracting Officer.
- B. <u>Commissioning Plan</u>: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
 - Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
 - 3. Identification of systems and equipment to be commissioned.
 - 4. Schedule of Commissioning Coordination meetings.
 - 5. Identification of items that must be completed before the next operation can proceed.
 - 6. Description of responsibilities of commissioning team members.
 - 7. Description of observations to be made.
 - 8. Description of requirements for operation and maintenance training.
 - 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
 - 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
 - 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
 - 12. Preliminary Systems Functional Performance Test procedures.
- C. <u>Systems Functional Performance Test Procedures</u>: The Commissioning Agent will develop Systems Functional Performance Test Procedures for

each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:

- 1. Name and identification code of tested system.
- 2. Test number.
- 3. Time and date of test.
- 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
- Dated signatures of the person performing test and of the witness, if applicable.
- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- D. <u>Pre-Functional Checklists</u>: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- E. <u>Test and Inspection Reports</u>: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- F. <u>Corrective Action Documents</u>: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and

equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.

- G. <u>Commissioning Issues Log</u>: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating a Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - g. Include information that may be helpful in diagnosing or evaluating the issue.
 - h. Note recommended corrective action.
 - i. Identify commissioning team member responsible for corrective action.
 - j. Identify expected date of correction.
 - k. Identify person that identified the issue.
 - 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.

- d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
- e. Identify person(s) who corrected or resolved the issue.
- f. Identify person(s) verifying the issue resolution.
- H. <u>Final Commissioning Report:</u> The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:
 - Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
 - 2. Commissioning plan.
 - 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
 - 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
 - 5. Commissioning Issues Log.
 - Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- I. <u>Addendum to Final Commissioning Report</u>: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.

- Completed Systems Functional Performance Test Procedures for off season test(s).
- 3. Documentation that unresolved system performance issues have been resolved.
- 4. Updated Commissioning Issues Log, including status of unresolved issues.
- 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- J. <u>Systems Manual</u>: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.12 SUBMITTALS

- A. <u>Preliminary Commissioning Plan Submittal</u>: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.

- Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
- 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
- 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary stepby-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. <u>Final Commissioning Plan Submittal</u>: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. <u>Systems Functional Performance Test Procedure</u>: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. <u>Pre-Functional Checklists</u>: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. <u>Test and Inspection Reports</u>: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.

- F. <u>Corrective Action Documents</u>: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect.
- G. <u>Preliminary Commissioning Report Submittal</u>: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. <u>Final Commissioning Report Submittal</u>: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
 - The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.13 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 30 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 30 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning

Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.14 QUALITY ASSURANCE

- A. <u>Instructor Qualifications</u>: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. <u>Test Equipment Calibration</u>: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.15 COORDINATION

- A. <u>Management</u>: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. <u>Scheduling</u>: The Contractor will work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. <u>Initial Schedule of Commissioning Events</u>: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.

- D. <u>Commissioning Coordinating Meetings</u>: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. <u>Pretesting Meetings</u>: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. <u>Systems Functional Performance Testing Coordination</u>: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of $0.5^{\circ}C$ ($1.0^{\circ}F$) and a resolution of + or - $0.1^{\circ}C$ ($0.2^{\circ}F$). Pressure sensors shall have an accuracy of + or - 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and when dropped or damaged. Calibration tags shall be affixed or certificates readily available.

Replace Condensate Piping System and Upgrade Pumping Capacity VA Medical Center, Gainesville, FL

PART 3 - EXECUTION

3.1 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.

- a) The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.
- b) The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO₂ and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 23 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
- 4. Execution of Equipment Startup
 - a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
 - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
 - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
 - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.2 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to

correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.

C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.3 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

3.4 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. <u>Documentation</u>: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. <u>Nonconformance</u>: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy

scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.

- 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
- 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
 - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the

test. Retesting shall be repeated until satisfactory performance is achieved.

- C. <u>Cost of Retesting</u>: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. <u>Failure Due to Manufacturer Defect</u>: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
 - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. <u>Approval</u>: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems

Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.5 DEFERRED TESTING

A. <u>Unforeseen Deferred Systems Functional Performance Tests</u>: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.

3.6 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. <u>Training Preparation Conference</u>: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 23 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.
 - Review course materials (including operation and maintenance manuals).
 - 7. Review and discuss locations and other facilities required for instruction.
 - Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.

- For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. <u>Training Module Submittals</u>: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - <u>Instruction Program</u>: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - <u>Qualification Data</u>: Submit qualifications for facilitator and/or instructor.
 - 3. <u>Attendance Record</u>: For each training module, submit list of participants and length of instruction time.
 - 4. <u>Evaluations</u>: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. <u>Demonstration and Training Videotapes</u>: Submit two copies within seven days of end of each training module.
 - a. <u>Identification</u>: On each copy, provide an applied label with the following information:
 - 1) Name of Project.
 - 2) Name and address of photographer
 - 3) Name of Contractor.
 - 4) Date videotape was recorded.
 - 5) Description of vantage point, indicating location, direction (by compass point), and elevation or story of construction.
 - 6. <u>Transcript</u>: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.
- D. QUALITY ASSURANCE
 - Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

- <u>Instructor Qualifications</u>: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
- 3. <u>Photographer Qualifications</u>: A professional photographer who is experienced photographing construction projects.
- E. COORDINATION
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
 - Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
 - 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.
- F. INSTRUCTION PROGRAM
 - 1. <u>Program Structure</u>: Develop an instruction program that includes individual training modules for each system included.
- G. <u>Training Modules</u>: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - h. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.

- e. Identification systems.
- f. Warranties and bonds.
- g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Safety procedures.
 - f. Instructions on stopping.
 - g. Normal shutdown instructions.
 - h. Operating procedures for system, subsystem, or equipment failure.
- 5. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 6. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.
- H. Training Execution:
 - <u>Preparation</u>: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.
 - 2. Instruction:

- a. <u>Facilitator</u>: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
- b. <u>Instructor</u>: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2) The VA will furnish an instructor to describe VA's operational philosophy.
 - 3) The VA will furnish the Contractor with names and positions of participants.
- 3. <u>Scheduling</u>: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. <u>Cleanup</u>: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

----- END -----

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of mechanical equipment and piping, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Asbestos Removal: Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- D. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS.
- C. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- D. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- E. In addition to previously listed fire and safety rules to be observed in performance of work, include following:

- 1. No wall or part of wall shall be permitted to fall outwardly from structures.
- Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
- Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- F. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the COR. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have COR's approval.
- G. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove mechanical equipment and piping as shown on drawing, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new systems.
 - Contractor shall coordinate with the contracting officer's representative (COR) government's right to retain any or all of all demolished equipment
- B. Debris, including supports, pipe, concrete, metals and similar materials shall become property of Contractor and shall be disposed of

by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the COR. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.

C. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade shall be included as part of the lump sum compensation for the work of this section. The removal of hazardous material shall be referred to Hazardous Materials specifications.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to COR. Clean-up shall include disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 02 82 13.13 GLOVEBAG ASBESTOS ABATEMENT

TABLE OF CONTENTS

PART 1 - GENERAL	1
1.1 SUMMARY OF THE WORK	1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS	1
1.1.2 EXTENT OF WORK	1
1.1.3 RELATED WORK	1
1.1.4 TASKS	1
1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES	2
1.2 VARIATIONS IN QUANTITY	2
1.3 STOP ASBESTOS REMOVAL	2
1.4 DEFINITIONS	3
1.4.1 GENERAL	3
1.4.2 GLOSSARY	3
1.4.3 REFERENCED STANDARDS ORGANIZATIONS	9
1.5 APPLICABLE CODES AND REGULATIONS	10
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS	10
1.5.2 Asbestos Abatement CONTRACTOR RESPONSIBILITY	11
1.5.3 FEDERAL REQUIREMENTS	11
1.5.4 STATE REQUIREMENTS:	11
1.5.5 LOCAL REQUIREMENTS	12
1.5.6 STANDARDS	12
1.5.7 EPA GUIDANCE DOCUMENTS	12
1.5.8 NOTICES	12
1.5.9 PERMITS/LICENSES	12
1.5.10 POSTING AND FILING OF REGULATIONS	12
1.5.11 VA RESPONSIBILITIES	13
1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS	13
1.5.14 PRE-Construction MEETING	14
1.6 PROJECT COORDINATION	14
1.6.1 PERSONNEL	14
1.7 RESPIRATORY PROTECTION	16
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM	16
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR	16
1.7.3 SELECTION AND USE OF RESPIRATORS	16
1.7.4 MINIMUM RESPIRATORY PROTECTION	16

1.7.5 MEDICAL WRITTEN OPINION	16
1.7.6 RESPIRATOR FIT TEST	16
1.7.7 RESPIRATOR FIT CHECK	16
1.7.8 MAINTENANCE AND CARE OF RESPIRATORS	17
1.8 WORKER PROTECTION	17
1.8.1 TRAINING OF ABATEMENT PERSONNEL	17
1.8.2 MEDICAL EXAMINATIONS	17
1.8.3 personal PROTECTIVE EQUIPMENT	17
1.8.4 REGULATED AREA ENTRY PROCEDURE	17
1.8.5 DECONTAMINATION PROCEDURE	17
1.8.6 REGULATED AREA REQUIREMENTS	18
1.9 DECONTAMINATION FACILITIES	18
1.9.1 DESCRIPTION	18
1.9.2 GENERAL REQUIREMENTS	18
1.9.3 TEMPORARY FACILITIES TO THE PDF and w/EDF	19
1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)	19
1.9.5 waste/EQUIPMENT DECONTAMINATION FACILITY (w/EDF)	20
1.9.6 waste/EQUIPMENT DECONTAMINATION PROCEDURES	21
PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT	22
2.1 MATERIALS AND EQUIPMENT	22
2.1.1 GENERAL REQUIREMENTS (all abatement projects)	22
2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA	23
2.2.1 GENERAL	23
2.2.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA	23
2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA	23
2.2.4 CRITICAL BARRIERS	24
2.2.5 SECONDARY BARRIERS	24
2.2.6 EXTENSION OF THE REGULATED AREA	24
2.2.7 FIRESTOPPING	24
2.3 MONITORING, INSPECTION AND TESTING	24
2.3.1 GENERAL	24
2.3.2 SCOPE OF SERVICES OF THE VPIH/cih CONSULTANT	25
2.3.3 MONITORING, INSPECTION AND TESTING BY ABATEMENT CONTRACTOR CPIH/CIH 2	26
2.4 Asbestos hazard abatement plan	27
2.5 SUBMITTALS	27
2.5.1 PRE-start MEETING SUBMITTALS	27
2.5.2 SUBMITTALS DURING ABATEMENT	29

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT	29
2.6 ENCAPSULANTS	30
2.6.1 TYPES OF ENCAPSULANTS	30
2.6.2 PERFORMANCE REQUIREMENTS	30
2.7 CERTIFICATES OF COMPLIANCE	30
2.8 RECYCLABLE PROTECTIVE CLOTHING	30
PART 3 - EXECUTION	31
3.1 REGULATED AREA PREPARATIONS	31
3.1.1 SITE SECURITY	31
3.1.2 OSHA DANGER SIGNS	31
3.1.3.1 SHUT DOWN - LOCK OUT ELECTRICAL	32
3.1.3.2 SHUT DOWN - LOCK OUT HVAC	32
3.1.4 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA	32
3.1.4.1 GENERAL	32
3.1.4.2 PREPARATION PRIOR TO SEALING OFF	32
3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA	32
3.1.4.4 CRITICAL BARRIERS	33
3.1.4.5 EXTENSION OF THE REGULATED AREA	33
3.1.4.6 floor barriers:	33
3.1.5 SANITARY FACILITIES	33
3.1.6 Pre-Cleaning	33
3.1.6.1 PRE-CLEANING MOVABLE OBJECTS	33
3.1.6.2 PRE-CLEANING FIXED OBJECTS	34
3.1.6.3 PRE-CLEANING SURFACES IN THE REGULATED AREA	34
3.1.7 PRE-ABATEMENT ACTIVITIES	34
3.1.7.1 PRE-ABATEMENT MEETING	34
3.1.7.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	34
3.1.7.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	35
3.2 REMOVAL OF piping ACM	36
3.2.1 WETTING MATERIALS	36
3.2.2 SECONDARY BARRIER AND WALKWAYS	36
3.2.3 WET REMOVAL OF ACM	36
3.3 GLOVEBAG REMOVAL PROCEDURES	37
3.3.1 GENERAL	37
3.3.2 NEGATIVE PRESSURE GLOVEBAG PROCEDURE	38
3.4 LOCKDOWN ENCAPSULATION	38
3.4.1 GENERAL	38

3.4.2 SEALING EXPOSED EDGES	38
3.5 DISPOSAL OF ACM WASTE MATERIALS	38
3.5.1 GENERAL	38
3.5.2 PROCEDURES	38
3.6 PROJECT DECONTAMINATION	39
3.6.1 GENERAL	39
3.6.2 REGULATED AREA CLEARANCE	39
3.6.3 WORK DESCRIPTION	39
3.6.4 PRE-DECONTAMINATION CONDITIONS	39
3.6.5 FIRST CLEANING	39
3.6.6 PRE-CLEARANCE INSPECTION AND TESTING	40
3.6.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES	40
3.7 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING	40
3.7.1 GENERAL	40
3.7.2 FINAL VISUAL INSPECTION	40
3.7.3 FINAL AIR CLEARANCE TESTING	40
3.7.4 FINAL AIR CLEARANCE PROCEDURES	41
3.7.5 CLEARANCE SAMPLING USING PCM	41
3.7.6 CLEARANCE SAMPLING USING TEM	41
3.7.7 LABORATORY TESTING OF PCM SAMPLES	41
3.7.8 LABORATORY TESTING OF TEM SAMPLES	41
3.8 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE	42
3.8.1 COMPLETION OF ABATEMENT WORK	42
3.8.2 CERTIFICATE OF COMPLETION BY CONTRACTOR	42
3.8.3 WORK SHIFTS	42
3.8.4 RE-INSULATION	42
ATTACHMENT #1	43
ATTACHMENT #2	44
ATTACHMENT #3	45
ATTACHMENT #4	46

02 82 13.13 GLOVEBAG ASBESTOS ABATEMENT

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated by the glovebag method. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. This project may involve the abatement of the ACM listed below, as required prior to planned or potential disturbance, or as deemed necessary by the Contracting Officer.
- C. Removal, clean-up and disposal of asbestos containing materials (ACM) and asbestos/waste contaminated elements in an appropriate regulated area for the following approximate quantities as indicated on the attached drawings;

Four (4) square feet of white mudded elbows in the AC-2 area;

1.1.3 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- I. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, work-site

preparations, emergency procedures arrangements, and Asbestos Hazard Abatement Plans for glovebag asbestos abatement work.

- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. VA Design and Construction Procedures drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings:

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated, which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/ Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of

the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some states require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA).

Barrier - Any surface that isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard
sized glove bag or waste bag, in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag and shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter – An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR Part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal protective equipment (PPE) – equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or more workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and

breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) of Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned Protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) – The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/ specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400
- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420

- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900
- G. CS Commercial Standard of the National Institute of Standards and Technology(NIST)
 U. S. Department of Commerce Government Printing Office Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- I. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000
- K. NEC National Electrical Code (by NFPA)
- L. NEMA National Electrical Manufacturer's Association 2101 L Street, NW Washington, DC 20037
- M. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- N. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- O. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- P. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and

codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.

- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specification exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910 Subpart I Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.1020 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910 Subpart K Medical and First Aid
- B. Environmental Protection Agency (EPA)
 - 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants - Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT)
- Title 49 CFR 100 185 Transportation

1.5.4 STATE REQUIREMENTS:

State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following:

- A. Chapter 469.001-469.015 of the Florida Statutes
- B. Chapter 61E1 of the Florida Administrative Code

1.5.5 LOCAL REQUIREMENTS

If local requirements are more stringent than federal or state standards, the local standards are to be followed.

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI Z88.2 - Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to, the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007.
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

1.5.9 PERMITS/LICENSES

The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

1.5.10 POSTING AND FILING OF REGULATIONS

Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

- A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment, and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
- B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed by prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the Asbestos Hazard Abatement Plans during abatement. Such incidents

include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.14 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VPCIH to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the pre-start meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project. A copy of the Contractor's Asbestos Hazard Abatement Plan (AHAP) for Class I Glovebag Asbestos Abatement. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - If required, decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Glovebag abatement methods/procedures and equipment to be used; and
 - 5. Personal protective equipment to be used.
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.

- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized onsite shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive Asbestos Hazard Abatement Plans (AHAPs) for asbestos work; and has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete Asbestos Hazard Abatement Plan for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; medical/respiratory and has appropriate protection records/documentation.
 - 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the Asbestos Hazard Abatement Plans of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910 Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a half face air purifying respirator when fiber levels are maintained consistently at or below 0.1 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) maintenance and care of respirators.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m)(4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

1.8.4 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.5 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.

- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
- D. Shower and wash body completely with soap and water. Rinse thoroughly.
- E. Rinse shower room walls and floor to drain prior to exiting.
- F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.6 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I glovebag regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 2 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 2 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to

adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70°F throughout the PDF and W/EDF.

1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining

smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of once per day or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.

- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 2 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.
- 4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide a W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and

contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 2 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 2 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- 5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES

At the washdown station in the regulated area, thoroughly wet wipe/clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside

personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 6-mils. For floors and all other uses, sheeting of at least 6-mils shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout. Poly must be labeled as fire retardant.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All

electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.

- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 - Hazard Communication in the pre-project submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

2.2.1 GENERAL

Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All horizontal surfaces in the regulated area must be covered with 2 layers of 6 mil fire retardant poly to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated, immediately stop work and clean up the contamination at no additional cost to the Government. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 2.2.8; FIRESTOPPING.

2.2.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

A. Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2 layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.

2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA

A. Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid.

2.2.4 CRITICAL BARRIERS

A. Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6 mils thick and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly.

2.2.5 SECONDARY BARRIERS

A. A loose layer of 6 mil fire retardant poly shall be used as a drop cloth to protect the floor/horizontal surfaces from debris generated during the glovebag abatement. This layer shall be replaced as needed during the work.

2.2.6 EXTENSION OF THE REGULATED AREA

A. If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. If the affected area cannot be added to the regulated area, decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

2.2.7 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves must be firestopped with a fire-rated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The Contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA Representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

2.3 MONITORING, INSPECTION AND TESTING

2.3.1 GENERAL

A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the Employee exposure to asbestos must not exceed 0.1 fibers per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.

- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.
- C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be cosigned by the IH's and delivered to the VA's representative.

2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: Assure quality; resolve problems; and prevent the spread of contamination beyond the regulated area. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM. The VPIH/CIH will perform the following tasks:
 - 1. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of unforeseen developments, etc.

- 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area or building at the conclusion of the abatement and clean-up work to certify compliance with all regulations and the VA requirements/specifications.
- 6. Task 6: Issue certificate of decontamination for each regulated area or building and project report.
- B. All data, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.3.3 MONITORING, INSPECTION AND TESTING BY ABATEMENT CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor (or Abatement Worker) and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities.

Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.4 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the ways and procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of the project. The AHAP shall be submitted for review and approval prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAP(s) are:

- A. Minimum Personnel Qualifications
- B. Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements for Glovebag Abatement
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Monitoring, Inspections, and Testing
- I. Removal Procedures for Piping ACM Using the Glovebag Method
- J. Disposal of ACM waste
- K. Regulated Area Decontamination/Clean-up
- L. Regulated Area Visual and Air Clearance
- M. Project Completion/Closeout

2.5 SUBMITTALS

2.5.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - 1. Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.

- 4. Respirators, protective clothing, personal protective equipment.
- 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. And area or clearance air monitoring in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; and Completion Date
 - List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; and Resolution.
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAP(s) developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.

- 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAP(s) incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and Asbestos Hazard Abatement Plans; copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS, and application instructions.

2.5.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWAs/ELs. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.6 ENCAPSULANTS

2.6.1 TYPES OF ENCAPSULANTS

- A. The following four types of encapsulants must comply with comply with performance requirements as stated in paragraph 2.6.2:

 - Removal encapsulant used as a wetting agent to remove ACM.
 Bridging encapsulant provides a tough, durable coating on ACM.
 - 3. Penetrating encapsulant penetrates/encapsulates ACM at least 13 mm (1/2").
 - 4. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.

2.6.2 PERFORMANCE REQUIREMENTS

Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:

- A. General Requirements for all Encapsulants:
 - 1. ASTM E84: Flame spread of 25; smoke emission of 50.
 - 2. University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4. ASTM E96: Permeability minimum of 0.4 perms.
- B. Bridging/Penetrating Encapsulants:
 - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft²).
 - 2. ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).
 - 3. ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kq-mm (43 in/lb).
 - 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- C. Lockdown Encapsulants:
 - 1. ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2. ASTM E736: Bond Strength 48 kPa (100 lbs/ft²) (test compatibility with cementitious and fibrous fireproofing).
 - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application.

2.7 CERTIFICATES OF COMPLIANCE

The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements encapsulants when applied according to for manufacturer recommendations.

2.8 RECYCLABLE PROTECTIVE CLOTHING

If recyclable clothing is provided, all requirements of EPA, DOT and OSHA shall be met.

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

3.1.1 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police should be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.

3.1.2 OSHA DANGER SIGNS

Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed ambient background levels. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

3.1.3.1 SHUT DOWN - LOCK OUT ELECTRICAL

Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

3.1.3.2 SHUT DOWN - LOCK OUT HVAC

Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on preabatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

3.1.4 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA

3.1.4.1 GENERAL

Seal off any openings at the perimeter of the regulated area with critical barriers to completely isolate the regulated area and to contain all airborne asbestos contamination created by the abatement activities. Should the adjacent area past the regulated area become contaminated due to improper work activities, the Contractor shall suspend work inside the regulated area, continue wetting, and clean the adjacent areas in accordance with procedures described in these specifications. Any and all costs associated with the adjacent area cleanup shall not be borne by the VA.

3.1.4.2 PREPARATION PRIOR TO SEALING OFF

Place all materials, equipment and supplies necessary to isolate the regulated area inside the regulated area. Remove all movable material/equipment as described above and secure all unmovable material/equipment as described above. Properly secured material/ equipment shall be considered to be outside the regulated area.

3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure. Fire resistant barriers must be drywall/gypsum board. Danger signs must be posted as per OSHA. Any alternate method must be submitted in advance for VA written approval prior to use

3.1.4.4 CRITICAL BARRIERS

The regulated area must be completely separated from the adjacent area(s) and the outside by at least 2 layers of 6 mil fire retardant poly and duct tape/spray adhesive. Individually seal all supply and exhaust ventilation openings, lighting fixtures, clocks, doorways, windows, convectors, speakers, and other openings into the regulated area with 2 layers of 6 mil fire retardant poly, and taped securely in place with duct tape/spray adhesive. Critical barriers must remain in place until all work and clearances have been completed. Light fixtures shall not be operational during abatement. Auxiliary lighting shall be provided. If needed, provide plywood squares 6" x 6" x 3/8" (150mm x 150mm x 18mm) held in place with one 6d smooth masonry/galvanized nail driven through the center of the plywood square and duct tape on the poly so as to clamp the poly to the wall/surface. Locate plywood squares at each end, corner, and 4' (1200mm) maximum on centers.

3.1.4.5 EXTENSION OF THE REGULATED AREA

If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and air monitoring. Air monitoring at completion must indicate background levels.

3.1.4.6 FLOOR BARRIERS:

All floors within 10' of glovebag work shall be covered with 2 layers of 6 mil fire retardant poly.

3.1.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.1.6 PRE-CLEANING

3.1.6.1 PRE-CLEANING MOVABLE OBJECTS

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. PPE must be donned by all workers performing precleaning activities. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.

3.1.6.2 PRE-CLEANING FIXED OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. Pre-cleaning shall be the responsibility of the Contractor.

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

3.1.6.3 PRE-CLEANING SURFACES IN THE REGULATED AREA

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area.

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.1.7 PRE-ABATEMENT ACTIVITIES

3.1.7.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The shall prepared to provide Contractor be any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.7.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of VA A/E Quality Alert 07/09 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawl spaces(previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination. The Contractor shall be responsible for decontamination of regulated area furnishings. The General Contractor shall be responsible for the removal and relocation of regulated area furnishings.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.1.7.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation.
- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification.

3.2 REMOVAL OF PIPING ACM

3.2.1 WETTING MATERIALS

- A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP's regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.
- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.
- C. Removal Encapsulant: Provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during disturbance equal to or greater than the amended water described above in B.

3.2.2 SECONDARY BARRIER AND WALKWAYS

- A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet (3 meters) of the area where work is to done. Secure the secondary barrier with duct tape to prevent it from moving or debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
- B. Install walkways using 6 mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.

3.2.3 WET REMOVAL OF ACM

A. Using acceptable glovebag procedures, adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time (at a minimum two hours) must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting Where necessary, carefully remove covering while of the material. wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present

3.3 GLOVEBAG REMOVAL PROCEDURES

3.3.1 GENERAL

All applicable OSHA requirements and glovebag manufacturer's recommendations shall be met during glove bagging operations. In cases where live steam lines are present, the lines must be shut down prior to any work being performed on the system. No abatement work shall be conducted on live, pressurized steam lines. The Contractor may choose to use a High Temperature Glovebag in which a temperature rating ranges from 300°F to 700°F on steam lines that have recently been shut down and remain at high temperature for some time. In the case where a glovebag is not feasible, the Contractor will need to build a full negative pressure containment of sufficient size and follow all regulations as it pertains to removal.

- 1. Mix the surfactant with water in the garden sprayer, following the manufacturer's directions.
- 2. Have each employee put on a HEPA filtered respirator approved for asbestos and check the fit using the positive/negative fit check.
- 3. Have each employee put on a disposable full-body suit. Remember, the hood goes over the respirator straps.
- 4. Check closely the integrity of the glove bag to be used. Check all seams, gloves, sleeves, and glove openings. OSHA requires the bottom of the bag to be seamless.
- 5. Check the pipe where the work will be performed. If it is damaged (broken lagging, hanging, etc.), wrap the entire length of the pipe in poly sheeting and "candy stripe" it with duct tape.
- 6. Attach glovebag with required tools per manufacturer's instructions.
- 7. Using the smoke tube and aspirator bulb, test 10% of glovebags by placing the tube into the water porthole (two-inch opening to glove bag), and fill the bag with smoke and squeeze it. If leaks are found, they should be taped closed using duct tape and the bag should be retested with smoke.
- 8. Insert the wand from the water sprayer through the water porthole.
- 9. Insert the hose end from a HEPA vacuum into the upper portion of the glove bag.
- 10. Wet and remove the pipe insulation.
- 11. If the section of pipe is covered with an aluminum jacket, remove it first using the wire cutters to cut any bands and the tin snips to remove the aluminum. It is important to fold the sharp edges in to prevent cutting the bag when placing it in the bottom.
- 12. When the work is complete, spray the upper portion of the bag and clean-push all residue into the bottom of the bag with the other waste material. Be very thorough. Use adequate water.
- 13. Put all tools, after washing them off in the bag, in one of the sleeves of glove bag and turn it inside out, drawing it outside of the bag. Twist the sleeve tightly several times to seal it and tape it several tight turns with duct tape. Cut through the middle of the duct tape and remove the sleeve. Put the sleeve in the next glove bag or put it in a bucket of water to decontaminate the tools after cutting the sleeve open.
- 14. Turn on the HEPA vacuum and collapse the bag completely. Remove the vacuum nozzle, seal the hole with duct tape, twist the bag tightly several times in the middle, and tape it to keep the material in the bottom during removal of the glove bag from the pipe.
- 15. Slip a disposal bag over the glove bag (still attached to the pipe). Remove the tape securing the ends, and slit open the top of the

glove bag and carefully fold it down into the disposal bag. Double bag and gooseneck waste materials.

3.3.2 NEGATIVE PRESSURE GLOVEBAG PROCEDURE

- 1. In addition to the above requirements, the HEPA vacuum shall be run continuously during the glovebag procedure until completion at which time the glovebag will be collapsed by the HEPA vacuum prior to removal from the pipe/component.
- 2. The HEPA vacuum shall be attached and operated as needed to prevent collapse of the glovebag during the removal process.

3.4 LOCKDOWN ENCAPSULATION

3.4.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, all piping surfaces shall be encapsulated with a bridging encapsulant.

3.4.2 SEALING EXPOSED EDGES

Seal edges of ACM exposed by removal work with two coats of encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the encapsulant.

3.5 DISPOSAL OF ACM WASTE MATERIALS

3.5.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.5.2 PROCEDURES

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment
- B. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures in this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP's signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.
- C. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped or HEPA vacuumed..

D. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.6 PROJECT DECONTAMINATION

3.6.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.6.2 REGULATED AREA CLEARANCE

Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.6.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.6.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary barrier of poly removed and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Critical barriers over all openings consisting of two layers of 6 mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - 2. Decontamination facilities, if required for personnel and equipment in operating condition.

3.6.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.6.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

3.6.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES

With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification.

3.7 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING

3.7.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH after the final cleaning.

3.7.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.7.3 FINAL AIR CLEARANCE TESTING

A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in general accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, a minimum of 3 PCM samples shall be collected for clearance and a minimum of one field blank. If work is equal to or more than 260 lf/160 sf/35 cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in general accordance with procedures for EPA AHERA in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All Additional inspection and testing costs will be borne by the Contractor.

B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.7.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, or below 0.01 AHERA structures per cubic centimeter (s/cc) for each sample collected by AHERA TEM.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.

3.7.5 CLEARANCE SAMPLING USING PCM

- A. The VPIH/CIH will perform clearance samples as indicated by the specification.
- B. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 3 PCM clearance samples shall be collected, or as determined by the COTR. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.

3.7.6 CLEARANCE SAMPLING USING TEM

- A. The VPIH/CIH will perform clearance samples as indicated by the specification.
- B. The TEM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 3 clearance samples shall be collected. All samples must be equal to or less than 0.01 AHERA structures per cubic centimeter (S/cc) AHERA TEM.

3.7.7 LABORATORY TESTING OF PCM SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be sent daily by the VPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.7.8 LABORATORY TESTING OF TEM SAMPLES

Samples shall be sent by the VPIH/CIH to a NIST accredited laboratory for analysis by TEM. The laboratory shall be successfully participating in the NIST Airborne Asbestos Analysis (TEM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor
3.8 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.8.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- A. Remove all equipment, materials, and debris from the project area.
- B. Package and dispose of all asbestos waste as required. Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations.
- C. Repair or replace all interior finishes damaged during the abatement work.
- D. The VA will be notified of any waste removed from the containment prior to 24 hours.
- E. Fulfill other project closeout requirements as specified elsewhere in this specification.

3.8.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.8.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

3.8.4 RE-INSULATION

If required as part of the contract, replace all asbestos containing insulation with suitable non-asbestos material. Provide MSDS for all replacement materials. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

ATTACHMENT #1

CERTIFICATE OF COMPLETION

DATE:	VA Project #:
PROJECT NAME:	_Abatement Contractor:

VAMC/ADDRESS:

1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):

which took place from / / to / /

- 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all glovebag work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:

CPIH/CIH Print Name:

Abatement Contractor Signature/Date:_____

Abatement Contractor Print Name:

ATTACHMENT #2

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

PROJECT	NAME :	DATE:	
PROJECT	ADDRESS:		

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:_____

Printed Name:_____

Social Security Number:

Witness:_____

ATTACHMENT #3

AFFIDAVIT	OF	MEDICAL	SURVEILLANCE,	RESPIRATORY	PROTECTION	AND
TRAINING/ACC	REDITA	TION				

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Name: Social Security Number:

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

- 2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.
- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH: _____ Date: _____

Printed Name of CPIH/CIH:

Signature of Contractor:	Date:	
--------------------------	-------	--

Printed Name of Contractor:

ATTACHMENT #4

ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA Project Location:

VA Project #:

VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____Date_____

Abatement Contractor Competent Person(s) _____ Date_____

- - - END- - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. COR: Contracting Officer's Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- D. Section 23 07 11, HVAC AND BOILER PLANT INSULATION
- E. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING
- F. Section 23 22 23, STEAM CONDENSATE PUMPS
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation

of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.

- All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the COR.
- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- D. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- E. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.

- F. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the COR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the COR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - Provide complete layout drawings required by Paragraph, SUBMITTALS.
 Do not commence construction work on any system until the layout drawings have been approved.
- G. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.

- F. Layout Drawings:
 - 1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - In addition, for HVAC systems, provide details of the following:
 a. Hangers, inserts, supports, and bracing.
 - b. Pipe sleeves.
- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Equipment and materials identification.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
- H. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment.
- Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): Section I-2007.....Power Boilers

Section IX-2007.......Welding and Brazing Qualifications

C. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application 85-07.....Boiler and Combustion Systems Hazards Code 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 101-09.....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost to the Government.
 - Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.

- 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
- 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the COR.
- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the

equipment identification code to be scanned into the system for maintenance and inventory tracking.

- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Valve Tags and Lists:
 - 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.5 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.6 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.

- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
 - c. Piping with Vertical Expansion and Contraction:
 - Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- B. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal.
 Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.7 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:

- 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
- For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

2.8 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.

- C. Refrigerant Tools: Provide system charging/evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.9 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type

drill will not be allowed, except as permitted by COR where working area space is limited.

- 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum.
- J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS,

Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COR's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- M. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Paint steel supports to match existing steel supports as required. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.

- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.

- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted.

- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Regulators.
 - b. Pressure reducing valves.
 - c. Control valves and steam traps.
 - d. Lubrication devices and grease fittings.
 - e. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - f. Valve stems and rotating shafts.
 - g. Pressure gauges and thermometers.
 - h. Glass.
 - i. Name plates.
 - 3. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 4. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
 - 5. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size,

performance.

3.8 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation.Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.9 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

3.10 STARTUP AND TEMPORARY OPERATION

Start up equipment shall be in accordance with manufacture's recommendations. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.11 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

3.12 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of condensate pumping systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Systems Readiness Report.
 - 5. Balancing Condensate Pumping systems; adjustment of total system to provide design performance; and testing performance of equipment.
 - 6. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Condensate Pumping Systems: Includes condensate pump, Steam supply, pump discharge, and float switch.

1.2 RELATED WORK

- A. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping and Equipment Insulation.
- B. Section 23 22 23, STEAM CONDENSATE PUMPS
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the Mechanical Contractor and shall report to and be paid by the Mechanical Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water

balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.

- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the Mechanical Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COR. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.

- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - Typical TAB procedures and results shall be demonstrated to the COR for one air distribution system (including all flash tank assembly and steam pumps, three randomly selected by the COR) as follows:
 a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the COR staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 60 days for design-build projects after the system layout on steam and condensate side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Systems Readiness Report.

- 4. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests.
- 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

2007HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter 47, Sound and Vibration Control

- C. Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System Balance
 - 20100100

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

- 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC AND BOILER PLANT INSULATION. Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the COR of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence to prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after equipment is on site and installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals.

3.4 SYSTEM READINESS REPORT

A. Inspect each System to ensure that it is complete including installation and operational. Submit report to COR in standard format and forms prepared and or approved by the Commissioning Agent.

3.5 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the COR if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the COR.

3.6 TAB PROCEDURES

A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.

- B. General: During TAB all related system components shall be in full operation. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project.
- C. Allow 30 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.

3.7 PHASING

A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing as directed by COR. Upon completion of the project all areas shall have been tested and balanced per the contract documents.

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Concealed: Piping above ceilings and in chases, and pipe spaces.
 - 4. Exposed: Piping, and equipment exposed to view in finished areas including mechanical, Boiler Plant and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished spaces, crawl spaces and pipe basements are not considered finished areas.
 - 5. FSK: Foil-scrim-kraft facing.
 - 6. Hot: HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 8. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 10. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
 - 11. HPS: High pressure steam (415 kPa [60 psig] and above).

- 12. HPR: High pressure steam condensate return.
- 13. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 14. MPR: Medium pressure steam condensate return.
- 15. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 16. LPR: Low pressure steam condensate gravity return.
- 17. PC: Pumped condensate.
- 18. CW: Cold water.

1.2 RELATED WORK

- A. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- B. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT: Insulation containing asbestos material.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 21 11, BOILER PLANT PIPING SYSTEMS: Boiler plant piping.
- E. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING
- F. Section 23 22 23, STEAM CONDENSATE PUMPS
- G. Section 23 50 11, BOILER PLANT MECHANICAL EQUIPMENT
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.1.2, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of <u>4.3.3.1.1</u> shall not apply to air duct weatherproof coverings

where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used.
 - c. Insulation accessory materials: Each type used.
 - d. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-07.....for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C533-09.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534-08..... Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-07.....Standard Specification for Mineral Fiber pipe Insulation C552-07.....Standard Specification for Cellular Glass Thermal Insulation

C553-08	Standard Specification for Mineral Fiber	
	Blanket Thermal Insulation for Commercial and	
	Industrial Applications	
C585-09	Standard Practice for Inner and Outer Diameters	
	of Rigid Thermal Insulation for Nominal Sizes	
	of Pipe and Tubing (NPS System) R (1998)	
C612-10	Standard Specification for Mineral Fiber Block	
	and Board Thermal Insulation	
C1126-04	Standard Specification for Faced or Unfaced	
	Rigid Cellular Phenolic Thermal Insulation	
E136-09b	Standard Test Methods for Behavior of Materials	
	in a Vertical Tube Furnace at 750 degrees C	
	(1380 F)	
National Fire Protection Association (NFPA):		
90A-09	Standard for the Installation of Air	
	Conditioning and Ventilating Systems	
101-09	Life Safety Code	
Manufacturer's Standardization Society of the Valve and Fitting		
Industry (MSS):		

SP58-2009......Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

Е.

F.

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II

D. Characteristics:

Insulation Characteristics			
ITEMS	TYPE I	TYPE II	
Temperature, maximum degrees C (degrees F)	649 (1200)	927 (1700)	
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)	
Thermal conductivity: Min W/ m K (Btu in/h ft ² degrees F)@ mean temperature of 93 degrees C (200 degrees F)	0.059 (0.41)	0.078 (0.540)	
Surface burning characteristics: Flame spread Index, Maximum	0	0	
Smoke Density index, Maximum	0	0	

2.3 INSULATION FACINGS AND JACKETS

- A. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- B. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- C. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.4 PIPE COVERING PROTECTION SADDLES

A. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be high density calcium silicate. Insulation at supports shall have same thickness as adjacent insulation.

2.5 ADHESIVE, MASTIC, CEMENT

A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.

- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- D. Other: Insulation manufacturers' published recommendations.

2.6 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.7 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the COR for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), systems. Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping, and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings.
- E. Install stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. HVAC work not to be insulated:
 - 1. Equipment: steam condensate pumps.

Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.

- H. Boiler plant work not to be insulated:
 - 1. Pipes, valves and fittings:
 - a. Threaded valves
 - b. Check valves
 - c. Unions
 - d. Pressure transmission to gages
 - 2. Equipment:
 - a. Condensate return pump units
 - b. Vacuum return pump units
 - c. Safety valves
 - d. All nameplates
 - 3. Specialties:
 - a. Pressure reducing valves
 - b. Control valves-water and steam
 - c. Level sensors-piping, valves and blowdown
 - d. Expansion bellows
 - e. Flexible connectors
- I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow.
- K. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed.

- Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
- d. Fire partitions

3.2 INSULATION INSTALLATION

- A. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- B. Calcium Silicate:

1. Thickness in millimeter (inches) shall match pipe sizes at pipe support locations.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
122-177 degrees C (251-350 degrees F) (HPS, MPS, LPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, All condensate piping, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)

- - - E N D - - -

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the HVAC systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in this Division is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.

- B. The following HVAC systems will be commissioned:
 - Condensate Pump Systems (Condensate pumps, controls/float switch, PRV, and steam traps).

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.2 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.4 TRAINING OF VA PERSONNEL

A. Training of the VA's operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 21 11 BOILER PLANT PIPING SYSTEMS

PART 1 - GENERAL:

1.1 DESCRIPTION:

All boiler plant piping systems, except plumbing and sanitary, including piping supports. Piping located outside of the boiler plant building is not included except as shown on drawings.

1.2 RELATED WORK:

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- B. Section 23 07 11, HVAC and BOILER PLANT INSULATION.
- C. Section 23 50 11, BOILER PLANT MECHANICAL EQUIPMENT.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE:

- A. Entire installation shall comply with ASME Power Piping Code, ASME B31.1 and appendices.
- B. Boiler External Piping, as defined in the ASME Boiler and Pressure Vessel Code, Section I, is required to be constructed and inspected in conformance with the ASME Code.
- C. Mechanics shall be skilled in their work or trade. Welders on pressure vessels or piping shall show evidence of qualification in accordance with the ASME Power Piping Code and the ASME Boiler and Pressure Vessel Code. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current. Each welder shall utilize a stamp to identify all work performed by the welder. The Government reserves the right to reject any personnel found unqualified in the performance of work for which they are employed.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Piping:
 - 1. ASTM material specification number.
 - 2. Grade, class or type, schedule number.
 - 3. Manufacturer.
- C. Pipe Fittings, Unions, Flanges:
 - 1. ASTM material specification number.
 - 2. ASME standards number.
 - 3. Catalog cuts.

- 4. Pressure and temperature ratings.
- D. Valves Gate, Globe, Check, Plug, Butterfly, Ball:
 - 1. Catalog cuts showing design and construction.
 - 2. Pressure and temperature ratings.
 - 3. Materials of construction.
 - 4. Accessories.
- E. Pressure Reducing and Regulating Valves, Back Safety Valves, Relief Valves:
 - 1. Catalog cuts showing design and construction.
 - Service limitations (type of fluid, maximum pressure and temperatures).
 - 3. Materials of construction.
 - 4. Flow capacity at required set pressure.
 - 5. Predicted sound levels, at operating condition, for steam pressure reducing valves.
- F. Strainers:
 - 1. Catalog cuts showing design and construction.
 - 2. Pressure and temperature ratings.
 - 3. Materials of construction.
 - 4. Strainer basket or liner mesh.
 - 5. Pressure loss and flow rate data.
- G. Steam Traps:
 - 1. Catalog cuts showing design and construction.
 - 2. Service limitations (maximum pressures and temperatures).
 - 3. Materials of construction.
 - 4. Flow rates at differential pressures shown on drawings.
 - 5. Orifice size for each trap.
- H. Pipe Support Systems:
 - Credentials of technical personnel who will design the support systems.
 - 2. Validation of computer program for pipe support selection.
 - 3. Input and output data for pipe support selection program for all piping systems with pipe sizes 60 mm (2-1/2 inches) and above.
 - 4. Hanger load calculation methods and results for piping systems with pipe sizes 50 mm (2 inches) and below.
 - 5. Piping layouts showing location and type of each hanger and support.
 - Catalog cuts showing design and construction of each hanger and support and conformance of hangers and supports to MSS standards.

- 7. Drawings showing arrangement and sizes of all components comprising each support assembly.
- Load rating and movement tables for all spring hangers, and seismic shock absorbing devices.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING:

All piping shall be stored and kept free of foreign material and shall be internally and externally cleaned of all oil, dirt, rust and foreign material. Deliver and store valves and pipe hangers in sealed shipping containers with labeling in place. Storage must be in dry, protected location.

1.6 INFORMATION ON PRESSURE-TEMPERATURE DESIGN OF PIPING SYSTEMS:

- A. Steam service pressures are selected to provide optimum pressure to the facilities served by the boiler plant. Main steam header pressure shall be controlled at 620 kPa (90 psi). Maximum pressure capability of steam systems between boilers and through first pressure reducing valve protected by a safety valve shall be governed by the pressure/temperature relationship of the highest safety valve setting shown for the boilers.
- B. Steam distribution systems protected by safety values following pressure reducing stations or protected by safety values on the boilers shall be governed by the pressure/temperature relationship developed by the maximum setting of the safety value on that system.
- C. Condensate collection systems are designed for maximum temperatures to $100^{\circ}C$ (212°F), and pressures 276 kPa (40 psi).
- D. Low pressure steam, condensate, vacuum and vents are designed for service pressures and temperatures equivalent to 103 kPa (15 psi) saturated steam.

1.7 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

A47/A47M-99(2009).....Standard Specification for Ferritic Malleable Iron Castings

A48/A48M-03(2008).....Standard Specification for Gray Iron Castings A53/A53M-10....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

	A105/A105M-10Standard Specification for Carbon Steel
	Forgings for Piping Applications
	A106/A106M-10Standard Specification for Seamless Carbon
	Steel Pipe For High Temperature Service
	A126-04(2009)Standard Specification for Gray Iron Castings
	for Valves, Flanges and Pipe Fittings
	A193/A193M-10Standard Specification for Alloy-Steel and
	Stainless Steel Bolting Materials for High
	Temperature Service
	A194/A194M-10Standard Specification for Carbon and Alloy
	Steel Nuts for Bolts for High-Pressure or High-
	Temperature Service, or Both
	A197/A197M-00(2006)Standard Specification for Cupola Malleable
	Iron
	A216/A216M-08Standard Specification for Steel Castings,
	Carbon, Suitable for Fusion Welding, For High
	Temperature Service
	A234/A234M-10Standard Specification for Piping Fittings of
	Wrought Carbon Steel and Alloy Steel for
	Moderate and High Temperature Service
	B61-08 or Valve
	Bronze Castings
	B62-09 Standard Specification for Composition Bronze
	or Ounce metal Castings
C.	American Society of Mechanical Engineers (ASME):
	Section IXWelding and Brazing Qualifications
	B16.3-2006Malleable Iron Threaded Fittings
	B16.4-2006Gray Iron Threaded Fittings
	B16.5-2009Pipe Flanges and Flanged Fittings: NPS $\frac{1}{2}$
	Through 24
	B16.9-2007Factory Made Wrought Buttwelding Fittings
	B16.11-2009Forged Fittings, Socket-Welding and Threaded
D.	Manufacturers Standardization Society of the Valve and Fittings
	Industry (MSS):
	SP-45-03(2008)Bypass and Drain Connections
	SP-58-2009Pipe Hangers and Supports-Materials, Design,
	Manufacture, Selection, Application, and
	Installation

	SP-69-2003	Pipe Hangers and Supports-Selection and
		Application
	SP-80-2008	Bronze, Gate, Globe, Angle and Check Valves
	SP-89-2003	Pipe Hangers and Supports-Fabrication and
		Installation Practices
	SP-90-2000	Guidelines on Terminology for Pipe Hangers and
		Supports
	SP-97-2006	Integrally Reinforced Forged Branch Outlet
		Fittings - Socket Welding, Threaded and
		Buttwelding Ends
	American Welding Society	/ (AWS):
	B2.1-2009	Specification for Welding Procedure and
		Performance Qualification
•	Pipe Fabrication Institu	ate (PFI):
	PFI ES-24-08	Pipe Bending Methods, Tolerances, Process and

PART 2 - PRODUCTS:

Е

F

2.1 STEAM PIPING:

A. Pipe: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or electric resistance welded (ERW). Schedule 40 for piping up to 862 kPa (125 psig) with welded ends, Schedule 80 for piping with threaded ends and piping over 862 kPa (125 psig) with welded ends.

Material Requirements

- B. Joints:
 - 1. Pipe sizes 65 mm (2-1/2 inches) and above: Butt-welded
 - Pipe sizes 50 mm (2 inches) and below: Threaded, butt-welded, or socket-welded.
- C. Fittings:
 - 1. Welded joints: Steel, ASTM A234, Grade B, ASME B16.9, same schedule as adjoining pipe, all elbows long radius.
 - Threaded joints: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class; or malleable iron, ASTM A47 or A197, ASME B16.3, 2050 kPa (300 psi) class.
 - Socket-welded joints: Forged steel, ASME B16.11, 13,790 kPa (2000 psi) class.
- D. Unions on Threaded Piping: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, 2050 kPa (300 psi) on piping 50 mm (2 inches) and under.

E. Flanges and Bolts: Forged steel weld neck, ASME B16.5, ASTM A105, 1025 kPa (150 psi) pressure class, except 2050 kPa (300 psi) class required adjacent to 1725 kPa (250 psi) and 2050 kPa (300 psi) class valves. Bolts shall be high strength steel ASTM A193, Class 2, Grade B8. Nuts shall be ASTM A194.

2.2 STEAM CONDENSATE PIPING:

- A. Includes all gravity, drip return, pumped and vacuum systems.
- B. Pipe: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or ERW, Schedule 80.
- C. Joints:
 - 1. Pipe sizes 65 mm (2-1/2 inches) and above: Butt-welded.
 - 2. Pipe sizes 50 mm (2 inches) and below: Threaded, butt-welded or socket-welded.
- D. Fittings:
 - 1. Welded joints: Steel, ASTM A234, Grade B, ASME B16.9, same schedule as adjoining pipe.
 - Threaded joints: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class; or malleable iron, ASTM A47 or A197, ASME B16.3, 2050 kPa (300 psi) class.
 - 3. Socket-welded joints: Forged steel, ASME B16.11, 13,800 kPa (2000 psi) class.
- E. Unions on Threaded Piping: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, 2050 kPa (30 psi). On piping 50 mm (2 inches) and under.
- F. Flanges: Forged steel weld neck, ASTM A105, ASME B16.5, 1025 kPa (150 psi).
- 2.3 VENT LINES FROM TANKS AND SAFETY AND RELIEF VALVES:
 - A. Pipe: Carbon steel, ASTM A53 Grade B or A106 Grade B, seamless or ERW, Schedule 40.
 - B. Joints:
 - 1. Pipe sizes 65 mm (2-1/2 inches) and above: Butt-welded.
 - 2. Pipe sizes 50 mm (2 inches) and below: Threaded or butt-welded.
 - C. Fittings:
 - 1. Welded Joints: Steel, ASTM A234 Grade B, ASME B16.9, same schedule as adjoining pipe.
 - 2. Threaded Joints: Cast iron, ASME B16.4, 850 kPa (125 psi).
 - D. Unions: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, 1025 kPa (150 psi) class.

E. Flanges: Forged steel weld neck, ASME B16.5, ASTM A105, 1025 kPa (150 psi).

2.4 MISCELLANEOUS PIPING:

- A. Instrument and Control Piping (Sensing Point to Transmitter, Controller, or Other Instrument): Construction shall be same as specified for main service.
- B. Drain Piping (All Drain Piping Discharging to Floor Drain-From Drain Valve to Floor Drain):
 - Pipe: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or ERW, Schedule 40.
 - Fittings and Unions: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class); or malleable iron, 1025 kPa (150 psi), threaded.

2.5 VALVES; GATE, GLOBE, PLUG, CHECK, BALL, BUTTERFLY, VENT COCKS:

- A. Valves for particular services are generally specified as Type Numbers. The Type Numbers are defined below. All valves of the same type shall be the products of a single manufacturer. Comply with MSS SP-45, MSS SP-80, and ASME B31.1. Design valves for the service fluids and conditions. Pressure-temperature ratings listed are minimum requirements. Packing and gaskets shall not contain asbestos.
- B. Valve Type Designations:
 - 1. Gate Valves:
 - a. Type 101: Cast steel body ASTM A216 WCB, rated for 1025 kPa at 260°C (150 psi at 500°F), ll-1/2 to 13 percent chromium stainless steel flexible wedge and hard faced (stellite) or nickel copper alloy seats, 1025 kPa (150 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet.
 - Provide factory installed globe-valved warm-up bypass when main valve is 75 mm (3 inch) pipe size or greater and serves steam main longer than 6 m (20 feet). Conform to MSS SP-45.
 - Drill and tap bosses for connection of drains. Conform to MSS SP-45.
 - b. Type 102: Cast iron body ASTM Al26 Class B, rated for 1725 kPa (250 psi) saturated steam, 3440 kPa (500 psi) WOG, bronze wedge and seats, 1725 kPa (250 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.
 - Provide factory installed globe-valved bypass when main valve is 75 mm (3 inch) pipe size or greater and serves steam main longer than 6 m (20 feet). Conform to MSS SP-45.

- 2) Drill and tap bosses for connection of drains if valve is in steam service. Conform to MSS SP-45.
- c. Type 103: Cast iron body ASTM Al26 Class B, rated for 850 kPa (125 psi) saturated steam, 1375 kPa (200 psi) WOG, bronze or bronze faced wedge and seats, 850 kPa (125 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.
 - Provide factory installed globe-valved bypass when main valve is 75 mm (3 inch) pipe size or greater and serves steam main longer than 6 m (20 feet). Conform to MSS SP-45.
 - 2) Drill and tap bosses for connection of drains if valve is in steam service. Conform to MSS SP-45.
- d. Type 104: Bronze body ASTM B61, rated for 1375 kPa (200 psi) saturated steam, 2750 kPa (400 psi) WOG, bronze wedges and Monel or stainless steel seats, threaded ends, rising stem, union bonnet.
- e. Type 105: Forged steel body ASTM A105, rated for 2050 kPa at 216°C (300 psi at 420°F) minimum, Class 4130 kPa (600 psi) or Class 5500 kPa (800 psi), hardened stainless steel or stellite wedge and seats, threaded ends, OS&Y, rising stem, bolted bonnet.
- 2. Globe Valves:
 - a. Type 201: Cast steel body ASTM A216 WCB, rated for 1025 kPa at 260°C (150 psi at 500°F), 11-1/2 to 13 percent chromium stainless steel or stellite disc and seat, 1025 kPa (150 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings. Drill and tap bosses for connection of drains where shown. Conform to MSS SP-45.
 - b. Type 202: Cast iron body ASTM A126 Class B, rated for 1725 kPa (250 psi) saturated steam, 3440 kPa (500 psi) WOG, bronze or bronze faced disc and seat, 1725 kPa (250 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings. Drill and tap bosses for connection of drains where shown. Conform to MSS SP-45.
 - c. Type 203: Cast iron body ASTM A126 Class B, rated for 850 kPa (125 psi) saturated steam, 1375 kPa (200 psi) WOG, bronze or bronze-faced disc (Teflon or composition facing permitted) and seat, 850 kPa (125 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.

- d. Type 204: Bronze body ASTM B61, rated for 1375 kPa (200 psi) saturated steam, 2750 kPa (400 psi) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, renewable seat rings.
- e. Type 205: Forged steel body ASTM A105, rated for 2050 kPa at 216°C (300 psi at 420°F) minimum, Class 4130 kPa (600 psi) or Class 5500 kPa (800 psi), stainless steel disc, stellite seat, threaded ends, OS&Y, rising stem, bolted bonnet.
- 3. Plug Valves: Cast iron body ASTM Al26 Class B, rated for 1200 kPa (175 psi) WOG, one-fourth turn to open. 850 kPa (125 psi) ASME flanged ends for pipe sizes above 50 mm (2 inches), threaded ends for pipe sizes 50 mm (2 inches) and under. All components designed for service to which applied: natural gas, LP gas (propane), or fuel oil. Furnish lever handle for each valve.
 - a. Type 301: Two-way valves up through 100 mm (4 inches) pipe size. Eccentric action, non-lubricated plug with resilient seal molded into groove on plug face providing bubble-tight shut off. O-ring stem seal, corrosion-resistant bearings, corrosion-resistant seat coating, seal materials as recommended by valve manufacturer for the service. Valves on natural gas service AGA approved.
 - b. Type 302: Two-way valves 125 mm (5 inches) pipe size and above, all sizes of three way valves. Lubricated full-port plug type with lubricant for intended service. Reinforced Teflon stem seal, valve plug floated on Teflon surfaces, lubricant injection system that has sufficient pressure to fully lubricate all sealing surfaces. Provide laminated plastic label attached to each valve stating, "Lubricate once a year".
- 4. Check Valves:
 - a. Type 401: Not used.
 - b. Type 402: Swing-type, cast iron body ASTM A126 Class B, rated for 1725 kPa (250 psi) saturated steam, 3440 kPa (500 psi) WOG, bronze or bronze-faced disc and seat, 1725 kPa (250 psi) ASME flanged ends, bolted cover, renewable disc and seat.
 - c. Type 403: Swing-type, cast iron body ASTM Al26 Class B, rated for 850 kPa (125 psi) saturated steam, 1375 kPa (200 psi) WOG, bronze or bronze-faced disc and seat, 850 kPa (125 psi) ASME flanged ends, bolted cover, renewable disc and seat.

- d. Type 404: Swing-type, bronze body ASTM B61, rated for 1375 kPa (200 psi) saturated steam, 2750 kPa (400 psi) WOG, bronze disc, threaded ends, regrinding disc.
- e. Type 405: Lift-type, forged steel body ASTM A105, rated for 2050 kPa at 216°C (300 psi at 420°F) minimum (Class 4130 kPa (600 psi) or 5500 kPa (800 psi)), hardened stainless steel disc, hard faced seat, bolted cover, threaded ends.
- f. Type 406: Swing-type, Type 316 stainless steel body, disc and hanger, rated for 1725 kPa at 182°C (250 psi at 360°F) minimum.
- g. Type 407: Silent spring-loaded wafer type, cast iron body ASTM A48 or A126 Class B, rated for 850 kPa (125 psi) water, 121°C (250°F).
- h. Type 408: Silent spring-loaded wafer type, cast steel ASTM A216
 WCB or cast iron ASTM A48 or A126 body, rated for 2050 kPa (300 psi) water, 121°C (250°F), stainless steel trim.

2.6 SAFETY VALVES, RELIEF VALVES, SAFETY RELIEF VALVES AND ACCESSORIES:

- A. Provide valves and accessories to protect piping systems and pressure vessels from over-pressure. All valves shall comply with ASME Boiler and Pressure Vessel Code (Section I and VIII). Flow capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors (NB).
- B. Steam Service (Pressure Vessels and Piping Systems): Refer to schedules on drawings for set pressures and capacities. Provide lifting levers, stainless steel trim, lapped seats on cast iron valves, EPDM o-rings on bronze valves.

2.7 STEAM PRESSURE REDUCING VALVES

- A. Type: Single-seated, diaphragm operated, spring-loaded, steam pilot-controlled, normally closed, packless, adjustable set pressure.
 Pilot shall sense controlled pressure downstream of main valve.
- B. Service: Provide controlled reduced pressure to steam piping systems. Design for saturated steam at pressures shown on drawings or equipment requirements.
- C. Performance: Pressure control shall be smooth, continuous. Maximum 10 percent deviation from set pressure over an 18/1 turndown. Refer to schedules on drawings for flow and pressure requirements. Maximum flow capability of each valve shall not exceed capacity of downstream safety valves.

- D. Construction:
 - Main Valve: Cast iron body rated for 1725 kPa (250 psi), threaded ends, for pipe sizes 50 mm (2 inches) and under. Cast steel body rated for 1025 kPa (150 psi) ASME flanged ends, or cast iron body 1725 kPa (250 psi) ASME flanged ends, for pipe sizes above 50 mm (2 inches). Valve plug and seat shall be replaceable, Type 316 stainless steel or Monel. Stainless steel stem.
 - 2. Pilot Valve: Valve plug and seat shall be replaceable, stainless steel or Monel.

2.8 STRAINERS, Y-TYPE

- A. Provide as shown on steam, water and compressed air piping systems.
- B. Type: Open-end removable cylindrical screen. Threaded blow-off connection.
- C. Construction:
 - 1. Steam Service 420 to 1025 kPa (61 to 150 psi): Cast steel rated for 1025 kPa (150 psi) saturated steam with 1025 kPa (150 psi) ASME flanged ends, or cast iron with 1725 kPa (250 psi) ASME flanged ends, for pipe sizes above 50 mm (2 inches). Cast iron or bronze, rated for saturated steam at 1025 kPa (150 psi) threaded ends, for pipe sizes 50 mm (2 inches) and under.
 - 2. Steam Service 415 kPa (60 psi) and under, water (except boiler feed between feedwater pumps and boilers), compressed air: Cast iron rated for 850 kPa (125 psi) saturated steam, 1200 kPa (175 psi) WOG, with 850 kPa (125 psi) ASME flanged ends for pipe sizes above 50 mm (2 inches). Cast iron or bronze, threaded ends, rated for 850 kPa (125 psi) saturated steam, 1200 kPa (175 psi) WOG, for pipe sizes 50 mm (2 inches) and under.
- D. Screen: Monel or stainless steel, free area not less than 2-1/2 times flow area of pipe. For strainers 80 mm (3 inch) pipe size and smaller, diameter of openings shall be 0.8 mm (0.033 inch) or less on steam service, 1.3 mm (0.05 inch) or less on water service, 0.3 mm (0.01-inch) or less on compressed air service. For strainers 100 mm (4 inch) pipe size and greater, diameter of openings shall be 1.3 mm (0.05 inch) on steam service, 3 mm (0.125 inch) on water service. Provide 80 mesh stainless steel screen liner on all strainers installed upstream of water meters or control valves.

E. Accessories: Gate or ball valve and quick-couple hose connection on all blowoff connections. These items are specified elsewhere in this section.

2.9 STEAM TRAPS

- A. Application: Steam line drip points at flash tank assembly steam supply. Each type furnished by a single manufacturer.
- B. Type: Inverted bucket type on discharge side of pressure reducing stations. Refer to the drawings for trap locations, capacity and size, differential operating pressures, and design pressure.
- C. Bodies: Cast iron or stainless steel. Construction shall permit ease of removal and servicing working parts without disturbing connected piping.
- D. Floats: Stainless steel.
- E. Valves: Hardened chrome-steel.
- F. Mechanism and Thermostatic Elements: Stainless steel mechanisms. Bimetallic strip air vent on inverted bucket traps.
- G. Provision for Future Trap Monitoring System: All traps shall include ports for future installation of monitoring devices. Ports shall be plugged. To facilitate future removal of the plugs, install them with Teflon tape on the threads.
- H. Identification: Label each trap at the factory with an identification number keyed to number that is shown on the drawings. Label shall be a metal tag permanently affixed to the trap.
- I. Factory-Packaged Trap Station: As an option for drip points requiring isolating valves, strainer, trap, trap monitoring device or ports for future monitoring device, and valved test ports, provide factorypackaged trap station including these features

2.10 FLEXIBLE CONNECTORS

A. Provide flexible connectors as shown to allow differential movements of pumps and piping systems subject to thermal expansion and vibration.

2.11 PIPING SUPPORT SYSTEMS

- A. Provide an engineered piping support system with all hangers, supports and anchors designed and located by experienced technical pipe support specialists, utilizing piping system design and analysis software. The system design must be completely documented and submitted for review.
- B. All pipe hangers and supports, and selection and installation shall comply with MSS SP-58, SP-69, SP-89, SP-90, SP-127.

- C. All pipe hanger and support devices must be in compliance with specified MSS SP-58 type numbers, have published load ratings, and be products of engineered pipe support manufacturers.
- D. All pipe stresses and forces and moments on connecting equipment and structures shall be within the allowances of the ASME B31.1 code, applicable building codes, and equipment manufacturer's design limits.
- E. Piping that expands and contracts horizontally including steam, steam condensate, shall be supported by roller or sliding type hangers and supports except when long vertical hanger rods permit sufficient horizontal movement with the vertical angles of the rods less than 4 degrees.
- F. Piping that expands and contracts vertically including steam, steam condensate, shall be supported by engineered variable spring and spring cushion hangers. Utilize MSS SP-69 selection requirements and guidelines. Vibration isolator hanger types are not permitted.
- G. Piping system anchors shall be engineered and located to control movement of piping that is subject to thermal expansion.
- H. Prior to construction, submit complete engineering calculation methods and results, descriptions of all devices with MSS numbers, sizes, load capabilities and locations. Submit calculations on all moments and forces at anchors and guides, all hanger loads, all pipe stresses that are within 20% of the code allowable or exceed the ASME B31.1 code allowable, all pipe movements at supports.
- I. Detailed Design Requirements:
 - Piping system design and analysis software shall be current state of the art that performs B31.1 Code analyses, and shall be utilized to analyze pipe movement and deflection, pipe stresses, pipe support forces and moments, and for selection of pipe support types and sizes.
 - 2. Each support for piping 60 mm (2-1/2 inches) and above shall be completely engineered to include location, type and size, hot and cold loads and movement. Submit layout drawings showing precise support locations and submit individual drawings for each support assembly showing all components, sizes, loadings.
 - 3. Supports for piping 50 mm (2 inches) and below shall be engineered in general terms with approximate locations, typical support types and sizes, approximate movements. Submit layout drawings showing general locations and support types and sizes.

- 4. Obtain permissible loadings (forces and moments) for equipment nozzles (pipe connections) from the manufacturer of the condensate pumps and any other equipment as necessary. Professional structural engineer shall verify capability of building structure to handle piping loads.
- 5. The project drawings may show locations and types of resilient supports including rollers and springs, and may also show special supports including anchors, guides and braces. Comply with the drawing requirements unless it is determined that piping may be overstressed or supports overloaded. Refer conflicts to the COR.
- 6. Variable spring hangers conforming the MSS SP-58, Type 51, shall support all piping that expands vertically from thermal effects which may include connected equipment, such as boilers. Spring rates must be selected to avoid excessive load transfer to the connected equipment as the piping expands vertically. Vibration-type spring isolators are not acceptable. Light duty spring hangers, MSS SP-58, Type 48, may be utilized on loads of 90 kg (200 lb) or less, and vertical movement of 3 mm (0.125 inches) or less. Spring cushion hangers, MSS SP-58, Type 49, may be utilized for vertical movement of 3 mm (0.125 inches) or less.
- 7. Locate supports to permit removal of valves and strainers from pipelines without disturbing supports.
- If equipment and piping arrangement differs from that shown on the drawings, support locations and types shall be revised at no cost to the Government.
- J. Hangers and Supports Products:
 - Factory-built products of a manufacturer specializing in engineered pipe supports. All components must have published load ratings. All spring type supports shall have published spring rates and movement limits. All support assemblies shall include threaded connections that permit vertical position adjustment. Supports shall comply with MSS SP-58 Type Numbers as listed below.
 - Upper Attachments to Building Structure: Types 18, 20, 21, 22, 23, 29, and 30.
 - 3. Roller Supports: Types 41, 43, and 46. Provide vertical adjustment for Type 41 with threaded studs and nuts adjacent to the roller.
 - 4. Variable Spring Hanger Assembly:

- a. Type 51 variable spring, with Type 3 pipe clamp or Type 1 clevis.
 Type 53 variable spring trapeze may also be used. Locate Type 51 variable spring within 300 mm (1 foot) above pipe attachment.
 Attach rod to top of variable spring with Type 14 clevis.
- b. Typical features of variable spring hangers include spring rates under 150 lb/in, enclosed spring, load and travel indicator, sizes available with load capabilities ranging from 50 lb to multiples of 10,000 lb.
- 5. Spring Cushion Hanger Assembly: Double Rod: Type 41 and 49.
- 6. Light Duty Spring Hanger Assembly: Type 48 light duty spring, with Type 3 pipe clamp or Type 1 clevis. Locate Type 48 light duty spring within 300 mm (1 foot) above pipe attachment.
- 7. Clevis Hangers: Type 1.
- 8. Wall Brackets: Type 31, 32, and 33.
- 9. Pipe Stands: Type 38.
- 10. Riser Clamps: Type 42.
- 11. Roller Guides: Type 44. Construct guides to restrain movement perpendicular to the long axis of the piping. All members shall be welded steel.
- 12. Trapeze Supports: May be used where pipes are close together and parallel. Construct with structural steel channels or angles. Bolt roller supports to steel to support piping subject to horizontal thermal expansion. Attach other piping with U-bolts.
- 13. Pipe Covering Protection Saddles: Type 39. Provide at all support points on insulated pipe except where Type 3 pipe clamp is provided. Insulation shields are not permitted. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- 14. Sliding Supports: Type 35. Welded steel attachments to pipe and building structure with Teflon or graphite sliding surfaces bonded to the attachments. Provide steel guides, except at expansion bends, to prevent lateral movement of the pipe.
- 15. Piping Anchors: Provide engineered designs to accommodate the calculated loads.

2.12 PIPE AND VALVE FLANGE GASKETS

Non-asbestos, designed for the service conditions. On steam service utilize 3 mm (1/8 inch) thick Class 300 spiral-wound with Type 304 stainless steel and mica/graphite filler and carbon steel gauge ring.

2.13 THREAD SEALANTS:

As recommended by the sealant manufacturer for the service.

2.14 PIPE SLEEVES:

- A. Service: For pipes passing through floors, walls, partitions.
- B. Construction: Steel pipe, schedule 10 minimum.
- C. Sleeve Diameter: Not less than 25 mm (1 inch) larger than the diameter of the enclosed pipe and thermal insulation, vapor barrier, and protective covering for insulated pipe; sleeves for un-insulated pipe shall be not less than 25 mm (1 inch) larger than the diameter of the enclosed pipe.

PART 3 - EXECUTION

3.1 ARRANGEMENT OF PIPING

- A. The piping arrangement shown is a design based on currently available equipment. The plans show typical equipment to scale and show practical arrangement. Modification will be necessary during construction, at no additional cost to the Government, to adapt the equipment layout and piping plans to the precise equipment purchased by the Contractor. Accessibility for operation and maintenance must be maintained.
- B. All piping shall be installed parallel to walls and column centerlines (unless shown otherwise). Fully coordinate work of each trade to provide the designed systems without interference between systems. All piping shall be accurately cut, true, and beveled for welding. Threaded piping shall be accurately cut, reamed and threaded with sharp dies. Copper piping work shall be performed in accordance with best practices requiring accurately cut clean joints and soldering in accordance with the recommended practices for the material and solder employed.
- C. All piping shall be pitched for drainage at a constant slope of 25 mm in 12 m (1 inch in 40 feet). Steam, condensate, trap discharge, drip, drain, air, gas and blowdown piping shall pitch down in direction of flow. Service water, pumped condensate, pumped boiler feedwater, oil, shall pitch up in direction of flow. Provide valved air vents at top of rise and valved drains at low points. Gas piping may be run level as it is presumed to be dry, but dirt pockets shall be provided at base of risers.
- D. Valves shall be located and stems oriented to permit proper and easy operation and access to valve bonnet for maintenance of packing, seat and disc. Valve stems shall not be below centerline of pipe. Refer to plans for stem orientation. Where valves are more than 2100 mm (7 feet)

above the floor or platform, stems shall be horizontal unless shown otherwise. Gate and globe valves more than 3 m (10 feet) above floor or platform, shall have chain wheel and chain for operation from floor or platform. Provide hammer-blow wheel on any valve that cannot be opened or tightly closed by one person. Steam line gate type isolation valves 750 mm (3 inch) pipe size and above shall have factory or fieldfabricated 20 mm or 25 mm (3/4 or one inch) globe-valved warm-up bypasses if the steam line length is 6 m (20 feet) or longer.

- E. Provide union adjacent to all threaded end valves.
- F. Provide values as necessary to permit maintenance of a device or sub-system without discontinuing service to other elements of that service or system.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used by his organization, determine the suitability of the procedures used, determine that the welds made will meet the required tests, and also determine that the welding operators have the ability to make sound welds under standard conditions.
 - 2. Comply with ASME B31.1 and AWS B2.1.
 - Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, and AWS B2.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.

- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Utilize split welding rings or approved alternate method for joints on all pipes above 50 mm (two-inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (one foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:
 - The COR may require up to ten percent of the welded piping joints to be examined using radiographic testing. If defective welds are discovered the COR may require examination of all pipe joint welds.
 - 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
 - 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR reserves the right to review all inspection records.
- Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening will not be permitted. Welders responsible for defective welds must be requalified.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPING JOINTS

- A. All butt-welded piping shall be welded at circumferential joints, flanges shall be weld neck type; slip-on flanges, screwed flanges may be applied only with written approval of the COR.
- B. Companion flanges at equipment or valves shall match flange construction of equipment or valve. Raised face shall be removed at all companion flanges when attached to flanges equipped for flat face construction.
- C. Gaskets and bolting shall be applied in accordance with the recommendations of the gasket manufacturer and bolting standards of ASME B31.1. Strains shall be evenly applied without overstress of bolts. Gaskets shall cover entire area of mating faces of flanges.
- D. Screw threads shall be made up with Teflon tape except gas and oil piping joints shall utilize specified joint compound.

3.4 BRANCH INTERSECTION CONNECTIONS

- A. Factory-built reinforced tees and laterals are required.
- B. Factory-built integrally-reinforced forged steel branch outlet fittings may be used on reduced size connections upon approval of COR. They must comply with MSS-SP-97.

3.5 EXPANSION AND FLEXIBILITY

The design includes provision for piping expansion due to pressure, thermal, and weight (where applicable) effects. It is the Contractor's responsibility to avoid reduction in flexibility and increase in stress in piping systems. Major deviation will be shown by submittal for review of scale working drawings and stress calculations for the piping systems. Contractor shall provide any necessary additional construction and materials to limit stresses to safe values as directed by the COR and at no additional cost to the Government.

3.6 SIZE CHANGES

Piping size changes shall be accomplished by use of line reducers, reducing ell, reducing tee. Apply eccentric reduction in all piping requiring continuous drainage; steam, condensate, vacuum, blowdown. Concentric reduction may be applied in run of piping involving pressure water systems except at pump inlets. Use concentric increasers where flow is in direction of increased size. Eccentric reduction, top flat, at all pump connections.

3.7 ADDITIONAL DRIPS AND TRAPS

Where additional rises or drops in steam lines are provided, provide additional drip pockets with steam trap assemblies on steam lines and additional dirt pockets on gas lines.

3.8 MINOR PIPING

Minor piping associated with instrumentation and control is generally not shown. Interconnection of sensors, transducers, control devices, instrumentation panels, combustion control panel, burner control panels is the responsibility of the contractor. Small piping associated with water cooling, drips, drains and other minor piping may not be shown to avoid confusion in the plan presentation but shall be provided as part of contract work.

3.9 DIELECTRIC CONNECTION

Where copper piping is connected to steel piping provide dielectric connections.

3.10 INSTALLATION - SIGHT FLOW INDICATORS

Locate to permit view from floor or platform.

3.11 INSTALLATION - PRESSURE AND TEMPERATURE REGULATORS, CONTROL VALVES, SAFETY SHUT-OFF VALVES

Provide sufficient clearance on all sides of valve to permit replacement of working parts without removing valve from pipeline.

3.12 INSTALLATION - SAFETY VALVES, RELIEF VALVES AND SAFETY-RELIEF VALVES

- A. Orient valves so that lifting levers are accessible from nearest walkway or access platform. Valves must be removable without requiring disassembling of vents, except where otherwise specifically provided.
- B. Provide a drip pan elbow at discharge of each steam or economizer valve with slip joint in vent discharge line, arranged to prevent vent line from imposing any force on valve and to prevent any moisture accumulation in valve. Connected drip pan ell drains to drain piping to floor drain. Provide flexible connector on drain line, adjacent to drip pan ell.
- C. Support vent line from above. Each steam valve must have separate vent line to atmosphere unless shown otherwise.

3.13 INSTALLATION - Y-TYPE STRAINERS ON STEAM SERVICE

Install with basket level with the steam pipe so that condensate is not trapped in the strainer.

3.14 INSTALLATION - PIPE SLEEVES

- A. Accurately locate and securely fasten sleeves to forms before concrete is poured; install in walls or partitions during the construction of the walls.
- B. Sleeve ends shall be flush with finished faces of walls and partitions.
- C. Pipe sleeves passing through floors shall project 25 mm (1 inch) minimum above the finished floor surface and the bottom of the sleeve shall be flush with the underside of the floor slab.

3.15 INSTALLATION - PIPE SUPPORT SYSTEMS

- A. Coordinate support locations with building structure prior to erection of piping. Also refer to approved shop drawings of equipment and approved piping layout and hanger layout drawings when locating hangers. Arrangement of supports shall facilitate operating, servicing and removal of valves, strainers, and piping specialties. Hanger parts must be marked at the factory with a numbering system keyed to hanger layout drawings. Layout drawings must be available at the site.
- B. Upper attachments to Building Structure:
 - 1. New Reinforced Concrete Construction: Concrete inserts.
 - 2. Existing Reinforced Concrete Construction: Upper attachment welded or clamped to steel clip angles (or other construction shown on the drawings) which are expansion-bolted to the concrete. Expansion bolting shall be located so that loads place bolts in shear.
 - 3. Steel Deck and Structural Framing: Upper attachments welded or clamped to structural steel members.
- C. Expansion Fasteners and Power Set Fasteners: In existing concrete floor, ceiling and wall construction, expansion fasteners may be used for hanger loads up to one-third the manufacturer's rated strength of the expansion fastener. Power set fasteners may be used for loads up to one-fourth of rated load. When greater hanger loads are encountered, additional fasteners may be used and interconnected with steel members combining to support the hanger.
- D. Special Supports:
 - Secure horizontal pipes where necessary to prevent vibration or excess sway.
 - 2. Where hangers cannot be adequately secured as specified, (for example, support for flow metering sensing lines, pneumatic tubing, control piping) special provisions shall be made for hanging and supporting pipe as directed by the COR.

- 3. Pipe supports, hangers, clamps or anchors shall not be attached to equipment unless specifically permitted by the specifications for that equipment or unless COR gives written permission. No attachments to boiler casings permitted.
- E. Spring Hangers: Locate spring units within one foot of the pipe, breeching or stack attachment except in locations where spring assemblies interfere with pipe insulation. Adjust springs to loads calculated by hanger manufacturer.
- F. Seismic Braces and Restraints: Do not insulate piping within one foot of device until device has been inspected by COR.

3.16 CLEANING OF PIPING AFTER INSTALLATION

Flush all piping sufficiently to remove all dirt and debris. Fill piping completely. Velocity shall be equivalent to that experienced during normal plant operation at maximum loads. During flushing, all control valves, steam traps and pumps must be disconnected from the system. After cleaning is complete, remove, clean and replace all strainer baskets and elements. Reconnect all equipment. Provide safe points of discharge for debris blown from pipes.

3.17 TESTING

- A. Testing of piping components is not required prior to installation. Valves and fittings shall be capable of withstanding hydrostatic shell test equal to twice the primary design service pressure except as modified by specifications on fittings, ASME B16.5. This test capability is a statement of quality of material. Tests of individual items of pipe, fittings or equipment will be required only on instruction of COR and at Government cost.
- B. After erection, all piping systems shall be capable of withstanding a hydrostatic test pressure of 1.5 times design pressure, as stipulated in ASME B31.1. Hydrostatic tests will be required only on boiler external steam piping, utilizing water as the test medium. Hydrostatic tests will be required on other piping when operating tests described are unsatisfactory, or when inspection of welds shows poor workmanship and is subject to question by the COR. When hydrostatic tests show leaks, the COR will require necessary welding repairs, in accordance with ASME B31.1, at the Contractor's cost.
- C. Perform operating test as follows:
 - All steam piping prior to insulation shall be subjected to steam at final operating pressure. Inspect all joints for leaks and

workmanship. Corrections shall be made as specified.

- Make corrections and retests to establish systems that have no leaks. Replace or recut any defective fittings or defective threads. Soldered material shall be thoroughly cleaned prior to resoldering. Back welding of threads will not be permitted.
- D. Hydrostatically test steam/condensate piping in approved manner under the supervision of COR. Prior to hydrostatic test, remove all valves not rated for hydrostatic test pressure. Replace valves after tests are satisfactorily completed. Hydrostatic test pressure shall be 1.5 times design pressure and performed in accordance with ASME Boiler and Pressure Vessel Code, Section I.
- E. Generally, insulation work should not be performed prior to testing of piping. Contractor may, at own option and hazard, insulate piping prior to test, but any damaged insulation shall be replaced with new quality as specified for original installation at Contractor's cost and time.
- F. Safety, Safety-Relief, Relief Valves: After installation, test under pressure in presence of COR. Test operation in accordance with ASME Boiler and Pressure Vessel Code. Any deficiencies must be corrected and retest performed.

3.18 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings.

1.2 RELATED WORK

- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Pumps: Section 23 22 23, STEAM CONDENSATE PUMPS.
- C. Piping insulation: Section 23 07 11, HVAC AND BOILER PLANT INSULATION.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gages.
 - 13. Thermometers and test wells.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Flash tanks.
 - 2. Condensate pumps.

- D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI):
 B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch)
 B16.4-2006.....Gray Iron Threaded Fittings
- C. American Society of Mechanical Engineers (ASME):
 - B16.1-2005.....Gray Iron Pipe Flanges and Flanged Fittings B16.3-2006.....Malleable Iron Threaded Fittings B16.9-2007.....Factory-Made Wrought Buttwelding Fittings B16.11-2005.....Forged Fittings, Socket-Welding and Threaded B16.14-91....Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads

B16.39-98.....Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300

B40.100-2005.....Pressure Gauges and Gauge Attachments Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1

D. American Society for Testing and Materials (ASTM):

A47-99..... Ferritic Malleable Iron Castings

A53-2007......Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

- A106-2008.....Seamless Carbon Steel Pipe for High-Temperature Service
- A126-2004.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A181-2006.....Carbon Steel Forgings, for General-Purpose

Piping

```
A183-2003 ..... Carbon Steel Track Bolts and Nuts
  A216-2008 ..... Standard Specification for Steel Castings,
                        Carbon, Suitable for Fusion Welding, for High
                        Temperature Service
  A285-01 ..... Pressure Vessel Plates, Carbon Steel, Low-and-
                        Intermediate-Tensile Strength
  A307-2007 ..... Carbon Steel Bolts and Studs, 60,000 PSI Tensile
                        Strength
  A516-2006 ..... Pressure Vessel Plates, Carbon Steel, for
                        Moderate-and- Lower Temperature Service
  A536-84(2004)e1 ..... Standard Specification for Ductile Iron Castings
  B32-2008 ..... Solder Metal
  B61-2008 ..... Steam or Valve Bronze Castings
  B62-2009 ..... Composition Bronze or Ounce Metal Castings
  B88
E. American Welding Society (AWS):
  A5.8-2004......Filler Metals for Brazing and Braze Welding
  B2.1-00......Welding Procedure and Performance
                        Oualifications
F. Manufacturers Standardization Society (MSS) of the Valve and Fitting
  Industry, Inc.:
  SP-67-95.....Butterfly Valves
  SP-70-98..... Cast Iron Gate Valves, Flanged and Threaded
                        Ends
  SP-71-97.....Gray Iron Swing Check Valves, Flanged and
                        Threaded Ends
  SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends
                        for General Service
  SP-78-98.....Cast Iron Plug Valves, Flanged and Threaded
                        Ends
  SP-80-97.....Bronze Gate, Globe, Angle and Check Valves
  SP-85-94.....Cast Iron Globe and Angle Valves, Flanged and
                        Threaded Ends
```

G. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping:
 - All locations: steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for

saturated and superheated steam service 750 degrees F and 1500 psi.

- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2100 mm (7 feet) or more above the floor or operating platform.

D. Shut-Off Valves

- 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 lb.), wedge disc, rising stem, union bonnet.
 - b. 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke.
 - 1) High pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - All other services: MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

E. Globe and Angle Valves:

- 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger:
- Globe valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
- All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
- 2. Angle Valves
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger:
 - Angle valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle valves.
- F. Swing Check Valves
 - 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 psig), 45 degree swing disc.
 - 2. 65 mm (2-1/2 inches) and Larger:
 - a. Check valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.
 - 50 mm (2 inches) and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).
 - 2. 65 mm (2-1/2 inches) and larger: Flanged cast steel or 1723 kPa (250 psig) cast iron.

- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast iron or bronze.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, iron body.
- D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.8 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-30 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-125 psig): Rated 1025 kPa (150
 psig) at 186 degrees C (366 degrees F).
 - c. Steam Service 869-1025 kPa (126-150 psig): Rated 1375 kPa (200
 psig) at 194 degrees C (382 degrees F).
 - d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C
 (310 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.

- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 340 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.
 - Threaded connection at bottom, 25 mm (one inch) minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.9 FLEXIBLE BALL JOINTS

- A. Design and Fabrication: One piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1720 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 750 mm (30 inches). Joints through 350 mm (14 inches) shall have forged pressure retaining members; while size 400 mm (16 inches) through 760 mm (30 inches) shall be of one piece construction.
 B. Material:
 - 1. Cast or forged steel pressure containing parts and bolting in accordance with Section II of the ASME Boiler Code or ASME B31.1.

Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME Section II SA 515, Grade 70.

- Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - Low pressure leakage test: 41 kPa (6psig) saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 3445 kPa (500 psig) saturated steam.
 - Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
 - 4. Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
 - 5. Vibration: 170 hours on each of three mutually perpendicular axis at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.1 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.10 STEAM SYSTEM COMPONENTS

- A. Flash Tanks: Horizontal or vertical vortex type, constructed of steel, ASTM A516 or ASTM A285, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53 Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- B. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.

- b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
- Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be
 Mechanism: Brass, stainless steel or corrosion resistant alloy. rated for the pressure upstream of the PRV supplying the system.
- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.

2.11 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam condensate to 103 kPa(15 psig)	0 to 207 kPa (30 psig).
Medium pressure steam and steam condensate nominal 413 kPa (60 psig)	0 to 689 kPa (100 psig).
High pressure steam and steam condensate nominal 620 kPa to 861 kPa (90 to 125 psig)	0 to 1378 kPa (200 psig).
Pumped condensate, steam condensate, gravity or vacuum (30" HG to 30 psig)	0 to 415 kPa (60 psig)

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel
 pressure gage adapter probe for extra long test plug. PETE'S 500 XL
 is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range.
 - 3. 0 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to new condensate equipment or existing or new traps, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of existing and new piping and accessories to be connected. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install pipe and equipment at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally locate value stems in

overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee condensate piping runouts or branches into the side of mains or other branches.
- H. Connect piping to equipment as shown on the drawings.
- I. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M (8 feet) above grade with down turned elbow.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.

- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

3.5 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.7 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 23 22 23 STEAM CONDENSATE PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam condensate pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
 - After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
 - 5. Furnish one spare seal and casing gasket for each pump to the COR.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.
- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:

23 22 23 - 1

- B. American Iron and Steel Institute (AISI): AISI 1045.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI): ANSI B15.1-00(R2008)....Safety Standard for Mechanical Power Transmission Apparatus ANSI B16.1-05.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800
- D. American Society for Testing and Materials (ASTM): A48-03(2008).....Standard Specification for Gray Iron Castings B62-09....Standard Specification for Composition Bronze or Ounce Metal Castings
- E. Maintenance and Operating Manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.6 DEFINITIONS

- A. Capacity: Liters per second (L/s) (Gallons per minute (GPM)) of the fluid pumped.
- B. Head: Total dynamic head in kPa (feet) of the fluid pumped.

PART 2 - PRODUCTS

2.1 PRESSURE POWERED CONDENSATE PUMP

- A. Pressure-Powered Pump Packages:
 - Pump packages shall be furnished and installed as a packaged assembly of the types, sizes, capacities, and characteristics as shown on the drawings. Pump package shall be rated for 185 degrees C (365 degrees F), maximum condensate temperatures.
 - 2. Pump package(s) shall come completely piped and mounted on a steel skid including (1) receiver/reservoir, two positive displacement pressure-powered pumps as scheduled, interconnecting piping and valves, and all accessories as hereafter specified below:
 - a. The receiver shall be of a steel elevated design, warranted for 1 year against defects in material and workmanship. Receiver shall be 150 PSIG ASME labeled and coded. Receiver shall be sized for the required condensate storage volume and flash steam capacity. Receiver shall be horizontally mounted and have openings of the appropriate size and number including: (2) inlets, (1) vent opening, (1) NPT drain with pipe plug, (1) NPT anode opening with anode, and gauge glass openings with gauge glass set consisting of (2) brass isolation valves and guard rods, and red-line

tubular glass. Replaceable magnesium anode, which retards the corrosive action of most waters and adds to the service life of the tanks, shall be furnished with each receiver for corrosion protection.

- b. Pressure-powered pumps shall be non-electric as shown on the drawings. Units shall be constructed of 1034 kPa (150 psig) ASME labeled and coded fabricated steel body, shall be float operated, and contain a condensate inlet baffle. Each unit shall have (1) inlet check valve, (1) outlet check valve, and gauge glass set with isolation valves.
- c. The float operating mechanism shall have all moving components constructed of stainless steel and be of a snap acting design with no external seals or packing. The float mechanism shall contain a reinforced stainless steel float, (2) 300 series stainless steel open coil design springs, and spring calibration pins.
- d. Pressure-powered pumps shall be of a non-cavitating design capable of operation on systems up to the maximum working pressure of the tank rating using steam, compressed air, or other compatible inert gas as the supply (motive) pressure. Units shall be capable of operating at temperatures up to 365 F when pumping from a 'closed' system using a compatible motive gas. Balance and fine tune motive pressure to be 138 kPa (20 psig) higher than the static backpressure.
- e. Package shall include interconnecting piping between receiver/reservoir and the positive displacement pressure-powered pump(s). Interconnecting suction (fill) line shall be provided to each unit and each suction (fill) line shall include a gate valve for isolation.
- f. Manufacturer shall provide the following for field installation on each pressure-powered pump:
 - 1) Cycle counter
 - 2) Removable insulation jacket
 - 3) Pressure gauge
 - 4) Drain piping
- g. Provide the following components for each pump:
 - 1) Motive pressure reducing valve
 - Safety relief valve(s)

- 3) Motive pressure inlet strainer
- 4) Pressure gauge with pigtail, as required
- 5) Motive pressure drip trap(s)
- 6) Motive pressure line check valve(s)
- 3. The package shall be factory tested as a complete unit using steam as the motive pressure. The pump manufacturer shall furnish appropriate assembly and parts drawings, and installation and operation manuals. The package shall be shipped completely assembled, or with connection match marks if package must be shipped as sub-assemblies.
- B. Removable Insulation Jacket:
 - The insulation jacket should be of sewn construction with Velcro fasteners and have openings for inlet, outlet, drain, and gauge glass.
 - 2. Materials:
 - a. Liner and jacket shall be silicone impregnated heavy duty glass fiber rated for a maximum temperature of 260 degrees C (500 degrees F).
 - b. Insulation shall be 25 mm (1 inch) minimum thickness, Type E needled glass fiber mat rated for a maximum temperature of 650 degrees C (1200 F).
 - c. Jacket shall be sewn with Nomex thread with a UV inhibitor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- B. Permanently support in-line pumps by the connecting piping only, not from the casing or the motor eye bolt.
- C. Coordinate location of thermometer and pressure gauges as per Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Provide start-up in accordance with manufacturer's instructions.

- - - E N D - - -

SECTION 23 50 11 BOILER PLANT MECHANICAL EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Feedwater deaerator, condensate and boiler feed pumps, condensate storage tank, fuel oil pumping and heating, compressed air systems, blowoff tank, blowdown heat recovery, chemical treatment systems, steam vent silencer, and other equipment that supports the operation of the boilers.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- C. Section 23 21 11, BOILER PLANT PIPING SYSTEMS.
- D. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- E. Section 23 22 23, STEAM CONDENSATE PUMPS.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Condensate Flash tank with Accessories:
 - Drawings showing arrangement and overall dimensions of condensate flash tank. Show locations and sizes of pipe connections and access openings.
 - 2. Weight of entire assembly empty and flooded.
 - 3. Catalog data, drawings and specification sheets showing design and construction of condensate pump, flash tank, flow control valves, safety valve, overflow control valve, water level and overflow control systems, vent orifice, and all accessories.
 - Performance data and pressure and temperature limitations of condensate pump, flash tank, level control valve and control system, safety valve, overflow control valve, vent orifice, and all accessories.

1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society for Testing and Materials (ASTM): A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service A234/A234M-10.....Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service A285/A285M-03(2007)....Standard Specification for Pressure Vessel Plates, Carbon Steel, Low- and Intermediate -Tensile Strength A414/A414M-10.....Standard Specification for Steel, Sheet, Carbon, and High-Strength, Low-Alloy for Pressure Vessels A515/A515M-03(2007)....Standard Specification for Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-temperature Service A516/A516M-06.....Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate-and Lower-Temperature Service C. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code: 2007 Edition with Amendments. Section VIII.....Pressure Vessels, Division I and II. Performance Test Code: PTC 12.3-1997.....Performance Test Code for Deaerators B16.9-2007......Factory-Made Wrought Butt Welding Fittings B16.34-2009.....Valves, Flanged, Threaded and Welding End D. National Board of Boiler and Pressure Vessel Inspectors: NB-23-2007.....Inspection Code E. American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE): ASHRAE Handbook......2008 HVAC Systems and Equipment F. Society for Protective Coatings (SSPC): SP 5-2007.....White Metal Blast Cleaning E. Underwriters Laboratories (UL):

PART 2 - PRODUCTS

2.1 MECHANICAL CONDENSATE PUMP (PRESSURE-POWERED PUMPING TRAP)

- A. Type: Packaged pump set including all devices and interconnecting piping and valves (as shown on drawings). Pumps shall be automatic, float-actuated, non-electric, steam motive power, designed to pump required condensate flow rate and discharge pressure.
- B. Service: Continuous duty, condensate at 100°C (212°F), motive steam available at 483 kPa (70 psi). Design to operate with and to connect properly with the condensate return line elevation as shown.
- C. Performance: Refer to drawings for condensate flow and discharge pressure requirements and for receiver size.
- D. Provide pipe size(s) connection quantity as shown on drawings.
- E. Pump Construction:
 - Pump Body: Cast iron rated for 1035 kPa (150 psi), 232°C (450°F). Low profile as necessary to accommodate the elevation of the inlet condensate pipe, obtain the required filling head, and obtain the required performance.
 - Float mechanism: Stainless steel float and mechanism frame. Inconel X-750 spring assist float mechanism.
 - 3. Internal Pump Valves and Seats: Externally replaceable hardened stainless steel.
 - 4. All piping shall be ASTM A53 or A106, ERW or seamless, Schedule 80.
- F. Cleaning and Painting: Remove all dirt, heavy rust, mill scale, oil, welding debris from interior and exterior. Coat exterior with rust-resisting primer and manufacturer's standard coating.
- G. Accessories:
 - Water level gage glass on tank and pumps with protection rods, gage valves with drain.
 - 2. All necessary inlet and outlet check valves for proper operation.
 - Industrial liquid-type thermometer on condensate outlet, dual range, 10 to 205 degrees C, 50 to 400 degrees F, 239 mm (9 inch) scale length, accuracy plus or minus one scale division.

2.2 VERTICAL FLASH TANK (TEMPORARY)

- A. Type: Cylindrical vertical welded steel tank with accessories as shown. Refer to plans and schedules on drawings.
- B. Service: Suitable for receiving, venting, storing and discharging to condensate return.

- C. Construction:
 - Conform to ASME Boiler and Pressure Vessel Code, Section VIII. Fabricate from steel sheets and plates or from steel pipe and pipe caps.
 - 2. Material of Construction:
 - a. Steel sheets and plates: ASTM A285, A414, A515, A516.
 - b. Steel pipe and pipe caps: Pipe ASTM A53A-S, A53A-E, A53B-S, A53B-E. Pipe Caps ASTM A234, ASME B16.9.
 - 3. Design tank for 1034 kPa (150 psi), 178°C (353°F).
 - 4. Piping Connections: Threaded half couplings for pipe sizes under 65 mm (2-1/2 inches). Flanged 1034 kPa (150 psi) ASME for pipe sizes over 50 mm (2 inches).
 - 5. ASME Forms: Furnish U-1 or U-1A, MANUFACTURERS' DATA REPORT FOR PRESSURE VESSELS.
 - Supports: Unless shown otherwise, provide floor-mounted frame constructed with steel angles.
- D. Cleaning and Painting: Remove all dirt, heavy rust, mill scale, oil, welding debris from interior and exterior of tank. Coat exterior with rust-resisting primer.
- E. Insulation: Do not insulate.

PART - 3 EXECUTION

3.1 INSTALLATION

- A. Condensate Pump
 - 1. Coordinate location with structural requirements of the building.
 - Location shall permit access to and removal of all internal and external features without removing other items of equipment or piping.
 - 3. Bolt to building as recommended by manufacturer or as shown. Arrange anchorage to allow thermal expansion of unit.
 - 4. Clean interior of equipment before placing in service.
 - 5. All controls, safeties, set points, etc must conform to the most recent edition of the VHA Boiler Plant Safety Device Testing Manual.
- B. Mechanical Condensate Pump (Pumping Trap): Provide sufficient elevation difference between the receiver condensate inlet and outlet and the trap inlet to assure the required head for proper functioning and capacity. Steam supply line shall include gate valve and Y-type strainer.

C. Coordinate installation with COR sequence schedule see drawings for construction sequence.

3.2 TESTING AND BALANCING CONDENSATE PUMP AND ACCESSORIES:

- A. Demonstrate the ability of the condensate pump to perform as specified. Test performance at 50 percent and 100 percent of capacity, and at two intermediate points to be selected by the COR. Repeat test two times at each load point.
- B. Determine temperatures and pressures by calibrated thermometers and pressure gages.
- C. Prior to requesting final tests, pretest unit using method specified for final test. All final test must include at the minimum the test listed in the most recent edition of the VHA Boiler Plant Safety Device Testing Manual. Submit test data for review.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct each VA personnel responsible in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK