Project Manual for: Oscar G. Johnson VA Medical Center Iron Mountain, Michigan Upgrade 5 East VA Project 585-10-127

October 05, 2015

100% Construction Documents

NDW Project Number: 1010

Prepared By:

420 Rail Street Negaunee, MI 49866 906-475-6616 906-475-6954 Fax WWW.NDW.US

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 15	List of Drawing Sheets	09-11
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	06-15
01 01 10	Infection Control	06-10
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	04-13
01 33 23	Shop Drawings, Product Data, and Samples	11-08
01 35 26	Safety Requirements	10-14
01 42 19	Reference Standards	09-11
01 57 19	Temporary Environmental Controls	01-11
01 58 16	Temporary Interior Signage	08-11
01 74 19	Construction Waste Management	09-13
01 81 13	Sustainable Construction Requirements	09-15
01 91 00	General Commissioning Requirements	06-13
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	04-13
02 82 13.13	Glovebag Asbestos Abatement	07-11
02 82 13.19	Asbestos Floor Tile and Mastic Abatement	07-11
	DIVISION 03 - CONCRETE	
		10.10
03 30 00	Cast-in-Place Concrete	10-12
	DIVISION 04 - MASONRY	
	Not Used	
	DIVISION 05 - METALS	
05 50 00	Metal Fabrications	09-11
00 00 00	Metal Fablications	09-11
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
	Pouch Corportry	09-11
06 10 00 06 20 00	Rough Carpentry	09-11
	Finish Carpentry	00-13
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 01 10	Thermal Inculation	06 10
07 21 13	Thermal Insulation	06-12
07 84 00	Firestopping	10-11
07 92 00	Joint Sealants	12-11
	DIVISION 08 - OPENINGS	

08 11 13	Hollow Metal Doors and Frames	01-13
08 14 00	Interior Wood Doors	10-12
08 31 13	Access Doors and Frames	10-11
08 41 13	Aluminum-Framed Entrances and Storefronts	10-11
08 51 13	Aluminum Windows	11-12
08 71 00	Door Hardware	09-11
08 71 13	Automatic Door Operators	12-09
08 80 00	Glazing	10-12
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	02-15
09 06 00	Schedule for Finishes	10-11
09 22 16	Non-Structural Metal Framing	07-13
09 29 00	Gypsum Board	02-13
09 30 13	Ceramic/Porcelain Tiling	05-12
09 51 00	Acoustical Ceilings	10-10
09 65 13	Resilient Base and Accessories	10-10
09 65 19	Resilient Tile Flooring	03-11
09 68 00	Carpeting	10-11
09 91 00	Painting	07-13
	DIVISION 10 - SPECIALTIES	
10 11 13	Markerboards and Tackboards	10-11
10 13 00	Directories	11-11
10 14 00	Signage	11-11
10 21 13	Toilet Compartments	05-12
10 26 00	Wall and Door Protection	01-11
10 28 00	Toilet, Bath, and Laundry Accessories	11-11
10 44 13	Fire Extinguisher Cabinets	11-11
	DIVISION 11 - EQUIPMENT	
	Not Used	
	DIVISION 12 - FURNISHINGS	
12 24 00	Window Shades	11-11
	DIVISION 13 - SPECIAL CONSTRUCTION	
	Not Used	
	DIVISION 14- CONVEYING EQUIPEMENT	
	DIVISION 14- CONVEYING EQUIPEMENT Not Used	
21 00 02	Not Used DIVISION 21- FIRE SUPPRESSION	12-13
21 00 02 21 05 02	Not Used	12-13 02-13

21 08 00	Commissioning of Fire Suppression System	06-13
21 13 13	Wet-Pipe Sprinkler Systems	05-08
	DIVISION 22 - PLUMBING	
22 00 02	Plumbing Coordination Drawings	12-13
22 05 02	Plumbing Demolition	02-13
22 05 11	Common Work Results For Plumbing	04-11
22 05 19	Meters and Gages for Plumbing Piping	02-10
22 05 23	General-Duty Valves for Plumbing Piping	12-09
22 07 11	Plumbing Insulation	05-11
22 08 00	Commissioning of Plumbing Systems	06-13
22 11 00	Facility Water Distribution	01-14
22 13 00	Facility Sanitary and Vent Piping	06-12
22 14 00	Facility Storm Drainage	12-09
22 40 00	Plumbing Fixtures	01-14
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
	CONDITIONING (INVAC)	
23 00 02	Mechanical Coordination Drawings	12-13
23 05 02	Mechanical Demolition and Alterations	10-13
23 05 11	Common Work Results for HVAC	11-10
23 05 41	Noise and Vibration Control for HVAC Piping and	11-10
15 05 11	Equipment	11 10
23 05 93	Testing, Adjusting, and Balancing for HVAC	05-11
23 07 11	HVAC Insulation	05-11
23 08 00	Commissioning of HVAC Systems	06-13
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	09-12
23 25 00	HVAC Water Treatment	02-10
23 31 00	HVAC Ducts and Casings	03-13
23 36 00	Air Terminal Units	03-10
23 37 00	Air Outlets and Inlets	11-09
23 82 00	Convection Heating and Cooling Units	04-11
23 82 16	Air Coils	04-11
	DIVISION 25 - INTEGRATED AUTOMATION	
	Not Used	
	DIVISION 26 - ELECTRICAL	
26 00 02	Electrical Coordination Drawings	12-13
26 05 02	Electrical Demolition For Remodeling	02-13
26 05 11	Requirements for Electrical Installations	12-12
26 05 19	Low-Voltage Electrical Power Conductors and Cables	07-13
26 05 26	Grounding and Bonding for Electrical Systems	12-12
26 05 33	Raceway and Boxes for Electrical Systems	09-10
26 05 73	Overcurrent Protective Device Coordination Study	12-12
26 08 00	Commissioning of Electrical Systems	06-13
26 09 23	Lighting Controls	09-10
26 24 16	Panelboards	12-12
26 27 26	Wiring Devices	12-12

26 29 21	Enclosed Switches and Circuit Breakers	12-12
26 51 00	Interior Lighting	12-12
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	11-09
27 05 33	Raceways and Boxes for Communications Systems	12-05
27 08 00	Commissioning of Communications Systems	06-13
27 10 00	Structured Cabling	12-05
27 11 00	Communications Equipment Room Fittings	06-13
27 15 00	Communications Horizontal Cabling	06-13
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 08 00	Commissioning of Electronic Safety and Security	06-13
	Systems	
28 31 00	Fire Detection and Alarm	10-11
	DIVISION 31 - EARTHWORK	
	Not Used	
	DIVISION 32 - EXTERIOR IMPROVEMENTS	
	Not Used	
	DIVISION 33 - UTILITIES	
	Not Used	
	DIVISION 34 - TRANSPORTATION	
	Not Used	
	DIVISION 48 - Electrical Power Generation	
	Not Used	

The drawings	listed below accompanying this specification form a part of		
	the contract.		
Drawing No.	Title		
G001	Cover and Index		
A001	Abbreviations & Symbols		
A002	Life Safety Plan		
A003	Phasing Plan		
AD100	Fifth Floor Demolition Plan- Part A		
AD101	Fifth Floor Demolition Plan- Part B		
AD102	Fifth Floor Demolition Plan- Part C		
AD103	Fourth Floor Demolition Plan- Part A		
AD104	Fourth Floor Demolition Plan- Part B		
AD105	Fourth Floor Demolition Plan- Part C		
A100	Fifth Floor Plan- Part A		
A101	Fifth Floor Plan- Part B		
A102	Fifth Floor Plan- Part C		
A103	Fifth Floor Reflected Ceiling Plan- Part A		
A104	Fifth Floor Reflected Ceiling Plan- Part B		
A105	Fifth Floor Reflected Ceiling Plan- Part C		
A106	Fourth Floor Plan- Part A		
A107	Fourth Floor Plan- Part B		
A108	Fourth Floor Plan- Part C		
A109	Enlarged Plans- Toilet Rooms		
A400	Interior Elevations		
A401	Interior Elevations		
A402	Interior Elevations		
A500	Details		
A501	Details & Wall Types		
A600	Door, Window, Finish & Signage Schedules		
Q100	Equipment Plan- Part A		
Q101	Equipment Plan- Part B		
Q102	Equipment Plan- Part C		
FP001	Fire Protection Lead Sheet		
FPD100	5th Floor Fire Protection Demolition Plan - Overall		
FPD101	5th Floor Fire Protection Demolition Plan - Part A		
FPD102	5th Floor Fire Protection Demolition Plan - Part B		
FPD103	5th Floor Fire Protection Demolition Plan - Part C		

FP100	5th Floor Fire Protection Plan - Overall
FP101	5th Floor Fire Protection Plan - Part A
FP102	5th Floor Fire Protection Plan - Part B
FP103	5th Floor Fire Protection Plan - Part C
PL001	Plumbing & Medical Gas Lead Sheet
PD100	4th Floor Plumbing Demolition Plan - Overall
PD101	4th Floor Plumbing Demolition Plan - Part A
PD102	4th Floor Plumbing Demolition Plan - Part B
PD103	4th Floor Plumbing Demolition Plan - Part B
PD200	5th Floor Plumbing Demolition Plan - Overall
PD201	5th Floor Plumbing Demolition Plan - Part A
PD201	5th Floor Plumbing Demolition Plan - Part B
PD202	5th Floor Plumbing Demolition Plan - Part C
MGD100	5th Floor Medical Gas Demolition Plan - Overall
MGD100 MGD101	5th Floor Medical Gas Demolition Plan - Overall 5th Floor Medical Gas Demolition Plan - Part A
MGD101 MGD102	5th Floor Medical Gas Demolition Plan - Part A
MGD102 MGD103	5th Floor Medical Gas Demolition Plan - Part C
MGD105 PL100	4th Floor Plumbing Plan - Overall
PL100 PL101	4th Floor Plumbing Plan - Part A
PL101 PL102	4th Floor Plumbing Plan - Part B
PL102 PL103	4th Floor Plumbing Plan - Part C
PL200	5th Floor Plumbing Plan - Overall
PL200	5th Floor Plumbing Plan - Part A
PL202	5th Floor Plumbing Plan - Part B
PL203	5th Floor Plumbing Plan - Part C
PL401	Plumbing Isometrics
PL501	Plumbing & Medical Gas Details
M001	Mechanical Legend And Symbols
M001 M002	Mechanical Notes And Abbreviations
MD101	5TH FLOOR DUCTWORK DEMO PLAN - Overall
MD102	5th Floor Ductwork Demo Plan - Part A
MD103	5th Floor Ductwork Demo Plan - Part B
MD104	5th Floor Ductwork Demo Plan - Part C
MD105	5th Floor Mechanical Piping Demo Plan - Overall
MD106	5th Floor Mechanical Piping Demo Plan - Part A
MD107	5th Floor Mechanical Piping Demo Plan - Part B
MD108	5th Floor Mechanical Piping Demo Plan - Part C
MD109	4 th Floor Mechanical Demolition Plan
MH101	5th Floor Ductwork Plan - Overall
	Sen Froor Ducework Fran Overall

MH102	5th Floor Ductwork Plan - Part A
MH102 MH103	5th Floor Ductwork Plan - Part B
MH104	5th Floor Ductwork Plan - Part C
MP101	5th Floor Mechanical Piping Plan - Overall
MP102	5th Floor Mechanical Piping Plan - Part A
MP103	5th Floor Mechanical Piping Plan - Part B
MP104	5th Floor Mechanical Piping Plan - Part C
M301	Mechanical Sections
M501 M501	Mechanical Details
M501 M502	Mechanical Details
M502 M601	Mechanical Equipment Schedules
M601 M602	Mechanical Equipment Schedules
M602 M603	Mechanical Room Air Balance Schedule
M701	Mechanical Controls Diagram
M701 M702	Ahul0, Erv-2, Airside Riser Diagram
E001	Electrical Legends And Schedules
E001 E002	Electrical Notes, Symbols, Schedules And Abbreviations
E002 E003	Electrical Phasing Coordination
E005 ED100	Electrical Demolition Plan Fifth Floor East Overall
ED100 ED101	
ED101 ED102	
ED102 ED103	Electrical Demolition Plan Fifth Floor East Part "B" Electrical Demolition Plan Fifth Floor East Part "C"
ED103 ED200	Electrical Coordination Plan Fourth Floor
ED200	Electrical Coordination Plan Fourth Floor Part "A"
EL100	Electrical Lighting Plan Fifth Floor East Overall
EL101	Electrical Lighting Plan Fifth Floor East Part "A"
EL102	Electrical Lighting Plan Fifth Floor East Part "B"
EL102 EL103	Electrical Lighting Plan Fifth Floor East Part "C"
EP100	Electrical Power Plan Fifth Floor East Overall
EP100 EP101	Electrical Power Plan Fifth Floor East Part "A"
EP101 EP102	Electrical Power Plan Fifth Floor East Part "B"
EP102 EP103	Electrical Power Plan Fifth Floor East Part "C"
EF103 ET100	Electrical Systems Plan Fifth Floor East Overall
E1100 ET101	Electrical Systems Plan Fifth Floor East Overall
E1101 ET102	Electrical Systems Plan Fifth Floor East Part "A"
	-
ET103 EY501	Electrical Systems Plan Fifth Floor East Part "C" Electrical Riser Diagram And Panelboards
EY502	Electrical Riser Diagram And Panelboards
FA100	Electrical Fire Alarm Plan Fifth Floor East Overall

FA101	Electrical	Fire Alarm Plan	Fifth Floor Eas	t Part "A"
FA102	Electrical	Fire Alarm Plan	Fifth Floor Eas	t Part "B″
FA103	Electrical	Fire Alarm Plan	Fifth Floor Eas	t Part "C"

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 SAFETY REQUIREMENTS	1
1.2 GENERAL INTENTION	1
1.3 STATEMENT OF BID ITEM(S)	2
1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	2
1.5 CONSTRUCTION SECURITY REQUIREMENTS	2
1.6 OPERATIONS AND STORAGE AREAS	4
1.7 ALTERATIONS	9
1.8 DISPOSAL AND RETENTION	1
1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS1	2
1.10 RESTORATION	2
1.11 PHYSICAL DATA	3
1.12 PROFESSIONAL SURVEYING SERVICES	3
1.13 LAYOUT OF WORK	3
1.14 AS-BUILT DRAWINGS	4
1.15 USE OF ROADWAYS	4
1.16 RESIDENT ENGINEER'S FIELD OFFICE	4
1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	4
1.18 TEMPORARY USE OF EXISTING ELEVATORS	6
1.19 TEMPORARY USE OF NEW ELEVATORS1	6
1.20 TEMPORARY TOILETS1	6
1.21 AVAILABILITY AND USE OF UTILITY SERVICES	7
1.22 NEW TELEPHONE EQUIPMENT	8

1.23	TESTS	18
1.24	INSTRUCTIONS	19
1.25	GOVERNMENT-FURNISHED PROPERTY	20
1.26	RELOCATED // EQUIPMENT // ITEMS //	20
1.27	STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT	21
1.28	CONSTRUCTION SIGN	21
1.29	SAFETY SIGN	21
1.30	PHOTOGRAPHIC DOCUMENTATION	21
1.31	FINAL ELEVATION Digital Images	21
1.32	HISTORIC PRESERVATION	21
1.33	VA TRIRIGA CPMS	21

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish all labor, superintendence, materials, tools, equipment, transportation, licenses, certifications, insurance, temporary protection, and other items designated under the provisions of this contract: Upgrade 5-East, project number 585-10-127 necessary for the renovation of approximately 8000 sf on the 5th floor (east and center) of Building 1 of the VA Medical Center in Iron Mountain, MI as outlined in the contract specifications and as shown on the contract drawings. The work involves, but not limited to demolition of the existing architectural, plumbing, fire protection, mechanical and electrical work.
- B. Visits to the site by Bidders information is located on the solicitation cover. Verify existing conditions and locations in field prior to submitting proposal.
- C. Offices of Northern Design Works, located in Negaunee, MI as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the Resident Engineer in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the Resident Engineer.

- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Schedule: To ensure such executions, Contractor shall furnish the Resident Engineer with a Baseline CPM schedule Per Spec Section 01 32 16.15 Project Schedules which indicates phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. <u>No Work shall begin on-site by the</u> <u>Contractor until the CPM schedule has been approved by the Resident</u> Engineer.

1.3 STATEMENT OF BID ITEM(S)

A. See solicitation for specific information.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - Before starting work, and when working outside the "regular hours" as defined in the contract, the General Contractor shall give one week's notice to the Contracting Officer so that security

arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.

- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.

C. Key Control:

- The General Contractor shall provide duplicate keys and lock combinations to the Contracting officers representative Resident Engineer for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
- The General Contractor shall turn over all permanent lock cores to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.
- D. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.

- These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - Coordinate parking at the VA Medical Center with VA Police and Resident Engineer in the South Parking Lot. Dumpster for debris shall be located in the south contractor parking area.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the

01 00 00 -4

Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.

- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads. (FAR 52.236-10)
- D. Working space and space available for storing materials shall be as determined by the Resident Engineer.
- E. Workmen are subject to rules of the Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by Resident Engineer where required by limited working space.

Due to noise limitation requirements in the adjacent areas, all work which transmit significant noise, vibrations, etc. shall be completed between the hours of 4:30pm and 9:00pm to limit disruptions to patient care unless pre-approved by Resident Engineer. In addition, all work within occupied spaces outside of the designated construction area shall be completed outside of normal Facility business hours and coordinated with the Resident Engineer. Depending on specific patient needs, there may be sporadic, unknown times where "noisy and/or vibration type work" will need to be halted for a time period during the work day.

- 1. Do not store materials and equipment in other than assigned areas.
- 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to the Medical Center areas required to remain in operation.
- All work in corridors and other occupied spaces shall be completed after normal working hours and shall be coordinated with the Resident Engineer.
- G. Phasing:

The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks.

To insure such executions, Contractor shall furnish the Resident Engineer with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. Normal working hours are from 7:00am to 4:30pm Monday through Friday. All corridor work and work in other occupied areas shall be completed after hours starting at 4:30pm. In addition, Contractor shall notify the Resident Engineer two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, Resident Engineer and Contractor, as follows:

- The project duration shall be limited to 365 calendar days and shall be accomplished in four (4) phases.
- Phase I: Will commence upon the date identified within the approved Project Schedule. Phase 1 work consists of all work items in the south central and the administrative south wing, east side of the 5th floor. The remainder of the 5th floor will remain occupied. A 5' corridor shall be maintained to the north and east wing as specified in the contract drawings.
- Phase II: Will commence upon the completion of Phase 1. Phase 2 work
 consists of all work items in the Directors Suite, east side of the 5th
 floor. The remainder of the 5th floor will remain occupied.
- Phase III: Will commence upon the completion of Phase 2. Phase 3 work consists of work in the North wing and north side of corridor. The remainder of the 5th floor will remain occupied. A 5' corridor shall be maintained to the south and east wings and Stairwell #3 as specified in the contract drawings.
- Phase IV: Will include work in the corridor and will be ongoing throughout the project. All corridor work shall be after hours starting at 4:30 pm. The corridor areas shall be clean and ready for Government use the next calendar day. Infection control permit shall be obtained before any work within occupied areas start and shall be adhered to.
- Any changes to this phasing plan shall be approved by the Contracting Officer and justified through the approved CPM Project Schedule.
- H. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.
 - I. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:

- Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
- 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- J. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Resident Engineer. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.
 - 2. Contractor shall submit a request to interrupt any such services to Resident Engineer, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time

approved by Medical Center may occur at other than Contractor's normal working hours.

- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Resident Engineer.
- 5. In case of a contract construction emergency, service will be interrupted on approval of Resident Engineer. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- K. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- L. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- M. Coordinate the work for this contract with other construction operations as directed by Resident Engineer. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

A. Survey: Before any work is started, the Contractor shall make a thorough survey with the Resident Engineer of areas of buildings in

01 00 00 -9

which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:

- Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of Building 1.
- Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
- Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and Resident Engineer.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of Resident Engineer, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and Resident Engineer together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of

Contractor to restore damage caused by Contractor's workmen in executing work of this contract.

- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are identified by attached tags or noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by Resident Engineer.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to

be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor. (FAR 52.236-9)
- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.

1.10 RESTORATION

A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the Resident Engineer. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Resident Engineer before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.

- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).
- 1.11 PHYSICAL DATA (RESERVED)

1.12 PROFESSIONAL SURVEYING SERVICES (RESERVED)

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor. (FAR 52.236-17)

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the Resident Engineer within 15 calendar days after each completed phase and after the acceptance of the project by the Resident Engineer.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the Resident Engineer, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.16 RESIDENT ENGINEER'S FIELD OFFICE (RESERVED)

1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - Permission to use each unit or system must be given by Resident Engineer in writing. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the Resident Engineer will withdraw permission for use of the equipment.

- 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
- Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government. // Boilers, pumps, feedwater heaters and auxiliary equipment must be operated as a complete system and be fully maintained by operating personnel. Boiler water must be given complete and continuous chemical treatment. //
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.

- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.18 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing service elevator for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - Contractor makes all arrangements with the Resident Engineer for use of elevators. Contractor may use service elevator S4 in Building 1 for daily use. The service elevator shall not be used at the designated "lock-out" times noted below:

Exclusive Dietetic Usage:

7:00am - 7:35am Daily 12:00pm - 12:35pm Daily

4:45pm - 5:20pm Daily.

- 2. Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.
 - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
 - c. Finish flooring.

1.19 TEMPORARY USE OF NEW ELEVATORS (RESERVED)

1.20 TEMPORARY TOILETS

A. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.21 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.
 - a. Steam is available at no cost to Contractor.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices

providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.

- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at Resident Engineer's discretion) of use of water from Medical Center's system.

1.22 NEW TELEPHONE EQUIPMENT (RESERVED)

1.23 TESTS

- A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation.
- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions

for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.

- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.
- F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.24 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals

must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the Resident Engineer and shall be considered concluded only when the Resident Engineer is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Resident Engineer, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.25 GOVERNMENT-FURNISHED PROPERTY (RESERVED)

1.26 RELOCATED // EQUIPMENT // ITEMS //

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the Resident Engineer.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever

such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".

- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.
- E. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.

1.27 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT (RESERVED)

1.28 CONSTRUCTION SIGN (RESERVED)

1.29 SAFETY SIGN (RESERVED)

1.30 PHOTOGRAPHIC DOCUMENTATION

 As-built conditions of mechanical, electrical, plumbing and all other systems shall be documented post-inspection and pre-insulation, sheet rock or dry wall installation. This process shall include all finished systems located in the walls and ceilings of all buildings at the Project. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.

1.31 FINAL ELEVATION DIGITAL IMAGES (RESERVED)

1.32 HISTORIC PRESERVATION (RESERVED)

1.33 VA TRIRIGA CPMS (RESERVED)

- - - E N D - - -

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental infection control and risk assessment that the Contractor must consider for construction & renovation projects in the medical facility. It includes Precautionary management of, Inspections and Non invasive activities, small scale, short duration activities, that creates minimal dust. Major demolition and construction projects that generate a moderate to high levels of dust. Movement of materials and equipment, and resources that are encountered or generated by the Contractor. The Contractor is obligated to consider the specified control measures with the costs included within the various contract items of work. An Infection Control Risk Assessment Matrix of Precautions for construction and renovation for activities follows.
- B. Infection Control Risk and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,

	Inspection and Non-Invasive Activities.
TYPE A	Includes, but is not limited to:
	 removal of ceiling tiles for visual inspection limited to 1 tile per 50 square feet
	 painting (but not sanding)
	 wall covering, electrical trim work, minor plumbing, and activities which do not generate dust or require cutting of walls or access to ceilings other than for visual inspection.
	Small scale, short duration activities which create minimal dust
	Includes, but is not limited to:
	 installation of telephone and computer cabling
TYPE B	 access to chase spaces
	 cutting of walls or ceiling where dust migration can be controlled.
	Work that generates a moderate to high level of dust or requires demolition or removal of any fixed building components or assemblies
	Includes, but is not limited to:
	 sanding of walls for painting or wall covering
	 removal of floor coverings, ceiling tiles and casework
TYPE C	 new wall construction
	 minor duct work or electrical work above ceilings
	 major cabling activities
	 any activity that cannot be completed within a single work shift.
	Major demolition and construction projects
	Includes, but is not limited to:
TYPE D	 activities which require consecutive work shifts
	 requires heavy demolition or removal of a complete cabling system new construction.

2. Unfavorably alter ecological balances of importance to human life. Using the following table, *identify the Patient Risk Groups* that will be affected. If more than one risk group will be affected, select the higher risk group:

Low Risk	Medium Risk	High Risk	Highest Risk
• Office areas	 Cardiology Echocardiography Endoscopy Nuclear Medicine Physical Therapy Radiology/MRI Respiratory Therapy 	 CCU Emergency Room Labor & Delivery Laboratories (specimen) Newborn Nursery Outpatient Surgery Pediatrics Pharmacy Post Anesthesia Care Unit Surgical Units 	 Any area caring for immunocompromised patients Burn Unit Cardiac Cath Lab Central Sterile Supply Intensive Care Units Medical Unit Negative pressure isolation rooms Oncology Operating rooms including C-section rooms

C. Match the Patient Risk Group with Construction Project Type on the following matrix to find the level of infection control activities required. Patient Risk Group (Low, Medium, High, Highest) with the planned Construction **Project Type** (A, B, C, D) on the following matrix, to find the Class of Precautions (I, II, III or IV) or level of infection control activities required.

IC Matrix - Class of Precautions: Construction Project by Patient Risk

	Construction Project Type			
Patient Risk Group	TYPE A	TYPE B	TYPE C	TYPE D
LOW Risk Group	I	II	II	III/IV
MEDIUM Risk Group	I	II	III	IV
HIGH Risk Group	I	II	III/IV	IV
HIGHEST Risk Group	II	III/IV	III/IV	IV

D. Description of Required Infection Control Precautions by Class

During Construction Project Upon Completion of Project

^{1.}Infection Control approval will be required when the Construction Activity and Risk Level indicate that **Class III** or **Class IV** control procedures are necessary. Contact the VA Project engineer and the infection control officer before proceeding.

CLASS I	 Execute work by methods to minimize raising dust from construction operations. Immediately replace a ceiling tile displaced for visual inspection 	
CLASS II	 Provide active means to prevent airborne dust from dispersing into atmosphere. Water mist work surfaces to control dust while cutting. Seal unused doors with duct tape. Block off and seal air vents. Place dust mat at entrance and exit of work area *Remove or isolate HVAC system in areas where work is being performed. 	 Wipe work surfaces with disinfectant. Contain construction waste before transport in tightly covered containers. Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area. Remove isolation of HVAC system in areas where work is being performed.
CLASS III	 *Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system. Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Maintain negative air pressure within work site utilizing HEPA equipped air filtration units. Contain construction waste before transport in tightly covered containers. Cover transport receptacles or carts. Tape covering unless solid lid. * Use window for negative HEPA air exhaust when accessible. Obtain V.A, resident engineer approval for exhausting in existing exhaust ductwork. 	 Do not remove barriers from work area until completed project is inspected by the owner's Safety Department and Infection Control Department and thoroughly cleaned by the owner's Environmental Services Department. Remove barrier materials carefully to minimize spreading of dirt and debris associated with construction. Vacuum work area with HEPA filtered vacuums. Wet mop area with disinfectant. Remove isolation of HVAC system in areas where work is being performed.

		Isolate HVAC system in area where work is being done to prevent contamination of duct system.	1.	Remove barrier material carefully to minimize spreading of dirt and debris associated with construction.
CLASS IV		Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement	2.	Contain construction waste before transport in tightly covered containers.
		control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit)	3.	Cover transport receptacles or carts. Tape covering unless solid lid
		before construction begins. Maintain negative air pressure	4.	Vacuum work area with HEPA filtered vacuums.
		within work site utilizing HEPA	5.	Wet mop area with disinfectant.
	4	equipped air filtration units.	6.	Remove isolation of HVAC system in
	4.	Seal holes, pipes, conduits, and punctures appropriately.		areas where work is being performed.
	5.	Construct anteroom and require all		
		personnel to pass through this room		
5		so they can be vacuumed using a HEPA		
		vacuum cleaner before leaving work		
		site or they can wear cloth or paper coveralls that are removed each time		
		they leave the work site.		
	6.	All personnel entering work site are		
		required to wear shoe covers. Shoe		
		covers must be changed each time the		
	7	worker exits the work area. Do not remove barriers from work		
	/ .	area until completed project is		
		inspected by the owner's Safety		
		Department and Infection Control		
		Department and thoroughly cleaned by		
		the owner's Environmental Services		
		Department.		

- E. Identify the area surrounding the project area, assessing potential impact.
- F. Apply Life Safety and standards (APIC) and the following criteria would need to be assured in order to maintain the supply air side open during Class 4 construction activity:
 - 1. The air supply is 100% fresh air and the site and adjacent areas can be kept under negative pressure at all times.
 - 2. There is no re circulated air in this section
 - 3. There is no duct work involved in this section of the demolition
 - 4. The site can never be positive to the adjacent areas (i.e. keep the negative air machines on at all times or for 1-2 hours post site work until the negative action can be maintained.
 - 5. A log is maintained to document that the negative pressure is checked and has been maintained during those hours when the negative air machines are turned off. (An alarmed device is recommended for this purpose and should be maintained and monitored by the construction personnel).

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT - GENERAL REQUIREMENTS

A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable). When transporting new materials & equipment though the hospital use 4 mil Poly sheeting encasing materials, tools and equipment or use a totally enclosed cart.

- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated/work area until construction is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized place.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Demolition materials must be transported in totally enclosed containers. Demolition on above ground floors may use a window debris chute to convey materials to an enclosed dumpster that provides dust and noise control. The contractor is responsible to maintain the original appearance of the building fascia.
- F. Negative Pressure Filtration System: The contractor shall provide enough negative air machines to completely exchange the regulated area air volume 4 actual times per hour. The competent person shall determine the number of units needed for each regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the actual cubic feet per minute (CFM) for each unit to determine the number of units needed to effect 4 air changes per hour. Approximately 25% of the air must be exhausted directly outdoors unless authorized by Contracting Officer's Technical Representative (COTR), and the remainder may be discharged into a return air or exhaust air duct, or in some cases, if approved by COTR and Infection Control Professional, to another non-critical area of the building. Provide a standby unit in the event of machine Failure And/Or Emergency In An Adjacent Area. During extremely dusty or fume producing operations, such as saw cutting, sledge hammering, Drilling, or welding, provide point of operation exhaust, or utilize recirculating HEPA filtration.
- G. Design And Layout
 - 1. Before start of work submit the design and layout of the regulated area and the negative air machines, type of construction barriers to be used. The submittal shall indicate the number of, location of and size of negative air machines and exhaust route & location of the windows to be used. The point(s) of exhaust, airflow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - a. Manufacturer's information on the negative air machine(s) and HEPA filters, including proper installation and maintenance, and AMCA certified fan curve.

01 01 10-5 585-10-127

- b. Method of supplying power to the units and designation/location of the panels.
- c. Description of testing method(s) for correct air volume and pressure differential. Provide manufacturer's product data on the pressure differential measuring device used.
- d. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.
- e. Location of isolation negative air pressure monitor.
- H. Negative Air Machines
 - 1. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent dust from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.
 - 2. Negative Air Machine Fan: The rating capacity of the fan must the AMCA certified air moving capacity under actual operating conditions, with dirty filter. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
 - 3. Negative Air Machine Final Filter:
 - a. When exhausting directly to the outside from a window or penetration the filter shall be a minimum MERV 8 pleated filter media completely sealed on all edges within a structurally rigid frame.
 - b. When exhausting to an exhaust duct, return duct, or into another area of the building: the final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be individually tested and certified by the manufacturer to have an efficiency of not less than 99.97% when challenged with 0.3 m dioctylphthalate (DOP) particles. Testing shall have been done in accordance with Military Standard MIL- STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.
 - 4. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 m or larger. A

second stage pre-filter shall have a medium efficiency effective for particles down to 5 m or larger. Pre-filters shall be installed either on or in the intake grid of the unit and held in place with a special housing or clamps.

- 5. Negative Air Machine Safety and Warning Devices: An electrical/mechanical lockout must be provide to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- 6. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriter's Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- I. Pressure Differential

The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column. Before any disturbance of any material or building system, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing and maintaining the negative pressure and air changes as required by OSHA and this specification.

J. Testing The System

The negative pressure system must be tested before any disturbedance. After the regulated area has been completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative pressure system to the VA using smoke tubes and a negative pressure gauge. Testing must also be done at the start of each work shift.

K. Demonstration Of The Negative Air Pressure System

- 1. The demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following:
- 2. Contractor to install Triatek (Web site www.Ttk.com) negative air isolation monitoring stations at the sites access doors or at opposite sides of the construction area check with resident engineer for # of units and location.
- 3. Curtains of the decontamination units move in toward regulated area.
- 4. Use smoke tubes to demonstrate air is moving air across all areas in which work is to be done.
- 5. Plastic barriers and sheeting move lightly in toward the regulated area.
- L. Use Of System During Construction Operations
 - 1. Start units before beginning any disturbance occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a

01 01 10-7 585-10-127

negative pressure differential of 5.0 Pa (-0.02") water column, for the duration of the work until a final visual clearance and final air clearance has been completed.

- 2. The negative air machines shall not be shut down for the duration of the project unless authorized by the VA, in writing.
- 3. Construction work shall begin at a location closest from the units and proceed away from them. If an electric failure occurs, the Competent Person shall stop all work and not resume until power is restored and all units necessary are operating properly again.
- 4. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air, clearance has been completed for that regulated area.

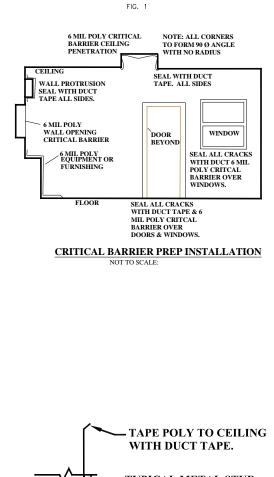
2.2 Containment Barriers And Coverings In The Regulated Area

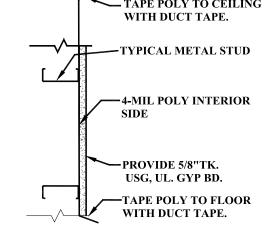
A. General

Seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated, immediately stop work and clean up the contamination at no additional cost to the Government.

B. Controlling Access To The Regulated Area

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA warning signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of opaque fire retardant poly sheeting at least 4 mils thick to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.


C. Critical Barriers


Completely separate the regulated area from adjacent areas using fire retardant poly at least 4 mils thick and duct tape. Individually seal with two layers of 6 mil poly and duct tape all HVAC openings, cap off exhaust into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Use care with hot/warm surfaces see fig 1.

D. Primary Barriers

Temporary Construction Partitions: Install and maintain temporary construction partitions to provide separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on one side of wood or metal steel studs. Seal with one layers of 4 mil poly for a vapor barrier under gypsum or plywood. Extend the Poly through suspended ceilings to floor slab or roof. Seal penetrations at

door openings, install tight-fitting VA supplied construction doors with selfclosing devices see fig. 2 for barrier construction.

TEMPORARY IC BARRIER WALL CONSTRUCTION

Fig. 2

Upgrade 5 East

01 01 10-10 585-10-127

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall engage the services of an outside consultant.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall

have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date

constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.

- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
- e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
- 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
- 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.

D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.

- 5. Completion percentage for all completed and partially completed activities/events.
- Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor

should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.

 When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.

- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 - 4 (Changes) and VAAR 852.236 - 88 (Changes -Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computerproduced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts

and advise the Contractor in writing of the Contracting Officer's decision.

- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR

52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples required by Section 09 06 00, SCHEDULE FOR FINISHES, in quadruplicate. Submit other samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail or e-mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
 - 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
 - C. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.

- D. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- E. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

_Northern Design Works	
(Architect-Engineer)	
_420 Rail ST	
(A/E P.O. Address)	
Negaunee, MI 49866	

(City, State and Zip Code)

1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning

A10.34-2012.....Protection of the Public on or Adjacent to Construction Sites

- Al0.38-2013.....Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations
- C. American Society for Testing and Materials (ASTM):

E84-2013.....Surface Burning Characteristics of Building Materials

D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

10-2013.....Standard for Portable Fire Extinguishers

30-2012.....Flammable and Combustible Liquids Code

51B-2014..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2014.....National Electrical Code

70B-2013.....Recommended Practice for Electrical Equipment Maintenance 70E-2012Standard for Electrical Safety in the Workplace

99-2012.....Health Care Facilities Code

241-2013.....Standard for Safeguarding Construction, Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification Manual

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1904Reporting and Recording Injuries & Illnesses

- 29 CFR 1910Safety and Health Regulations for General Industry
- 29 CFR 1926Safety and Health Regulations for Construction Industry

CPL 2-0.124.....Multi-Employer Citation Policy

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- B. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.

- C. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- D. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.
- E. Recordable Injuries or Illnesses. Any work-related injury or illness that results in:
 - Death, regardless of the time between the injury and death, or the length of the illness;
 - Days away from work (any time lost after day of injury/illness onset);
 - 3. Restricted work;
 - 4. Transfer to another job;
 - 5. Medical treatment beyond first aid;
 - 6. Loss of consciousness; or
 - A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (6) above.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable federal, state, and local laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer Representative.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. SIGNATURE SHEET. Title, signature, and phone number of the following:
 - 1) Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - 2) Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or

Upgrade 5 East

01 35 26 -4 585-10-127

superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).

- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor;
 - 2) Contract number;
 - 3) Project name;
 - Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.

d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:

- A statement of the employer's ultimate responsibility for the implementation of his SOH program;
- Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
- Requirements that no work shall be performed unless a designated competent person is present on the job site;
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
- 6) Lines of authority;

```
Upgrade 5 East
```

- 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

 Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.

- Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all OSHA Recordable Incidents. The APP shall include accident/incident investigation procedure & identify person(s) responsible to provide the following to the Contracting Officer Representative:
 - 1) Exposure data (man-hours worked);
 - 2) Accident investigations, reports, and logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response ;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention ;
 - 4) Medical Support;
 - 5) Posting of emergency telephone numbers;
 - 6) Prevention of alcohol and drug abuse;
 - 7) Site sanitation (housekeeping, drinking water, toilets);
 - 8) Night operations and lighting ;
 - 9) Hazard communication program;
 - 10) Welding/Cutting "Hot" work ;
 - 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
 - 12) General Electrical Safety

Upgrade 5 East

01 35 26 -7

- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;
- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) PreCast Concrete.
- C. Submit the APP to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer Representative. Should any severe hazard exposure, i.e. imminent danger, become

Upgrade 5 East

01 35 26 -8

585-10-127

evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public (as defined by ASSE/SAFE A10.34) and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
 - The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).

585-10-127

- a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
- b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.

- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in

accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.

E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.

- E. Submit training records associated with the above training requirements to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - Results of the inspection will be documented with tracking of the identified hazards to abatement.

- The Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
- 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
- 4. A report of the inspection findings with status of abatement will be provided to the Contracting Officer Representative within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. Notify the Contracting Officer as soon as practical, but no more than four hours after any accident meeting the definition of OSHA Recordable Injuries or Illnesses or High Visibility Accidents, property damage equal to or greater than \$5,000, or any weight handling equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer Representative determine whether a government investigation will be conducted.
- B. Conduct an accident investigation for recordable injuries and illnesses, for Medical Treatment defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162, and provide the report to the Contracting Officer Representative within 5 calendar days of the accident. The Contracting Officer Representative will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative monthly.
- D. A summation of all OSHA recordable accidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer Representative monthly. The

contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - 1. Hard Hats unless written authorization is given by the Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - Safety glasses unless written authorization is given by the Contracting Officer appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative.
 - Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.
- B. Provide Infection Control measures as required in 01 01 10 Infection Control.

1.13 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
 - Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
 - 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
 - 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.

- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- E. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer Representative.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.

- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Contracting Officer Representative.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Obtain permits.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Contracting Officer Representative with approval of the Medical Center

Upgrade 5 East

585-10-127

Director will make the determination if the circumstances would meet the exception outlined above. An AHA specific to energized work activities will be developed, reviewed, and accepted prior to the start of that work.

- Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the Contracting Officer Representative.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. All 120-volt, single-phase 15- and 20-ampere receptacle outlets on construction sites shall have approved ground-fault circuit interrupters for personnel protection. "Assured Equipment Grounding Conductor Program" only is not allowed.

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.

Upgrade 5 East

4. Emergency descent devices shall not be used as working platforms.

- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.19 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1910.146 except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Government Designated Authority.

1.20 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Government Designated Authority. Obtain permits.

Upgrade 5 East

1.21 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.22 FLOOR & WALL OPENINGS

A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.

- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. See 21.F for covering and labeling requirements. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a

removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.

- 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
- 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
- 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
- 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
- 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location: DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA	Aluminum Association Inc.
	http://www.aluminum.org
AABC	Associated Air Balance Council
	http://www.aabchq.com
AAMA	American Architectural Manufacturer's Association
	http://www.aamanet.org
AAN	American Nursery and Landscape Association
	http://www.anla.org
AASHTO	American Association of State Highway and Transportation Officials
	http://www.aashto.org
AATCC	American Association of Textile Chemists and Colorists
	http://www.aatcc.org
ACGIH	American Conference of Governmental Industrial Hygienists
	http://www.acgih.org
ACI	American Concrete Institute
	http://www.aci-int.net
ACPA	American Concrete Pipe Association
	http://www.concrete-pipe.org
ACPPA	American Concrete Pressure Pipe Association
	http://www.acppa.org
ADC	Air Diffusion Council
	http://flexibleduct.org
AGA	American Gas Association
	http://www.aga.org
AGC	Associated General Contractors of America
	http://www.agc.org
AGMA	American Gear Manufacturers Association, Inc.
	http://www.agma.org
AHAM	Association of Home Appliance Manufacturers
	http://www.aham.org
AISC	American Institute of Steel Construction
	http://www.aisc.org
AISI	American Iron and Steel Institute
	http://www.steel.org
AITC	American Institute of Timber Construction
	http://www.aitc-glulam.org
AMCA	Air Movement and Control Association, Inc.
	http://www.amca.org
ANLA	American Nursery & Landscape Association
	http://www.anla.org

ANSI	American National Standards Institute, Inc.
	http://www.ansi.org
APA	The Engineered Wood Association
	http://www.apawood.org
ARI	Air-Conditioning and Refrigeration Institute
	http://www.ari.org
ASAE	American Society of Agricultural Engineers
	http://www.asae.org
ASCE	American Society of Civil Engineers
	http://www.asce.org
ASHRAE	American Society of Heating, Refrigerating, and
	Air-Conditioning Engineers
	http://www.ashrae.org
ASME	American Society of Mechanical Engineers
	http://www.asme.org
ASSE	American Society of Sanitary Engineering
	http://www.asse-plumbing.org
ASTM	American Society for Testing and Materials
	http://www.astm.org
AWI	Architectural Woodwork Institute
	http://www.awinet.org
AWS	American Welding Society
	http://www.aws.org
AWWA	American Water Works Association
	http://www.awwa.org
BHMA	Builders Hardware Manufacturers Association
	http://www.buildershardware.com
BIA	Brick Institute of America
	http://www.bia.org
CAGI	Compressed Air and Gas Institute
	http://www.cagi.org
CGA	Compressed Gas Association, Inc.
	http://www.cganet.com
CI	The Chlorine Institute, Inc.
	http://www.chlorineinstitute.org
CISCA	Ceilings and Interior Systems Construction Association
	http://www.cisca.org
CISPI	Cast Iron Soil Pipe Institute
	http://www.cispi.org

CLFMI	Chain Link Fence Manufacturers Institute
	http://www.chainlinkinfo.org
CPMB	Concrete Plant Manufacturers Bureau
	http://www.cpmb.org
CRA	California Redwood Association
	http://www.calredwood.org
CRSI	Concrete Reinforcing Steel Institute
	http://www.crsi.org
CTI	Cooling Technology Institute
	http://www.cti.org
DHI	Door and Hardware Institute
	http://www.dhi.org
EGSA	Electrical Generating Systems Association
	http://www.egsa.org
EEI	Edison Electric Institute
	http://www.eei.org
EPA	Environmental Protection Agency
	http://www.epa.gov
ETL	ETL Testing Laboratories, Inc.
	http://www.etl.com
FAA	Federal Aviation Administration
	http://www.faa.gov
FCC	Federal Communications Commission
	http://www.fcc.gov
FPS	The Forest Products Society
	http://www.forestprod.org
GANA	Glass Association of North America
	http://www.cssinfo.com/info/gana.html/
FM	Factory Mutual Insurance
	http://www.fmglobal.com
GA	Gypsum Association
	http://www.gypsum.org
GSA	General Services Administration
	http://www.gsa.gov
HI	Hydraulic Institute
	http://www.pumps.org
HPVA	Hardwood Plywood & Veneer Association
	http://www.hpva.org
ICBO	International Conference of Building Officials
	http://www.icbo.org

ICEA	Insulated Cable Engineers Association Inc.
	http://www.icea.net
\ICAC	Institute of Clean Air Companies
	http://www.icac.com
IEEE	Institute of Electrical and Electronics Engineers
	http://www.ieee.org\
IMSA	International Municipal Signal Association
	http://www.imsasafety.org
IPCEA	Insulated Power Cable Engineers Association
NBMA	Metal Buildings Manufacturers Association
	http://www.mbma.com
MSS	Manufacturers Standardization Society of the Valve and Fittings
	Industry Inc.
	http://www.mss-hq.com
NAAMM	National Association of Architectural Metal Manufacturers
	http://www.naamm.org
NAPHCC	Plumbing-Heating-Cooling Contractors Association
	http://www.phccweb.org.org
NBS	National Bureau of Standards
	See - NIST
NBBPVI	National Board of Boiler and Pressure Vessel Inspectors
	http://www.nationboard.org
NEC	National Electric Code
	See - NFPA National Fire Protection Association
NEMA	National Electrical Manufacturers Association
	http://www.nema.org
NFPA	National Fire Protection Association
	http://www.nfpa.org
NHLA	National Hardwood Lumber Association
	http://www.natlhardwood.org
NIH	National Institute of Health
	http://www.nih.gov
NIST	National Institute of Standards and Technology
	http://www.nist.gov
NLMA	Northeastern Lumber Manufacturers Association, Inc.
	http://www.nelma.org
NPA	National Particleboard Association
	18928 Premiere Court
	Gaithersburg, MD 20879
	(301) 670-0604

NSF	National Sanitation Foundation
	http://www.nsf.org
NWWDA	Window and Door Manufacturers Association
	http://www.nwwda.org
OSHA	Occupational Safety and Health Administration
	Department of Labor
	http://www.osha.gov
PCA	Portland Cement Association
	http://www.portcement.org
PCI	Precast Prestressed Concrete Institute
	http://www.pci.org
PPI	The Plastic Pipe Institute
	http://www.plasticpipe.org
PEI	Porcelain Enamel Institute, Inc.
	http://www.porcelainenamel.com
PTI	Post-Tensioning Institute
	http://www.post-tensioning.org
RFCI	The Resilient Floor Covering Institute
	http://www.rfci.com
RIS	Redwood Inspection Service
	See - CRA
RMA	Rubber Manufacturers Association, Inc.
	http://www.rma.org
SCMA	Southern Cypress Manufacturers Association
	http://www.cypressinfo.org
SDI	Steel Door Institute
	http://www.steeldoor.org
IGMA	Insulating Glass Manufacturers Alliance
	http://www.igmaonline.org
SJI	Steel Joist Institute
	http://www.steeljoist.org
SMACNA	Sheet Metal and Air-Conditioning Contractors
	National Association, Inc.
	http://www.smacna.org
SSPC	The Society for Protective Coatings
	http://www.sspc.org
STI	Steel Tank Institute
	http://www.steeltank.com
SWI	Steel Window Institute
	http://www.steelwindows.com

TCA	Tile Council of America, Inc.
	http://www.tileusa.com
TEMA	Tubular Exchange Manufacturers Association
	http://www.tema.org
TPI	Truss Plate Institute, Inc.
	583 D'Onofrio Drive; Suite 200
	Madison, WI 53719
	(608) 833-5900
UBC	The Uniform Building Code
	See ICBO
UL	Underwriters' Laboratories Incorporated
	http://www.ul.com
ULC	Underwriters' Laboratories of Canada
	http://www.ulc.ca
WCLIB	West Coast Lumber Inspection Bureau
	6980 SW Varns Road, P.O. Box 23145
	Portland, OR 97223
	(503) 639-0651
WRCLA	Western Red Cedar Lumber Association
	P.O. Box 120786
	New Brighton, MN 55112
	(612) 633-4334
WWPA	Western Wood Products Association
	http://www.wwpa.org
	E N D

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
 - Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
 - 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Resident Engineer to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Resident Engineer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.

- f. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- g. Permits, licenses, and the location of the solid waste disposal area.
- h. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
- C. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Michigan and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.

- 3. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- D. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Resident Engineer. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m unless otherwise permitted by local ordinance or the Resident Engineer. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels
 at 15 m (50 feet) (dBA):

EARTHMOVING		MATERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75		
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.

- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the Resident Engineer noting any problems and the alternatives for mitigating actions.
- E. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- F. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Resident Engineer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 58 16 TEMPORARY INTERIOR SIGNAGE

PART 1 GENERAL

DESCRIPTION

This section specifies temporary interior signs.

PART 2 PRODUCTS

2.1 TEMPORARY SIGNS

- A. Fabricate from 50 Kg (110 pound) mat finish white paper.
- B. Cut to 100 mm (4-inch) wide by 300 mm (12 inch) long size tag.
- C. Punch 3 mm (1/8-inch) diameter hole centered on 100 mm (4-inch) dimension of tag. Edge of Hole spaced approximately 13 mm (1/2-inch) from one end on tag.
- D. Reinforce hole on both sides with gummed cloth washer or other suitable material capable of preventing tie pulling through paper edge.
- E. Ties: Steel wire 0.3 mm (0.0120-inch) thick, attach to tag with twist tie, leaving 150 mm (6-inch) long free ends.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install temporary signs attached to room door frame or room door knob, lever, or pull for doors on corridor openings.
- B. Mark on signs with felt tip marker having approximately 3 mm (1/8-inch) wide stroke for clearly legible numbers or letters.
- C. Identify room with numbers as designated on floor plans.

3.2 LOCATION

- A. Install on doors that have room, corridor, and space numbers shown.
- B. Doors that do not require signs are as follows:
 - 1. Corridor barrier doors (cross-corridor) in corridor with same number.
 - 2. Folding doors or partitions.
 - 3. Toilet or bathroom doors within and between rooms.
 - 4. Communicating doors in partitions between rooms with corridor entrance doors.
 - 5. Closet doors within rooms.
- C. Replace missing, damaged, or illegible signs.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste. Provide to the VA Industrial Hygienist a written monthly report on all recycled and construction waste as required in the Waste Management Plan.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to

be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.

- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:

- 1. Procedures to be used for debris management.
- 2. Techniques to be used to minimize waste generation.
- 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices.

Include the net total costs or savings for each salvaged or recycled material.

C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 01 81 13

SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction as summarized in the VA Sustainable Design Manual.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. By submitting a change or substitution of materials or processes, contractor must demonstrate its diligence in performing the level of investigation and comparison required under federal mandates and VA policies.

1.2 RELATED WORK

- A. Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
- B. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.

1.3 DEFINITIONS

- A. Total Materials Cost: A tally of actual material cost from specification divisions 03 through 10, 31 (applicable to foundations) and 32 (applicable to paving, site improvements, and planting). Alternatively, 45 percent of total construction hard costs in those specification divisions.
- B. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a

process and capable of being reclaimed within the same process that generated it.

- C. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.
- D. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- E. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- B. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- C. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- D. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- E. U. S. Department of Energy Federal Energy Management Program (FEMP).
- F. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR/Resident Engineer and Architect.
- B. Product Submittals:
 - Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
 - Biobased Content: Submittals for products to be installed or used included on the USDA BioPreferred program's product category lists. Data to include biobased content and source of biobased material; indicating name of manufacturer, cost of each material.
 - 3. For applicable products and equipment, product documentation confirming Energy Star label and EPEAT certification.

- C. Sustainable Construction Progress Reports: Concurrent with each Application for Payment, submit a Sustainable Construction Progress Report.
 - Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding landclearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.
- F. Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- G. ASHRAE Standard 52.2-2007.
- PART 2 PRODUCTS

2.1 PERFORMANCE CRITERIA

- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Recycled Content:
 - Provide building materials with recycled content such that postconsumer recycled content value plus half the pre-consumer recycled content value constitutes a minimum of 10 percent of cost of materials used for Project, exclusive of mechanical, electrical and plumbing components, specialty items such as elevators, and labor and delivery costs.
- C. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSense-labeled

or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.

D. Materials, products, and equipment being installed which fall into a category covered by the Energy Star program must be Energy Starlabeled.

----END----

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup,

control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Resident Engineer as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA Resident Engineer and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the Resident Engineer and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the Resident Engineer.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to

the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.

- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and Resident Engineer. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the Resident Engineer and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the Resident Engineer to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or Resident Engineer will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the Resident Engineer of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or Resident Engineer, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- D. Section 21 08 00 COMMISSIONING OF FIRE PROTECTION SYSTEMS.
- E. Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- F. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- G. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.
- H. Section 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS.
- I. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.

1.5 ACRONYMS

List of Ac	ronyms
Acronym	Meaning
A/E	Architect / Engineer Design Team
AHJ	Authority Having Jurisdiction
ASHRAE	Association Society for Heating Air Condition and
	Refrigeration Engineers
BOD	Basis of Design
BSC	Building Systems Commissioning
CCTV	Closed Circuit Television
CD	Construction Documents
CMMS	Computerized Maintenance Management System
CO	Contracting Officer (VA)
COR	Contracting Officer's Representative (see also VA-RE)
COBie	Construction Operations Building Information Exchange
CPC	Construction Phase Commissioning
Cx	Commissioning
CxA	Commissioning Agent

List of Ac	ronyms
Acronym	Meaning
CxM	Commissioning Manager
CxR	Commissioning Representative
DPC	Design Phase Commissioning
FPT	Functional Performance Test
GBI-GG	Green Building Initiative - Green Globes
HVAC	Heating, Ventilation, and Air Conditioning
LEED	Leadership in Energy and Environmental Design
NC	Department of Veterans Affairs National Cemetery
NCA	Department of Veterans Affairs National Cemetery
11011	Administration
NEBB	National Environmental Balancing Bureau
O&M	Operations & Maintenance
OPR	Owner's Project Requirements
PFC	Pre-Functional Checklist
PFT	Pre-Functional Test
SD	Schematic Design
SO	Site Observation
TAB	Test Adjust and Balance
VA	Department of Veterans Affairs
VAMC	VA Medical Center
VA CFM	VA Office of Construction and Facilities Management
VACO	VA Central Office
VA PM	VA Project Manager
VA-RE	VA Resident Engineer
USGBC	United States Green Building Council

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training. Accuracy: The capability of an instrument to indicate the true value of a measured quantity. **Back Check:** A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines. **Benchmarks:** Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself.. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

<u>Building Information Modeling (BIM):</u> Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument. <u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>**COBie:**</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

<u>Commissionability</u>: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned <u>Commissioning Agent (CxA)</u>: The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists</u>: Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

<u>Commissioning Design Review:</u> The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

<u>Commissioning Issue</u>: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation). <u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

<u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

<u>Commissioning Process</u>: A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

Commissioning Report: The final commissioning document which presents the commissioning process results for the project. Cx reports include

an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

<u>Commissioning Representative (CxR)</u>: An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

<u>Commissioning Specifications</u>: The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process. <u>Construction Phase Commissioning:</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD)</u>: Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC)</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Coordination Drawings</u>: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

Data Logging: The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

Deferred System Test: Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

Design Criteria: A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR. **Design Intent:** The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

Design Narrative: A written description of the proposed design solutions that satisfy the requirements of the OPR.

Design Phase Commissioning (DPC): All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Industry Accepted Best Practice: A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

<u>Installation Verification:</u> Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices. <u>Integrated System Testing:</u> Integrated Systems Testing procedures entail

testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems

Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process. **Lessons Learned Workshop:** A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability:</u> A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment. Maintainability also includes components that have readily obtainable repair parts or service.

Manual Test: Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation'). Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

Peer Review: A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

Precision: The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

01 91 00 - 10

Pre-Design Phase Commissioning: Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project Pre-Functional Checklist (PFC): A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing. Pre-Functional Test (PFT): An inspection or test that is done before functional testing. PFT's include installation verification and system

and component start up tests.

Procedure or Protocol: A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

<u>Range</u>: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated. **<u>Resolution</u>**: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

Special System Inspections: Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

Static Tests: Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

Start Up Tests: Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

Systems Manual: A system-focused composite document that includes all information required for the owners operators to operate the systems.

Test Procedure: A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Testing: The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function. Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC. Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

Training Plan: A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).

 Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

Verification: The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning</u>: Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit</u>: A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

<u>Whole Building Commissioning:</u> Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.

Systems To Be Commissioned										
System Description										
Fire Suppression										
Fire Pump	Fire Pump, jockey pump, fire pump									
	controller/ATS									
Fire Sprinkler Systems Wet pipe system, dry pipe system, pre-action										
system, special agent systems										
Plumbing										

B. The following systems will be commissioned as part of this project:

Systems To Be Commissioned							
System	Description						
Domestic Water	Booster pumps, backflow preventers, water						
Distribution	softeners, potable water storage tanks						
Domestic Hot Water	Water heaters**, heat exchangers, circulation						
Systems	<pre>pumps, point-of-use water heaters*</pre>						
Sewerage Pump Systems	Sewage ejectors						
Wastewater Pump	Sump pumps						
Systems							
Sanitary Waste	Grease interceptors, acid neutralizers						
Interceptors							
General Service Air	Packaged compressor systems, air dryers,						
Systems	filtration						
Medical Air Systems	Packaged medical air compressor units. Outlet						
	certification, cross-connection verification						
Medical Vacuum Systems	Packaged medical vacuum units, outlet						
	certification, cross-connection verification						
Dental Air Systems	Packaged dental air compressor units, outlet						
	certification, cross-connect verification						
Dental Evacuation and	Packaged Dental Evacuation units, packaged						
Vacuum Systems	dental vacuum units, outlet certification,						
	cross-connection verification						
Waste Anesthesia Gas	Packaged Waste Anesthesia Gas units, outlet						
Systems	certification, cross-connection verification						
Medical Gas Systems	Medical gas (oxygen, nitrogen, nitrous oxide,						
(other than Medical	etc.) tank/manifold systems, outlet						
Air Systems)	certification, cross-connection verification						
Chemical Waste Systems	Chemical storage tanks, neutralization						
	systems, ventilation, process control						
Reverse-Osmosis	Packaged Reverse-Osmosis systems						
Systems							
Water De-Alkalizing	Package Water De-Alkalizing systems						
Systems							
HVAC							

Systems To Be Commissioned							
System	Description						
Noise and Vibration	Noise and vibration levels for critical						
Control	equipment such as Air Handlers, Chillers,						
	Cooling Towers, Boilers, Generators, etc. will						
	be commissioned as part of the system						
	commissioning						
Direct Digital Control	Operator Interface Computer, Operator Work						
System	Station (including graphics, point mapping,						
	trends, alarms), Network Communications						
	Modules and Wiring, Integration Panels. [DDC						
	Control panels will be commissioned with the						
	systems controlled by the panel]						
Chilled Water System	Chillers (centrifugal, rotary screw, air-						
	cooled), pumps (primary, secondary, variable						
	primary), VFDs associated with chilled water						
	system components, DDC Control Panels						
	(including integration with Building Control						
	System)						
Condenser Water System	Cooling Towers, Fluid Coolers, heat						
	exchangers/economizers, pumps, VFDs associated						
	with condenser water system components, DDC						
	control panels.						
Steam/Heating Hot	Boilers, boiler feed water system,						
Water System	economizers/heat recovery equipment,						
	condensate recovery, water treatment, boiler						
	fuel system, controls, interface with facility						
	DDC system.						
HVAC Air Handling	Air handling Units, packaged rooftop AHU,						
Systems	Outdoor Air conditioning units, humidifiers,						
	DDC control panels						
HVAC	General exhaust, toilet exhaust, laboratory						
Ventilation/Exhaust	exhaust, isolation exhaust, room						
Systems	pressurization control systems						
HVAC Energy Recovery	Heat Wheels, Heat Recovery Loops, AHU						
Systems	Integrated Heat Recovery						

Systems To Be Commissioned							
System	Description						
HVAC Terminal Unit	VAV Terminal Units, CAV terminal units, fan						
Systems	coil units, fin-tube radiation, unit heaters						
Decentralized Unitary	Split-system HVAC systems, controls, interface						
HVAC Systems	with facility DDC						
Unitary Heat Pump	Water-source heat pumps, controls, interface						
Systems	with facility DDC						
Humidity Control	Humidifiers, de-humidifiers, controls,						
Systems	interface with facility DDC						
Hydronic Distribution	Pumps, DDC control panels, heat exchangers,						
Systems							
Facility Fuel Systems	Boiler fuel system, generator fuel system						
Geothermal Energy	Geothermal well, ground heat exchanger,						
Direct Use Heating	geothermal pumps, heat exchanger, valves,						
	instrumentation						
Solar Energy Heating	Solar collectors, heat exchangers, storage						
Systems	tanks, solar-boosted domestic hot water						
	heater, pumps, valves, instrumentation						
Facility Fuel Gas	Witness Natural gas piping pressure testing,						
Systems	natural gas compressors and storage, propane						
	storage						
Smoke Evacuation	Atrium smoke evacuation, other smoke						
System	evacuation and smoke management systems,						
	controls, interface with other systems (fire						
	alarm), emergency operation.						
Electrical							
Medium-Voltage	Medium-Voltage Switchgear, Medium-Voltage						
Electrical	Switches, Underground ductbank and						
Distribution Systems	distribution, Pad-Mount Transformers, Medium-						
	Voltage Load Interrupter Switches,						
Grounding & Bonding	Witness 3rd party testing, review reports						
Systems							
Electric Power	Metering, sub-metering, power monitoring						
Monitoring Systems	systems, PLC control systems						

SystemDescriptionElectrical SystemReview reports, verify field settings consistent with StudyStudyconsistent with StudySubstationsWedium-voltage components, transformers, low- voltage distribution, verify breaker testing results (injection current, etc)Low-VoltageNormal power distribution system, Life-safety power distribution system, critical power distribution system, switchboards, distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency PowerGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & LightingEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemReview 3rd party testing, review reports SystemCommunicationsWitness 3rd party testing, review reports SystemSystemWitness 3rd party testing, review reports SystemMaster Antenna Television SystemWitness 3rd party testing, review reports Witness 3rd party testing, review reports System	Systems To Be Commissioned							
Protective Device Studyconsistent with StudySecondary Unit SubstationsMedium-voltage components, transformers, low- voltage distribution, verify breaker testing results (injection current, etc)Low-Voltage Distribution SystemNormal power distribution system, Life-safety power distribution system, critical power distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency Power Generators Generators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & Lighting SystemsEmergency lighting, occupancy sensors, lighting control systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing, review reports SystemGrounding & Bonding SystemWitness 3rd party testing, review reports SystemStructured Cabling SystemWitness 3rd party testing, review reports SystemMaster Antenna Television SystemWitness 3rd party testing, review reports SystemPublic Address & MassWitness 3rd party testing, review reports	System	Description						
StudyMedium-voltage components, transformers, low- voltage distribution, verify breaker testing results (injection current, etc)Low-VoltageNormal power distribution system, Life-safety power distribution system, critical power distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency PowerGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & LightingEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic ProtectionReview 3rd party testing, review reports systemLightning ProtectionWitness 3rd party testing, review reports SystemSystemWitness 3rd party testing, review reports systemSystemWitness 3rd party testing, review reports systemDevision SystemWitness 3rd party testing, review reports systemSystemWitness 3rd party testing, review reports systemDevision SystemWitness 3rd party testing, review reports systemMaster Antenna Television SystemWitness 3rd party testing, review reports witness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Electrical System	Review reports, verify field settings						
Secondary UnitMedium-voltage components, transformers, low- voltage distribution, verify breaker testing results (injection current, etc)Low-VoltageNormal power distribution system, Life-safety power distribution system, critical power distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency PowerGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & LightingEmergency lighting, occupancy sensors, lighting control systems, exterior lighting and controlsCathodic ProtectionReview 3rd party testing, review reports systemLighting & Bonding SystemWitness 3rd party testing, review reports systemGrounding & Bonding SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reports sort party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Protective Device	consistent with Study						
Substationsvoltage distribution, verify breaker testing results (injection current, etc)Low-VoltageNormal power distribution system, Life-safety power distribution system, critical power distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency PowerGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing, review reports SystemLightning Protection SystemsWitness 3rd party testing, review reports SystemGrounding & Bonding SystemWitness 3rd party testing, review reports SystemSystemWitness 3rd party testing, review reports SystemSystemWitness 3rd party testing, review reports SystemPublic Address & MassWitness 3rd party testing, review reports	Study							
results (injection current, etc) Low-Voltage Normal power distribution system, Life-safety Distribution System power distribution system, critical power distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc) Emergency Power Generators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systems Lighting & Lighting Control Systems Lighting tighting Emergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controls Cathodic Protection System Review 3rd party testing results. System Lightning Protection Witness 3rd party testing, review reports System Structured Cabling Witness 3rd party testing, review reports System Master Antenna Witness 3rd party testing, review reports Public Address & Mass Witness 3rd party testing, review reports Cathodress & Mass Witness 3rd party testing, review reports Cathodress & Mass Witness 3rd party testing, review reports System Cathodress & Mass Witness 3rd party testing, review reports System Cathodress & Mass Mitness 3rd party testing, review reports System Cathodress & Mass Mitness 3rd party testing, review reports System Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness 3rd party testing, review reports Cathodress & Mass Mitness	Secondary Unit	Medium-voltage components, transformers, low-						
Low-VoltageNormal power distribution system, Life-safetyDistribution Systempower distribution system, critical power distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency PowerGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & LightingEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting results.Cathodic ProtectionReview 3rd party testing, review reports SystemLightning ProtectionWitness 3rd party testing, review reports SystemGrounding & Bonding SystemWitness 3rd party testing, review reports Witness 3rd party testing, review reportsSystemWitness 3rd party testing, review reports SystemMaster Antenna Television SystemWitness 3rd party testing, review reports Witness 3rd party testing, review reports SystemPublic Address & MassWitness 3rd party testing, review reports	Substations	voltage distribution, verify breaker testing						
Distribution Systempower distribution system, critical power distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency PowerGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & LightingEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic ProtectionReview 3rd party testing results.SystemsILightning ProtectionWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsDial dadress & MassWitness 3rd party testing, review reports		results (injection current, etc)						
distribution system, equipment power distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency Power Generation SystemsGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting results.Cathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reports SystemGrounding & Bonding SystemWitness 3rd party testing, review reports SystemSystemWitness 3rd party testing, review reports SystemPublic Address & MassWitness 3rd party testing, review reports	Low-Voltage	Normal power distribution system, Life-safety						
distribution system, switchboards, distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency PowerGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & LightingEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results. SystemsLightning Protection SystemWitness 3rd party testing, review reports SystemGrounding & Bonding SystemWitness 3rd party testing, review reports SystemSystemWitness 3rd party testing, review reportsSystemWitness 3rd party t	Distribution System	power distribution system, critical power						
distribution panels, panelboards, verify breaker testing results (injection current, etc)Emergency Power Generation SystemsGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results. SystemLightning Protection SystemWitness 3rd party testing, review reports SystemGrounding & Bonding SystemWitness 3rd party testing, review reports SystemSystemWitness 3rd party testing, review reports SystemMaster Antenna Television SystemWitness 3rd party testing, review reports System, relevision SystemPublic Address & MassWitness 3rd party testing, review reports		distribution system, equipment power						
breaker testing results (injection current, etc)Emergency Power Generation SystemsGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review report		distribution system, switchboards,						
etc)Emergency Power Generation SystemsGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports		distribution panels, panelboards, verify						
Emergency Power Generation SystemsGenerators, Generator paralleling switchgear, automatic transfer switches, PLC and other control systemsLighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsS		breaker testing results (injection current,						
Generation Systemsautomatic transfer switches, PLC and other control systemsLighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsCommunicationsWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports		etc)						
Lighting & Lighting Control SystemsEmergency lighting, occupancy sensors, lighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsCommunicationsWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Emergency Power	Generators, Generator paralleling switchgear,						
Lighting & LightingEmergency lighting, occupancy sensors,Control Systemslighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic ProtectionReview 3rd party testing results.Systemsuintess 3rd party testing, review reportsLightning ProtectionWitness 3rd party testing, review reportsSystemuintess 3rd party testing, review reportsCommunicationsWitness 3rd party testing, review reportsSystemuintess 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Generation Systems	automatic transfer switches, PLC and other						
Control Systemslighting control systems, architectural dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsCommunicationsMitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports		control systems						
dimming systems, theatrical dimming systems, exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsCommunicationsMitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Lighting & Lighting	Emergency lighting, occupancy sensors,						
exterior lighting and controlsCathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsCommunicationsMitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Control Systems	lighting control systems, architectural						
Cathodic Protection SystemsReview 3rd party testing results.Lightning Protection SystemWitness 3rd party testing, review reportsCommunicationsMitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports		dimming systems, theatrical dimming systems,						
SystemsWitness 3rd party testing, review reportsLightning Protection SystemWitness 3rd party testing, review reportsCommunicationsMitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsSystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports		exterior lighting and controls						
Lightning Protection SystemWitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsGrounding & Bonding SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Cathodic Protection	Review 3rd party testing results.						
SystemSystemCommunicationsGrounding & Bonding SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Systems							
Image: Second	Lightning Protection	Witness 3rd party testing, review reports						
Grounding & Bonding SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	System							
Grounding & Bonding SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports								
SystemWitness 3rd party testing, review reportsStructured Cabling SystemWitness 3rd party testing, review reportsMaster Antenna Television SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	Communications							
Structured Cabling Witness 3rd party testing, review reports System Witness 3rd party testing, review reports Master Antenna Witness 3rd party testing, review reports Television System Witness 3rd party testing, review reports Public Address & Mass Witness 3rd party testing, review reports	Grounding & Bonding	Witness 3rd party testing, review reports						
SystemWitness 3rd party testing, review reportsMaster AntennaWitness 3rd party testing, review reportsTelevision SystemWitness 3rd party testing, review reportsPublic Address & MassWitness 3rd party testing, review reports	System							
Master Antenna Witness 3rd party testing, review reports Television System Witness 3rd party testing, review reports Public Address & Mass Witness 3rd party testing, review reports	Structured Cabling	Witness 3rd party testing, review reports						
Television System Public Address & Mass Witness 3rd party testing, review reports	System							
Public Address & Mass Witness 3rd party testing, review reports	Master Antenna	Witness 3rd party testing, review reports						
	Television System							
Natification Systems	Public Address & Mass	Witness 3rd party testing, review reports						
NOTIFICATION Systems	Notification Systems							

Systems To Be Commissio							
System	Description						
Intercom & Program	Witness 3rd party testing, review reports						
Systems							
Nurse Call & Code Blue	Witness 3rd party testing, review reports						
Systems							
Security Emergency	Witness 3rd party testing, review reports						
Call Systems							
Duress Alarm Systems	Witness 3rd party testing, review reports						
Electronic Safety and S	ecurity						
Grounding & Bonding	Witness 3rd party testing, review reports						
Physical Access	Witness 3rd party testing, review reports						
Control Systems							
Access Control Systems	Witness 3rd party testing, review reports						
Security Access	Witness 3rd party testing, review reports						
Detection Systems							
Video Surveillance	Witness 3rd party testing, review reports						
System							
Electronic Personal	Witness 3rd party testing, review reports						
Protection System							
Fire Detection and	100% device acceptance testing, battery draw-						
Alarm System	down test, verify system monitoring, verify						
interface with other systems.							
Integrated Systems Test	S						
Loss of Power Response	Loss of power to building, loss of power to						
campus, restoration of power to building,							
restoration of power to campus.							
Fire Alarm Response	re Alarm Response Integrated System Response to Fire Alarm						
	Condition and Return to Normal						

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:

- Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
- 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - 2. User: Representatives of the facility user and operation and maintenance personnel.
 - 3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and

that subcontractors comply with the requirements of these specifications.

- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - 6. Participate in meetings to coordinate Systems Functional Performance Testing.
 - 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
 - 8. Provide information to the Commissioning Agent for developing commissioning plan.
 - 9. Participate in training sessions for VA's operation and maintenance personnel.
 - 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and

comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.

- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents. Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.

- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

- A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
 - Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
 - 3. Identification of systems and equipment to be commissioned.
 - 4. Schedule of Commissioning Coordination meetings.
 - 5. Identification of items that must be completed before the next operation can proceed.
 - 6. Description of responsibilities of commissioning team members.
 - 7. Description of observations to be made.

- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.

12. Preliminary Systems Functional Performance Test procedures.

- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:
 - 1. Name and identification code of tested system.
 - 2. Test number.
 - 3. Time and date of test.
 - 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
 - Dated signatures of the person performing test and of the witness, if applicable.
 - 6. Individuals present for test.
 - 7. Observations and Issues.
 - 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-

Functional Checklists shall be returned to the Contractor for correction and resubmission.

- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating an Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.

- g. Include information that may be helpful in diagnosing or evaluating the issue.
- h. Note recommended corrective action.
- i. Identify commissioning team member responsible for corrective action.
- j. Identify expected date of correction.
- k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:
 - Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
 - 2. Commissioning plan.
 - 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.

- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5, Commissioning Issues Log.
- Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.
 - 4. Updated Commissioning Issues Log, including status of unresolved issues.
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:

- 1. The Commissioning Team: A list of commissioning team members by organization.
- 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
- 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
- Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
- Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
- 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary stepby-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures

to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.

- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA Resident Engineer with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
 - The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.

- B. The Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. The Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient

information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.

- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in

the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 $^{\circ}$ C (1.0 $^{\circ}$ F) and a resolution of + or - 0.1 $^{\circ}$ C (0.2 $^{\circ}$ F). Pressure sensors shall have an accuracy of + or - 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

585-10-127

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Spec Writer's Notes: Edit the following tables to describe the roles and responsibilities for each commissioning team member for each of the commissioning tasks as appropriate for the project.

Construction Phase		CxA =	Commis	sionir	nt	L = Lead	
		RE = Resident Engineer					P = Participate
Commigationing D	eles (Despensibilities	A/E =	Design	Arch	/Engin	eer	A = Approve
Commissioning R	oles & Responsibilities	PC = F	rime C	ontrad	ctor		R = Review
		0&M =	Gov′t	Facil	ity O&	M	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Construction Commissioning Kick Off meeting	L	A	Ρ	Ρ	0	
	Commissioning Meetings	L	A	Р	P	0	
	Project Progress Meetings	P	А	Р	L	0	
	Controls Meeting	L	A	P	P	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	A	P	P	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	A	R	R	0	
Schedules	Duration Schedule for Commissioning Activities	L	А	R	R	N/A	

Construction Phase		CxA =	Commis	sioni	L = Lead		
Commissioning Dolog & Dogmonsibilities		RE = 1	Resider	nt Engi	P = Participate		
		A/E =	Desigr	n Arch	eer	A = Approve	
Commissioning R	Commissioning Roles & Responsibilities		Prime C	Contra	ctor		R = Review
		0&M =	Gov't	Facil	ity O&	М	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	
Document	TAB Plan Review	L	A	R	R	0	
Reviews	Submittal and Shop Drawing Review	R	A	R	L	0	
	Review Contractor Equipment Startup Checklists	L	A	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	A	R	R	N/A	
Site Observations	Witness Factory Testing	P	A	P	L	0	
observations	Construction Observation Site Visits	L	A	R	R	0	
Functional	Final Pre-Functional Checklists	L	A	R	R	0	
Test Protocols	Final Functional Performance Test Protocols	L	A	R	R	0	
Technical	Issues Resolution Meetings	P	A	P	L	0	
Activities		P	A	Г Г			

Construction Phase		CxA = Commissioning Agent					L = Lead
		RE = R	esiden	t Engi		P = Participate	
Gammiaaianina	Deleg (Despersibilities	A/E =	Design	Arch/	Engine	eer	A = Approve
Commissioning	Commissioning Roles & Responsibilities		rime C	ontrac	tor		R = Review
		O&M = Gov't Facility O&M					O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Reports and	Status Reports	L	A	R	R	0	
Logs Maintain Commissioning Issues Log		L	A	R	R	0	

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phase		CxA =	Commi	ssion	L = Lead		
		RE = R	eside	nt Eng	P = Participate		
a		A/E =	Desig	n Arcl	n/Engi:	neer	A = Approve
Commissioning I	Roles & Responsibilities	PC = P	rime	Contra	actor		R = Review
		O&M =	Gov't	Faci	lity O	&M	O = Optional
Category	Task Description	CxA	CxA RE A/E PC O&M				Notes
Meetings	Commissioning Meetings	L	А	P	Ρ	0	
	Project Progress Meetings	P	А	P	L	0	
	Pre-Test Coordination Meeting	L	А	P	P	0	
	Lessons Learned and Commissioning Report Review Meeting	L	A	Р	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	Р	Р	0	

Acceptance Phase		CxA = Commissioning Agent					L = Lead
			leside	ent Eng	P = Participate		
Commissioning Roles & Responsibilities		A/E = Design Arch/Engineer PC = Prime Contractor					A = Approve R = Review
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	A	R	R	0	
Schedules	Prepare Functional Test Schedule	L	А	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document	Review Completed Pre-Functional	L	A	R	R	0	
Reviews	Checklists Pre-Functional Checklist Verification	Т.	A	R	R	0	
	Review Operations & Maintenance Manuals	L	A	R	R	R	
	Training Plan Review	L	A	R	R	R	
	Warranty Review	L	A	R	R	0	
	Review TAB Report	L	A	R	R	0	
Site Observations	Construction Observation Site Visits	L	A	R	R	0	
	Witness Selected Equipment Startup	L	A	R	R	0	
Functional Test Protocols	TAB Verification	T,	A	R	R	0	
	Systems Functional Performance Testing	L	A	R P	R P	P	
	Retesting	L	A	P	P	P	

Acceptance Phase		CxA =	Commi	ssion	L = Lead		
Commissioning Roles & Responsibilities		RE = R	leside	ent Eng	P = Participate		
		A/E =	Desig	n Arcl	A = Approve		
		PC = P	rime	Contra	R = Review		
		O&M =	Gov't	Faci	O = Optional		
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Technical Activities	Issues Resolution Meetings	P	A	Р	L	0	
	Systems Training	L	S	R	Р	P	
Reports and Logs	Status Reports	L	А	R	R	0	
	Maintain Commissioning Issues Log	L	А	R	R	0	
	Final Commissioning Report	L	А	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase		CxA =	Commi	ssion	L = Lead		
Commissioning Roles & Responsibilities		RE = F	leside	nt En	P = Participate		
		A/E =	Desig	n Arc	A = Approve		
		PC = F	rime	Contr	R = Review		
		O&M =	Gov't	Faci	O = Optional		
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Post-Occupancy User Review Meeting	L	А	0	P	P	
Site Observations	Periodic Site Visits	L	А	0	0	Р	
Functional Test Protocols	Deferred and/or seasonal Testing	L	А	0	Р	P	
Technical Activities	Issues Resolution Meetings	L	S	0	0	Р	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	A		R	Р	
Reports and Logs	Final Commissioning Report Amendment	L	А		R	R	
	Status Reports	L	А		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.
 - c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.

- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
- 4. Execution of Equipment Startup

Spec Writer Note: Coordinate the number of week's lead-time with the Resident Engineer.

- a. //Four// //insert number// weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
- b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
- c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
- d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.
- 3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP
 - A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.

- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.
- C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

Spec Writer Note: The following paragraph on Phased Commissioning is for projects with phased delivery of buildings or parts of buildings. It is intended to notify the Contractor that some Commissioning Activities, such as startup, functional testing, etc. will be conducted as the various phases of the project near completion and will require multiple mobilizations of the startup and functional testing teams to support the phased commissioning. Delete the following paragraph when phased delivery is not part of the project.

3.4 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers - Critical, Priority, and Maintenance.
 - 1. Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be

displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.

- 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
- 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.
- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the Resident Engineer and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the

Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the Resident Engineer. Any pretest trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the Resident Engineer, prior to the execution of Systems Functional Performance Testing.

- 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.
- 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.
- 4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

Spec Writer Note: The following tables provide guidelines for system trends and alarms. Coordinate the types of systems and point names with the construction documents. Verify alarm priorities, ranges and delay. The Design Engineer may elect to include trending and alarm information on the DDC Control Schematics and Sequences of Operations in the Construction Drawing set or in the DDC Control Specifications. Verify the control drawings and/or DDC specifications have included reference to this section of 01 91 00. If adequately included in the drawings or specifications, the following tables should be deleted to prevent duplication and possible conflicts.

Dual-Path Air	Dual-Path Air Handling Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
OA Temperature	AI	15 Min	24 hours	3 days	N/A						
RA Temperature	AI	15 Min	24 hours	3 days	N/A						
RA Humidity	AI	15 Min	24 hours	3 days	Р	>60% RH	10 min				
Mixed Air Temp	AI	None	None	None	N/A						
SA Temp	AI	15 Min	24 hours	3 days	С	±5°F from SP	10 min				
Supply Fan Speed	AI	15 Min	24 hours	3 days	N/A						
Return Fan Speed	AI	15 Min	24 hours	3 days	N/A						
RA Pre-Filter Status	AI	None	None	None	N/A						
OA Pre-Filter Status	AI	None	None	None	N/A						
After Filter Status	AI	None	None	None	N/A						
SA Flow	AI	15 Min	24 hours	3 days	С	±10% from SP	10 min				
OA Supply Temp	AI	15 Min	24 hours	3 days	Р	±5°F from SP	10 min				
RA Supply Temp	AI	15 Min	24 hours	3 days	N/A						
RA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A						
OA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A						

Dual-Path Air	Dual-Path Air Handling Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
OA HW Valve Position	AI	15 Min	24 hours	3 days	N/A						
OA Flow	AI	15 Min	24 hours	3 days	P	±10% from SP	5 min				
RA Flow	AI	15 Min	24 hours	3 days	P	±10% from SP	5 min				
Initial UVC Intensity (%)	AI	None	None	None	N/A						
Duct Pressure	AI	15 Min	24 hours	3 days	C	±25% from SP	6 min				
CO2 Level	AI	15 Min	24 hours	3 days	P	±10% from SP	10 min				
Supply Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min				
Return Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 Min				
High Static Status	DI	COV	24 hours	3 days	Р	True	1 min				
Fire Alarm Status	DI	COV	24 hours	3 days	С	True	5 min				
Freeze Stat Level 1	DI	COV	24 hours	3 days	С	True	10 min				
Freeze Stat Level 2	DI	COV	24 hours	3 days	С	True	5 min				
Freeze Stat Level 3	DI	COV	24 hours	3 days	P	True	1 min				
Fire/Smoke Damper Status	DI	COV	24 hours	3 days	P	Closed	1 min				
Emergency AHU Shutdown	DI	COV	24 hours	3 days	P	True	1 min				
Exhaust Fan #1 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min				
Exhaust Fan #2 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min				
Exhaust Fan #3 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min				
OA Alarm	DI	COV	24 hours	3 days	C	True	10 min				
High Static Alarm	DI	COV	24 hours	3 days	С	True	10 min				
UVC Emitter Alarm	DI	COV	24 hours	3 days	Р	True	10 min				

Dual-Path Air	Dual-Path Air Handling Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
CO2 Alarm	DI	COV	24 hours	3 days	Р	True	10 min				
Power Failure	DI	COV	24 hours	3 days	P	True	1 min				
Supply Fan Speed	AO	15 Min	24 hours	3 days	N/A						
Return Fan Speed	AO	15 Min	24 hours	3 days	N/A						
RA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A						
OA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A						
OA HW Valve Position	AO	15 Min	24 hours	3 days	N/A						
Supply Fan S/S	DO	COV	24 hours	3 days	N/A						
Return Fan S/S	DO	COV	24 hours	3 days	N/A						
Fire/Smoke Dampers	DO	COV	24 hours	3 days	N/A						
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A						
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A						
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A						
AHU Energy	Calc	1 Hour	30 day	N/A	N/A						

Terminal Unit (VAV, CAV, etc.) Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Space Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min			
Air Flow	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min			
SA Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min			
Local Setpoint	AI	15 Min	12 hours	3 days	М	±10°F from SP	60 min			

Terminal Unit (VAV, CAV, etc.) Trending and Alarms									
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Space Humidity	AI	15 Min	12 hours	3 days	P	> 60% RH	5 min		
Unoccupied Override	DI	COV	12 hours	3 days	М	N/A	12 Hours		
Refrigerator Alarm	DI	COV	12 hours	3 days	С	N/A	10 min		
Damper Position	AO	15 Minutes	12 hours	3 days	N/A				
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A				

4-Pipe Fan Coi	4-Pipe Fan Coil Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
SA Temperature	AI	15 Minutes	12 hours	3 days	P	±5°F from SP	10 min				
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour				
Water Sensor	DI	COV	12 hours	3 days	М	N/A	30 Min				
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

2-Pipe Fan Coil	2-Pipe Fan Coil Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	P	±5°F from SP	10 min				
SA Temperature	AI	15 Minutes	12 hours	3 days	P	±5°F from SP	10 min				
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour				
Water Sensor	DI	COV	12 hours	3 days	М	N/A	30 Min				
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

Unit Heater Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min			
Heating Valve Position	AO	15 Minutes	12 hours	3 days	N/A					
Unit Heater ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min			

Steam and Condensate Pumps Trending and Alarms									
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Steam Flow (LB/HR)	AI	15 Minutes	12 hours	3 days	N/A				
Condensate Pump Run Hours	AI	15 Minutes	12 hours	3 days	N/A				

Steam and Conde	ensate	Pumps Trend	ing and Alar	ms			
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Water Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A		
Electric Meter (KW/H)	AI	15 Minutes	12 hours	3 days	N/A		
Irrigation Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A		
Chilled Water Flow (TONS)	AI	15 Minutes	12 hours	3 days	N/A		
Condensate Flow (GPM)	AI	15 Minutes	12 hours	3 days	N/A		
High Water Level Alarm	DI	COV	12 hours	3 days	С	True	5 Min
Condensate Pump Start/Stop	DO	COV	12 hours	3 days	P	Status <> Command	10 min

Domestic Hot Wa	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Domestic HW Setpoint WH-1	AI	15 Minute	12 Hours	3 days	N/A		
Domestic HW Setpoint WH-2	AI	15 Minute	12 Hours	3 days	N/A		
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	С	> 135 oF	10 Min
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	P	±5°F from SP	10 Min
Dom. Circ. Pump #1 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Dom. Circ. Pump #2 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Dom. Circ. Pump #1 Start/Stop	DO	COV	12 Hours	3 days	N/A		
Dom. Circ. Pump #2 Start/Stop	DO	COV	12 Hours	3 days	N/A		

Domestic Hot Water Trending and Alarms									
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Domestic HW Start/Stop	DO	COV	12 Hours	3 days	N/A				

Hydronic Hot Wa	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
System HWS Temperature	AI	15 min	12 hours	3 days	С	±5°F from SP	10 Min
System HWR Temperature	AI	15 min	12 hours	3 days	М	±15°F from SP	300 Min
HX-1 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Leaving Temperature	AI	15 min	12 hours	3 days	P	±5°F from SP	10 Min
System Flow		15 min	10 hours	2 4	NT / D		
(GPM)	AI	15 min	12 hours	3 days	N/A		
System Differential Pressure	AI	15 min	12 hours	3 days	Р	±10% from SP	8 Min
				3 days			
HW Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 1 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
HW Pump 2 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		

Hydronic Hot Wa	Hydronic Hot Water Trending and Alarms											
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
Steam Station #2 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A							
Steam Station #2 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A							
Steam Station Bypass Valve Position	AO	15 Min	12 Hours	3 days	N/A							
HW Pump 1 Start/Stop	DO	COV	12 Hours	3 days	N/A							
HW Pump 2 Start/Stop	DO	COV	12 Hours	3 days	N/A							
HWR #1 Valve	DO	COV	12 Hours	3 days	N/A							
HWR #2 Valve	DO	COV	12 Hours	3 days	N/A							

Chilled Water a	System	Trending an	d Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 1 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min
Chiller 1 Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min
Chiller 2 Flow	AI	15 Minutes	12 Hours	3 days	N/A		

Chilled Water	System	Trending an	d Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 2	AI	15 Minutes	12 Hours	3 days	N/A		
Percent Load Chiller 2 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Decoupler Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	P	±5% from SP	10 Min
Secondary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Primary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Secondary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Secondary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 1 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		

Chilled Water	System	Trending an	nd Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 1 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Chiller 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 2 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Detector	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Exhaust Fan Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Emergency Shutdown	DI	COV	12 Hours	3 days	Р	True	1 Min
Primary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		

Chilled Water s	Chilled Water System Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Chiller 1 Enable	DO	COV	12 Hours	3 days	N/A						
Chiller 1 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A						
Chiller 2 Enable	DO	COV	12 Hours	3 days	N/A						
Chiller 2 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A						
Refrigerant Exhaust Fan Start / Stop	DO	COV	12 Hours	3 days	N/A						

Condenser Water System Trending and Alarms									
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Chiller 1 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Chiller 1 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Chiller 2 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Chiller 2 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Basin Temp	AI	15 Minutes	12 Hours	3 days	Р	< 45 of	10 Min		
Cooling Tower 2 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 2 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 2 Basin Temp	AI	15 Minutes	12 Hours	3 days	Р	< 45 of	10 Min		
Condenser Water Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A				

Condenser Wate	r Syste	m Trending	and Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Condenser Water Return Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Outdoor Air Wet Bulb	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Fan Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Cooling Tower 1 Basin Heat	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 1 Heat Trace	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 2 Fan Status	DI	COV	12 Hours	3 days	P	Status <> Command	1 min
Cooling Tower 2 Basin Heat	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 2 Heat Trace	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Isolation Valve	DI	COV	12 Hours	3 days	P	Status <> Command	1 min
Chiller 2 Isolation Valve	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Condenser Water Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Condenser Water Pump 2 Status	DI	COV	12 Hours	3 days	P	Status <> Command	1 min
Chiller 1 Condenser Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Condenser By- Pass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 2 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 2 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A		

Condenser Water	Condenser Water System Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Cooling Tower 1 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A						
Cooling Tower 2 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A						
Condenser Water Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A						
Condenser Water Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A						

Steam Boiler Sy	Steam Boiler System Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Boiler 1 Steam Pressure	AI	15 Minutes	12 Hours	3 days	P	±5% from SP	10 Min				
Boiler 1 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A						
Boiler 1 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A						
Boiler 2 Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min				
Boiler 2 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A						
Boiler 2 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A						
System Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min				
Boiler 1 Enable	DI	COV	12 Hours	3 days	N/A						
Boiler 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min				
Boiler 1 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min				

Steam Boiler S	Steam Boiler System Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Boiler 1 on Fuel Oil	DI	COV	12 Hours	3 days	N/A						
Boiler 1 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min				
Boiler 1 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min				
Boiler 1 Feed Pump	DI	COV	12 Hours	3 days	N/A						
Boiler 2 Enable	DI	COV	12 Hours	3 days	N/A						
Boiler 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min				
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min				
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A						
Boiler 2 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min				
Boiler 2 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min				
Boiler 2 Feed Pump	DI	COV	12 Hours	3 days	N/A						
Combustion Damper Status	DI	COV	12 Hours	3 days	P	Status <> Command	5 min				
Condensate Recovery Pump Status	DI	COV	12 Hours	3 days	Р	Status <> Command	5 min				
Boiler 1 Feed Pump Start / Stop	DO	COV	12 Hours	3 days	N/A						
Boiler 2 Start / Stop	DO	COV	12 Hours	3 days	N/A						
Combustion Damper Command	DO	COV	12 Hours	3 days	N/A						
Condensate Recovery Pump Start / Stop	DO	COV	12 Hours	3 days	N/A						

Hot Water Boil	er Syst	em Trending	and Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Outside Air	AI	15	12 Hours	3 days	N/A		
Temperature		Minutes		5 0007.5			
Boiler 1 Fire	AI	15	12 Hours	3 days	N/A		
Signal		Minutes		-			
Boiler 1 Entering		15					
Water	AI	15 Minutes	12 Hours	3 days	N/A		
Temperature		MINUCES					
Boiler 1							
Leaving Water	AI	15	12 Hours	3 days	N/A		
Temperature	AT.	Minutes	12 HOULD	Judys	IN/ FI		
Boiler 2 Fire	1	15			1		
Signal	AI	Minutes	12 Hours	3 days	N/A		
Boiler 2						1	1
Entering		15					
Water	AI	Minutes	12 Hours	3 days	N/A		
Temperature							
Boiler 2							
Leaving Water	AI	15	12 Hours	3 days	N/A		
Temperature		Minutes					
Hot Water							1.0
Supply	AI	15	12 Hours	3 days	Р	±5 oF	10
Temperature		Minutes		_		from SP	Min
Hot Water		15					
Return	AI	15 Minutes	12 Hours	3 days	N/A		
Temperature		Minutes					
Secondary							
Loop	AI	15	12 Hours	3 days	С	±5%	10
Differential	111	Minutes	12 HOULD	5 ddyb	C	from SP	Min
Pressure							
Lead Boiler	AI	15	12 Hours	3 days	N/A		
		Minutes					
Boiler 1	DI	COV	12 Hours	3 days	N/A		
Enable			12 110ULD	Juuys	TN / 17		
Boiler 1						Status	10
Status	DI	COV	12 Hours	3 days	Р	<>	min
	ļ				ļ	Command	
Boiler 1					/-		
Isolation	DI	COV	12 Hours	3 days	N/A		
Valve							
Boiler 1 on	DI	COV	12 Hours	3 days	N/A		
Fuel Oil				-			
Boiler 1	DI	COV	12 Hours	3 days	С	True	1 Min
Alarm	<u> </u>						
Boiler 2	DI	COV	12 Hours	3 days	N/A		
Enable							

Hot Water Boiler System Trending and Alarms							
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Boiler 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 2 Isolation Valve	DI	COV	12 Hours	3 days	N/A		
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Combustion Dampers Open	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Secondary Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Secondary Pump 2 Status	DI	COV	12 Hours	3 days	P	Status <> Command	10 min
Primary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Primary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Hot Water System Enable	DO	COV	12 Hours	3 days	N/A		
Combustion Dampers Command	DO	COV	12 Hours	3 days	N/A		
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		

Hot Water Boiler System Trending and Alarms							
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		

- E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the Resident Engineer and Commissioning Agent.
 - 1. Point-to-Point checkout documentation;
 - Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
 - 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM					
Sensor	Calibration Frequency	O&M Calibration Procedure Reference			
Discharge air temperature	Once a year	Volume I Section D.3.aa			
Discharge static pressure	Every 6 months	Volume II Section A.1.c			

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1						
Control Reference	Proportional Constant	Integral Constant	Derivative Constant	Interval		
Heating Valve Output	1000	20	10	2 sec.		

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.
- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about

equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.

- D. Purpose of Test Procedures: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms developed by the Commissioning Agent will include, but not be limited to, the following information:
 - 1. System and equipment or component name(s)
 - 2. Equipment location and ID number
 - Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
 - 4. Date
 - 5. Project name
 - 6. Participating parties
 - 7. A copy of the specification section describing the test requirements
 - 8. A copy of the specific sequence of operations or other specified parameters being verified
 - 9. Formulas used in any calculations
 - 10. Required pretest field measurements
 - 11. Instructions for setting up the test.
 - 12. Special cautions, alarm limits, etc.
 - Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
 - 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
 - 15. A section for comments.
 - 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe

performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.

- Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
- 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
- 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
- 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.

- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.

Spec Writer Note: Verify that the following paragraph regarding cost of expanded sample testing is allowed for the specific project. Retain or delete the paragraph as necessary.

- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently

tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.

K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.

- 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
 - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.

Spec Writer Note: Verify that the following paragraph regarding cost of retesting is allowed for the specific project. Retain or delete the paragraph as necessary.

C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

> Spec Writer's Note: Verify that the paragraph and subparagraphs below do not conflict with other general or specific contract documents regarding manufacturer's defects. Retain, delete, or modify the paragraphs accordingly.

- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.

- 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's Resident Engineer, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.

- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.
 - Review course materials (including operation and maintenance manuals).
 - 7. Review and discuss locations and other facilities required for instruction.
 - Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
 - For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:

- a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
- b. Video Format: Provide high quality color DVD color on standard size DVD disks.
- c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
- d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
- e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.
- D. Quality Assurance:
 - Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
 - Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
 - 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.
- E. Training Coordination:
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.

- 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.
- F. Instruction Program:
 - Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.
 - b. Intrusion detection systems.
 - c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
 - d. Medical equipment, including medical gas equipment and piping.
 - e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
 - f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
 - g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
 - h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
 - i. HVAC instrumentation and controls.
 - j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
 - k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
 - 1. Lighting equipment and controls.
 - m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.

- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - H, Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
 - 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.

- c. Routine and normal operating instructions.
- d. Regulation and control procedures.
- e. Control sequences.
- f. Safety procedures.
- g. Instructions on stopping.
- h. Normal shutdown instructions.
- i. Operating procedures for emergencies.
- j. Operating procedures for system, subsystem, or equipment failure.
- k. Seasonal and weekend operating instructions.
- 1. Required sequences for electric or electronic systems.
- m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.
- H. Training Execution:
 - 1. Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble

training modules into a combined training manual. Set up instructional equipment at instruction location.

- 2. Instruction:
 - a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
 - b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2) The VA will furnish an instructor to describe VA's operational philosophy.
 - 3) The VA will furnish the Contractor with names and positions of participants.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
- I. Demonstration and Training Recording:
 - General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - Video Format: Provide high quality color DVD color on standard size DVD disks.

- Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
- 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

----- END -----

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of portions of buildings.

1.2 RELATED WORK:

- A. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Asbestos Removal: Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT and Section 02 82 13.19, ASBESTOS FLOOR TILE AND MASTIC ABATEMENT.
- D. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- E. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- F. Infectious Control: Section 01 01 10 Infection Control.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- D. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- E. In addition to previously listed fire and safety rules to be observed in performance of work, include following:

- Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
- 2. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- F. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.
- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 01 10, INFECTION CONTROL.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center Property to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- B. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the

drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer. Clean-up shall include off the Medical Center Property disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

3.3 DEMOLITION NOISE CONSTRAINTS:

Due to the proximity of the project area to Services sensitive to noise, all major demolition which will result in high noise levels shall be completed between the hours of 4:30pm - 9:00pm Monday through Friday; and 8:00am to 5:00pm Saturday and Sunday.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 02 82 13.13 GLOVEBAG ASBESTOS ABATEMENT

PART 1 - GENERAL 1
1.1 SUMMARY OF THE WORK 1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS 1
1.1.2 EXTENT OF WORK 1
1.1.3 RELATED WORK 1
1.1.4 TASKS 1
1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES 2
1.2 VARIATIONS IN QUANTITY 2
1.3 STOP ASBESTOS REMOVAL
1.4 DEFINITIONS 3
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS
1.5 APPLICABLE CODES AND REGULATIONS 11
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS 11
1.5.2 Asbestos Abatement CONTRACTOR RESPONSIBILITY 11
1.5.3 FEDERAL REQUIREMENTS 11
1.5.4 STATE REQUIREMENTS: 12
1.5.5 LOCAL REQUIREMENTS 12
1.5.6 STANDARDS 12
1.5.7 EPA GUIDANCE DOCUMENTS 12
1.5.8 NOTICES 12
1.5.9 PERMITS/LICENSES 12
1.5.10 POSTING AND FILING OF REGULATIONS 12
1.5.11 VA RESPONSIBILITIES 13
1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS 13
1.5.14 PRE-Construction MEETING 14
1.6 PROJECT COORDINATION 14
1.6.1 PERSONNEL 14
1.7 RESPIRATORY PROTECTION 16
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM 16
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR 16
1.7.3 SELECTION AND USE OF RESPIRATORS 16
1.7.4 MINIMUM RESPIRATORY PROTECTION 16

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT	29
2.6 ENCAPSULANTS	30
2.6.1 TYPES OF ENCAPSULANTS	30
2.6.2 PERFORMANCE REQUIREMENTS	30
2.7 CERTIFICATES OF COMPLIANCE	30
2.8 RECYCLABLE PROTECTIVE CLOTHING	30
PART 3 - EXECUTION	31
3.1 REGULATED AREA PREPARATIONS	31
3.1.1 SITE SECURITY	31
3.1.2 OSHA DANGER SIGNS	31
3.1.3.1 SHUT DOWN - LOCK OUT ELECTRICAL	32
3.1.3.2 SHUT DOWN - LOCK OUT HVAC	32
3.1.4 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA	32
3.1.4.1 GENERAL	32
3.1.4.2 PREPARATION PRIOR TO SEALING OFF	32
3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA	32
3.1.4.4 CRITICAL BARRIERS	32
3.1.4.5 EXTENSION OF THE REGULATED AREA	33
3.1.4.6 floor barriers:	33
3.1.5 SANITARY FACILITIES	33
3.1.6 Pre-Cleaning	33
3.1.6.1 PRE-CLEANING MOVABLE OBJECTS	33
3.1.6.2 PRE-CLEANING FIXED OBJECTS	34
3.1.6.3 PRE-CLEANING SURFACES IN THE REGULATED AREA	34
3.1.7 PRE-ABATEMENT ACTIVITIES	34
3.1.7.1 PRE-ABATEMENT MEETING	34
3.1.7.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	34
3.1.7.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	35
3.2 REMOVAL OF piping ACM	35
3.2.1 WETTING MATERIALS	35
3.2.2 SECONDARY BARRIER AND WALKWAYS	36
3.2.3 WET REMOVAL OF ACM	36
3.3 GLOVEBAG REMOVAL PROCEDURES	36
3.3.1 GENERAL	36
3.3.2 NEGATIVE PRESSURE GLOVEBAG PROCEDURE	37
3.4 LOCKDOWN ENCAPSULATION	38
3.4.1 GENERAL	38

3.4.2 SEALING EXPOSED EDGES	38
3.5 DISPOSAL OF ACM WASTE MATERIALS	38
3.5.1 GENERAL	38
3.5.2 procedures	38
3.6 PROJECT DECONTAMINATION	39
3.6.1 GENERAL	39
3.6.2 REGULATED AREA CLEARANCE	39
3.6.3 WORK DESCRIPTION	39
3.6.4 PRE-DECONTAMINATION CONDITIONS	39
3.6.5 FIRST CLEANING	39
3.6.6 PRE-CLEARANCE INSPECTION AND TESTING	40
3.6.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES	40
3.7 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING	40
3.7.1 GENERAL	40
3.7.2 FINAL VISUAL INSPECTION	40
3.7.3 FINAL AIR CLEARANCE TESTING	40
3.7.4 FINAL AIR CLEARANCE PROCEDURES	41
3.7.5 CLEARANCE SAMPLING USING PCM	41
3.7.6 CLEARANCE SAMPLING USING TEM	41
3.7.7 LABORATORY TESTING OF PCM SAMPLES	41
3.7.8 LABORATORY TESTING OF TEM SAMPLES	42
3.8 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE	42
3.8.1 COMPLETION OF ABATEMENT WORK	42
3.8.2 CERTIFICATE OF COMPLETION BY CONTRACTOR	42
3.8.3 WORK SHIFTS	42
3.8.4 RE-INSULATION	42
ATTACHMENT #1	43
ATTACHMENT #2	44
ATTACHMENT #3	46
ATTACHMENT #4	47

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated by the glovebag method. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of ACM piping and fittings and asbestos contaminated elements in an appropriate regulated area in the following approximate quantities:

560 linear feet of pipe insulation and associated fittings per the facilities asbestos containing material survey, include an additional 50 linear feet of piping insulation and associated fittings presumed to be present in concealed locations. Locations identified on the survey and assumed to have concealed insulation are shown on demolition plan drawings.

1.1.3 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING.
- B. Section 02 41 00, DEMOLITION.
- C. Division 09, FINISHES.
- D. Division 22, PLUMBING.
- E. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION / Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING / Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION
- F. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, work-site

preparations, emergency procedures arrangements, and Asbestos Hazard Abatement Plans for glovebag asbestos abatement work.

- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. VA Design and Construction Procedures drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings:

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated, which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/ Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of

the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some states require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA).

Barrier - Any surface that isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard

sized glove bag or waste bag, in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag and shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR Part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal protective equipment (PPE) – equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or more workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and

breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) of Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned Protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) – The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/ specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400

- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900
- G. CS Commercial Standard of the National Institute of Standards and Technology(NIST)
 U. S. Department of Commerce Government Printing Office Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- I. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000
- K. NEC National Electrical Code (by NFPA)
- L. NEMA National Electrical Manufacturer's Association 2101 L Street, NW Washington, DC 20037
- M. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- N. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- O. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- P. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specification exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910 Subpart I Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.1020 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910 Subpart K Medical and First Aid
- B. Environmental Protection Agency (EPA)
 - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT) Title 49 CFR 100 - 185 - Transportation

1.5.4 STATE REQUIREMENTS:

If State of Michigan requirements are more stringent than federal standards, the state standards are to be followed.

1.5.5 LOCAL REQUIREMENTS

If local requirements are more stringent than federal or state standards, the local standards are to be followed.

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI Z88.2 - Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to, the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007.
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

1.5.9 PERMITS/LICENSES

The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

1.5.10 POSTING AND FILING OF REGULATIONS

Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each at the regulated area where workers

will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

- A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment, and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
- B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed by prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.

H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the Asbestos Hazard Abatement Plans during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.14 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VPCIH to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the pre-start meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project. A copy of the Contractor's Asbestos Hazard Abatement Plan (AHAP) for Class I Glovebag Asbestos Abatement. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - 2. Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - If required, decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Glovebag abatement methods/procedures and equipment to be used; and
 - 5. Personal protective equipment to be used.
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.

- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized onsite shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive Asbestos Hazard Abatement Plans (AHAPs) for asbestos work; and has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete Asbestos Hazard Abatement Plan for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
 - 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the Asbestos Hazard Abatement Plans of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910 Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a full face powered air purifying respirator when fiber levels are maintained consistently at or below 0.5 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Fit tests shall be done for PAPR's which have been put into a failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) maintenance and care of respirators.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m)(4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

1.8.4 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.5 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.

- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
- D. Shower and wash body completely with soap and water. Rinse thoroughly.
- E. Rinse shower room walls and floor to drain prior to exiting.
- F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.6 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I glovebag regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

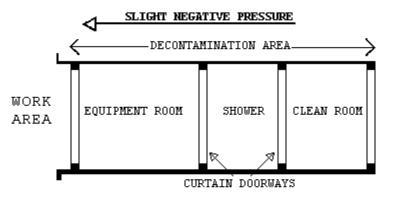
1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to

adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70°F throughout the PDF and W/EDF.

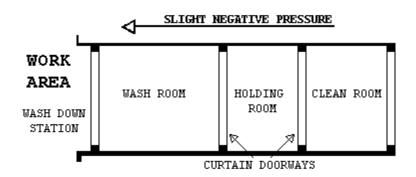

1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining

smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of once per day or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.

- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.
- 4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.



1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide a W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and

contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- 5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES

At the washdown station in the regulated area, thoroughly wet wipe/clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside

personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mils shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.

- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 - Hazard Communication in the pre-project submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

2.2.1 GENERAL

Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All horizontal surfaces in the regulated area must be covered with 2 layers of 6 mil fire retardant poly to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated, immediately stop work and clean up the contamination at no additional cost to the Government. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 2.2.8; FIRESTOPPING.

2.2.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

A. Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2 layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.

2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA

A. Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid.

2.2.4 CRITICAL BARRIERS

A. Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6 mils thick and duct tape.

Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly.

2.2.5 SECONDARY BARRIERS

A. A loose layer of 6 mil fire retardant poly shall be used as a drop cloth to protect the floor/horizontal surfaces from debris generated during the glovebag abatement. This layer shall be replaced as needed during the work.

2.2.6 EXTENSION OF THE REGULATED AREA

A. If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. If the affected area cannot be added to the regulated area, decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

2.2.7 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves must be firestopped with a fire-rated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The Contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA Representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

2.3 MONITORING, INSPECTION AND TESTING

2.3.1 GENERAL

- A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the Employee exposure to asbestos must not exceed 0.1 fibers per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.
- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf

of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.

C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be cosigned by the IH's and delivered to the VA's representative.

2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: Assure quality; resolve problems; and prevent the spread of contamination beyond the regulated area. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.//
 - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.//
 - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of unforeseen developments, etc.
 - 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area or building at the conclusion of the abatement and clean-up work to

certify compliance with all regulations and the VA requirements/specifications.

- 6. Task 6: Issue certificate of decontamination for each regulated area or building and project report.
- B. All data, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.3.3 MONITORING, INSPECTION AND TESTING BY ABATEMENT CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an ΙH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be accredited EPA AHERA/State an Contractor/Supervisor (or Abatement Worker) and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the

beginning and at the end of a shift, and submit the data in the daily report.

2.4 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the ways and procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of the project. The AHAP shall be submitted for review and approval prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAP(s) are:

- A. Minimum Personnel Qualifications
- B. Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements for Glovebag Abatement
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Monitoring, Inspections, and Testing
- I. Removal Procedures for Piping ACM Using the Glovebag Method
- J. Disposal of ACM waste
- K. Regulated Area Decontamination/Clean-up
- L. Regulated Area Visual and Air Clearance
- M. Project Completion/Closeout

2.5 SUBMITTALS

2.5.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.

- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. And area or clearance air monitoring in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; and Completion Date
 - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; and Resolution.
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - 1. CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAP(s) developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
 - 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion

(asbestos surveillance and respirator use); and current respirator fit test.

- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAP(s) incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and Asbestos Hazard Abatement Plans; copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS, and application instructions.

2.5.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWAs/ELs. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.6 ENCAPSULANTS

2.6.1 TYPES OF ENCAPSULANTS

- A. The following four types of encapsulants must comply with comply with performance requirements as stated in paragraph 2.6.2:

 - Removal encapsulant used as a wetting agent to remove ACM.
 Bridging encapsulant provides a tough, durable coating on ACM.
 - 3. Penetrating encapsulant penetrates/encapsulates ACM at least 13 mm (1/2").
 - 4. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.

2.6.2 PERFORMANCE REQUIREMENTS

Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:

- A. General Requirements for all Encapsulants:
 - 1. ASTM E84: Flame spread of 25; smoke emission of 50.
 - Pittsburgh Protocol: Combustion Toxicity; zero 2. University of mortality.
 - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4. ASTM E96: Permeability minimum of 0.4 perms.
- B. Bridging/Penetrating Encapsulants:
 - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft²).
 - 2. ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).
 - 3. ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kq-mm (43 in/lb).
 - 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- C. Lockdown Encapsulants:
 - 1. ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2. ASTM E736: Bond Strength 48 kPa (100 lbs/ft²) (test compatibility with cementitious and fibrous fireproofing).
 - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application.

2.7 CERTIFICATES OF COMPLIANCE

The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements for encapsulants when applied according to manufacturer recommendations.

2.8 RECYCLABLE PROTECTIVE CLOTHING

If recyclable clothing is provided, all requirements of EPA, DOT and OSHA shall be met.

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

3.1.1 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police should be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.

3.1.2 OSHA DANGER SIGNS

Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed ambient background levels. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

3.1.3.1 SHUT DOWN - LOCK OUT ELECTRICAL

Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

3.1.3.2 SHUT DOWN - LOCK OUT HVAC

Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on preabatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

3.1.4 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA

3.1.4.1 GENERAL

Seal off any openings at the perimeter of the regulated area with critical barriers to completely isolate the regulated area and to contain all airborne asbestos contamination created by the abatement activities. Should the adjacent area past the regulated area become contaminated due to improper work activities, the Contractor shall suspend work inside the regulated area, continue wetting, and clean the adjacent areas in accordance with procedures described in these specifications. Any and all costs associated with the adjacent area cleanup shall not be borne by the VA.

3.1.4.2 PREPARATION PRIOR TO SEALING OFF

Place all materials, equipment and supplies necessary to isolate the regulated area inside the regulated area. Remove all movable material/equipment as described above and secure all unmovable material/equipment as described above. Properly secured material/ equipment shall be considered to be outside the regulated area.

3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

3.1.4.4 CRITICAL BARRIERS

The regulated area must be completely separated from the adjacent area(s) and the outside by at least 2 layers of 6 mil fire retardant poly and duct tape/spray adhesive. Individually seal all supply and

07-11

area with 2 layers of 6 mil fire retardant poly, and taped securely in place with duct tape/spray adhesive. Critical barriers must remain in place until all work and clearances have been completed. Light fixtures shall not be operational during abatement. Auxiliary lighting shall be provided. If needed, provide plywood squares 6" x 6" x 3/8" (150mm x 150mm x 18mm) held in place with one 6d smooth masonry/galvanized nail driven through the center of the plywood square and duct tape on the poly so as to clamp the poly to the wall/surface. Locate plywood squares at each end, corner, and 4' (1200mm) maximum on centers.

3.1.4.5 EXTENSION OF THE REGULATED AREA

If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and air monitoring. Air monitoring at completion must indicate background levels.

3.1.4.6 FLOOR BARRIERS:

All floors within 10' of glovebag work shall be covered with 2 layers of 6 mil fire retardant poly.

3.1.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.1.6 PRE-CLEANING

3.1.6.1 PRE-CLEANING MOVABLE OBJECTS

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. PPE must be donned by all workers performing precleaning activities. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.

3.1.6.2 PRE-CLEANING FIXED OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area.

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

3.1.6.3 PRE-CLEANING SURFACES IN THE REGULATED AREA

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area.

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.1.7 PRE-ABATEMENT ACTIVITIES

3.1.7.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.7.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur.

Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.

- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of VA A/E Quality Alert 07/09 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawl spaces(previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.1.7.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation.
- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification.

3.2 REMOVAL OF PIPING ACM

3.2.1 WETTING MATERIALS

A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP's regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.

- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.
- C. Removal Encapsulant: Provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during disturbance equal to or greater than the amended water described above in B.

3.2.2 SECONDARY BARRIER AND WALKWAYS

- A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet (3 meters) of the area where work is to done. Secure the secondary barrier with duct tape to prevent it from moving or debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
- B. Install walkways using 6 mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.

3.2.3 WET REMOVAL OF ACM

A. Using acceptable glovebag procedures, adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time (at a minimum two hours) must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present

3.3 GLOVEBAG REMOVAL PROCEDURES

3.3.1 GENERAL

All applicable OSHA requirements and glovebag manufacturer's recommendations shall be met during glove bagging operations. In cases where live steam lines are present, the lines must be shut down prior to any work being performed on the system. No abatement work shall be conducted on live, pressurized steam lines. The Contractor may choose to use a High Temperature Glovebag in which a temperature rating ranges

- 1. Mix the surfactant with water in the garden sprayer, following the manufacturer's directions.
- 2. Have each employee put on a HEPA filtered respirator approved for asbestos and check the fit using the positive/negative fit check.
- 3. Have each employee put on a disposable full-body suit. Remember, the hood goes over the respirator straps.
- 4. Check closely the integrity of the glove bag to be used. Check all seams, gloves, sleeves, and glove openings. OSHA requires the bottom of the bag to be seamless.
- 5. Check the pipe where the work will be performed. If it is damaged (broken lagging, hanging, etc.), wrap the entire length of the pipe in poly sheeting and "candy stripe" it with duct tape.
- 6. Attach glovebag with required tools per manufacturer's instructions.
- 7. Using the smoke tube and aspirator bulb, test 10% of glovebags by placing the tube into the water porthole (two-inch opening to glove bag), and fill the bag with smoke and squeeze it. If leaks are found, they should be taped closed using duct tape and the bag should be retested with smoke.
- 8. Insert the wand from the water sprayer through the water porthole.
- 9. Insert the hose end from a HEPA vacuum into the upper portion of the glove bag.
- 10. Wet and remove the pipe insulation.
- 11. If the section of pipe is covered with an aluminum jacket, remove it first using the wire cutters to cut any bands and the tin snips to remove the aluminum. It is important to fold the sharp edges in to prevent cutting the bag when placing it in the bottom.
- 12. When the work is complete, spray the upper portion of the bag and clean-push all residue into the bottom of the bag with the other waste material. Be very thorough. Use adequate water.
- 13. Put all tools, after washing them off in the bag, in one of the sleeves of glove bag and turn it inside out, drawing it outside of the bag. Twist the sleeve tightly several times to seal it and tape it several tight turns with duct tape. Cut through the middle of the duct tape and remove the sleeve. Put the sleeve in the next glove bag or put it in a bucket of water to decontaminate the tools after cutting the sleeve open.
- 14. Turn on the HEPA vacuum and collapse the bag completely. Remove the vacuum nozzle, seal the hole with duct tape, twist the bag tightly several times in the middle, and tape it to keep the material in the bottom during removal of the glove bag from the pipe.
- 15. Slip a disposal bag over the glove bag (still attached to the pipe). Remove the tape securing the ends, and slit open the top of the glove bag and carefully fold it down into the disposal bag. Double bag and gooseneck waste materials.

3.3.2 NEGATIVE PRESSURE GLOVEBAG PROCEDURE

1. In addition to the above requirements, the HEPA vacuum shall be run continuously during the glovebag procedure until completion at which time the glovebag will be collapsed by the HEPA vacuum prior to removal from the pipe/component.

2. The HEPA vacuum shall be attached and operated as needed to prevent collapse of the glovebag during the removal process.

3.4 LOCKDOWN ENCAPSULATION

3.4.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, all piping surfaces shall be encapsulated with a bridging encapsulant.

3.4.2 SEALING EXPOSED EDGES

Seal edges of ACM exposed by removal work with two coats of encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the encapsulant.

3.5 DISPOSAL OF ACM WASTE MATERIALS

3.5.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.5.2 PROCEDURES

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment
- B. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures in this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP's signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.
- C. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped or HEPA vacuumed..
- D. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.6 PROJECT DECONTAMINATION

3.6.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.6.2 REGULATED AREA CLEARANCE

Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.6.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.6.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary barrier of poly removed and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Critical barriers over all openings consisting of two layers of 6 mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - 2. Decontamination facilities, if required for personnel and equipment in operating condition.

3.6.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.6.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

3.6.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES

With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification.

3.7 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING

3.7.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH after the final cleaning.

3.7.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.7.3 FINAL AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a minimum of one field blank. If work is equal to or more than 260 lf/160 sf/35 cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All additional inspection and testing costs will be borne by the Contractor.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.7.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, or 70 AHERA structures per square millimeter (s/mm²) by AHERA TEM.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.

3.7.5 CLEARANCE SAMPLING USING PCM

- A. The VPIH/CIH will perform clearance samples as indicated by the specification.
- B. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.

3.7.6 CLEARANCE SAMPLING USING TEM

- A. Clearance requires 13 samples be collected; 5 inside the regulated area; 5 outside the regulated area; and 3 field blanks.
- B. The TEM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 13 clearance samples shall be collected. All samples must be equal to or less than 70 AHERA structures per square millimeter (s/mm²) AHERA TEM.

3.7.7 LABORATORY TESTING OF PCM SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be sent daily by the VPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.7.8 LABORATORY TESTING OF TEM SAMPLES

Samples shall be sent by the VPIH/CIH to a NIST accredited laboratory for analysis by TEM. The laboratory shall be successfully participating in the NIST Airborne Asbestos Analysis (TEM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor

3.8 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.8.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- A. Remove all equipment, materials, and debris from the project area.
- B. Package and dispose of all asbestos waste as required. Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations.
- C. Repair or replace all interior finishes damaged during the abatement work.
- D. The VA will be notified of any waste removed from the containment prior to 24 hours.
- E. Fulfill other project closeout requirements as specified elsewhere in this specification.

3.8.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.8.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

3.8.4 RE-INSULATION

If required as part of the contract, replace all asbestos containing insulation with suitable non-asbestos material. Provide MSDS for all replacement materials. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

ATTACHMENT #1

CERTIFICATE OF COMPLETION

DATE:	VA Project #:	
PROJECT NAME:	Abatement Contractor:	
VAMC/ADDRESS:		

1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):

which took place from / / to / /

- 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all glovebag work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:_____

CPIH/CIH Print Name:

Abatement Contractor Signature/Date:_____

Abatement Contractor Print Name:

ATTACHMENT #2

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

PROJECT	NAME :	DATE:
PROJECT	ADDRESS:	

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:_____

Printed Name:

Social Security Number:

Witness:_____

ATTACHMENT #3

AFFIDAVIT	OF	MEDICAL	SURVEILLANCE,	RESPIRATORY	PROTECTION	AND
TRAINING/ACC	REDITA	TION				
VA PROJECT N	AME AN	D NUMBER:				
VA MEDICAL F	ACILIT	Y:				

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Name: Social Security Number:

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH: _____ Date: _____

Printed Name of CPIH/CIH:

Signature of Contractor: _____ Date: _____

Printed Name of Contractor:_____

ATTACHMENT #4

ABATEMENT	CONTRACTOR/COMPETENT	PERSON(S)	REVIEW	AND	ACCEPTANCE	OF	THE	VA'S
ASBESTOS	SPECIFICATIONS							

VA Project Location:

VA Project #:_____

VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____ Date_____

Abatement	Contractor	Competent	Person(s)	Date	

- - END- - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 02 82 13.19 ASBESTOS FLOOR TILE AND MASTIC ABATEMENT

TABLE OF CONTENTS

PART 1 - GENERAL 1
1.1 SUMMARY OF THE WORK 1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS 1
1.1.2 EXTENT OF WORK 1
1.1.3 RELATED WORK 1
1.1.4 TASKS 1
1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES 2
1.2 VARIATIONS IN QUANTITY 2
1.3 STOP ASBESTOS REMOVAL
1.4 DEFINITIONS 3
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS
1.5 APPLICABLE CODES AND REGULATIONS 10
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS 10
1.5.2 CONTRACTOR RESPONSIBILITY 11
1.5.3 FEDERAL REQUIREMENTS 11
1.5.4 STATE REQUIREMENTS 11
1.5.5 LOCAL REQUIREMENTS 11
1.5.6 STANDARDS 11
1.5.7 EPA GUIDANCE DOCUMENTS 12
1.5.8 NOTICES 12
1.5.9 PERMITS/LICENSES 12
1.5.10 POSTING AND FILING OF REGULATIONS 12
1.5.11 VA RESPONSIBILITIES 12
1.5.12 SITE SECURITY 13
1.5.13 EMERGENCY ACTION PLAN AND ARRANGEMENTS 13
1.5.14 PRE-construction MEETING 14
1.6 PROJECT COORDINATION 15
1.6.1 PERSONNEL 15
1.7 RESPIRATORY PROTECTION 16
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM 16
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR 16
1.7.3 SELECTION AND USE OF RESPIRATORS 16

1.7.4 MINIMUM RESPIRATORY PROTECTION	16
1.7.5 MEDICAL WRITTEN OPINION	16
1.7.6 RESPIRATOR FIT TEST	17
1.7.7 RESPIRATOR FIT CHECK	17
1.7.8 MAINTENANCE AND CARE OF RESPIRATORS	17
1.8 WORKER PROTECTION	17
1.8.1 TRAINING OF ABATEMENT PERSONNEL	17
1.8.2 MEDICAL EXAMINATIONS	17
1.8.3 PERSONAL PROTECTIVE EQUIPMENT	18
1.8.4 REGULATED AREA ENTRY PROCEDURE	18
1.8.5 DECONTAMINATION PROCEDURE	18
1.8.6 REGULATED AREA REQUIREMENTS	18
PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT	22
2.1 MATERIALS AND EQUIPMENT	22
2.1.1 GENERAL REQUIREMENTS (all abatement projects)	22
2.1.2 NEGATIVE PRESSURE FILTRATION SYSTEM	23
2.1.3 DESIGN AND LAYOUT	23
2.1.4 NEGATIVE AIR MACHINES (HEPA UNITS)	23
2.1.5 PRESSURE DIFFERENTIAL	25
.2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA	25
2.2.1 GENERAL	25
2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA	25
2.2.4 CRITICAL BARRIERS	25
2.2.5 secondary barriers:	25
2.2.6 EXTENSION OF THE REGULATED AREA	26
2.3 MONITORING, INSPECTION AND TESTING	26
2.3.1 GENERAL	26
2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT	27
2.3.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH	28
2.4 asbestos hazard abatement plan	28
2.5 SUBMITTALS	29
2.5.1 PRE-start MEETING SUBMITTALS	29
2.5.2 SUBMITTALS DURING ABATEMENT	31
2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT	31
PART 3 - EXECUTION	31
3.1 PRE-ABATEMENT ACTIVITIES	31
3.1.1 PRE-ABATEMENT MEETING	31

3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	32
3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	32
3.2 REGULATED AREA PREPARATIONS	33
3.2.1 OSHA DANGER SIGNS	33
3.2.2 CONTROLLING ACCESS TO THE REGULATED AREA	33
3.2.3 SHUT DOWN - LOCK OUT ELECTRICAL	33
3.2.4 SHUT DOWN - LOCK OUT HVAC	33
3.2.5 SANITARY FACILITIES	33
3.2.7 PREPARATION PRIOR TO SEALING OFF	34
3.2.8 Critical Barriers	34
3.2.10 PRE-CLEANING MOVABLE OBJECTS	34
3.2.11 PRE-CLEANING FIXED OBJECTS	34
3.2.12 PRE-CLEANING SURFACES IN THE REGULATED AREA	35
3.2.13 EXTENSION OF THE REGULATED AREA	35
3.3 REMOVAL OF CLASS II FLOORING; ROOFING; AND TRANSITE MATERIALS:	35
3.3.1 GENERAL	35
3.3.2 REMOVAL OF flooring materials:	35
3.3.3 REMOVAL OF MASTIC	36
3.4 DISPOSAL OF CLASS ii WASTE MATERIAL:	36
3.4.1 GENERAL	36
3.5 PROJECT DECONTAMINATION	36
3.5.1 GENERAL	36
3.5.2 REGULATED AREA CLEARANCE	36
3.5.3 WORK DESCRIPTION	36
3.5.4 PRE-DECONTAMINATION CONDITIONS	36
3.5.5 CLEANING:	37
3.6 VISUAL INSPECTION AND AIR CLEARANCE TESTING	37
3.6.1 GENERAL	37
3.6.2 VISUAL INSPECTION	37
3.6.3 AIR CLEARANCE TESTING	37
3.6.4 final AIR CLEARANCE PROCEDURES	38
3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE	38
3.7.1 COMPLETION OF ABATEMENT WORK	38
3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR	38
3.7.3 WORK SHIFTS	38
ATTACHMENT #1	39
ATTACHMENT #2	40

ATTACHMENT	#3	41
ATTACHMENT	#4	42

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining quidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos flooring materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of ACM flooring in an appropriate regulated area in the following approximate quantities:

400 square feet of flooring and mastic

1.1.3 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING.
- B. Section 02 41 00, DEMOLITION.
- C. Division 09, FINISHES.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

- A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and Asbestos Hazard Abatement Plans for asbestos abatement work.
- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design Construction Procedure. VA Design Construction Procedure drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings:

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these

minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some sates require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA0..

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes,

but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter – An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR Part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that

employee exposure during an operation is expected to be consistently below the PELs.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal protective equipment (PPE) – equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Pipe Tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) of Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned Protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, and III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) – The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material. Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/ specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400
- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900
- G. CS Commercial Standard of the National Institute of Standards and Technology (NIST)U. S. Department of Commerce

Government Printing Office Washington, DC 20420

- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- I. NEC National Electrical Code (by NFPA)
- J. NEMA National Electrical Manufacturer's Association 2101 L Street, NW Washington, DC 20037
- K. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- L. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- M. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- N. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910.132 Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.20 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910.151 Medical and First Aid
- B. Environmental Protection Agency (EPA)
 - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT)
 - Title 49 CFR 100 185 Transportation

1.5.4 STATE REQUIREMENTS

Asbestos abatement work, disposal, clearance, etc., shall conform to all applicable State of Michigan regulations.

1.5.5 LOCAL REQUIREMENTS

If local requirements are more stringent than federal or state standards, the local standards are to be followed.

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems Z88.2 -Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to, the following:

- 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

1.5.9 PERMITS/LICENSES

A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

1.5.10 POSTING AND FILING OF REGULATIONS

A. Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

- A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipments and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
- B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This

information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.12 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent person shall immediately notify the VA.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through of a critical barrier doorway. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment loadout area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall <u>not</u> be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA security guards.

1.5.13 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a);(b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.

- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the Asbestos Hazard Abatement Plans during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.14 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the prestart meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - 2. Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - Decontamination area set-up/layout and decontamination procedures for employees;

- 4. Abatement methods/procedures and equipment to be used;
- 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized onsite shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive Asbestos Hazard Abatement Plans for asbestos work; and has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete Asbestos Hazard Abatement Plan for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed

the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.

4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the Asbestos Hazard Abatement Plans of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; and has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a half face, HEPA filtered, air purifying respirator when fiber levels are maintained consistently at or below 0.1 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

have a All personnel wearing respirators shall current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit tests shall be done for PAPRs which have been put into a motor/blower failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.

1.7.9 SUPPLIED AIR SYSTEMS

If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 -Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m)(4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings Worker protection shall meet the most stringent at the ankle. requirements.

1.8.4 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.5 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove all disposable PPE and dispose of in a disposal bag provided in the regulated area.
- B. Carefully decontaminate and clean the respirator. Put in a clean container/bag.

1.8.6 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I regulated areas at 29 CFR 1926.1101 (e) are met applicable to Class II work. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES:

1.9.1 DESCRIPTION:

Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

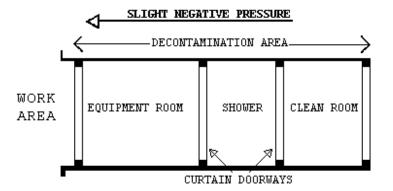
1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to

adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

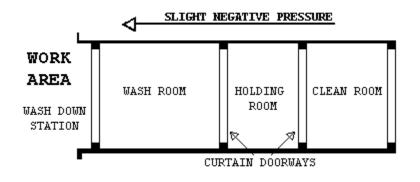
The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141 (d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70° F throughout the PDF and W/EDF.


1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose

shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.

- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.
- 4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.


SPEC. WRITER NOTE: OSHA does not require a decontamination unit for Class II work.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide an W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- 5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES:

At the washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).

- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 - Hazard Communication in the pre-project submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.1.2 NEGATIVE PRESSURE FILTRATION SYSTEM

The Contractor shall provide enough HEPA negative air machines to continuously maintain a pressure differential of -0.02" water column gauge (WCG). The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to continuously maintain a pressure differential of -0.02" WCG. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area.

NIOSH has done extensive studies and has determined that negative air machines typically operate at ~ 50 % efficiency. The contractor shall consider this in their determination of number of units needed to continuously maintain a pressure differential of -0.02" WCG. The contractor shall use 8 air changes per hour or double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

2.1.3 DESIGN AND LAYOUT

- A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1. Method of supplying power to the units and designation/location of the panels.
 - 2. Description of testing method(s) for correct air volume and pressure differential.
 - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.

2.1.4 NEGATIVE AIR MACHINES (HEPA UNITS)

A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.

- B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
- C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97%. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.
- D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 micron or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 micron or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.
- E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- H. It is essential that replacement HEPA filters be tested using an "inline" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location. Contractor will provide written documentation of test results for negative air machine units with HEPA filters changed by the contractor or documentation when changed and tested by the contractor filters.

2.1.5 PRESSURE DIFFERENTIAL

The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

2.2.1 GENERAL

- A. Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, shall immediately stop work and clean up the contamination at no additional cost to the VA. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 3.1.4.8; FIRESTOPPING.
- B. Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.

2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

2.2.4 CRITICAL BARRIERS

Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6 mil fire retardant poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly.

2.2.5 SECONDARY BARRIERS:

A loose layer of 6 mil poly shall be used as a drop cloth to protect the primary layers from debris generated during the abatement. This layer shall be replaced as needed during the work and at a minimum once per work day.

2.2.6 EXTENSION OF THE REGULATED AREA

If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

2.2.7 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves, conduits, etc. must be firestopped with a fire-rated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

2.3 MONITORING, INSPECTION AND TESTING

2.3.1 GENERAL

- A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the Employee exposure to asbestos must not exceed 0.1 fibers per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.
- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due

to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.

C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be cosigned by the IH's and delivered to the VA's representative.

2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - 1. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.
 - 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
 - 6. Task 6: Issue certificate of decontamination for each regulated area and project report.
- B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.3.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor (or Abatement Worker) and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101 (f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.4 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP(s) shall be submitted for review and approval to the VA prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAP(s) are:

- A. Minimum Personnel Qualifications
- B. Emergency Action Plan/Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Negative Pressure Systems Requirements
- I. Monitoring, Inspections, and Testing
- J. Removal Procedures for ACM
- K. Removal of Contaminated Soil (if applicable)
- L. Encapsulation Procedures for ACM
- M. Disposal of ACM waste/equipment
- N. Regulated Area Decontamination/Clean-up
- O. Regulated Area Visual and Air Clearance
- P. Project Completion/Closeout

2.5 SUBMITTALS

2.5.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific

contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.

- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. And area or clearance air monitoring in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; and Completion Date
 - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAP(s) developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
 - 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of the AHAP incorporating the requirements of this specification; information on who provides your training, how often; who provides medical

surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and Asbestos Hazard Abatement Plans; copies of monitoring results of the five referenced projects listed and analytical method(s) used.

- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS, and application instructions.

2.5.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWAs/ELs. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

PART 3 - EXECUTION

3.1 PRE-ABATEMENT ACTIVITIES

3.1.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of VA A/E Quality Alert 07/09 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawl spaces(previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area. If ACM floor tile is attached to the carpet while the Contractor is removing the carpet that section of the carpet will be disposed of as asbestos waste.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP, especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.

- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

3.2 REGULATED AREA PREPARATIONS

3.2.1 OSHA DANGER SIGNS

Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed the PEL. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

3.2.2 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid

3.2.3 SHUT DOWN - LOCK OUT ELECTRICAL

Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

3.2.4 SHUT DOWN - LOCK OUT HVAC

Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area.

Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

3.2.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.2.6 WATER FOR ABATEMENT

3.2.7 PREPARATION PRIOR TO SEALING OFF

Place all tools, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2 layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.

3.2.8 CRITICAL BARRIERS

Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6 mils thick and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly

3.2.9 FLOOR BARRIERS

If floor removal is not being done, all floors in the regulated area shall be covered with 2 layers of 6 mil fire retardant poly and brought up the wall 12 inches

3.2.10 PRE-CLEANING MOVABLE OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.

3.2.11 PRE-CLEANING FIXED OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

3.2.12 PRE-CLEANING SURFACES IN THE REGULATED AREA

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestoscontaining materials during this pre-cleaning phase.

3.2.13 EXTENSION OF THE REGULATED AREA

If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and air monitoring. Air monitoring at completion must indicate background levels.

3.3 REMOVAL OF CLASS II FLOORING MATERIALS:

3.3.1 GENERAL

All applicable requirements of OSHA, EPA, and DOT shall be followed during Class II work. Keep materials intact; do not disturb; wet while working with it; wrap as soon as possible with 2 layers of 6 mil plastic for disposal.

3.3.2 REMOVAL OF FLOORING MATERIALS:

A. All requirements of OSHA Flooring agreement provisions shall be followed:

1. The Contractor shall provide enough HEPA negative air machines to effect > - 0.02" WCG pressure. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. The contractor shall use double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

2. Flooring shall be removed intact, as much as possible. Do not rip or tear flooring.

- 3. Mechanical chipping or sanding is not allowed.
- 4. Flooring shall be removed with an infra-red heating unit operated by trained personnel following the manufacturer's instructions.
- 5. Wet clean and HEPA vacuum the floor before and after removal of flooring.
- 6. Place a 6 mil poly layer 4' by 10' adjacent to the regulated area for use as a decontaminated area. All waste must be contained in the regulated area.
- 7. Package all waste in 6 mil poly lined fiberboard drums.

3.3.3 REMOVAL OF MASTIC

- A. All chemical mastic removers must be low in volatile organic compound (VOC) content, have a flash point greater than 200° Fahrenheit, contain no chlorinated solvents, and comply with California Air Resources Board (CARB) thresholds for VOCs (effective January 1, 2010).
- B. A negative air machine as required under flooring removal shall be provided.
- C. Follow all manufacturers' instructions in the use of the mastic removal material.
- D. Package all waste in 6 mil poly lined fiberboard drums.
- E. Prior to application of any liquid material, check the floor for penetrations and seal before removing mastic.

3.4 DISPOSAL OF CLASS II WASTE MATERIAL:

3.4.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.5 PROJECT DECONTAMINATION

3.5.1 GENERAL

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment,
- B. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- C. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- D. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.5.2 REGULATED AREA CLEARANCE

Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.5.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.5.4 PRE-DECONTAMINATION CONDITIONS

A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary barrier of poly removed and disposed of along with any gross debris generated by the work.

- B. At the start of decontamination, the following shall be in place:
 - 1. Critical barriers over all openings consisting of two layers of 6 mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - 2. Decontamination facilities, if required for personnel and equipment in operating condition.

3.5.5 CLEANING:

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.6 VISUAL INSPECTION AND AIR CLEARANCE TESTING

3.6.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH after the final cleaning.

3.6.2 VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.6.3 AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a minimum of one field blank. If work is equal to or more than 260 lf/160 sf/35 cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All Additional inspection and testing costs will be borne by the Contractor.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.6.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, or 70 AHERA structures per square millimeter (s/mm²) by AHERA TEM.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.7.1 COMPLETION OF ABATEMENT WORK

- A. After thorough decontamination, complete asbestos abatement work upon meeting the regulated area clearance criteria and fulfilling the following:
 - 1. Remove all equipment, materials, and debris from the project area.
 - 2. Package and dispose of all asbestos waste as required.
 - 3. Repair or replace all interior finishes damaged during the abatement work.
 - 4. Fulfill other project closeout requirements as specified elsewhere in this specification.

3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.7.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative. ATTACHMENT #1

CERTIFICATE OF COMPLETION

DATE:	VA Project #:	
PROJECT NAME:	Abatement Contractor:	
VAMC/ADDRESS:		

1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):

which took place from / / / to /

- 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:_____

CPIH/CIH Print Name:

Abatement Contractor Signature/Date:_____

Abatement Contractor Print Name:

ATTACHMENT #2

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

PROJECT	NAME:	DATE:
PROJECT	ADDRESS:	

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest xray evaluation. The physician issued a positive written opinion after the examination.

Signature:_____

Printed Name:

Social Security Number:

Witness:

ATTACHMENT #3

AFFIDAVIT	OF	MEDICAL	SURVEILLANCE,	RESPIRATORY	PROTECTION	AND
TRAINING/ACCI	REDITA	TION				

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Social Security Number: Name:

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH: _____ Date: _____

Printed Name of CPIH/CIH:

Signature of Contractor: _____ Date: _____

Printed Name of Contractor:

ATTACHMENT #4

ABATEMENT	CONTRACTOR/COMPETENT	PERSON(S)	REVIEW	AND	ACCEPTANCE	OF	THE	VA'S
ASBESTOS	SPECIFICATIONS							

VA Project Location:

VA Project #:

VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____Date_____

Abatement Contractor Competent Person(s) _____ Date_____

- - END- - - -

SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials and mixes for concrete.

1.2 REGULATORY REQUIREMENTS:

- A. ACI SP-66 ACI Detailing Manual.
- B. ACI 318 Building Code Requirements for Reinforced Concrete.
- C. ACI 301 Standard Specifications for Structural Concrete.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Test Report for Concrete Mix Designs: Trial mixes including water-cement ratio curves, concrete mix ingredients, and admixtures.

1.4 DELIVERY, STORAGE, AND HANDLING:

- A. Conform to ACI 304. Store aggregate separately for each kind or grade, to prevent segregation of sizes and avoid inclusion of dirt and other materials.
- B. Deliver cement in original sealed containers bearing name of brand and manufacturer, and marked with net weight of contents. Store in suitable watertight building in which floor is raised at least 300 mm (1 foot) above ground. Store bulk cement and fly ash in separate suitable bins.
- C. Deliver other packaged materials for use in concrete in original sealed containers, plainly marked with manufacturer's name and brand, and protect from damage until used.

1.5 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI):

117-10	Specifications for Tolerances for Concrete
	Construction and Materials and Commentary
211.1-91(R2009)	Standard Practice for Selecting Proportions for
	Normal, Heavyweight, and Mass Concrete
211.2-98(R2004)	Standard Practice for Selecting Proportions for
	Structural Lightweight Concrete
214R-11	Guide to Evaluation of Strength Test Results of
	Concrete
301-10	Standard Practice for Structural Concrete

	304R-00(R2009)Guide for Measuring, Mixing, Transporting, and
	Placing Concrete
	305.1-06Concreting
	306.1-90(R2002)Standard Specification for Cold Weather
	Concreting
	308.1-11Specification for Curing Concrete
	309R-05of Consolidation of Concrete
	318-11for Structural
	Concrete and Commentary
	347-04Guide to Formwork for Concrete
	SP-66-04ACI Detailing Manual
C.	American National Standards Institute and American Hardboard Association (ANSI/AHA):
	A135.4-2004Basic Hardboard
D.	American Society for Testing and Materials (ASTM):
	A82/A82M-07Standard Specification for Steel Wire, Plain,
	for Concrete Reinforcement
	A185/185M-07Standard Specification for Steel Welded Wire
	Reinforcement, Plain, for Concrete
	A615/A615M-09Standard Specification for Deformed and Plain
	Carbon Steel Bars for Concrete Reinforcement
	A653/A653M-11Standard Specification for Steel Sheet, Zinc
	Coated (Galvanized) or Zinc Iron Alloy Coated
	(Galvannealed) by the Hot Dip Process
	A706/A706M-09Standard Specification for Low Alloy Steel
	Deformed and Plain Bars for Concrete
	Reinforcement
	A767/A767M-09Standard Specification for Zinc Coated
	(Galvanized) Steel Bars for Concrete
	Reinforcement
	A775/A775M-07Standard Specification for Epoxy Coated
	Reinforcing Steel Bars
	A820-11for Standard Specification for Steel Fibers for
	Fiber Reinforced Concrete
	A996/A996M-09Standard Specification for Rail Steel and Axle
	Steel Deformed Bars for Concrete Reinforcement
	C31/C31M-10Standard Practice for Making and Curing Concrete
	Test Specimens in the field
	C33/C33M-11AStandard Specification for Concrete Aggregates

C39/C39M-12	.Standard Test Method for Compressive Strength of
	Cylindrical Concrete Specimens
C94/C94M-12	.Standard Specification for Ready Mixed Concrete
C143/C143M-10	.Standard Test Method for Slump of Hydraulic
	Cement Concrete
C150-11	.Standard Specification for Portland Cement
C171-07	.Standard Specification for Sheet Materials for
	Curing Concrete
C172-10	.Standard Practice for Sampling Freshly Mixed
	Concrete
C173-10	.Standard Test Method for Air Content of Freshly
	Mixed Concrete by the Volumetric Method
С192/С192М-07	.Standard Practice for Making and Curing Concrete
	Test Specimens in the Laboratory
C231-10	.Standard Test Method for Air Content of Freshly
	Mixed Concrete by the Pressure Method
C260-10	.Standard Specification for Air Entraining
	Admixtures for Concrete
C309-11	.Standard Specification for Liquid Membrane
	Forming Compounds for Curing Concrete
C330-09	.Standard Specification for Lightweight
	Aggregates for Structural Concrete
C494/C494M-11	.Standard Specification for Chemical Admixtures
	for Concrete
C618-12	.Standard Specification for Coal Fly Ash and Raw
	or Calcined Natural Pozzolan for Use in Concrete
C666/C666M-03(R2008)	.Standard Test Method for Resistance of Concrete
	to Rapid Freezing and Thawing
C881/C881M-10	.Standard Specification for Epoxy Resin Base
	Bonding Systems for Concrete
C1315-11	.Standard Specification for Liquid Membrane
	Forming Compounds Having Special Properties for
	Curing and Sealing Concrete
D4263-83(2012)	.Standard Test Method for Indicating Moisture in
	Concrete by the Plastic Sheet Method.
F1869-11	.Standard Test Method for Measuring Moisture
	Vapor Emission Rate of Concrete Subfloor Using
	Anhydrous Calcium Chloride.

E. Concrete Reinforcing Steel Institute (CRSI):

Handbook 2008

PART 2 - PRODUCTS:

2.1 FORMS:

- A. Wood: PS 20 free from loose knots and suitable to facilitate finishing concrete surface specified; tongue and grooved.
- B. Plywood: PS-1 Exterior Grade B-B (concrete-form) 16 mm (5/8 inch), or 20 mm (3/4 inch) thick for unlined contact form. B-B High Density Concrete Form Overlay optional.

2.2 MATERIALS:

- A. Portland Cement: ASTM C150 Type I or II.
- B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalies, and loss on ignition (LOI) not to exceed 5 percent.
- C. Coarse Aggregate: ASTM C33.
 - 1. Coarse aggregate for applied topping shall be Size 7.
- D. Fine Aggregate: ASTM C33. Fine aggregate for applied concrete floor topping shall pass a 4.75 mm (No. 4) sieve, 10 percent maximum shall pass a 150 µm (No. 100) sieve.
- E. Mixing Water: Fresh, clean, and potable.
- F. Admixtures:
 - 1. Water Reducing Admixture: ASTM C494, Type A and not contain more chloride ions than are present in municipal drinking water.
 - Water Reducing, Retarding Admixture: ASTM C494, Type D and not contain more chloride ions than are present in municipal drinking water.
 - High-Range Water-Reducing Admixture (Superplasticizer): ASTM C494, Type F or G, and not contain more chloride ions than are present in municipal drinking water.
 - 4. Non-Corrosive, Non-Chloride Accelerator: ASTM C494, Type C or E, and not contain more chloride ions than are present in municipal drinking water. Admixture manufacturer must have long-term non-corrosive test data from an independent testing laboratory of at least one year duration using an acceptable accelerated corrosion test method such as that using electrical potential measures.
 - 5. Air Entraining Admixture: ASTM C260.
 - 6. Prohibited Admixtures: Calcium chloride, thiocyanate or admixtures containing more than 0.05 percent chloride ions are not permitted.
 - 7. Certification: Written conformance to the requirements above and the chloride ion content of the admixture prior to mix design review.
- G. Sheet Materials for Curing Concrete: ASTM C171.

- H. Liquid Membrane-forming Compounds for Curing Concrete: ASTM C309, Type I, with fugitive dye, and shall meet the requirements of ASTM C1315.Compound shall be compatible with scheduled surface treatment, such as paint and resilient tile, and shall not discolor concrete surface.
- I. Adhesive Binder: ASTM C881.

2.3 CONCRETE MIXES:

- A. Mix Designs: Proportioned in accordance with Section 5.3, "Proportioning on the Basis of Field Experience and/or Trial Mixtures" of ACI 318.
- B. Fly Ash Testing: Submit certificate verifying conformance with ASTM 618 initially with mix design and for each truck load of fly ash delivered from source. Submit test results performed within 6 months of submittal date. Notify Resident Engineer immediately when change in source is anticipated.
- C. Cement Factor: Maintain minimum cement factors in Table I regardless of compressive strength developed above minimums. Use Fly Ash as an admixture with 20% replacement by weight in all structural work. Fly ash shall not be used in high-early mix design.

Concret	e Strength	Non-Air- Entrained	Air-Ent:	rained
Min. 28 Day Comp. Str. MPa (psi)	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio
30 (4000) ^{1,3}	325 (550)	0.55	340 (570)	0.50

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE

- 1. If trial mixes are used, the proposed mix design shall achieve a compressive strength 8.3 MPa (1200 psi) in excess of f'c.
- 2. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.
- E. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

Type of Construction Normal Weight Concrete		Lightweight Structural Concrete		
Slabs, Beams,	100 mm (4	100 mm (4 inches)		

TABLE II - MAXIMUM SLUMP, MM (INCHES)*

Reinforced Walls, and	inches)	
Building Columns		

- F. Slump may be increased by the use of the approved high-range waterreducing admixture (superplasticizer). Tolerances as established by ASTM C94. Concrete containing the high-range-water-reducing admixture may have a maximum slump of 225 mm (9 inches). The concrete shall arrive at the job site at a slump of 50 mm to 75 mm (2 inches to 3 inches), and 75 mm to 100 mm (3 inches to 4 inches) for lightweight concrete. This should be verified, and then the high-range-water-reducing admixture added to increase the slump to the approved level.
- G. High early strength concrete, made with Type III cement or Type I cement plus non-corrosive accelerator, shall have a 7-day compressive strength equal to specified minimum 28-day compressive strength for concrete type specified made with standard Portland cement.

2.4 BATCHING AND MIXING:

A. General: Concrete shall be "Ready-Mixed" and comply with ACI 318 and ASTM C94, except as specified. Batch mixing at the site is permitted. Mixing process and equipment must be approved by Resident Engineer. With each batch of concrete, furnish certified delivery tickets listing information in Paragraph 16.1 and 16.2 of ASTM C94. Maximum delivery temperature of concrete is 38°C (100 degrees Fahrenheit). Minimum delivery temperature as follows:

Atmospheric Temperature	Minimum Concrete Temperature
-1. degrees to 4.4 degrees C	15.6 degrees C (60 degrees F.)
(30 degrees to 40 degrees F)	
-17 degrees C to -1.1 degrees C (0 degrees to 30 degrees F.)	21 degrees C (70 degrees F.)

PART 3 - EXECUTION

3.1 SLABS RECEIVING RESILIENT COVERING

- A. Slab shall be allowed to cure for 6 weeks minimum prior to placing resilient covering. After curing, slab shall be tested by the Contractor for moisture in accordance with ASTM D4263 or ASTM F1869. Moisture content shall be less than 3 pounds per 1000 sf prior to placing covering.
- B. In lieu of curing for 6 weeks, Contractor has the option, at his own cost, to utilize the Moisture Vapor Emissions & Alkalinity Control Sealer as follows:

- Sealer is applied on the day of the concrete pour or as soon as harsh weather permits, prior to any other chemical treatments for concrete slabs either on grade, below grade or above grade receiving resilient flooring, such as, sheet vinyl, vinyl composition tile, rubber, wood flooring, epoxy coatings and overlays.
- Manufacturer's representative will be on the site the day of concrete pour to install or train its application and document. He shall return on every application thereafter to verify that proper procedures are followed.
 - a. Apply Sealer to concrete slabs as soon as final finishing operations are complete and the concrete has hardened sufficiently to sustain floor traffic without damage.
 - b. Spray apply Sealer at the rate of 20 m^2 (200 square feet) per gallon. Lightly broom product evenly over the substrate and product has completely penetrated the surface.

3.2 PLACING CONCRETE:

- A. Preparation:
 - 1. Remove hardened concrete, wood chips, shavings and other debris from forms.
 - 2. Remove hardened concrete and foreign materials from interior surfaces of mixing and conveying equipment.
 - 3. Have forms and reinforcement inspected and approved by Resident Engineer before depositing concrete.
- B. Bonding: Before depositing new concrete on or against concrete which has been set, thoroughly roughen and clean existing surfaces of laitance, foreign matter, and loose particles.
 - 1. Preparing surface for applied topping:
 - a. Remove laitance, mortar, oil, grease, paint, or other foreign material by sand blasting. Clean with vacuum type equipment to remove sand and other loose material.
 - b. Broom clean and keep base slab wet for at least four hours before topping is applied.
 - c. Use a thin coat of one part Portland cement, 1.5 parts fine sand, bonding admixture; and water at a 50: 50 ratio and mix to achieve the consistency of thick paint. Apply to a damp base slab by scrubbing with a stiff fiber brush. New concrete shall be placed while the bonding grout is still tacky.
- C. Conveying Concrete: Convey concrete from mixer to final place of deposit by a method which will prevent segregation. Method of conveying concrete is subject to approval of Resident Engineer.

- D. Do not place concrete when weather conditions prevent proper placement and consolidation, or when concrete has attained its initial set, or has contained its water or cement content more than 1 1/2 or 1500 mm (5 feet) for conventional concrete. Where
- E. Consolidation: Conform to ACI 309. Immediately after depositing, spade concrete next to forms, work around reinforcement and into angles of forms, tamp lightly by hand, and compact with mechanical vibrator applied directly into concrete at approximately 450 mm (18 inch) intervals. Mechanical vibrator shall be power driven, hand operated type with minimum frequency of 5000 cycles per minute having an intensity sufficient to cause flow or settlement of concrete into place. Vibrate concrete to produce thorough compaction, complete embedment of reinforcement and concrete of uniform and maximum density without segregation of mix. Do not transport concrete in forms by vibration.
 - 1. Use of form vibration shall be approved only when concrete sections are too thin or too inaccessible for use of internal vibration.
 - 2. Carry on vibration continuously with placing of concrete. Do not insert vibrator into concrete that has begun to set.

3.3 HOT WEATHER:

Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.4 COLD WEATHER:

Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.5 PROTECTION AND CURING:

A. Conform to ACI 308: Initial curing shall immediately follow the finishing operation. Protect exposed surfaces of concrete from premature drying, wash by rain and running water, wind, mechanical injury, and excessively hot or cold temperatures. Keep concrete not covered with membrane or other curing material continuously wet for at least 7 days after placing, except wet curing period for high-early-strength concrete shall be not less than 3 days. Keep wood forms continuously wet to prevent moisture loss until forms are removed. Cure exposed concrete surfaces as described below. Other curing methods may be used if approved by Resident Engineer.

- Liquid curing and sealing compounds: Apply by power-driven spray or roller in accordance with the manufacturer's instructions. Apply immediately after finishing. Maximum coverage 10m²/L (400 square feet per gallon) on steel troweled surfaces and 7.5m²/L (300 square feet per gallon) on floated or broomed surfaces for the curing/sealing compound.
- Plastic sheets: Apply as soon as concrete has hardened sufficiently to prevent surface damage. Utilize widest practical width sheet and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with tape.
- Paper: Utilize widest practical width paper and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with sand, wood planks, pressure-sensitive tape, mastic or glue.

3.6 CONCRETE FINISHES:

- A. Slab Finishes:
 - Use straightedges specifically made for screeding, such as hollow magnesium straightedges or power strike-offs. Do not use pieces of dimensioned lumber. Strike off and screed slab to a true surface at required elevations. Use optical or laser instruments to check concrete finished surface grade after strike-off. Repeat strike-off as necessary. Complete screeding before any excess moisture or bleeding water is present on surface. Do not sprinkle dry cement on the surface.
 - 2. Immediately following screeding, and before any bleed water appears, use a 3000 mm (10 foot) wide highway straightedge in a cutting and filling operation to achieve surface flatness. Do not use bull floats or darbys, except that darbying may be allowed for narrow slabs and restricted spaces.
 - 3. Wait until water sheen disappears and surface stiffens before proceeding further. Do not perform subsequent operations until concrete will sustain foot pressure with maximum of 6 mm (1/4 inch) indentation.
 - 4. Float Finish: Slabs to receive steel trowel finish, fill, mortar setting beds and equipment pads shall be floated to a smooth, dense uniform, sandy textured finish. During floating, while surface is still soft, check surface for flatness using a 3000 mm (10 foot)

highway straightedge. Correct high spots by cutting down and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections and re-float to a uniform texture.

5. Steel Trowel Finish: Concrete surfaces to receive resilient floor covering or carpet, monolithic floor slabs to be exposed to view in finished work, applied toppings, and other interior surfaces for which no other finish is indicated. Steel trowel immediately following floating. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure to compact cement paste and form a dense, smooth surface. Finished surface shall be smooth, free of trowel marks, and uniform in texture and appearance.

- - - E N D - - -

09-11

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.
- B. Items specified.
 - 1. Support for Ceiling Mounted Toilet Partitions.
 - 2. Supports for partial height walls.

1.2 RELATED WORK

A. Prime painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
 - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
 - 3. Provide templates and rough-in measurements as required.

1.4 QUALITY ASSURANCE

- A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.6.1-97.....Wood Screws

B18.2.2-87(R2005).....Square and Hex Nuts C. American Society for Testing and Materials (ASTM): A36/A36M-08.....Structural Steel A47-99(R2009).....Malleable Iron Castings A48-03(R2008).....Gray Iron Castings A53-10.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-09.....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip A307-10.....Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A653/A653M-10.....Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot-Dip Process B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B456-03(R2009).....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium B632-08.....Aluminum-Alloy Rolled Tread Plate C1107-08.....Packaged Dry, Hydraulic-Cement Grout (Nonshrink) F436-10.....Hardened Steel Washers F468-10......Nonferrous Bolts, Hex Cap Screws, and Studs for General Use F593-02(R2008).....Stainless Steel Bolts, Hex Cap Screws, and Studs F1667-11.....Driven Fasteners: Nails, Spikes and Staples D. American Welding Society (AWS): D1.1-10.....Structural Welding Code Steel D1.2-08..... Structural Welding Code Aluminum D1.3-08.....Structural Welding Code Sheet Steel E. National Association of Architectural Metal Manufacturers (NAAMM) AMP 521-01.....Pipe Railing Manual AMP 500-06.....Metal Finishes Manual F. Structural Steel Painting Council (SSPC)/Society of Protective Coatings: SP 1-04.....No. 1, Solvent Cleaning SP 2-04.....No. 2, Hand Tool Cleaning SP 3-04.....No. 3, Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Structural Steel: ASTM A36.
- B. Primer Paint: As specified in Section 09 91 00, PAINTING.

2.2 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
 - 2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.

B. Fasteners:

- 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.
- 2. Screws: ASME B18.6.1.
- 3. Washers: ASTM F436, type to suit material and anchorage.

2.3 FABRICATION GENERAL

- A. Material
 - Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.
 - 2. Use material free of defects which could affect the appearance or service ability of the finished product.
- B. Size:
 - 1. Size and thickness of members as shown.
 - When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.
- C. Connections
 - Except as otherwise specified, connections may be made by welding, riveting or bolting.
 - 2. Field riveting will not be approved.
 - 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.

- 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
- Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
- 7. Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors
 - 1. Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
 - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation.
 - Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
 - 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid.
 - 5. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts.
- E. Workmanship
 - 1. General:
 - a. Fabricate items to design shown.
 - b. Furnish members in longest lengths commercially available within the limits shown and specified.
 - c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
 - d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
 - e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
 - f. Prepare members for the installation and fitting of hardware.

- g. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.
- 2. Welding:
 - a. Weld in accordance with AWS.
 - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.
- 3. Joining:
 - a. Miter or butt members at corners.
 - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.
- 4. Cutting and Fitting:
 - Accurately cut, machine and fit joints, corners, copes, and miters.
 - b. Fit removable members to be easily removed.
 - c. Design and construct field connections in the most practical place for appearance and ease of installation.
 - d. Fit pieces together as required.
 - e. Fabricate connections for ease of assembly and disassembly without use of special tools.
 - f. Joints firm when assembled.
 - g. Conceal joining, fitting and welding on exposed work as far as practical.
 - h. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.
- F. Finish:
 - 1. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.
 - b) Galvanized surfaces specified to have prime paint.
 - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
 - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
 - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.

2.3 SUPPORTS

A. General:

- 1. Fabricate ASTM A36 structural steel shapes as shown.
- 2. Use clip angles or make provisions for welding hangers and braces to overhead construction.
- 3. Field connections may be welded or bolted.
- B. For Ceiling Hung Toilet Stall:
 - 1. Use a continuous steel channel above pilasters with hangers centered over pilasters.
 - 2. Make provision for installation of stud bolts in lower flange of channel.
 - 3. Provide a continuous steel angle at wall and channel braces spaced as shown.
 - 4. Use threaded rod hangers.
 - 5. Provide diagonal angle brace where the suspended ceiling over toilet stalls does not extend to side wall of room.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.
 - 2. Use continuous weld unless specified otherwise.
- C. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.

3.2 INSTALLATION OF SUPPORTS

- A. Anchorage to structure.
 - Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise.
 - 2. Secure steel plate or hat channels to studs.
- B. Ceiling Hung Toilet Stalls:
 - Securely anchor hangers of continuous steel channel above pilasters to structure above.
 - 2. Bolt continuous steel angle at wall to masonry or weld to face of each metal stud.
 - 3. Secure brace for steel channels over toilet stall pilasters to wall angle supports with bolts at each end spaced as shown.

- 4. Install diagonal angle brace where the suspended ceiling over toilet stalls does not extend to side wall of room.
- 5. Install stud bolts in lower flange of channel before installing furred down ceiling over toilet stalls.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies wood blocking, furring, nailers, and rough hardware.

1.2 RELATED WORK:

A. Milled woodwork: Section 06 20 00, FINISH CARPENTRY.

1.3 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 150 mm (6 inches) above grade and cover with well ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.4 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA): National Design Specification for Wood Construction NDS-05.....Conventional Wood Frame Construction
- C. American Institute of Timber Construction (AITC): A190.1-07.....Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME): B18.2.1-96(R2005).....Square and Hex Bolts and Screws B18.2.2-87.....Square and Hex Nuts B18.6.1-97.....Wood Screws B18.6.4-98(R2005).....Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws
- E. American Plywood Association (APA): E30-07.....Engineered Wood Construction Guide
- F. American Society for Testing And Materials (ASTM): A47-99(R2009)....Ferritic Malleable Iron Castings A48-03(R2008)....Gray Iron Castings

	A653/A653M-10	.Steel Sheet Zinc-Coated (Galvanized) or Zinc-
		Iron Alloy Coated (Galvannealed) by the Hot Dip
		Process
	C954-10	.Steel Drill Screws for the Application of Gypsum
		Board or Metal Plaster Bases to Steel Studs from
		0.033 inch (2.24 mm) to 0.112-inch (2.84 mm) in
		thickness
	C1002-07	.Steel Self-Piercing Tapping Screws for the
	02002 070000000000000000000000000000000	Application of Gypsum Panel Products or Metal
		Plaster Bases to Wood Studs or Metal Studs
	D143-09	.Small Clear Specimens of Timber, Method of
		Testing
	D1760-01	.Pressure Treatment of Timber Products
	D2559-10	.Adhesives for Structural Laminated Wood Products
		for Use Under Exterior (Wet Use) Exposure
		Conditions
	D3498-11	.Adhesives for Field-Gluing Plywood to Lumber
		Framing for Floor Systems
	F844-07	.Washers, Steel, Plan (Flat) Unhardened for
		General Use
	F1667-08	.Nails, Spikes, and Staples
G.	Federal Specifications	(Fed. Spec.):
	MM-L-736C	.Lumber; Hardwood
н.	H. Commercial Item Description (CID):	
	A-A-55615	.Shield, Expansion (Wood Screw and Lag Bolt Self
		Threading Anchors)
I.	Military Specification	(Mil. Spec.):
	MIL-L-19140E	.Lumber and Plywood, Fire-Retardant Treated
J.	Truss Plate Institute (TPI):	
	TPI-85	.Metal Plate Connected Wood Trusses
К.	U.S. Department of Comm	erce Product Standard (PS)
	PS 1-95	.Construction and Industrial Plywood
	PS 20-05	.American Softwood Lumber Standard
PART	2 - PRODUCTS	
2.1 LUMBER:		

- A. Unless otherwise specified, each piece of lumber bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - 1. Identifying marks in accordance with rule or standard under which material is produced, including requirements for qualifications and

authority of the inspection organization, usage of authorized identification, and information included in the identification.

- 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Structural Members: Species and grade as listed in the AFPA, National Design Specification for Wood Construction having design stresses as shown.
- C. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - 2. Framing lumber: Minimum extreme fiber stress in bending of 1100.
 - Furring, blocking, nailers and similar items 100 mm (4 inches) and narrower Standard Grade; and, members 150 mm (6 inches) and wider, Number 2 Grade.
- D. Sizes:
 - 1. Conforming to Prod. Std., PS20.
 - 2. Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.
- E. Moisture Content:
 - 1. At time of delivery and maintained at the site.
 - 2. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - 3. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- F. Fire Retardant Treatment:
 - Mil Spec. MIL-L-19140 with piece of treated material bearing identification of testing agency and showing performance rating.
 - 2. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.

2.2 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ANSI B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - Extend at least 200 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D, A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Use 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers

- 1. ASTM F844.
- 2. Use zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ANSI B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.
- E. Nails:
 - Size and type best suited for purpose unless noted otherwise. Use aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
 - 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.
 - f. Use special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.

PART 3 - EXECUTION

3.1 INSTALLATION OF MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA National Design Specification for Wood Construction for timber connectors.
 - 2. AFPA WCD-number 1, Manual for House Framing for nailing and framing unless specified otherwise.
- B. Fasteners:
 - 1. Nails.
 - a. Nail in accordance with the Recommended Nailing Schedule as specified in AFPA Manual for House Framing where detailed nailing requirements are not specified in nailing schedule. Select nail size and nail spacing sufficient to develop adequate strength for the connection without splitting the members.
 - b. Use special nails with framing connectors.
 - c. Use eight penny or larger nails for nailing through 25 mm (1 inch) thick lumber and for toe nailing 50 mm (2 inch) thick lumber.
 - d. Use 16 penny or larger nails for nailing through 50 mm (2 inch) thick lumber.

- e. Select the size and number of nails in accordance with the Nailing Schedule except for special nails with framing anchors.
- 2. Bolts:
 - a. Fit bolt heads and nuts bearing on wood with washers.
 - b. Countersink bolt heads flush with the surface of nailers.
 - c. Embed in concrete and solid masonry or use expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
 - d. Use toggle bolts to hollow masonry or sheet metal.
 - e. Use bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 600 mm (24 inch) intervals between end bolts. Use clips to beam flanges.
- 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C 954 for steel over 0.84 mm (0.033 inch) thick.
- 4. Power actuated drive pins may be used where practical to anchor to solid masonry, concrete, or steel.
- 5. Do not anchor to wood plugs or nailing blocks in masonry or concrete. Use metal plugs, inserts or similar fastening.
- 6. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- C. Cut notch, or bore in accordance with NFPA Manual for House-Framing for passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- D. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Use longest lengths practicable.
 - 3. Use fire retardant treated wood blocking.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 600 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 125 mm (5 inches) in width.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 06 20 00 FINISH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies interior millwork.
- B. Items specified.
 - Plastic Laminate Cabinets, Shelving and Countertops
 - Wall Paneling & Trim

1.2 RELATED WORK

- A. Framing, furring and blocking: Section 06 10 00, ROUGH CARPENTRY.
- B. Wood doors: Section 08 14 00, WOOD DOORS.
- C. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Electrical light fixtures and duplex outlets: Division 26, ELECTRICAL.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Millwork items Half full size scale for sections and details 1:50 (1/4-inch) for elevations and plans.
 - 2. Show construction and installation.
- C. Manufacturer's literature and data:
 - 1. Finish hardware

1.4 DELIVERY, STORAGE AND HANDLING

- A. Protect lumber and millwork from dampness, maintaining moisture content specified both during and after delivery at site.
- B. Store finishing lumber and millwork in weathertight well ventilated structures or in space in existing buildings designated by Resident Engineer. Store at a minimum temperature of 21°C (70°F) for not less than 10 days before installation.
- C. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): A36/A36M-08.....Structural Steel A53-12.....Pipe, Steel, Black and Hot-Dipped Zinc Coated, Welded and Seamless

A167-99 (R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B26/B26M-09.....Aluminum-Alloy Sand Castings B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes E84-10.....Surface Burning Characteristics of Building Materials C. American Hardboard Association (AHA): A135.4-04.....Basic Hardboard D. Builders Hardware Manufacturers Association (BHMA): A156.9-03.....Cabinet Hardware A156.11-10.....Cabinet Locks A156.16-08.....Auxiliary Hardware E. Hardwood Plywood and Veneer Association (HPVA): HP1-09.....Hardwood and Decorative Plywood F. National Particleboard Association (NPA): A208.1-09.....Wood Particleboard G. American Wood-Preservers' Association (AWPA): AWPA C1-03.....All Timber Products - Preservative Treatment by Pressure Processes H. Architectural Woodwork Institute (AWI): AWI-09.....Architectural Woodwork Quality Standards and Quality Certification Program I. National Electrical Manufacturers Association (NEMA): LD 3-05......High-Pressure Decorative Laminates J. U.S. Department of Commerce, Product Standard (PS): PS20-10.....American Softwood Lumber Standard K. Military Specification (Mil. Spec): MIL-L-19140E.....Lumber and Plywood, Fire-Retardant Treated L. Federal Specifications (Fed. Spec.): A-A-1922A.....Shield Expansion A-A-1936.....Contact Adhesive FF-N-836D.....Nut, Square, Hexagon Cap, Slotted, Castle FF-S-111D(1)....Screw, Wood MM-L-736(C)....Lumber, Hardwood

PART 2 - PRODUCTS

2.1 BIO-BASED MATERIAL:

Bio-based Materials: For products designated by the USDA's Bio-Preferred program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specification section. For more information regarding the product categories covered by the Bio-Preferred program, visit http://www.bio-preferred.gov

2.2 LUMBER

- A. Grading and Marking:
 - 1. Lumber shall bear the grade mark, stamp, or other identifying marks indicating grades of material.
 - 2. Such identifying marks on a material shall be in accordance with the rule or standard under which the material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 3. The inspection agency for lumber shall be approved by the Board of Review, American Lumber Standards Committee, to grade species used.

B. Sizes:

- Lumber Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which product is produced.
- Millwork, standing and running trim, and rails: Actual size as shown or specified.
- C. Hardwood: MM-L-736, species as specified for each item.

2.3 PLYWOOD

- A. Softwood Plywood:
 - 1. Prod. Std.
 - 2. Grading and Marking:
 - a. Each sheet of plywood shall bear the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood.
 - b. The mark shall identify the plywood by species group or identification index, and shall show glue type, grade, and compliance with PS1.
 - Plywood, 13 mm (1/2 inch) and thicker; not less than five ply construction, except 32 mm (1-1/4 inch) thick plywood not less than seven ply.
 - 4. Plastic Laminate Plywood Cores:
 - a. Exterior Type, and species group.
 - b. Veneer Grade: A-C.
 - 5. Shelving Plywood:
 - a. Interior Type, any species group.
 - b. Veneer Grade: A-B or B-C.

- 6. Other: As specified for item.
- B. Hardwood Plywood:
 - 1. HPVA: HP.1
 - 2. Species of face veneer shall be as shown or as specified in connection with each particular item.
 - 3. Inside of Building:
 - a. Use Type II (interior) A grade veneer for transparent finish.

4. Use plain sliced rotary cut white birch unless specified otherwise.

- 2.4 PARTICLEBOARD
 - A. NPA A208.1
 - B. Plastic Laminate Particleboard Cores:
 - 1. Use Type 1, Grade 1-M-3, or Type 2, Grade 2-M-2, unless otherwise specified.
 - 2. Use Type 2, Grade 2-M-2, exterior bond, for tops with sinks.
 - C. General Use: Type 1, Grade 1-M-3 or Type 2, Grade 2-M-2.

2.5 PLASTIC LAMINATE

- A. NEMA LD-3.
- B. Exposed decorative surfaces including countertops, both sides of cabinet doors, and for items having plastic laminate finish. General Purpose, Type HGL.
- C. Cabinet Interiors including Shelving: Both of following options to comply with NEMA, CLS as a minimum.
 - 1. Plastic laminate clad plywood or particle board.
 - 2. Resin impregnated decorative paper thermally fused to particle board.
- D. Backing sheet on bottom of plastic laminate covered wood tops: Backer, Type HGP.
- E. Post Forming Fabrication, Decorative Surfaces: Post forming, Type HGP.
- F. Provide chemical resistant laminate at all countertops with sinks.

2.6 ADHESIVE

- A. For Plastic Laminate: Fed. Spec. A-A-1936.
- B. For Interior Millwork: Unextended urea resin, unextended melamine resin, phenol resin, or resorcinol resin.

2.7 HARDWARE

- A. Rough Hardware:
 - 1. Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electric-galvanizing process. Galvanized where specified.
 - 2. Use galvanized coating on ferrous metal for exterior work unless nonferrous metals or stainless is used.

- 3. Fasteners:
 - a. Bolts with Nuts: FF-N-836.
 - b. Expansion Bolts: A-A-1922A.
 - c. Screws: Fed. Spec. FF-S-111.
- B. Finish Hardware
 - 1. Cabinet Hardware: ANSI A156.9.
 - a. Door/Drawer Pulls: B02011.
 - b. Drawer Slides: B05051 for drawers over 150 mm (6 inches) deep,
 B05052 for drawers 75 mm to 150 mm 3 to 6 inches) deep, and B05053 for drawers less than 75 mm (3 inches) deep.
 - c. Adjustable Shelf Standards: B4061 with shelf rest B04083.
 - d. Concealed Hinges: B1601, minimum 110 degree opening.
 - e. Cabinet Door Catch: B0371 or B03172.
 - f. Vertical Slotted Shelf Standard: B04103 with shelf brackets B04113, sized for shelf depth.
 - Cabinet Locks: ANSI A156.11. Provide push button combination locks at all doors and drawers. Appearance and function similar to Simplex 9621.
 - 3. Edge Strips Moldings:
 - a. Driven type "T" shape with serrated retaining stem; vinyl plastic to match plastic laminate color, stainless steel, or 3 mm (1/8 inch) thick extruded aluminum.
 - b. Stainless steel or extruded aluminum channels.
 - c. Stainless steel, number 4 finish; aluminum, mechanical applied medium satin finish, clear anodized 0.1 mm (0.4 mils) thick.
 - 4. Rubber or Vinyl molding
 - a. Rubber or vinyl standard stock and in longest lengths practicable.
 - b. Design for closures at joints with walls and adhesive anchorage.
 - c. Adhesive as recommended by molding manufacturer.

2.8 MOISTURE CONTENT

- A. Moisture content of lumber and millwork at time of delivery to site.
 - Interior finish lumber, trim, and millwork 32 mm (1-1/4 inches) or less in nominal thickness: 12 percent on 85 percent of the pieces and 15 percent on the remainder.
 - 2. Moisture content of other materials shall be in accordance with the standards under which the products are produced.

2.9 FABRICATION

- A. General:
 - 1. Except as otherwise specified, use AWI Custom Grade for architectural woodwork and interior millwork.

- 2. Finish woodwork shall be free from pitch pockets.
- 3. Except where special profiles are shown, trim shall be standard stock molding and members of the same species.
- Plywood shall be not less than 13 mm (1/2 inch), unless otherwise shown or specified.
- 5. Edges of members in contact with concrete or masonry shall have a square corner caulking rebate.
- 6. Fabricate members less than 4 m (14 feet) in length from one piece of lumber, back channeled and molded a shown.
- 7. Plastic Laminate Work:
 - a. Factory glued to either a plywood or a particle board core, thickness as shown or specified.
 - b. Cover exposed edges with plastic laminate, except where aluminum, stainless steel, or plastic molded edge strips are shown or specified. Use plastic molded edge strips on 19 mm (3/4-inch) molded thick or thinner core material.
 - c. Provide plastic backing sheet on underside of countertops, vanity tops, thru-wall counter and sills including back splashes and end splashes of countertops.
 - d. Use backing sheet on concealed large panel surface when decorative face does not occur.

B. Wall Paneling:

- 1. Hardwood plywood
 - a. Flush ungrooved.
 - b. Thickness: 13 mm (1/2 inch) unless shown otherwise.
 - c. Use full height panels without exposed joints.
- 2. Solid hardwood.
 - a. White birch.
 - b. Size of members as shown on drawings. Ease all exposed edges.
- Natural or stain as indicated on drawings with clear polyurethane varnish finish as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain work areas and storage areas to a minimum temperature of 21^oC (70^oF) for not less than 10 days before and during installation of interior millwork.
- B. Do not install finish lumber or millwork in any room or space where wet process systems such as concrete, masonry, or plaster work is not complete and dry.

3.2 INSTALLATION

- A. General:
 - 1. Millwork receiving transparent finish shall be primed and backpainted on concealed surfaces. Set no millwork until primed and backpainted.
 - 2. Secure trim with fine finishing nails, screws, or glue as required.
 - 3. Set nails for putty stopping. Use washers under bolt heads where no other bearing plate occurs.
 - 4. Coordinate with plumbing and electrical work for installation of fixtures and service connections in millwork items.
 - 5. Plumb and level items unless shown otherwise.
 - 6. Nail finish at each blocking, lookout, or other nailer and intermediate points; toggle or expansion bolt in place where nails are not suitable.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies thermal and acoustical insulation for buildings.

1.2 RELATED WORK

A. Safing insulation: Section 07 84 00, FIRESTOPPING.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES .
- B. Manufacturer's Literature and Data:
 - 1. Insulation, each type used
- C. Certificates: Stating the type, thickness and "R" value (thermal resistance) of the insulation to be installed.

1.4 STORAGE AND HANDLING:

- A. Store insulation materials in weathertight enclosure.
- B. Protect insulation from damage from handling, weather and construction operations before, during, and after installation.

1.5 APPLICABLE PUBLICATIONS:

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

в.	American Society for Testing and Materials (ASTM):
	C552-07Cellular Glass Thermal Insulation.
	C553-08 Insulation for
	Commercial and Industrial Applications
	C578-10Rigid, Cellular Polystyrene Thermal Insulation
	C612-10 Mineral Fiber Block and Board Thermal
	Insulation
	C665-06 Insulation for
	Light Frame Construction and Manufactured
	Housing
	E84-10 of Building
	Materials

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL:

A. Where more than one type of insulation is specified, the type of insulation for each use is optional, except use only one type of insulation in any particular area.

2.2 ACOUSTICAL INSULATION:

- A. Fiberglass or Mineral Fiber Batt or Blankets: ASTM C665. Maximum flame spread of 25 and smoke development of 450 when tested in accordance with ASTM E84.
- B. Thickness as shown; of widths and lengths to fit tight against framing.

2.3 RIGID INSULATION:

- A. On the inside face of exterior walls and where shown.
- B. Polystyrene Board: ASTM C578, Type X.

2.4 ADHESIVE:

A. As recommended by the manufacturer of the insulation.

2.5 TAPE:

- A. Pressure sensitive adhesive on one face.
- B. Perm rating of not more than 0.50.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

- A. Install rigid insulating units with joints close and flush, in regular courses and with cross joints broken.
- B. Install batt or blanket insulation with tight joints and filling framing void completely. Seal cuts, tears, and unlapped joints with tape.
- C. Fit insulation tight against adjoining construction and penetrations, unless specified otherwise.

3.2 RIGID INSULATION ON SURFACE OF EXTERIOR WALLS, FLOORS, AND UNDERSIDE OF FLOORS:

- A. On the interior face of walls and beams.
- B. Install with Z furring or bond to solid vertical surfaces with adhesive as recommended by insulation manufacturer. Fill joints with adhesive cement.

3.3 ACOUSTICAL INSULATION:

A. Fasten blanket insulation between metal studs and wall furring with continuous pressure sensitive tape along edges or adhesive.

- B. Pack insulation around door frames and windows and in cracks, expansion joints, control joints, door soffits and other voids. Pack behind outlets, around pipes, ducts, and services encased in wall or partition. Hold insulation in place with pressure sensitive tape or adhesive.
- C. Do not compress insulation below required thickness except where embedded items prevent required thickness.
- D. Where semirigid insulation is used which is not full thickness of cavity, adhere to one side of cavity maintaining continuity of insulation and covering penetrations or embedments in insulation.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION

- A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

- A. Sealants and application: Section 07 92 00, JOINT SEALANTS.
- B. Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS, Section 23 37 00, AIR OUTLETS AND INLETS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- C. List of FM, UL, or WH classification number of systems installed.
- D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 WARRANTY

Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.6 QUALITY ASSURANCE

FM, UL, or WH or other approved laboratory tested products will be acceptable.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

E84-10.....Surface Burning Characteristics of Building Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

- C. Factory Mutual Engineering and Research Corporation (FM): Annual Issue Approval Guide Building Materials
- D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

1479-10.....Fire Tests of Through-Penetration Firestops

E. Warnock Hersey (WH): Annual Issue Certification Listings

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier.
- D. Firestop sealants used for firestopping or smoke sealing shall have following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Have no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
 - 5. When not in exposed areas, shall be red in color.

- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
 - 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant.
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- H. Materials to be asbestos free.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Use silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Use mineral fiber filler and bond breaker behind sealant.
- C. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

- A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

- A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.
- D. Identify through-penetration firestop systems with pressure-sensitive, self-adhesive, preprinted vinyl labels. Attach labels permanently to surfaces of penetrated construction on both sides of each firestop system installation where labels will be visible to anyone seeking to remove penetrating items or firestop systems. Include the following information on labels:

1. The words: "Warning -Through Penetration Firestop System-Do Not Disturb. Notify Building Management of Any Damage."

2. Contractor's Name, address, and phone number.

3. Through-Penetration firestop system designation of applicable testing and inspecting agency.

- 4. Date of Installation.
- 5. Through-Penetration firestop system manufacturer's name.
- 6. Installer's Name.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Resident Engineer.
- C. Clean up spills of liquid type materials.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK:

- A. Firestopping penetrations: Section 07 84 00, FIRESTOPPING.
- B. Glazing: Section 08 80 00, GLAZING.
- C. Sound rated gypsum partitions/sound sealants: Section 09 29 00, GYPSUM BOARD.
- D. Mechanical Work: Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.3 QUALITY CONTROL:

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in jointsealant installations with a record of successful in-service performance.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
- C. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color where required to match adjacent material.
- D. Manufacturer's Literature and Data:
 - 1. Caulking compound
 - 2. Primers
 - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other.

1.5 PROJECT CONDITIONS:

A. Environmental Limitations:

- Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 °C (40 $^{\circ}$ F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.6 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F).

1.7 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Back-up Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.8 WARRANTY:

A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years. B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): C509-06.....Elastomeric Cellular Preformed Gasket and Sealing Material.

C612-10.....Mineral Fiber Block and Board Thermal Insulation.

C717-10.....Standard Terminology of Building Seals and Sealants.

C834-10.....Latex Sealants.

C919-08.....Use of Sealants in Acoustical Applications.

C920-10.....Elastomeric Joint Sealants.

C1021-08.....Laboratories Engaged in Testing of Building Sealants.

- C1193-09.....Standard Guide for Use of Joint Sealants.
- C1330-02 (R2007).....Cylindrical Sealant Backing for Use with Cold Liquid Applied Sealants.
- D1056-07.....Specification for Flexible Cellular Materials-Sponge or Expanded Rubber.
- E84-09.....Surface Burning Characteristics of Building Materials.
- C. Sealant, Waterproofing and Restoration Institute (SWRI). The Professionals' Guide

1110 11010001011010

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. S-1:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 20-40

B. S-2: 1. ASTM C920, polyurethane or polysulfide. 2. Type M. 3. Class 25. 4. Grade P. 5. Shore A hardness of 25-40. C. S-4: 1. ASTM C920 polyurethane or polysulfide. 2. Type S. 3. Class 25. 4. Grade NS. 5. Shore A hardness of 25-40. D. S-6: 1. ASTM C920, silicone, neutral cure. 2. Type S. 3. Class: Joint movement range of plus 100 percent to minus 50 percent. 4. Grade NS. 5. Shore A hardness of 15-20. 6. Minimum elongation of 1200 percent. E. S-9: 1. ASTM C920 silicone. 2. Type S. 3. Class 25. 4. Grade NS. 5. Shore A hardness of 25-30. 6. Non-yellowing, mildew resistant. 2.2 CAULKING COMPOUND: A. C-1: ASTM C834, acrylic latex. B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber.

2.3 COLOR:

- A. Caulking shall be light gray or white, unless specified otherwise.
- B. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise.

2.4 JOINT SEALANT BACKING:

A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers,

and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiber board: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POUROUS SURFACES:

Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

A. Prepare joints in accordance with manufacturer's instructions and SWRI.

- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).
 - Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
 - Do not use sealant type listed by manufacture as not suitable for use in locations specified.
 - 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 5. Avoid dropping or smearing compound on adjacent surfaces.
 - 6. Fill joints solidly with compound and finish compound smooth.
 - 7. Tool joints to concave surface unless shown or specified otherwise.
 - 8. Apply compounds with nozzle size to fit joint width.
 - 9. Test sealants for compatibility with each other and substrate. Use only compatible sealant.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.

- C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.
- C. Leave adjacent surfaces in a clean and unstained condition.

3.7 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Metal to Masonry or Stone: Type S-1
- B. Metal Reglets and Flashings:
 - 1. Flashings to Wall: Type S-6
 - 2. Metal to Metal: Type S-6
- C. Sanitary Joints:
 - 1. Walls to Plumbing Fixtures: Type S-9
 - 2. Counter Tops to Walls: Type S-9
 - 3. Pipe Penetrations: Type S-9
- D. Interior Caulking:
 - Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1 and C-2.

- 2. Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1 and C-2.
- 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1 and C-2.
- 4. Exposed Isolation Joints at Top of Full Height Walls: Types C-1 and C-2.
- 5. Exposed Acoustical Joint at Sound Rated Partitions Type C-2.
- 6. Concealed Acoustic Sealant Types S-4, C-1 and C-2.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 08 11 13 HOLLOW METAL FRAMES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies steel frames and related components.
- B. Terms relating to steel frames as defined in ANSI A123.1 and as specified.

1.2 RELATED WORK

- A. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- B. Glazing: Section 08 80 00, GLAZING.

1.3 TESTING

An independent testing laboratory shall perform testing.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers Literature and Data

1.5 SHIPMENT

- A. Prior to shipment label each door and frame to show location, size, door swing and other pertinent information.
- B. Fasten temporary steel spreaders across the bottom of each door frame.

1.6 STORAGE AND HANDLING

- A. Store doors and frames at the site under cover.
- B. Protect from rust and damage during storage and erection until completion.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.): L-S-125B.....Screening, Insect, Nonmetallic
- C. Door and Hardware Institute (DHI): All5 Series.....Steel Door and Frame Preparation for Hardware,
- Series A115.1 through A115.17 (Dates Vary) D. Steel Door Institute (SDI):
 - 113-01 (R2006).....Thermal Transmittance of Steel Door and Frame Assemblies
 - 128-09.....Acoustical Performance for Steel Door and Frame Assemblies

E. American National Standard Institute: A250.8-2003 (R2008).....Specifications for Standard Steel Doors and Frames F. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A568/568-M-11.....Steel, Sheet, Carbon, and High-Strength, Lowalloy, Hot-Rolled and Cold-Rolled A1008-10.....Steel, sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy and High Strength Low Alloy with Improved Formability B209/209M-10.....Aluminum and Aluminum-Alloy Sheet and Plate B221/221M-12.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles and Tubes D1621-10.....Compressive Properties of Rigid Cellular Plastics D3656-07.....Insect Screening and Louver Cloth Woven from Vinyl Coated Glass Yarns E90-09.....Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions G. The National Association Architectural Metal Manufactures (NAAMM): Metal Finishes Manual (AMP 500-06) H. National Fire Protection Association (NFPA): 80-13..... Fire Doors and Fire Windows I. Underwriters Laboratories, Inc. (UL): Fire Resistance Directory J. Intertek Testing Services (ITS): Certifications Listings...Latest Edition K. Factory Mutual System (FM): Approval Guide PART 2 - PRODUCTS 2.1 MATERIALS A. Anchors, Fastenings and Accessories: Fastenings anchors, clips connecting members and sleeves from zinc coated steel. B. Prime Paint: Paint that meets or exceeds the requirements of A250.8.

2.2 METAL FRAMES

A. General:

- 1. ANSI A250.8, 1.3 mm (0.053 inch) thick sheet steel, types and styles as shown or scheduled.
- Frames for doors specified to have automatic door operators: minimum
 1.7 mm (0.067 inch) thick.
- 3. Knocked-down frames are not acceptable.
- B. Reinforcement and Covers:
 - ANSI A250.8 for, minimum thickness of steel reinforcement welded to back of frames.
 - 2. Provide mortar guards securely fastened to back of hardware reinforcements.
- C. Terminated Stops: ANSI A250.8. 6" high with 45 degree transition at bottom of stop.
- D. Glazed Openings:
 - a. Integral stop on exterior, corridor, or secure side of door.
 - b. Design rabbet width and depth to receive glazing material or panel shown or specified.
- E. Frame Anchors:
 - 1. Floor anchors:
 - a. At bottom of jamb use 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive two 6 mm (1/4 inch) floor bolts.
 - b. Where mullions occur, provide 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two 6 mm (1/4 inch) floor bolts and frame anchor screws.
 - c. Where sill sections occur, provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for 6 mm (1/4 inch) floor bolts and frame anchor screws. Space floor bolts at 50 mm (24 inches) on center.
 - 2. Jamb anchors:
 - a. Locate anchors on jambs near top and bottom of each frame, and at intermediate points not over 600 mm (24 inches) apart.
 - b. Form jamb anchors of not less than 1 mm (0.042 inch) thick steel unless otherwise specified.
 - c. Anchors for stud partitions: Either weld to frame or use lock-in snap-in type. Provide tabs for securing anchor to the sides of the studs.
 - d. Anchors for frames set in prepared openings:

- Steel pipe spacers with 6 mm (1/4 inch) inside diameter welded to plate reinforcing at jamb stops or hat shaped formed strap spacers, 50 mm (2 inches) wide, welded to jamb near stop.
- 2) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass thru frame and spacers.
- e. Anchors for observation windows and other continuous frames set in stud partitions.
 - In addition to jamb anchors, weld clip anchors to sills and heads of continuous frames over 1200 mm (4 feet) long.
 - 2) Anchors spaced 600 mm (24 inches) on centers maximum.
- f. Modify frame anchors to fit special frame and wall construction and provide special anchors where shown or required.

2.3 SHOP PAINTING

ANSI A250.8.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Plumb, align and brace frames securely until permanent anchors are set.
 - 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - 2. Use wood spreaders at bottom of frame if the shipping spreader is removed.
 - 3. Protect frame from accidental abuse.
 - 4. Where construction will permit concealment, leave the shipping spreaders in place after installation, otherwise remove the spreaders after the frames are set and anchored.
 - 5. Remove wood spreaders and braces only after the walls are built and jamb anchors are secured.
- B. Floor Anchors:
 - Anchor the bottom of door frames to floor with two 6 mm (1/4 inch) diameter expansion bolts. Use 9 mm (3/8 inch) bolts on lead lined frames.
 - Power actuated drive pins may be used to secure frame anchors to concrete floors.
- C. Jamb Anchors:
 - Secure anchors to sides of studs with two fasteners through anchor tabs. Use steel drill screws to steel studs.
 - Frames set in prepared openings of masonry or concrete: Expansion bolt to wall with 6 mm (1/4 inch) expansion bolts through spacers.

Where subframes or rough bucks are used, 6 mm (1/4 inch) expansion bolts on 600 mm (24 inch) centers or power activated drive pins 600 mm (24 inches) on centers.

3.2 INSTALLATION OF DOORS AND APPLICATION OF HARDWARE

Install doors and hardware as specified in Sections 08 11 13, HOLLOW METAL DOORS AND FRAMES, 08 14 00, WOOD DOORS, and Section 08 71 00, DOOR HARDWARE .

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies interior flush doors.

1.2 RELATED WORK

- A. Metal door frames: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.
- B. Door hardware including hardware location (height): Section 08 71 00, DOOR HARDWARE.
- C. Installation of doors and hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, Section 08 14 00, WOOD DOORS, or Section 08 71 00, DOOR HARDWARE.
- D. Glazing: Section 08 80 00, GLAZING.
- E. Card readers and biometric devices: Section 28 13 00, ACCESS CONTROL

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - 1. Show every door in project and schedule location in building.
 - Indicate type, grade, finish and size; include detail of glazing and pertinent details.
 - 3. Provide information concerning specific requirements not included in the manufacturer's literature and data submittal.
- C. Manufacturer's Literature and Data
- D. Laboratory Test Reports:
 - 1. Screw holding capacity test report in accordance with WDMA T.M.10.
 - 2. Split resistance test report in accordance with WDMA T.M.5.
 - 3. Cycle/Slam test report in accordance with WDMA T.M.7.
 - 4. Hinge-Loading test report in accordance with WDMA T.M.8.

1.4 WARRANTY

- A. Doors are subject to terms of Article titled "Warranty of Construction", FAR clause 52.246-21, except that warranty shall be as follows:
 - For interior doors, manufacturer's warranty for lifetime of original installation.

1.5 DELIVERY AND STORAGE

- A. Factory seal doors and accessories in minimum of 6 mill polyethylene bags or cardboard packages which shall remain unbroken during delivery and storage.
- B. Store in accordance with WDMA I.S.1-A, Job Site Information.
- C. Label package for door opening where used.

1.6 APPLICABLE PUBLICATIONS

Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

- A. Window and Door Manufacturers Association (WDMA):
 - I.S.1A-11.....Architectural Wood Flush Doors

I.S.4-09.....Water-Repellent Preservative Non-Pressure Treatment for Millwork

- I.S.6A-11.....Architectural Wood Stile and Rail Doors
- T.M.6-08.....Adhesive (Glue Bond) Durability Test Method
- T.M.7-08.....Cycle-Slam Test Method
- T.M.8-08.....Hinge Loading Test Method
- T.M.10-08.....Screwholding Test Method
- B. National Fire Protection Association (NFPA):
 - 80-10.....Protection of Buildings from Exterior Fire
 - 252-08.....Fire Tests of Door Assemblies
- C. ASTM International (ASTM): E90-09.....Laboratory Measurements of Airborne Sound Transmission Loss

PART 2 - PRODUCTS

2.1 FLUSH DOORS

- A. General:
 - 1. Meet requirements of WDMA I.S.1-A, Extra Heavy Duty.
 - 2. Adhesive: Type II
 - 3. Thickness: 45 mm (1-3/4 inches) unless otherwise shown or specified.
- B. Face Veneer:
 - 1. In accordance with WDMA I.S.1-A.
 - 2. One species throughout the project unless scheduled or otherwise shown.
 - For transparent finishes: Premium Grade. rotary cut, white Birch.
 a. A grade face veneer standard optional.

- b. Match face veneers for doors for uniform effect of color and grain at joints.
- c. Door edges shall be same species as door face veneer except maple may be used for stile face veneer on birch doors.
- 4. Factory sand doors for finishing.
- C. Wood for stops, louvers, muntins and moldings of flush doors required to have transparent finish:
 - Solid Wood of same species as face veneer, except maple may be used on birch doors.
 - 2. Glazing:
 - a. On non-labeled doors use applied wood stops nailed tight on room side and attached on opposite side with flathead, countersunk wood screws, spaced approximately 125 mm (5 inches) on centers.

2.3 PREFINISH AND PREFIT

- A. Flush doors may be factory machined to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
- B. Factory fitting to conform to specification for shop and field fitting, including factory application of sealer to edge and routings.
- C. Flush doors to receive transparent finish (in addition to being prefit) shall be factory finished as follows:
 - WDMA I.S.1-A Section F-3 specification for System TR-4, Conversion Varnish or System TR-5, Catalyzed Vinyl.

2.4 IDENTIFICATION MARK:

- A. On top edge of door.
- B. Either a stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, code date of manufacture and quality.
- C. Accompanied by either of the following additional requirements:
 - 1. An identification mark or a separate certification including name of inspection organization.
 - 2. Identification of standards for door, including glue type.
 - 3. Identification of veneer and quality certification.
 - 4. Identification of preservative treatment for stile and rail doors.

2.5 SEALING:

Give top and bottom edge of doors two coats of catalyzed polyurethane or water resistant sealer before sealing in shipping containers.

PART 3 - EXECUTION

3.1 DOOR PREPARATION

- A. Clearances between Doors and Frames and Floors:
 - Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.
- B. Provide cutouts for special details required and specified.
- C. Rout doors for hardware using templates and location heights specified in Section, 08 71 00 DOOR HARDWARE.
- D. Fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (two inches) of door thickness.
- E. Immediately after fitting and cutting of doors for hardware, seal cut edges of doors with two coats of water resistant sealer.
- F. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.

3.2 INSTALLATION OF DOORS APPLICATION OF HARDWARE

Install doors and hardware as specified in this Section.

3.3 DOOR PROTECTION

- A. As door installation is completed, place polyethylene bag or cardboard shipping container over door and tape in place.
- B. Provide protective covering over knobs and handles in addition to covering door.
- C. Maintain covering in good condition until removal is approved by Resident Engineer.

- - - E N D - - -

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies access doors or panels.

1.2 RELATED WORK:

- A. Lock Cylinders: Section 08 71 00, DOOR HARDWARE.
- B. Locations of access doors for duct work cleanouts: Section 23 31 00, HVAC DUCTS AND CASINGS; Section 23 37 00, AIR OUTLETS AND INLETS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Access doors, each type, showing construction, location and installation details.
- C. Manufacturer's Literature and Data: Access doors, each type.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

A167-99(R-2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

A1008-10.....Steel Sheet, Cold-Rolled, Carbon, Structural,

High Strength Low-Alloy

C. American Welding Society (AWS):

D1.3-08.....Structural Welding Code Sheet Steel

D. National Fire Protection Association (NFPA):

80-10.....Fire Doors and Windows

- E. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual
- F. Underwriters Laboratories, Inc. (UL):

Fire Resistance Directory

PART 2 - PRODUCTS

2.1 FABRICATION, GENERAL

- A. Fabricate components to be straight, square, flat and in same plane where required.
 - Slightly round exposed edges and without burrs, snags and sharp edges.

- 3. Weld in accordance with AWS D1.3.
- B. Number of locks and non-continuous hinges as required to maintain alignment of panel with frame. For fire rated doors, use hinges and locks as required by fire test.
- C. Provide anchors or make provisions in frame for anchoring to adjacent construction. Provide size, number and location of anchors on four sides to secure access door in opening. Provide anchors as required by fire test.

2.2 ACCESS DOORS, FIRE RATED:

- A. Shall meet requirements for "B" label 1-1/2 hours with maximum temperature rise of 120 degree C (250 degrees F).
- B. Comply with NFPA 80 and have Underwriters Laboratories Inc., or other nationally recognized laboratory label for Class B opening.
- C. Door Panel: Form of 0.9 mm (0.0359 inch) thick steel sheet, insulated sandwich type construction.
- D. Frame: Form of 1.5 mm (0.0598 inch) thick steel sheet of depth and configuration to suit material and type of construction where installed. Provide frame flange at perimeter where installed in concrete masonry or gypsum board openings.
 - 1. Weld exposed joints in flange and grind smooth.
 - 2. Provide frame flange at perimeter where installed in concrete masonry or gypsum board.
- E. Automatic Closing Device: Provide automatic closing device for door.
- F. Hinge: Continuous steel hinge with stainless steel pin.
- G. Lock:
 - Self-latching, with provision for fitting flush a standard screw-in type lock cylinder. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 2. Provide latch release device operable from inside of door. Mortise case in door.

2.3 ACCESS DOORS, FLUSH PANEL:

- A. Door Panel:
 - 1. Form of 1.9 mm (0.0747 inch) thick steel sheet.
 - 2. Reinforce to maintain flat surface.
- B. Frame:

- Form of 1.5 mm (0.0598 inch) thick steel sheet of depth and configuration to suit material and type of construction where installed.
- 2. Provide surface mounted units having frame flange at perimeter where installed in concrete, masonry, or gypsum board construction.
- 3. Weld exposed joints in flange and grind smooth.
- C. Hinge:
 - 1. Concealed spring hinge to allow panel to open 175 degrees.
 - 2. Provide removable hinge pin to allow removal of panel from frame.
- D. Lock:
 - Self-latching, with provision for fitting flush a standard screw-in type lock cylinder. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 2. Provide latch release device operable from inside of door. Mortise case in door.

2.4 FINISH:

- A. Provide in accordance with NAAMM AMP 500 series on exposed surfaces.
- B. Steel Surfaces: Baked-on prime coat over a protective phosphate coating.

2.5 SIZE:

Minimum 600 mm (24 inches) square door unless otherwise shown.

PART 3 - EXECUTION

3.1 LOCATION:

- A. Provide access panels or doors wherever any valves, traps, dampers, cleanouts, and other control items of mechanical, electrical and conveyor work are concealed in wall or partition, or are above ceiling of gypsum board or plaster.
- B. Use fire rated doors in fire rated partitions and ceilings.
- C. Use flush panels in partitions and gypsum board ceilings, except lay-in acoustical panel ceilings or upward access acoustical tile ceilings.

3.2 INSTALLATION, GENERAL:

- A. Install access doors in openings to have sides vertical in wall installations, and parallel to ceiling suspension grid or side walls when installed in ceiling.
- B. Set frames so that edge of frames without flanges will finish flush with surrounding finish surfaces.
- C. Set frames with flanges to overlap opening and so that face will be uniformly spaced from the finish surface.

D. Set recessed panel access doors recessed so that face of surrounding materials will finish on the same plane, when finish in door is installed.

3.3 ANCHORAGE:

- A. Secure frames to adjacent construction using anchors attached to frames or by use of bolts or screws through the frame members.
- B. Type, size and number of anchoring device suitable for the material surrounding the opening, maintain alignment, and resist displacement during normal use of access door.
- C. Anchors for fire rated access doors shall meet requirements of applicable fire test.

3.4 ADJUSTMENT:

- A. Adjust hardware so that door panel will open freely.
- B. Adjust door when closed so door panel is centered in the frame.

- - - E N D - - -

SECTION 08 41 13 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies aluminum entrance work including storefront construction, hung doors and other components to make a complete assembly.

1.2 RELATED WORK:

- A. Glass and Glazing: Section 08 80 00, GLAZING.
- B. Hardware: Section 08 71 00, DOOR HARDWARE.
- C. Automatic Door Operators: Section 08 71 13, AUTOMATIC DOOR OPERATORS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: (1/2 full scale) showing construction, anchorage, reinforcement, and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Doors, each type.
 - 2. Entrance and Storefront construction.
- D. Manufacturer's Certificates:
 - Stating that aluminum has been given specified thickness of anodizing.
 - 2. Indicating manufacturer's qualifications specified.

1.4 QUALITY ASSURANCE:

- A. Approval by Contracting Officer is required of products of proposed manufacturer, or supplier, and will be based upon submission by Contractor certification.
- B. Certify manufacturer regularly and presently manufactures aluminum entrances and storefronts as one of their principal products.

1.5 DELIVERY, STORAGE AND HANDLING:

- A. Deliver aluminum entrance and storefront material to the site in packages or containers; labeled for identification with the manufacturer's name, brand and contents.
- B. Store aluminum entrance and storefront material in weather-tight and dry storage facility.
- C. Protect from damage from handling, weather and construction operations before, during and after installation.

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. American Society for Testing and Materials (ASTM): B209-07.....Aluminum and Aluminum-Alloy Sheet and Plate B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes E283-04.....Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen E331-00(R2009).....Water Penetration of Exterior Windows, Curtain Walls, and Doors by Uniform Static Air Pressure Difference General Use F593-02(R2008).....Stainless Steel Bolts, Hex Cap Screws, and Studs C. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual D. American Architectural Manufacturer's Association (AAMA): Architectural Aluminum Extrusions and Panels E. American Welding Society (AWS):

D1.2-08..... Structural Welding Code Aluminum

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Aluminum, ASTM B209 and B221:
 - 1. Alloy 6063 temper T5 for doors, door frames, fixed glass sidelights and storefronts.
- B. Fasteners:
 - 1. Aluminum: ASTM F468, Alloy 2024.
 - 2. Stainless Steel: ASTM F593, Alloy Groups 1, 2 and 3.

2.2 FABRICATION:

A. Fabricate doors, of extruded aluminum sections not less than 3 mm (0.125 inch) thick. Fabricate glazing beads of aluminum not less than 1.0 mm (0.050 inch) thick.

- B. Accurately form metal parts and accurately fit and rigidly assemble joints, except those joints designed to accommodate movement. Seal joints to prevent leakage of both air and water.
- C. Make welds in aluminum in accordance with the recommended practice AWA D1.2. Use electrodes and methods recommended by the manufacturers of the metals and alloys being welded. Make welds behind finished surfaces so as to cause no distortion or discoloration of the exposed side. Clean welded joints of welding flux and dress exposed and contact surfaces.
- D. Make provisions in doors and frames to receive the specified hardware and accessories. Coordinate schedule and template for hardware specified under Section 08 71 00, DOOR HARDWARE. Where concealed closers or other mechanisms are required, provide the necessary space, cutouts, and reinforcement for secure fastening.
- E. Fit and assemble the work at the manufacturer's plant. Mark work that cannot be permanently plant-assembled to assure proper assembly in the field.

2.3 PROTECTION OF ALUMINUM:

- A. Isolate aluminum from contact with dissimilar metals other than stainless steel, white bronze, or zinc by any of the following:
 - 1. Coat the dissimilar metal with two coats of heavy-bodied alkali resistant bituminous paint.
 - 2. Place caulking compound, or non-absorptive tape, or gasket between the aluminum and the dissimilar metal.
 - 3. Paint aluminum in contact with mortar, concrete and plaster, with a coat of aluminum paint primer.

2.4 FRAMES:

- A. Fabricate doors, frames, mullions, frames for fixed glass and similar members from extruded aluminum not less than 3 mm (0.125 inch) thick.
- B. Provide integral stops and glass rebates and applied snap-on type trim.
- C. Use concealed screws, bolts and other fasteners. Secure cover boxes to frames in back of all lock strike cutouts.

2.5 STILE AND RAIL DOORS:

- A. Nominal 45 mm (1-3/4 inch) thick, with stile and head rail 90 mm (3-1/2 inches) wide, and bottom rail 250 mm (10 inches) wide.
- B. Bevel single-acting doors 3 mm (1/8 inch) at lock, hinge and meeting stile edges. Provide clearances of 2 mm (1/16 inch) at hinge stiles, 3 mm (1/8 inch) at lock stiles and top rails, and 5 mm (3/16 inch) at

08 41 13-3

floors and thresholds. Form glass rebates integrally with stiles and rails. Glazing beads may be formed integrally with stiles and rails or applied type secured with fasteners at 150 mm (six inches) on centers.

- C. Construct doors with a system of welded joints or interlocking dovetail joints between stiles and rails. Clamp door together through top and bottom rails with 9 mm (3/8 inch) primed steel rod extending into the stiles, and having a self-locking nut and washer at each end. Reinforce stiles and rails to prevent door distortion when tie rods are tightened. Provide a compensating spring-type washer under each nut to take up any stresses that may develop. Construct joints between rails and stiles to remain rigid and tight when door is operated.
- D. Weather-stripping: Provide removable, woven pile type (siliconetreated) weather-stripping attached to aluminum or vinyl holder. Make slots for applying weather-stripping integral with doors and door frame stops. Apply continuous weather-stripping to heads, jambs, bottom, and meeting stiles of doors and frames. Install weather-stripping so doors can swing freely and close positively.

2.6 REINFORCEMENT FOR BUILDERS HARDWARE:

- A. Fabricate from stainless steel plates.
- B. Hinge and pivot reinforcing: 4.55 mm (0.1793 inch) thick.
- C. Reinforcing for lock face, flush bolts, concealed holders, concealed or surface mounted closers: 2.66 mm (0.1046 inch) thick.
- D. Reinforcing for all other surface mounted hardware: 1.5 mm (0.0598 inch) thick.

2.7 TRIM

- A. Fabricate trim shown from 1.5 mm (0.0625 inch) thick sheet aluminum of longest available lengths.
- B. Use concealed fasteners.
- C. Provide aluminum stiffener and other supporting members shown or as required to maintain the integrity of the components.

2.8 FINISH

- A. In accordance with NAAMM AMP 500 series.
- B. Anodized Aluminum:
 - 1. Clear Finish: Chemically etched medium matte, with clear anodic coating, Class I Architectural, 7 mils thick.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Allowable Installation Tolerances: Install work plumb and true, in alignment and in relation to lines and grades shown. Variation of 3 mm (1/8 inch) in 2400 mm (eight feet), non-accumulative, is maximum permissible for plumb, level, warp, bow and alignment.
- B. Anchor aluminum frames to adjoining construction at heads, jambs and bottom and to steel supports, and bracing. Anchor frames with stainless steel or aluminum countersunk flathead, expansion bolts or machine screws, as applicable. Use aluminum clips for internal connections of adjoining frame sections.
- C. Install hardware specified under Section 08 71 00, DOOR HARDWARE.
- D. Install hung door operators specified under Section 08 71 13, AUTOMATIC DOOR OPERATORS.

3.2 ADJUSTING:

After installation of entrance and storefront work is completed, adjust and lubricate operating mechanisms to insure proper performance.

3.3 PROTECTION, CLEANING AND REPAIRING:

Remove all mastic smears and other unsightly marks, and repair any damaged or disfiguration of the work. Protect the installed work against damage or abuse.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 08 51 13 ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Aluminum windows of type and size shown, complete with hardware, related components and accessories.
- B. Types:
 - 1. Casement
 - 2. Fixed

1.2 DEFINITIONS

- A. Accessories: Mullions, trim, panning systems, sub-sills, clips anchors, fasteners, weather-stripping, mechanical operators, and other necessary components required for fabrication and installation of window units.
- B. Uncontrolled Water: Water not drained to the exterior, or water appearing on the room side of the window.

1.3 RELATED WORK

A. Glazing: Section 08 80 00, GLAZING.

1.4 DELIVERY, STORAGE AND HANDLING

- A. Protect windows from damage during handling and construction operations before, during and after installation.
- B. Store windows under cover, setting upright.
- C. Do not stack windows flat.
- D. Do not lay building materials or equipment on windows.

1.5 QUALITY ASSURANCE

- A. Approval by contracting officer is required of products or service of proposed manufacturers and installers.
- B. Approval will be based on submission of certification by Contractor that:
 - Manufacturer regularly and presently manufactures the specified windows as one of its principal products.
 - 2. Installer has technical qualifications, experience, trained personnel and facilities to install specified items.
- C. Provide each type of window produced from one source of manufacture.
- D. Quality Certified Labels or certificate:
 - Architectural Aluminum Manufacturers Association, "AAMA label" affixed to each window indicating compliance with specification.
 - 2. Certificates in lieu of label with copy of recent test report (not more than 4 years old) from an independent testing laboratory and

certificate signed by window manufacturer stating that windows provided comply with specified requirements and AAMA 101/I.S.2/A440 for type of window specified.

1.6 SUBMITTAL

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - 1. Minimum of 1/2 full scale.
 - Identifying parts of window units by name and kind of metal or material, show construction, locking systems, mechanical operators, trim, installation and anchorages.
 - 3. Include glazing details and standards for factory glazed units.
- C. Manufacturer's Literature and Data:
 - Window.

Sash locks, keepers, and key.

- D. Certificates:
 - 1. Certificates as specified in paragraph QUALITY ASSURANCE.
 - 2. Indicating manufacturers and installers qualifications.
 - 3. Manufacturer's Certification that windows delivered to project are identical to windows tested.
- E. Test Reports:

Copies of test reports as specified in paragraph QUALITY ASSURANCE.

1.7 WARRANTY

Warrant windows against malfunctions due to defects in thermal breaks, hardware, materials and workmanship, subject to the terms of Article "WARRANTY OF CONSTRUCTION", FAR clause 52.246-21, except provide 10 year warranty period.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE)

90.1-07..... Energy Standard of Buildings

C. American Architectural Manufacturers Association (AAMA): 101/I.S.2/A440-11.....Windows, Doors, and Unit Skylights 505-09.....Dry Shrinkage and Composite Performance Thermal Gualian Test Decedarias

Cycling Test Procedures

2605-05..... Coatings on

Architectural Aluminum Extrusions and Panels

TIR-A8-08..... Structural Performance of Poured and Debridged Framing Systems

D. American Society for Testing and Materials (ASTM):

A653/A653M-09.....Steel Sheet, Zinc Coated (Galvanized), Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-dip Process

E 90-09.....Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions

E. National Fenestration Rating Council (NFRC):

NFRC 100-10.....Determining Fenestration Product U-Factors NFRC 200-10....Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence

F. National Association of Architectural Metal Manufacturers (NAAMM):
 AMP 500-06.....Metal Finishes Manual

PART 2- PRODUCTS

2.1 MATERIALS

- A. Aluminum Extrusions; Sheet and Plate: AAMA 101/I.S.2/A440.
- B. Sheet Steel, Galvanized: ASTM A653; G90 galvanized coating.
- C. Weather-strips: AAMA 101/I.S.2/A440; except leaf type weather-stripping is not permitted.
- D. Fasteners: AAMA 101/I.S.2/A440. Screws, bolts, nuts, rivets and other fastening devices to be non-magnetic stainless steel.
 - Fasteners to be concealed when window is closed. Where wall thickness is less than 3 mm (0.125 inch) thick, provide backup plates or similar reinforcements for fasteners.
 - Stainless steel self tapping screws may be used to secure Venetian blind hanger clips, vent guide blocks, friction adjuster, and limit opening device.
 - Attach locking and hold-open devices to windows with concealed fasteners. Provide reinforcing plates where wall thickness is less than 3 mm (0.125 inch) thick.
- F. Weather-strips: AAMA 101/I.S.2/A440.
- G. Hardware:

- Locks: Two position locking bolts or cam type tamperproof custodial locks with a single point control located not higher than five feet from floor level. Locate locking devices in the vent side rail. Fastenings for locks and keepers shall be concealed or nonremovable.
- Locking Device Strikes: Locate strikes in frame jamb. Strikes shall be adjustable for locking tension. Fabricate strikes from Type 304 stainless steel or white bronze.
- 3. Fabricate hinges of noncorrosive metal. Hinges may be either fully concealed when window is closed or semi-concealed with exposed knuckles. All exposed knuckle hinges shall have hospital tips, at both ends. Surface mounted hinges will not be accepted.
- Guide Blocks: Fabricate guide blocks of injection molded nylon. Install guide block fully concealed in vent/frame sill.
- 5. Hardware for Emergency Ventilation of Windows:
 - a. Provide windows with a hold open linkage for emergency ventilation.
 - b. Hold open hardware shall provide for maximum six inches of window opening and shall include an adjustable friction shoe to provide resistance when closing the window.
 - c. Handles shall be removable.
- 6. Hardware for Maintenance Opening of Windows: Opening beyond the six inch position shall be accomplished with a window washers key. The release device shall capture the key when window is in the open position.
- Design operating device to prevent opening with standard tools, coins or bent wire devices.

2.2 THERMAL AND CONDENSATION PERFORMANCE

- A. Condensation Resistance Factor (CRF): Minimum CRF of 67 for fixed units and 64 for casement units.
- B. Thermal Transmittance:
 - 1. Maximum U value for insulating glass windows: U=0.34 for fixed units and 0.43 for casement units.

2.3 FABRICATION

- A. Fabrication to exceed or meet requirements of Physical Load Tests, Air Infiltration Test, and Water Resistance Test of AAMA 101/I.S.2/A440.
- B. Glazing:
 - 1. Factory or field glazing optional.
 - 2. Glaze in accordance with Section 08 80 00, GLAZING.

- 3. Windows reglazable without dismantling sash framing.
- 4. Design rabbet to suit glass thickness and glazing method specified.
- 5. Glaze from interior except where not accessible.
- 6. Provide removable fin type glazing beads.
- C. Trim:
 - 1. Trim includes casings, closures, and panning.
 - Fabricate to shapes shown of aluminum not less than 1.6 mm (0.062 inch) thick
 - 3. Extruded or formed sections, straight, true, and smooth on exposed surfaces.
 - Exposed external corners mitered and internal corners coped; fitted with hairline joints.
 - Reinforce 1.6 mm (0.062 inch) thick members with not less than 3 mm (1/8-inch) thick aluminum.
 - Except for strap anchors, provide reinforcing for fastening near ends and at intervals not more than 305 mm (12 inches) between ends.
 - 7. Design to allow unrestricted expansion and contraction of members and window frames.
 - 8. Secure to window frames with machine screws or expansion rivets.
 - 9. Exposed screws, fasteners or pop rivets are not acceptable on exterior of the casing or trim cover system.
- D. Thermal-Break Construction:
 - 1. Manufacturer's Standard.
 - 2. Low conductance thermal barrier.
 - 3. Capable of structurally holding sash in position and together.
 - 4. All Thermal Break Assemblies (Pour & Debridge, Insulbar or others) shall be tested as per AAMA TIR A8 and AAMA 505 for Dry Shrinkage and Composite Performance.
 - 5. Location of thermal barrier and design of window shall be such that, in closed position, outside air shall not come in direct contact with interior frame of the window.
- E. Mullions: AAMA 101/I.S.2/A440.
- F. Subsills and Stools:
 - 1. Fabricate to shapes shown of not less than 2 mm (0.080 inch) thick extruded aluminum.
 - 2. One piece full length of opening with concealed anchors.
 - Sills turned up back edge not less than 6 mm (1/4 inch). Front edge provide with drip.

- 4. Sill back edge behind face of window frame. Do not extend to interior surface or bridge thermal breaks.
- 5. Do not perforate for anchorage, clip screws, or other requirements.

2.4 CASEMENT WINDOWS

- A. AMMA 101/I.S.2; Class and Grade AP-HC90.
- B. AAMA certified product to the AAMA 101/I.S.2 standard.

2.5 FIXED WINDOWS

- A. AMMA 101/I.S.2; Class and Grade FW-HC90.
- B. AAMA certified product to the AAMA 101/I.S.2 standard.

2.6 FINISH

- A. In accordance with NAAMM AMP 500 series.
- B. Finish exposed aluminum surfaces as follows:
 - 1. Anodized Aluminum:
 - a. Finish in accordance with AMP 501 letters and numbers.
 - b. Clear anodized Finish: AA-C22A41 Medium matte, clear anodic coating, Class 1 Architectural, 0.7 mils thick.
- C. Hardware: Finish hardware exposed when window is in the closed position: Match window color.

PART 3 - EXECUTION

3.1 PROTECTION (DISSIMILAR MATERIALS): AAMA 101/I.S.2/A440.

3.2 INSTALLATION, GENERAL

- A. Install window units in accordance with manufacturer's specifications and recommendations for installation of window units, hardware, operators and other components of work.
- B. Where type, size or spacing of fastenings for securing window accessories or equipment to building construction is not shown or specified, use expansion or toggle bolts or screws, as best suited to construction material.
 - 1. Provide bolts or screws minimum 6 mm (1/4-inch) in diameter.
 - 2. Sized and spaced to resist the tensile and shear loads imposed.
 - 3. Do not use exposed fasteners on exterior, except when unavoidable for application of hardware.
 - Provide non-magnetic stainless steel Phillips flat-head machine screws for exposed fasteners, where required, or special tamperproof fasteners.
 - 5. Locate fasteners to not disturb the thermal break construction of windows.

- C. Set windows plumb, level, true, and in alignment; without warp or rack of frames or sash.
- D. Anchor windows on four sides with anchor clips or fin trim.
 - 1. Do not allow anchor clips to bridge thermal breaks.
 - 2. Use separate clips for each side of thermal breaks.
 - 3. Make connections to allow for thermal and other movements.
 - 4. Do not allow building load to bear on windows.
 - 5. Use manufacturer's standard clips at corners and not over 600 mm (24 inches) on center.
 - 6. Where fin trim anchorage is shown build into adjacent construction, anchoring at corners and not over 600 mm (24 inches) on center.
- E. Sills and Stools:
 - Set in bed of mortar or other compound to fully support, true to line shown.
 - 2. Do not extend sill to inside window surface or past thermal break.
 - 3. Leave space for sealants at ends and to window frame unless shown otherwise.
- F. Replacement Windows:
 - 1. Do not remove existing windows until new replacement is available, ready for immediate installation.
 - 2. Remove existing work carefully; avoid damage to existing work to remain.
 - Perform all other operations as necessary to prepare openings for proper installation and operation of new units.
 - Do not leave openings uncovered at end of working day, during precipitation or temperatures below 16 degrees C (60 degrees F.).
- G. Fill all voids at perimeter of window frames with spray in place foam insulation.

3.3 MULLIONS CLOSURES, TRIM, AND PANNING

- A. Cut mullion full height of opening and anchor directly to window frame on each side.
- B. Closures, Trim, and Panning: External corners mitered and internal corners coped, fitted with hairline, tightly closed joints.
- C. Secure to concrete or solid masonry with expansion bolts, expansion rivets, split shank drive bolts, or powder actuated drive pins.
- D. Toggle bolt to hollow masonry units. Screwed to wood or metal.
- E. Fasten except for strap anchors, near ends and corners and at intervals not more than 300 mm (12 inches) between.

F. Seal units following installation to provide weathertight system.

3.4 ADJUST AND CLEAN

- A. Adjust ventilating sash and hardware to provide tight fit at contact points, and at weather-stripping for smooth operation and weathertight closure.
- B. Clean aluminum surfaces promptly after installation of windows, exercising care to avoid damage to protective coatings and finishes.
- C. Remove excess glazing and sealant compounds, dirt, and other substances.
- D. Lubricate hardware and moving parts.
- E. Clean glass promptly after installation of windows. Remove glazing and sealant compound, dirt and other substances.
- F. Except when a window is being adjusted or tested, keep locked in the closed position during the progress of work on the project.

3.5 OPERATION DEVICES

A. Provide wrenches, keys, or removable locking operating handles, as specified to operate windows.

- - - E N D - - -

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 14 00, WOOD DOORS, Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, Section 08 41 13, ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS, Section 08 71 13, AUTOMATIC DOOR OPERATORS.
- C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Painting: Section 09 91 00, PAINTING.
- E. Card Readers: Section 28 13 11, PHYSICAL ACCESS CONTROL SYSTEMS.
- F. Electrical: Division 26, ELECTRICAL.
- G. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.

1.4 WARRANTY

- A. Door hardware shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Locks, latchsets: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies.
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

C. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions.

1.8 INSTRUCTIONS

- A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.
- B. Keying: All cylinders shall be keyed into existing Great Grand Master Key System by owner. Provide removable core cylinders that are removable only with a special key or tool without disassembly of knob or lockset.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. American Society for Testing and Materials (ASTM): F883-04.....Padlocks E2180-07....Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or Hydrophobic Materials
- C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-06Butts and Hinges
A156.2-03Bored and Pre-assembled Locks and Latches
A156.3-08 Auto Flush
Bolts
A156.4-08Door Controls (Closers)
A156.5-01 Puxiliary Locks and Associated Products
A156.6-05Architectural Door Trim
A156.8-05 Door Controls-Overhead Stops and Holders
A156.12-05Interconnected Locks and Latches
A156.13-05Mortise Locks and Latches Series 1000
A156.14-07Sliding and Folding Door Hardware
A156.15-06Release Devices-Closer Holder, Electromagnetic
and Electromechanical
A156.16-08Auxiliary Hardware

A156.17-04Self-Closing Hinges and Pivots
A156.18-06Materials and Finishes
A156.20-06Strap and Tee Hinges, and Hasps
A156.21-09Thresholds
A156.22-05Door Gasketing and Edge Seal Systems
A156.23-04Electromagnetic Locks
A156.24-03Delayed Egress Locking Systems
A156.25-07Electrified Locking Devices
A156.26-06Continuous Hinges
A156.28-07Master Keying Systems
A156.29-07Exit Locks and Alarms
A156.30-03High Security Cylinders
A156.31-07Electric Strikes and Frame Mounted Actuators
A250.8-03Standard Steel Doors and Frames
National Fire Protection Association (NFPA):
80-10Fire Doors and Fire Windows

101-09....Life Safety Code

E. Underwriters Laboratories, Inc. (UL): Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

D.

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc. shall be of stainless steel material.
- B. Provide quantity and size of hinges per door leaf as follows:
 - Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 2. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm x 114 mm (4-1/2 inches x 4-1/2 inches) hinges.
 - 3. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).

- 4. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
- 5. Provide heavy-weight hinges where specified.
 - At doors weighing 330 kg (150 lbs.) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

A. ANSI/BHMA A156.26, Grade 1-600.

1. Listed under Category N in BHMA's "Certified Product Directory."

- B. General: Minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete
- C. Continuous Hinges: Stainless steel hinge with knuckles formed around a Teflon-coated 6.35mm (0.25-inch) minimum diameter pin that extends entire length of hinge or geared aluminum hinge.
 - 1. Base Metal for Interior Hinges: Aluminum.
 - 2. Base Metal for Hinges for Fire-Rated Assemblies: Stainless steel.
 - 3. Provide with non-removable pin at lockable outswing doors.
 - Where required to clear adjacent casing, trim, and wall conditions and allow full door swing, provide wide throw hinges of minimum width required.
 - 5. Provide with manufacturer's cut-outs for separate mortised power transfers and/or mortised automatic door bottoms where they occur.
 - Where thru-wire power transfers are integral to the hinge, provide hinge with easily removable portion to allow easy access to wiring connections.
 - 7. Where models are specified that provide an integral wrap-around edge guard for the hinge edge of the door, provide manufacturer's adjustable threaded stud and machine screw mechanism to allow the door to be adjusted within the wrap-around edge guard.

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer.

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:

- The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
- 2. Where specified, closer shall have hold-open feature.
- 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
- 4. Material of closer body shall be forged or cast.
- 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
- 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
- 7. Closers shall have full size metal cover; plastic covers will not be accepted.
- Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
- 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
- 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
- 11. Provide parallel arm closers with heavy duty rigid arm.
- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 1/2" (38mm) minimum piston diameter.

2.5 DOOR STOPS

A. Conform to ANSI A156.16.

- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.
- C. Provide wall bumpers, installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- D. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- E. Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- F. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.6 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed holdopen on/off control at all other doors requiring overhead door stops.

2.7 LOCKS AND LATCHES

- A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Cylinders for all locksets shall be removable core type. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core of allow opening and closing during construction and prior to the installation of final cores.
- B. In addition to above requirements, locks and latches shall comply with following requirements:

- 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching Falcon SG series. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.
- 2. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.5.
- 3. Provide all trim and hardware required for a complete and fully functional installation.

2.8 ELECTRIC STRIKES

- A. ANSI/ BHMA A156.31 Grade 1.
- B. General: Use fail-secure electric strikes at fire-rated doors.
- A. ANSI/ BHMA A156.31 Grade 1. 12 volt operation.
- B. General: Use fail-secure electric strikes.
- C. Provide compatible 12 volt power supplies as required for electric strike operation.

2.10 KEYS

A. Furnish two blank keys per cylinder.

2.11 CYLINDERS

- A. The cylinders shall meet the following requirements and shall be Medeco M3, UL437, 6 pin, Large Format Interchangeable Cores. Furnish one core for each cylinder.
- B. All lock cylinders are to be of a high security, pick resistant design with angled key cuts, rotating tumblers, a keyway side bitting, and a slider mechanism. Cylinders shall be Underwriters Laboratories Listed Standard--UL437--for key locks. Cylinders shall be certified under American National Standards Institute (ANSI)/Builder's Hardware Manufacturer's Association (BHMA) certification A156.30 2003 (High

Security Cylinders Products), "Levels M1AAAM" and ANSI/BHMA A156.5 2001 (Certified Auxiliary Locks & Associated Products) "Grade 1."

- C. All cylinders shall incorporate three locking elements, consisting of a slider mechanism, a sidebar mechanism with tumbler rotation, and pin tumbler elevation. The critical parts of the locking mechanism such as pins, shear line, sidebar, and slider mechanism shall be afforded extra protection from drilling and other forceful attack by the strategic placement of hardened steel inserts in at least 7 possible locations within the cylinder. The lock tumblers shall combine a dual-axis action, with one axis utilized for pin tumbler rotation and the other axis utilized for positioning key cuts. Randomly selected tumbler pins shall incorporate a hardened steel insert for additional drill protection.
- D. The locking system is to be furnished in an End User restricted key section for which keys are not made available from the manufacturer's factory or any other source by normal distribution methods. The key and cylinder must have utility patent protection so as to ensure against unlawful key duplication. The keys and key blanks must be capable of being furnished to allow an upgrade to a dual mechanical and electronic credential by the single exchange of a field removable key bow. The key thickness should be no less than .125" (one hundred, twenty-five thousandths).
- E. The manufacturer shall have the capability of establishing a key system with a minimum of six angle cuts in six possible pin positions with the capability of two distinct positions of cut per pin chamber, if required by the parameters of the system. The manufacturer shall have the capability of producing a patent-protected keying system in either of two distinct and different keying specifications and pinning specifications. The system shall be capable of incorporating a key which is capable of more than one bitting per position to expand master keying and key changes. The key shall also incorporate the capacity to include twelve possible side bittings along the key blade located on two different planes or surfaces of the key. The system shall also have the capability to provide a single master key with over 1,000,000 (1 million) usable, non-interchangeable change keys in a single keyway.
- F. The cylinders shall be immediately rekeyable to new combinations or a new system at any time desired and shall be serviceable on location in

the field. Installation of cylinders shall require no modification to U.S. manufactured commercial grade locksets.

G. Include provision of cylinders for access doors indicated in section 08 31 13.

2.12 ARMOR PLATES, KICK PLATES, AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates and door edging as specified below:
 - 1. Kick plates, mop plates and armor plates of metal, Type J100 series.
 - 2. Provide kick plates where specified. Kick plates shall be 254 mm (10 inches) or 305 mm (12 inches) high and shall be minimum 1.27 mm (0.050 inches) thick. Provide kick plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick plates to within 6 mm (1/4 inch) of each edge of doors. Kick plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.
 - 3. Kick plates plates are not required on following door sides:
 - a. Armor plate side of doors;
 - b. Closet side of closet doors;
 - c. Both sides of aluminum entrance doors.
 - 4. Armor plates for doors are listed under Article "Hardware Sets". Armor plates shall be minimum 1.27 mm (0.050 inches) thick, 875 mm (35 inches) high and 38 mm (1-1/2 inches) less than width of doors. Provide armor plates beveled on all 4 edges (B4E).
 - 5. Provide stainless steel edge guards where so specified at wood doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow. Provide edge guards of bevel and thickness to match wood door. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide fullheight edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front. Forward edge guards to wood door manufacturer for factory installation on doors.

2.13 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm (6 inches) high by 19 mm (3/4 inches) diameter with plate Type J302, 90 mm by 350 mm (3-1/2 inches by 14 inches), unless otherwise specified. Provide pull with projection of 70 mm (2 3/4 inches) and a clearance of 51 mm (2 inches). Cut plates of door pull plate for cylinders, or turn pieces where required.

2.14 PUSH PLATES

A. Conform to ANSI A156.6. Metal, Type J302, 200 mm (8 inches) wide by 350 mm (14 inches) high. Provide metal Type J302 plates 100 mm (4 inches wide by 350 mm (14 inches) high) where push plates are specified for doors with stiles less than 200 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required.

2.15 COMBINATION PUSH AND PULL PLATES

A. Conform to ANSI 156.6. Type J303, stainless steel 3 mm (1/8 inch) thick, 80 mm (3-1/3 inches) wide by 800 mm (16 inches) high), top and bottom edges shall be rounded. Secure plates to wood doors with 38 mm (1-1/2 inch) long No. 12 wood screws. Cut plates for turn pieces, and cylinders where required. Pull shall be mounted down.

2.16 MISCELLANEOUS HARDWARE

A. Provide cylinders to operate locking devices where specified for following:

1. Access doors.

- B. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames. Furnish 3 mutes for single doors and 2 mutes for each pair of doors.
- C. Self Adhesive Gasketing: Brown silicone gasketing with pressure sensitive adhesive, similar to National Guard Products model 5060B.

2.17 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.

- C. Miscellaneous Finishes:
 - 1. Pivots: Match door trim.
 - 2. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
- D. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.18 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
652	Steel
626	Brass or bronze
630	Stainless steel

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. Locate hardware on doors at heights specified below, with all handoperated hardware centered within 864 mm (34 inches) to 1200 mm (48 inches), unless otherwise noted:
- B. Hardware Heights from Finished Floor:
 - Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
 - 2. Centerline of door pulls to be 1016 mm (40 inches).
 - 3. Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.
 - 4. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

A. Closer devices shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors. Where closers are mounted on doors they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws. B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height	
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)	
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)	
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)	

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.
- E. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- G. After locks have been installed; show in presence of Resident Engineer that keys operate their respective locks in accordance with keying requirements. Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA Resident/Project Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

A. Following sets of hardware correspond to hardware symbols shown on drawings.

HARDWARE SETS	
<u>HS 1</u>	<u>HS 2</u>
Butt hinges	Butt hinges
F07 storeroom lockset	F07 storeroom lockset
Cylinder	Cylinder
Wall stop	Wall stop
Armor plate and edge guard	Kick plate
	Electric strike and power supply
<u>HS 3</u>	<u>HS 4</u>
Continuous hinge	Butt hinges
Push pull set	F07 storeroom lockset
Door operator per 08 71 13	Cylinder
Wall stop	Kick plate
Kick plate	Wall stop

HARDWARE SETS		
<u>HS 5</u>	HS 6	
Butt hinges F07 Storeroom lockset Cylinder Closer Wall stop Kick plate Electric strike and power supply Door position switch Request to exit sensor	Butt hinges F05 Classroom lockset Cylinder Wall stop Kick plate Self adhesive seals	
<u>HS 7</u>	<u>HS 8</u>	
Butt hinges Passage latch Wall stop	Butt hinges F04 Office lockset Cylinder Wall stop Kick plate Self adhesive seals	
<u>HS 9</u>	<u>HS 10</u>	
Aluminum entrance pivot set F05 Classroom function lockset for installation in aluminum entrance door stile, similar to Adams-Rite model 4530 with model 4600-02 levers. Cylinder Door operator per 08 71 13 Electric strike and power supply	Butt hinges F07 storeroom lockset Cylinder Closer Kick plate Wall stop	
HS 11 Continuous hinge F04 Office lockset Cylinder Wall stop Kick plate Self adhesive seals		

3.6 SEQUENCE OF OPERATIONS FOR ELECTRICAL DOOR HARDWARE

A. Hardware set HS-2: Card reader releases electric strike.

- B. Hardware set HS-3: Push plates activate door operator.
- C. Hardware set HS-5: DPS reports door opening to security system, request to exit sensor reports presence on inside of door. Electric strike released by card reader.
- D. Hardware set HS-9: Push plate activates door operator and releases electric strike.

- - - E N D - - -

SECTION 08 71 13 AUTOMATIC DOOR OPERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies equipment, controls and accessories for automatic operation of swing doors.

1.2 RELATED WORK

- A. Door hardware; Section 08 71 00, DOOR HARDWARE.
- B. Section 28 13 00, ACCESS CONTROL.
- C. Glass and glazing of doors and frames; Section 08 80 00, GLAZING.
- D. Electric general wiring, connections and equipment requirements; Division 26, ELECTRICAL.

1.3 QUALITY ASSURANCE

- A. Automatic door operators, controls and other equipment shall be products of Horton Automatics to match existing units by that manufacturer in the medical center.
- B. Equipment installer shall have specialized experience and shall be approved by the manufacturer.

1.4 WARRANTY

A. Automatic door operators shall be subject to the terms of the "Warranty of Construction", FAR clause 52.246-21, except that the Warranty period shall be two years in lieu of one year.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on automatic door operators.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data describing operators, power units, controls, door hardware and safety devices.
- C. Shop Drawings:
 - 1. Showing location of controls and safety devices in relationship to each automatically operated door.
 - 2. Showing layout, profiles, product components, including anchorage, accessories, as applicable.

- 3. Submit templates, wiring diagrams, fabrication details and other information to coordinate the proper installation of the automatic door operators.
- D. Submit in writing to Resident Engineer that items listed in Article 1.3 are in compliance.

1.7 DESIGN CRITERIA

- A. As a minimum automatic door equipment shall comply with the requirements of BHMA 156.19. Except as otherwise noted on drawings, provide operators which will move the doors from the fully closed to fully opened position in five seconds maximum time interval, when speed adjustment is at maximum setting.
- B. Equipment: Conforming to UL 325. Provide key operated power disconnect wall switch for each door installation.
- C. Electrical Wiring, Connections and Equipment: Provide all motor, starter, controls, associated devices, and interconnecting wiring required for the installation. Equipment and wiring shall be as specified in Division 26, ELECTRICAL.

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Builders Hardware Manufacturers Association, Inc. (BHMA): A156.19-07.....Power Assist and Low Energy Power Operated Doors.
- C. National Fire Protection Association (NFPA): 101-09.....Life Safety Code

1.9 DELIVERY AND STORAGE

A. Delivery shall be in factory's original, unopened, undamaged container with identification labels attached.

PART 2 - PRODUCTS

2.1 SWING DOOR OPERATORS

A. General: Swing door operators shall be of institutional type, door panel size 600 mm to 1250 mm (2'-0" to 5'-0") width, weight not to exceed 300 kg (600 pounds), electric operated for overhead mounting. Furnish metal mounting supports, brackets and other accessories necessary for the installation of operators at the head of the door frames. The motor on automatic door operator shall be provided with an interlock so that the motor will not operate when doors are electrically locked from opening.

- B. Operators shall have checking mechanism providing cushioning action at last part of door travel, in both opening and closing cycle. Operators shall be capable of recycling doors instantaneously to full open position from any point in the closing cycle when control switch is activated. Operators shall, when automatic power is interrupted or shut-off, permit doors to easily open manually without damage to automatic operator system.
- C. Operator, enclosed in housing, shall open door by energizing motor and shall stop by electrically reducing voltage and stalling motor against mechanical stop. Door shall close by means of spring energy, and close force shall be controlled by gear system and motor being used as dynamic break without power, or controlled by hydraulic closer in electro-hydraulic operators. System shall operate as manual door control in event of power failure. Opening and closing speeds shall be adjustable:
 - 1. Operator Housing: Housing shall be a minimum of 112 mm (4-1/2 inches) wide by 140 mm (5.5 inches) high aluminum extrusions with enclosed end caps for application to 100 mm (4 inches) and larger frame systems. All structural sections shall have a minimum thickness of 3.2 mm (0.125 inch) and be fabricated of a minimum of 6063-T5 aluminum alloy.
 - 2. Power Operator: Completely assembled and sealed unit which shall include gear drive transmission, mechanical spring and bearings, all located in aluminum case and filled with special lubricant for extreme temperature conditions. Complete unit shall be rubber mounted with provisions for easy maintenance and replacement, without removing door from pivots or frame.
 - Connecting hardware shall have drive arm attached to door with a pin linkage rotating in a self-lubricating bearing. Door shall not pivot on shaft of operator.
 - Electrical Control: Operator shall have a self contained electrical control unit, including necessary transformers, relays, rectifiers, and other electronic components for proper operation and switching

of power operator. All connecting harnesses shall have interlocking plugs.

2.2 MICROPRCESSOR CONTROLS

- A. The system shall include a multi-function microprocessor control providing adjustable hold open time (1-30 seconds), LED indications for sensor input signals and operator status and power assist close options. Control shall be capable of receiving activation signals from any device with normally open dry contact output. All activation modes shall provide fully adjustable opening speed:
- B. The door shall be held open by low voltage applied to the continuous duty motor. The control shall include an adjustable safety circuit that monitors door operation and stops the opening direction of the door if an obstruction is sensed. The motor shall include a recycle feature that reopens the door if an obstruction is sensed at any point during the closing cycle. The control shall include a standard three position key switch with functions for ON, OFF, and HOLD OPEN, mounted on operator enclosure, door frame, or wall, as indicated in the architectural drawings.

2.3 POWER UNITS

Each power unit shall be self-contained, electric operated and independent of the door operator. Capacity and size of power circuits shall be in accordance with automatic door operator manufacturer's specifications and Division 26 - ELECTRICAL.

2.4 DOOR CONTROLS

- A. Opening and closing actions of doors shall be actuated by controls and safety devices specified, and conform to ANSI 156.10. Controls shall cause doors to open instantly when control device is actuated; hold doors in open positions; then, cause doors to close, unless safety device or reactivated control interrupts operation.
- B. Manual Controls:
 - Push Plate Wall Switch: Recess type, stainless steel push plate minimum 100 mm by 100 mm (four-inch by four-inch), with 13 mm (l/2inch) high letters "To Operate Door--Push" engraved on face of plate.
- C. Card Readers:
 - Where indicated on drawings and in division 08 71 00, sequence of operations, door controls shall open door on signal from card reader for door opening.

2.5 SAFETY DEVICES

- A. General: Area over which doors swing or slide shall be a safety section and anyone standing in path of door's movement shall be protected by a safety device.
- B. Each swing door shall have installed on the pull side a presence sensor to detect any person standing in the door swing path and prevent the door from opening.
- C. Time delay switches shall be adjustable between 3 to 60 seconds and shall control closing cycle of doors.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate installation of equipment with other related work. Manual controls and power disconnect switches shall be recessed or semi-flush mounted in partitions. Secure operator components to adjacent construction with suitable fastenings. Conceal conduits, piping, and electric equipment, in finish work.
- B. Install power units in locations shown. Where units are to be mounted on walls, provide metal supports or shelves for the units. All equipment, including time delay switches, shall be accessible for maintenance and adjustment.
- C. Operators shall be adjusted and must function properly for the type of traffic (pedestrians, carts, stretchers and wheelchairs) expected to pass through doors. Each door leaf of pairs of doors shall open and close in synchronization. On pairs of doors, operators shall allow either door to be opened manually without the other door opening.
- D. Install controls at positions shown and make them convenient for particular traffic expected to pass through openings. Maximum height of push plate wall switches from finished floors shall be 40 inches unless otherwise approved by the Resident Engineer.

3.2 INSTRUCTIONS

- A. Following the installation and final adjustments of the door operators, the installer shall fully instruct VA personnel for 4 hours on the operating, servicing and safety requirements for the swing and sliding automatic door operators.
- B. Coordinate instruction to VA personnel with VA Resident Engineer. - E N D - -

This Page Intentionally Left Blank

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies glass, related glazing materials and accessories. Glazing products specified apply to factory or field glazed items.

1.2 RELATED WORK

- A. Factory glazed by manufacturer in following units:
 - 1. Mirrors: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.
 - 2. Section 08 51 13, ALUMINUM WINDOWS.

1.3 LABELS

- A. Temporary labels:
 - Provide temporary label on each light of glass identifying manufacturer or brand and glass type, quality and nominal thickness.
 - Label in accordance with NFRC (National Fenestration Rating Council) label requirements.
 - 3. Temporary labels shall remain intact until glass is approved by Resident Engineer.

B. Permanent labels:

- 1. Locate in corner for each pane.
- Label in accordance with ANSI Z97.1 and SGCC (Safety Glass Certification Council) label requirements.
 - a. Tempered glass.
 - b. Laminated glass or have certificate for panes without permanent label.

1.4 PERFORMANCE REQUIREMENTS

- A. Building Enclosure Vapor Retarder and Air Barrier:
 - 1. Utilize the inner pane of multiple pane sealed units for the continuity of the air barrier and vapor retarder seal.
 - 2. Maintain a continuous air barrier and vapor retarder throughout the glazed assembly from glass pane to heel bead of glazing sealant.
- B. Glass Thickness:
 - Select thickness of exterior glass to withstand dead loads and wind loads acting normal to plane of glass at design pressures calculated in accordance with ASCE 7.
 - 2. Test in accordance with ASTM E 1300.

3. Thicknesses listed are minimum. Coordinate thicknesses with framing system manufacturers.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Certificates:
 - 1. Certificate on shading coefficient.
 - 2. Certificate on "R" value when value is specified.
- C. Warranty: Submit written guaranty, conforming to General Condition requirements, and to "Warranty of Construction" Article in this Section.
- D. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
 - 2. Insulating glass units.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.
- C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.
- 1.7 PROJECT CONDITIONS

Field Measurements: Field measure openings before ordering tempered glass products. Be responsible for proper fit of field measured products.

1.8 WARRANTY

- A. Warranty: Conform to terms of "Warranty of Construction", FAR clause 52.246-21, except extend warranty period for the following:
 - 1. Insulating glass units to remain sealed for 10 years.

1.9 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

	Z97.1-09Safety Glazing Material Used in Building -
	Safety Performance Specifications and Methods
	of Test.
C.	American Society for Testing and Materials (ASTM):
	C542-05Lock-Strip Gaskets
	C716-06 and Infill
	Glazing Materials.
	C794-10Joint Sealants
	C864-05Seal Gaskets,
	Setting Blocks, and Spacers
	C920-11Elastomeric Joint Sealants
	C964-07 Gasket Glazing
	C1036-06Flat Glass
	C1048-12 Heat-Treated Flat Glass-Kind HS, Kind FT Coated
	and Uncoated Glass.
	C1376-10 Pyrolytic and Vacuum Deposition Coatings on
	Flat Glass
	D635-10 Ate of Burning and/or Extent and Time of
	Burning of Self-Supporting Plastic in a
	Horizontal Position
	D4802-10Poly (Methyl Methacrylate) Acrylic Plastic
	Sheet
	E84-10 of Building
	Materials
	E119-10Standard Test Methods for Fire Test of Building
	Construction and Material
	E2190-10Insulating Glass Unit
D.	Commercial Item Description (CID):
	A-A-59502Plastic Sheet, Polycarbonate
Е.	Code of Federal Regulations (CFR):
	16 CFR 1201 - Safety Standard for Architectural Glazing Materials; 2010
F.	National Fire Protection Association (NFPA):
	80-13Fire Doors and Windows.
	252-12Standard Method of Fire Test of Door Assemblies
	257-12 Standard on Fire Test for Window and Glass
	Block Assemblies
G.	National Fenestration Rating Council (NFRC)

- H. Safety Glazing Certification Council (SGCC) 2012: Certified Products Directory (Issued Semi-Annually).
- I. Underwriters Laboratories, Inc. (UL):
 752-11.....Bullet-Resisting Equipment.
- J. Unified Facilities Criteria (UFC): 4-010-01-2012.....DOD Minimum Antiterrorism Standards for

Buildings

- K. Glass Association of North America (GANA):
 Glazing Manual (Latest Edition)
 Sealant Manual (2009)
- L. American Society of Civil Engineers (ASCE): ASCE 7-10.....Wind Load Provisions

PART 2 - PRODUCT

2.1 GLASS

- A. Use thickness stated unless specified otherwise in assemblies.
- B. Clear Glass:
 - 1. ASTM C1036, Type I, Class 1, Quality q3.
 - 2. Thickness, 6 mm (1/4 inch).

2.2 HEAT-TREATED GLASS

- A. Clear Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness, 6 mm (1/4 inch).

2.3 COATED GLASS

- A. Low-E Tempered Glass:
 - ASTM C1048, Kind FT, Condition C, Type I, Class 1, Quality q3 with low emissivity pyrolytic coating having an E of 0.035, basis of design is PPG Solarban 60.
 - 2. Apply coating to second surface of insulating glass units.
 - 3. Thickness, 6 mm (1/4 inch).

2.4 INSULATING GLASS UNITS

- A. Provide factory fabricated, hermetically sealed glass unit consisting of two panes of glass separated by a dehydrated air space and comply with ASTM E2190. Overall thickness of 1".
- B. Sealed Edge Units (SEU):
 - 1. Insulating Glass Unit Makeup
 - a. Outboard Lite: 6 mm (1/4 inch)clear glass with low-E coating.
 - b. Spacer
 - 1. Nominal Thickness: 1/2 inch

- 2. Gas Fill: 90% Argon
- c. Inboard Lite: 6 mm (1/4 inch)clear glass.
- 2. Performance Characteristics (Center of Glass)
 - a. Visible Transmittance: 40%
 - b. Visible Reflectance: 8% outside, 11% inside
 - c. Winter U-factor (U-value): 0.24
 - d. Shading Coefficient (SC): 0.28
 - e. Solar heat Gain Coefficient (SHGC): 0.24
- 3. Glass shall be tempered.

2.5 GLAZING ACCESSORIES

- A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work shall have a finish that will not corrode or stain while in service.
- B. Setting Blocks: ASTM C864:
 - 1. Channel shape; having 6 mm (1/4 inch) internal depth.
 - 2. Shore a hardness of 80 to 90 Durometer.
 - 3. Block lengths: 50 mm (two inches) except 100 to 150 mm (four to six inches) for insulating glass.
 - 4. Block width: Approximately 1.6 mm (1/16 inch) less than the full width of the rabbet.
 - 5. Block thickness: Minimum 4.8 mm (3/16 inch). Thickness sized for rabbet depth as required.
- C. Spacers: ASTM C864:
 - 1. Channel shape having a 6 mm (1/4 inch) internal depth.
 - 2. Flanges not less 2.4 mm (3/32 inch) thick and web 3 mm (1/8 inch) thick.
 - 3. Lengths: One to 25 to 76 mm (one to three inches).
 - 4. Shore a hardness of 40 to 50 Durometer.
- D. Glazing Gaskets: ASTM C864:
 - 1. Firm dense wedge shape for locking in sash.
 - 2. Soft, closed cell with locking key for sash key.
 - 3. Flanges may terminate above the glazing-beads or terminate flush with top of beads.
- E. Lock-Strip Glazing Gaskets: ASTM C542, shape, size, and mounting as indicated.
- F. Glazing Sealants: ASTM C920, silicone neutral cure:
 - 1. Type S.

- 2. Class 25
- 3. Grade NS.
- 4. Shore A hardness of 25 to 30 Durometer.
- G. Color:
 - Color of glazing compounds, gaskets, and sealants used for aluminum color frames shall match color of the finished aluminum and be nonstaining.
 - Color of other glazing compounds, gaskets, and sealants which will be exposed in the finished work and unpainted shall be black, gray, or neutral color.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
 - 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer's approved shop drawings.
- B. Advise Contractor of conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation: Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. For sealant glazing, prepare glazing surfaces in accordance with GANA-02 Sealant Manual.
- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.
- F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

A. Install in accordance with GANA-01 Glazing Manual and GANA-02 Sealant Manual unless specified otherwise.

- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.
- D. Do not allow glass to rest on or contact any framing member.
- E. Glaze doors and operable sash, in a securely fixed or closed and locked position, until sealant, glazing compound, or putty has thoroughly set.
- F. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.
- G. Insulating Glass Units:
 - 1. Glaze in compliance with glass manufacturer's written instructions.
 - 2. When glazing gaskets are used, they shall be of sufficient size and depth to cover glass seal or metal channel frame completely.
 - 3. Do not use putty or glazing compounds.
 - 4. Do not grind, nip, cut, or otherwise alter edges and corners of fused glass units after shipping from factory.

3.4 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by Resident Engineer.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.
- C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

3.5 PROTECTION

Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

3.6 GLAZING SCHEDULE

- G-1 Tempered clear glass.
- G-2 Insulating glass.
- G-3 Insulating glass with obscure glass on inboard lite.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 09 05 16 SUBSURFACE PREPARATION FOR FLOOR FINISHES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies subsurface preparation requirements for areas to receive the installation of applied flooring. This section includes removal of existing floor coverings, floor leveling and repair as required.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS.
- B. Section 09 65 19, RESILIENT TILE FLOORING
- C. Section 09 68 00, CARPETING

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and TEST DATA.
- B. Written approval confirming product compatibility with subfloor material manufacturer and the flooring manufacturer
- C. Product Data:
 - 1. Moisture remediation system
 - 2. Underlayment Primer
 - 3. Cementitious Self-Leveling Underlayment
 - 4. Cementitious Trowel-Applied Underlayment
- D. Test Data:
 - Moisture test and pH results performed by a qualified independent testing agency or warranty holding manufacturer's technical representative.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

D638-10 (2010)	Test Method for Tensile Properties of Plastics
-------------------	--

D4259-88	Standard Practice for Abrading Concrete to alter the		
(2012)	surface profile of the concrete and to remove foreign		
	materials and weak surface laitance.		
C109/C109M	Standard Test Method for Compressive Strength of		
-12	Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube		
(2012)	Specimens) Modified Air Cure Only		
D7234 -12	Standard Test Method for Pull-Off Adhesion Strength of		
(2012)	Coatings on Concrete Using Portable Pull-Off Adhesion		
(2012)	Testers.		
E96/E96M -	Standard Test Methods for Water Vapor Transmission of		
12	Materials		
(2012)	Materials		
F710 -11	Standard Practice for Preparing Concrete Floors to		
(2011)	Receive Resilient Floorin		
F1869-11	Standard Test Method for Measuring Moisture Vapor		
(2011)	Emission Rate of Concrete Subfloor Using Anhydrous		
(2011)	Calcium Chloride		
F2170-11	Standard Test Method for Determining Relative Humidity in		
(2011)	Concrete Floor Slabs Using in situ Probes		
G240_00			
C348-08	Standard Test Method for Flexural Strength of Hydraulic-		
(2008)	3) Cement Mortars		
C191-13	Standard Test Method for Time of Setting of Hydraulic		
(2013)	Cement by Vicat Needle		

PART 2 - PRODUCTS

2.1 CEMENTITIOUS SELF-LEVELING UNDERLAYMENT

- A. System Descriptions:
 - High performance self-leveling underlayment resurfacer. Single component, self-leveling, cementitious material designed for easy application as an underlayment for all types of flooring materials. It is used for substrate repair and leveling.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up. Gypsum-based products are unacceptable.
- C. System Characteristics:
 - 1. Wearing Surface: smooth
 - 2. Thickness: Per architectural drawings, ranging from feathered edge to 1", per application. Applications greater than 1" require additional 3/8" aggregate to mix or as recommended by manufacturer.
- D. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.

- E. Compressive Strength: Minimum 4100 psi in 28 days in accordance with ASTM C109/C109M.
- F. Flexural Strength: Minimum 1000 psi in 28 days in accordance with ASTM C348
- G. Dry Time: Underlayment shall receive the application of moisture insensitive tile in 6 hours, floor coverings in 16 hours.
- H. Primer: compatible and as recommended by manufacturer for use over intended substrate
- I. System Components: Manufacturer's standard components that are compatible with each other and as follows:
 - 1. Primer:
 - a. Resin: copolymer
 - b. Formulation Description: single component ready to use.
 - c. Application Method: Squeegee and medium nap roller. All puddles shall be removed, and material shall be allowed to dry, 1-2 hours at 70F/21C.
 - d. Number of Coats: (1) one.
 - 2. Grout Resurfacing Base:
 - a. Formulation Description: Single component, cementitious selfleveling high-early and high-ultimate strength grout.
 - b. Application Method: colloidal mix pump, cam rake, spike roll.1) Thickness of Coats: Per architectural scope, 1" lifts.
 - 2) Number of Coats: More than one if needed.
 - c. Aggregates: for applications greater than linch, require additional 3/8" aggregate to mix.

Property	Test	Value
Compressive Strength	ASTM C109/C109M	2,200 psi @ 24 hrs 3,000 psi @ 7 days
Initial set time Final Set time	ASTM C191	30-45 min. 1 to 1.5 hours
Bond Strength	ASTM D7234	100% bond to concrete failure

2.3 CEMENTITIOUS TROWEL-APPLIED UNDERLAYMENT

- A. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- B. Compressive Strength: Minimum 4000 psi in 28 days
- C. Trowel-applied underlayment shall not contain silica quartz (sand).

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before testing and not less than three days after testing.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation.
- C. Do not install materials when the temperatures of the substrate or materials are not within 60-85 degrees F/ 16-30 degrees C.

3.2 SURFACE PREPARATION

- A. Existing concrete slabs with existing floor coverings:
 - Conduct visual observation of existing floor covering for adhesion, water damage, alkaline deposits, and other defects.
 - Remove existing floor covering and adhesives. Comply with local, state and federal regulations and the RFCI Recommended Work Practices for Removal of Resilient Floor Coverings, as applicable to the floor covering being removed.
- B. Concrete shall meet the requirements of ASTM F710 and be sound, solid, clean, and free of all oil, grease, dirt, curing compounds, and any substance that might act as a bond-breaker before application. As required prepare slab by mechanical methods. No chemicals or solvents shall be used.
- C. General: Prepare and clean substrates according to flooring manufacturer's written instructions for substrate indicated.
- D. Prepare concrete substrates per ASTM D4259 as follows:
 - 1. Dry abrasive blasting.
 - 2. Wet abrasive blasting.
 - 3. Vacuum-assisted abrasive blasting.
 - 4. Centrifugal-shot abrasive blasting.
 - 5. Comply with manufacturer's written instructions.
- E. Repair damaged and deteriorated concrete according to flooring manufacturer's written recommendations.
- F. Verify that concrete substrates are dry.
- G. Prepare joints in accordance with Section 07 92 00, JOINT SEALANTS and material manufacturer's instructions.
- H. Tolerances: Subsurface shall meet the flatness and levelness tolerance recommended by the floor finish manufacturer. Tolerance shall also not

to exceed 1/4" deviation in 10'. As required, install underlayment to achieve required tolerance.

I. Other Subsurface: For all other subsurface conditions, such as wood or metal, contact the floor finish or underlayment manufacturer, as appropriate, for proper preparation practices.

3.3 CEMENTITOUS UNDERLAYMENT:

- A. Install cementitious self-leveling underlayment as required to correct surface defects, floor flatness or levelness corrections to meet the tolerance requirements as or detailed on drawings, address non-moving cracks or joints, provide a smooth surface for the installation of floor covering, or meet elevation requirements detailed on drawings.
- B. Mix and apply in accordance with manufacturer's instructions.

3.4 PROTECTION

A. Prior to the installation of the finish flooring, the surface of the underlayment should be protected from abuse by other trades by the use of plywood, tempered hardwood, or other suitable protection course

3.5 FIELD QUALITY CONTROL

A. Where specified, field sampling of products shall be conducted by a qualified, independent testing facility.

- - - E N D - - -

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART I - GENERAL

1.1 DESCRIPTION

This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITALS

Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES-provide quadruplicate samples for color approval of materials and finishes specified in this section.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)

2001.....Architectural Painting Specification Manual

PART 2- PRODUCTS

2.1 DIVISION 06 WOOD, PLASTICS, AND COMPOSITES

A. SECTION 06 20 00, FINISH CARPENTRY

Component	Material	Finish
Wood paneling - trim	Birch	CC-1 clear satin polyurethane

Wood paneling - panels	Birch	S-1 stain with clear satin polyurethane
Counter top surface	Plastic laminate	PL-2 Wilsonart 4651-60 "Navy Legacy" chemical resistant
Vertical Surfaces	Plastic laminate	PL-1 Wilsonart D403-60 "White Sand"
Shelving	Plastic laminate	PL-1 Wilsonart D403-60 "White Sand"
Interior	Melamine	White
Window Stools	Plastic laminate	PL-3 Wilsonart 4651-60 "Navy Legacy"
Window Stools (Director's Suite)	Plastic laminate	PL-4 Wilsonart 4889k-56 "Milano Baltic"

2.2 DIVISION 08 - OPENINGS

IF.

A. SECTION 08 11 13, HOLLOW METAL DOORS AND FRAMES

Paint both sides of door and frames same color including ferrous metal louvers, and primed hardware attached to door				
Component	Color of Paint Type and Gloss			
Frames	PNT-4			

B. SECTION 08 14 00, WOOD DOORS

Component	Finish/Color
Doors	CC-1 clear coat satin finish

2.3 DIVISION 09 - FINISHES

A. SECTION 09 30 13, CERAMIC TILING

Color	Size	Manufacturer	Mfg. Color Name/No.
WT-1	бхб	Daltile	Semi-gloss glazed Crisp Linen 0139
WT-2	бхб	Daltile	Semi-gloss glazed Galaxy 1469
PT-1	2x2	Daltile	Unglazed mosaic Suede Gray D208

B. SECTION 09 51 00, ACOUSTICAL CEILINGS

Finish Code	Manufacturer	Mfg Name/No.
ATC-1	Armstrong	Cirrus 534
ATC-2		White vinyl faced gypsum board tile

C. SECTION 09 65 13, RESILIENT BASE AND ACCESSORIES

Finish Code	Item	Height	Manufacturer	Mfg Name/No.
RB-1	Vinyl Base (VB)	4 "	Johnsonite	Harbour 72

D. SECTION 09 65 19, RESILIENT TILE FLOORING

Finish Code	Size	Material/Component	Manufacturer	Mfg Name/No.
VCT-1	12 x 12	VCT	Armstrong	Mid Grayed Blue 51875
SVT-1	4 x 36	Plank Vinyl Tile	Armstrong	Noveau Maple Light Natural TP041
SVT-2	4 x 36	Plank Vinyl Tile	Armstrong	Oiled Teak Dark TP015

	l I		
			1
	1	, , , , , , , , , , , , , , , , , , ,	1
	<i>i</i>		L

E. SECTION 09 68 00, CARPET (CP)

Finish Code	Pattern	Manufacture	Mfg. Color Name/No.
CPT-1	Merge	J&J Invision	Meet

F. SECTION 09 91 00, PAINT AND COATINGS

1. Paint code	Gloss	Manufacturer	Mfg. Color Name/No.
PNT-1	Eggshell	Sherwin-Williams	Classical White SW2829
PNT-2	Eggshell	Sherwin-Williams	Blonde SW6128
PNT-3	Eggshell	Sherwin-Williams	Custom color "VA White Rock"
PNT-4	Semi-gloss	Sherwin-Williams	Gale Force SW7605
PNT-5	Semi-gloss	Sherwin-Williams	Bagel SW6114
2. Stain Code (S)		Manufacturer	Mfg. Color Name/No.
S-1		Sherwin-Williams	SW3110 Classic Cherry + CC-1 clear coat finish
3. Clear coatings Code(CC)	Gloss	Manufacturer	Mfg. Color Name/No.
CC-1	Satin		Clear polyurethane

2.4 DIVISION 10 - SPECIALTIES

A. SECTION 10 26 00, WALL GUARDS AND CORNER GUARDS

Item	Manufacturer	Mfg. Color Name/No.	
Corner Guards	InPro	Palomino 0270	
Wall Trim	InPro	Palomino 0270	
Handrail Body	InPro	Palomino 0270	
Handrail Accent	InPro	Storm Cloud 0372	
Sheet Wall Protection InPro		Element Pattern, Velvet Texture, 5E017	

B. SECTION 10 13 00 / 10 14 00, INTERIOR SIGNS

Sign Type	Component	Manufacturer	Mfg. Color Name/No.
IN-03.01; IN-04.02; IN-04.04; IN-07.03; IN-09.01; IN-09.02; IN-13A	Room ID Signs	2/90 Sign Systems Valerie Dye 5350 Corporate Grove Blvd SE Grand Rapids, MI 49512 Tel: 800.777.4310 x 3323 valeriedye@290signs.com	Quarry Blue
IN-15.51A; 15.61A; IN-15.62A; 16.51B	Directory/Directional Signs	2/90 Sign Systems Valerie Dye 5350 Corporate Grove Blvd SE Grand Rapids, MI 49512 Tel: 800.777.4310 x 3323 valeriedye@290signs.com	Teal

2.5 DIVISION 12- FURNISHINGS

A. SECTION 12 24 00, WINDOW SHADES

Component Manufacturer		Mfg. Color Name/No.		
Shade Cloth Hunter Douglas Contract		RB500, Style Flocke, Color Mississippi		

--- E N D---

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board or other building boards.

1.2 RELATED WORK

A. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where concrete joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams or joists.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Channels (Rolled steel).
 - 3. Furring channels.
 - 4. Screws, clips and other fasteners.
- C. Shop Drawings:
 - 1. Typical shaft wall assembly
 - 2. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.
- D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

в.	American Society For Test	ting And Materials (ASTM)
	A641-09	Zinc-Coated (Galvanized) Carbon Steel Wire
	C11-10	Ferminology Relating to Gypsum and Related
	J	Building Materials and Systems
	C635-07	Manufacture, Performance, and Testing of Metal
	:	Suspension System for Acoustical Tile and Lay-in
	1	Panel Ceilings
	C636-08	Installation of Metal Ceiling Suspension Systems
	:	for Acoustical Tile and Lay-in Panels
	C645-09	Non-Structural Steel Framing Members
	C754-11	Installation of Steel Framing Members to Receive
	3	Screw-Attached Gypsum Panel Products
	C841-03(R2008)	Installation of Interior Lathing and Furring
	C954-10	Steel Drill Screws for the Application of Gypsum
	1	Panel Products or Metal Plaster Bases to Steel
	:	Studs from 0.033 in. (0.84 mm) to 0.112 in.
		(2.84 mm) in Thickness
	E580-11	Application of Ceiling Suspension Systems for
	i.	Acoustical Tile and Lay-in Panels in Areas
	1	Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

2.1 PROTECTIVE COATING

Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G-60 minimum, per ASTM 123.

2.2 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
 1. Use ASTM A525 steel, 0.8 mm (0.0329-inch) thick bare metal (33 mil).
 2. Runners same thickness as studs.
- B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600 mm (12 feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
 - 1. Conform to rated wall construction.
 - 2. C-H Studs.
 - 3. E Studs.
 - 4. J Runners.

5. Steel Jamb-Strut.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. "Z" Furring Channels:
 - 1. Not less than 0.45 mm (0.0179-inch)-thick bare metal, with 32 mm (1-1/4 inch) and 19 mm (3/4-inch) flanges.
 - 2. Web furring depth to suit thickness of insulation with slotted perforations.
- C. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.
- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items. Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- F. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

- A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.
- B. Space studs not more than 610 mm (24 inches) on center.
- C. Cut studs 6 mm to 9 mm (1/4 to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.

- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for fire rated partitions, smoke partitions, shafts, sound rated partitions and insulated exterior wall furring.
- F. Openings:
 - 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown.
 - Fasten back to back studs together with 9 mm (3/8-inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs.
 - 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks.
- G. Fastening Studs:
 - Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.
 - 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.
- H. Chase Wall Partitions:
 - 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
 - Use studs or runners as cross bracing not less than 63 mm (2-1/2 inches wide).
- I. Form control joint, with double studs spaced 13 mm (1/2-inch) apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - 1. Framed with 63 mm (2-1/2 inch) or narrower studs, 600 mm (24 inches) on center.
 - 2. Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three foot vertical intervals on side without finish.
 - 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:

- 1. Install rigid (hat section) furring channels at 600 mm (24 inches) on center, horizontally or vertically.
- Install "Z" furring channels vertically spaced not more than 600 mm (24 inches) on center.
- 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
- Ends of spliced furring channels shall be nested not less than 200 mm (8 inches).
- 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
- Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, marker boards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.
B. Provide additional studs where required. Install 2x12 fire retardant treated wood blocking securely fastened to metal studs. Where utilities or other interferences prevent the use of wood blocking provide metal backing plates, or special metal shapes as required.
C. Contractor shall document with digital photos, labeled with room number and wall (such as North Wall Room 2000), the location of all blocking installed before installing wall finish.

3.5 INSTALLING SHAFT WALL SYSTEM

- A. Conform to WHI reference 495-PSH-0153 for two-hour fire rating.
- B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports with power driven fasteners at both ends and 600 mm (24 inches) on center.
- C. After liner panels have been erected, cut C-H studs and E studs, from 9 mm (3/8-inch) to not more than 13 mm (1/2-inch) less than floor-to-ceiling height. Install C-H studs between liner panels with liner panels inserted in the groove.
- D. Install full-length steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels.
- E. Suitably frame all openings to maintain structural support for wall:

- 1. Provide necessary liner fillers and shims to conform to label frame requirements.
- 2. Frame openings cut within a liner panel with E studs around perimeter.
- 3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill.

3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings or soffits.
- B. Existing concrete construction exposed:
 - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
 - Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists.

3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8-inch) from the layout line.
- B. Plumb and align vertical members within 3 mm (1/8-inch.)
- C. Level or align ceilings within 3 mm (1/8-inch.)

- - - E N D - - -

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Acoustic insulation: Section 07 21 13, THERMAL INSULATION.
- C. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.
- D. Lay in gypsum board ceiling panels: Section 09 51 00, ACOUSTICAL CEILING.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Gypsum board, each type.
- C. Shop Drawings:
 - 1. Typical shaft wall assembly.
 - 2. Typical fire rated assembly, indicating details of construction same as that used in fire rating test.

D. Test Results:

- 1. Fire rating test, each fire rating required for each assembly.
- 2. Sound rating test.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

```
B. American Society for Testing And Materials (ASTM):
     C11-08..... Terminology Relating to Gypsum and Related
                          Building Materials and Systems
     C475-02.....Joint Compound and Joint Tape for Finishing
                          Gypsum Board
     C840-08..... Application and Finishing of Gypsum Board
     C919-08......Sealants in Acoustical Applications
     C954-07.....Steel Drill Screws for the Application of Gypsum
                          Board or Metal Plaster Bases to Steel Stud from
                          0.033 in. (0.84mm) to 0.112 in. (2.84mm) in
                          thickness
     C1002-07.....Steel Self-Piercing Tapping Screws for the
                          Application of Gypsum Panel Products or Metal
                          Plaster Bases to Wood Studs or Steel Studs
     C1047-05.....Accessories for Gypsum Wallboard and Gypsum
                          Veneer Base
     C1177-06.....Glass Mat Gypsum Substrate for Use as Sheathing
     C1658-06.....Glass Mat Gypsum Panels
     C1396-06.....Gypsum Board
     E84-08.....Surface Burning Characteristics of Building
                          Materials
  C. Underwriters Laboratories Inc. (UL):
     Latest Edition.....Fire Resistance Directory
  D. Inchcape Testing Services (ITS):
     Latest Editions.....Certification Listings
PART 2 - PRODUCTS
2.1 GYPSUM BOARD
```

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise. Shall contain a minimum of 20 percent recycled gypsum.
- B. Coreboard or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X.
 - 2. ASTM C1658: Glass Mat Gypsum Panels,
 - 3. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Glass Mat Water Resistant Gypsum Board: ASTM C1396 and C1658, Type X, 16 mm (5/8 inch) thick.
- D. Acoustically Enhanced Gypsum Board:
 - 1. ASTM C1396, Type X.

- 2. 5/8" total thickness, containing two layers of gypsum board with a viscoelastic damping polymer between. Intended for use in rated acoustical wall assemblies.
- E. Gypsum cores shall contain maximum percentage of post industrial recycled gypsum content available in the area (a minimum of 95 percent post industrial recycled gypsum content). Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.3 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.4 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown.
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.

- Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- G. Walls (Except Shaft Walls):
 - When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
 - When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of

wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.

- 6. No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply application requirements.
- 7. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:
 - Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.
 - 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
 - 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.
 - b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.

- c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
- d. Where shown.

3.3 CAVITY SHAFT WALL

- A. Coordinate assembly with Section 09 22 16, NON-STRUCTURAL METAL FRAMING, for erection of framing and gypsum board.
- B. Conform to WHI reference 495-PSH-0153 for two-hour fire rating.
- C. Cut coreboard (liner) panels 25 mm (one inch) less than floor-to-ceiling height, and erect vertically between J-runners on shaft side.
 - 1. Stagger joints top and bottom in adjacent panels.
- D. Gypsum Board:
 - 1. Two hour wall:
 - a. Erect base layer (backing board) vertically on finish side of wall with end joints staggered. Fasten base layer panels to studs with 25 mm (one inch) long screws, spaced 600 mm (24 inches) on center.
 - b. Use laminating adhesive between plies if required by fire test.
 - c. Apply face layer of gypsum board required by fire test vertically over base layer with joints staggered and attach with screws of sufficient length to secure to framing staggered from those in base, spaced 300 mm (12 inches) on center.
 - 2. Where coreboard is covered with face layer of gypsum board, stagger joints of face layer from those in the coreboard base.
- E. Treat joints, corners, and fasteners in face layer as specified for finishing of gypsum board.

3.4 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated smoke barrier, fire rated and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the smoke barrier, fire rated and sound rated construction. Sanding is not required of non decorated surfaces.

3.5 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non decorated surface to provide smoke tight construction, fire protection equivalent to the fire rated construction and STC equivalent to the sound rated construction.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 09 30 13 CERAMIC/PORCELAIN TILING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies ceramic tile and tile backer board.

1.2 RELATED WORK

- A. Sealing of joints where specified: Section 07 92 00, JOINT SEALANTS.
- B. Color of tile: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Metal and resilient edge strips at joints with new resilient flooring: Section 09 65 19, RESILIENT TILE FLOORING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - Mosaic floor tile panels, 225 mm by 225 mm (9 inches by 9 inches), each type, color, size and pattern.
 - 2. Wall (or wainscot) tile, each color, size and pattern.
- C. Product Data:
 - 1. Ceramic tile, marked to show each type, size, and shape required.
 - 2. Cementitious backer unit.
 - 3. Mortar and grout.
- D. Certification:
 - 1. Master grade, ANSI A137.1.
 - 2. Manufacturer's certificates indicating that the following materials comply with specification requirements:
 - a. Cementitious backer unit.
 - b. Mortar and grout.
 - c. Leveling compound.
 - 3. Factory mounted tile suitability for application in wet area specified under 2.1, A, 3 with list of successful in-service performance locations.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only. B. American National Standards Institute (ANSI): A108.1A-11..... Installation of Ceramic Tile in the Wet-Set Method with Portland Cement Mortar A108.1B-11.....Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with dry-Set or latex-Portland Cement Mortar A108.1C-11......Contractors Option; Installation of Ceramic Tile in the Wet-Set method with Portland Cement Mortar or Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex-Portland Cement Mortar A137.1-08.....Ceramic Tile C. American Society For Testing And Materials (ASTM): A185-07......Steel Welded Wire Fabric, Plain, for Concrete Reinforcing C109/C109M-11.....Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2 inch. or [50mm] Cube Specimens) C241-09.....Abrasion Resistance of Stone Subjected to Foot Traffic C348-08.....Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars C627-10..... Evaluating Ceramic Floor Tile Installation Systems Using the Robinson-Type Floor Tester C954-11.....Steel Drill Screws for the Application of Gypsum Board on Metal Plaster Base to Steel Studs from 0.033 in (0.84 mm) to 0.112 in (2.84 mm) in thickness C979-10.....Pigments for Integrally Colored Concrete C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Panel Products C1027-09.....Determining "Visible Abrasion Resistance on Glazed Ceramic Tile" C1028-07.....Determining the Static Coefficient of Friction of Ceramic Tile and Other Like Surfaces by the Horizontal Dynamometer Pull Meter Method C1127-09.....Standard Guide for Use of High Solids Content, Cold Liquid-Applied Elastomeric Waterproofing Membrane with an Integral Wearing Surface

585-10-127

C1178/C1178M-11.....Standard Specification for Coated Glass Mat Water-Resistant Gypsum Backing Panel C1325-08.....Non-Asbestos Fiber-Mat Reinforced Cementitious Backer Units D4397-10....Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications D5109-99(R2004)....Standard Test Methods for Copper-Clad Thermosetting Laminates for Printed Wiring Boards

- D. Marble Institute of America (MIA): Design Manual III-2007
- E. Tile Council of America, Inc. (TCA): 2007......Handbook for Ceramic Tile Installation

PART 2 - PRODUCTS

2.1 TILE

- A. Comply with ANSI A137.1, Standard Grade, except as modified:
 - 1. Inspection procedures listed under the Appendix of ANSI A137.1.
 - 2. Abrasion Resistance Classification:
 - a. Tested in accordance with values listed in Table 1, ASTM C 1027.
 - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms
 - c. Class IV, 6000 revolutions for remaining areas.
 - 3. Slip Resistant Tile for Floors:
 - a. Coefficient of friction, when tested in accordance with ASTM C1028, required for level of performance:
 - 1) Not less than 0.6 for wet and dry conditions.
 - 4. Mosaic tile may be mounted or joined together by a resinous bonding material along tile edges.
 - 5. Factory Blending: For tile with color variations, within the ranges selected during sample submittals blend tile in the factory and package so tile units taken from one package show the same range in colors as those taken from other packages and match approved samples.
- B. Unglazed Ceramic Mosaic Tile: Nominal 6 mm (1/4 inch) thick with cushion edges.
- C. Glazed Wall Tile: Cushion edges, glazing, as specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Trim Shapes:
 - 1. Conform to applicable requirements of adjoining floor and wall tile.
 - 2. Use slip resistant trim shapes for horizontal surfaces of showers.

- Use trim shapes sizes conforming to size of adjoining field wall tile unless detailed or specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
- 4. Internal and External Corners:
 - a. Square internal and external corner joints are not acceptable.
 - b. External corners including edges: Use bullnose shapes.
 - c. Internal corners: Use cove shapes.
 - d. Base to floor internal corners: Use special shapes providing integral cove vertical and horizontal joint.
 - e. Base to floor external corners: Use special shapes providing bullnose vertical edge with integral cove horizontal joint. Use stop at bottom of openings having bullnose return to wall.
 - f. Wall top edge internal corners: Use special shapes providing integral cove vertical joint with bullnose top edge.
 - g. Wall top edge external corners: Use special shapes providing bullnose vertical and horizontal joint edge.
 - h. For unglazed ceramic mosaic and glazed wall tile installed in dry-set Portland cement mortar, latex-Portland cement mortar, and organic adhesive (thin set methods), use cove and surface bullnose shapes as applicable.

2.2 CEMENTITIOUS BACKER UNITS

- A. ASTM C1325.
- B. Use Cementitious backer units in maximum available lengths.

2.3 JOINT MATERIALS FOR CEMENTITIOUS BACKER UNITS

- A. Reinforcing Tape: Vinyl coated woven glass fiber mesh tape, open weave,
 50 mm (2 inches) wide. Tape with pressure sensitive adhesive backing
 will not be permitted.
- B. Tape Embedding Material: Latex-Portland cement mortar complying with ANSI A108.1.
- C. Joint material, including reinforcing tape, and tape embedding material, shall be as specifically recommended by the backer unit manufacturer.

2.4 FASTENERS

- A. Screws for Cementitious Backer Units.
 - 1. Standard screws for gypsum board are not acceptable.
 - Minimum 11 mm (7/16 inch) diameter head, corrosion resistant coated, with washers.
 - 3. ASTM C954 for steel 1 mm (0.033 inch) thick.
 - 4. ASTM C1002 for steel framing less than 0.0329 inch thick.
- B. Washers: Galvanized steel, 13 mm (1/2 inch) minimum diameter.

2.5 SETTING MATERIALS OR BOND COATS

- A. Conform to TCA Handbook for Ceramic Tile Installation.
- B. Portland Cement Mortar: ANSI A108.1.
- C. Latex-Portland Cement Mortar: ANSI A108.1.
 - 1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A108.1.
 - Prepackaged Dry-Mortar Mix: Factory-prepared mixture of Portland cement; dry, redispersible, ethylene vinyl acetate additive; and other ingredients to which only water needs to be added at Project site.
- D. Dry-Set Portland Cement Mortar: ANSI A108.1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A108.4.
- E. Organic Adhesives: ANSI A108.1, Type 1.

2.6 GROUTING MATERIALS

- A. Coloring Pigments:
 - Pure mineral pigments, limeproof and nonfading, complying with ASTM C979.
 - 2. Add coloring pigments to grout by the manufacturer.
 - 3. Job colored grout is not acceptable.
 - 4. Grout color chosen from submitted samples from manufacturers full range of standard colors.
- B. Commercial Portland Cement Grout: ANSI A108.1 color as specified.
- C. Dry-Set Grout: ANSI A108.1 color as specified.
- D. Latex-Portland Cement Grout: ANSI A108.1 color as specified.
 - 1. Unsanded grout mixture for joints 3.2 mm (1/8 inch) and narrower.
 - 2. Sanded grout mixture for joints 3.2 mm (1/8 inch) and wider.

2.7 PATCHING AND LEVELING COMPOUND

- A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Shall have minimum following physical properties:
 - 1. Compressive strength 25 MPa (3500 psig) per ASTM C109/C109M.
 - 2. Flexural strength 7 MPa (1000 psig) per ASTM C348 (28 day value).
 - 3. Tensile strength 600 psi per ANSI 118.7.
 - 4. Density 1.9.
- C. Capable of being applied in layers up to 38 mm (1-1/2 inches) thick without fillers and up to 100 mm (four inches) thick with fillers, being brought to a feather edge, and being trowelled to a smooth finish.

- D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition.
- E. Ready for use in 48 hours after application.

2.8 METAL DIVIDER STRIPS

- A. Terrazzo type divider strips.
- B. Heavy top type strip with 5 mm (3/16 inch) wide top and 38 mm (1-1/2 inch) long leg.
- C. Embedded leg perforated and deformed for keying to mortar.
- D. Aluminum.

2.9 WATER

Clean, potable and free from salts and other injurious elements to mortar and grout materials.

2.10 CLEANING COMPOUNDS

- A. Specifically designed for cleaning masonry and concrete and which will not prevent bond of subsequent tile setting materials including patching and leveling compounds and elastomeric waterproofing membrane and coat.
- B. Materials containing acid or caustic material not acceptable.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before installation and not less than three days after installation.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation.
- C. Do not install tile when the temperature is above 38 degrees C (100 degrees F).
- D. Do not install materials when the temperature of the substrate is below 16 degrees C (60 degrees F).
- E. Do not allow temperature to fall below 10 degrees C (50 degrees F) after fourth day of completion of tile work.

3.2 ALLOWABLE TOLERANCE

- A. Variation in plane of sub-floor, including concrete fills leveling compounds and mortar beds:
 - 1. Not more than 1 in 500 (1/4 inch in 10 feet) from required elevation where Portland cement mortar setting bed is used.
 - Not more than 1 in 1000 (1/8 inch in 10 feet) where dry-set Portland cement, and latex-Portland cement mortar setting beds and chemicalresistant bond coats are used.

- B. Variation in Plane of Wall Surfaces:
 - Not more than 1 in 400 (1/4 inch in eight feet) from required plane where Portland cement mortar setting bed is used.
 - Not more than 1 in 800 (1/8 inch in eight feet) where dry-set or latex-Portland cement mortar or organic adhesive setting materials is used.

3.3 SURFACE PREPARATION

- A. Cleaning New Concrete or Masonry:
 - Chip out loose material, clean off all oil, grease dirt, adhesives, curing compounds, and other deterrents to bonding by mechanical method, or by using products specifically designed for cleaning concrete and masonry.
 - Use self-contained power blast cleaning systems to remove curing compounds and steel trowel finish from concrete slabs where ceramic tile will be installed directly on concrete surface with thin-set materials.
 - Steam cleaning or the use of acids and solvents for cleaning will not be permitted.
- B. Patching and Leveling:
 - 1. Mix and apply patching and leveling compound in accordance with manufacturer's instructions.
 - 2. Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound.
 - a. Thickness of compound as required to bring finish tile system to elevation shown.
 - b. Float finish.
 - c. At substrate expansion, isolation, and other moving joints, allow joint of same width to continue through underlayment.
 - 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane.
 - Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- C. Walls:
 - 1. Apply patching and leveling compound to concrete and masonry surfaces that are out of required plane.
 - 2. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- D. Existing Floors and Walls:

 Remove existing composition floor finishes and adhesive. Prepare surface by grinding, chipping, self-contained power blast cleaning or other suitable mechanical methods to completely expose uncontaminated concrete or masonry surfaces. Follow safety requirements of ANSI A10.20.

3.4 CEMENTITIOUS BACKER UNITS

- A. Remove polyethylene wrapping from cementitious backer units and separate to allow for air circulation. Allow moisture content of backer units to dry down to a maximum of 35 percent before applying joint treatment and tile.
- B. Install in accordance with ANSI A108.1 except as specified otherwise.
- C. Install units horizontally or vertically to minimize joints with end joints over framing members. Units with rounded edges; face rounded edge away from studs to form a V joint for joint treatment.
- D. Secure cementitious backer units to each framing member with screws spaced not more than 200 mm (eight inches) on center and not closer than 13 mm (1/2 inch) from the edge of the backer unit or as recommended by backer unit manufacturer. Install screws so that the screw heads are flush with the surface of the backer unit.
- E. Do not install joint treatment for seven days after installation of cementitious backer unit.
- F. Joint Treatment:
 - Fill horizontal and vertical joints and corners with latex-Portland cement mortar. Apply fiberglass tape over joints and corners and embed with same mortar.
 - Leave 6 mm (1/4 inch) space for sealant at lips of tubs, sinks, or other plumbing receptors.

3.5 METAL DIVIDER STRIPS

- A. Install metal divider strips in floor joints between ceramic tile floors and between tile floors and adjacent flooring of other materials where the finish floors are flush unless shown otherwise.
- B. Set divider strip in mortar bed to line and level centered under doors or in openings.

3.6 CERAMIC TILE - GENERAL

- A. Comply with ANSI A108 series of tile installation standards in "Specifications for Installation of Ceramic Tile" applicable to methods of installation.
- B. Comply with TCA Installation Guidelines
- C. Setting Beds or Bond Coats:

- Set wall tile installed over concrete or masonry in dry-set Portland cement mortar, or latex-Portland cement mortar, ANSI 108.1B.and TCA System W211-02, W221-02 or W222-02.
- 2. Set wall tile installed over concrete backer board in latex-Portland cement mortar, ANSI A108.1B.
- 3. Set tile installed over gypsum board and gypsum plaster in organic adhesive, ANSI A108.1, TCA System W242-02.
- Set trim shapes in same material specified for setting adjoining tile.
- D. Workmanship:
 - Lay out tile work so that no tile less than one-half full size is used. Make all cuts on the outer edge of the field. Align new tile work scheduled for existing spaces to the existing tile work unless specified otherwise.
 - Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise.
 - 3. Form intersections and returns accurately.
 - 4. Cut and drill tile neatly without marring surface.
 - 5. Cut edges of tile abutting penetrations, finish, or built-in items: a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile.
 - b. Seal tile joints water tight as specified in Section 07 92 00, JOINT SEALANTS, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place.
 - Completed work shall be free from hollow sounding areas and loose, cracked or defective tile.
 - 7. Remove and reset tiles that are out of plane or misaligned.
 - 8. Floors:
 - a. Extend floor tile beneath casework and equipment, except those units mounted in wall recesses.
 - b. Align finish surface of new tile work flush with other and existing adjoining floor finish where shown.
 - c. In areas where floor drains occur, slope to drains where shown.
 - d. Shove and vibrate tiles over 200 mm (8 inches) square to achieve full support of bond coat.
 - 9. Walls:
 - a. Cover walls and partitions, including pilasters, furred areas, and freestanding columns from floor to ceiling, or from floor to nominal wainscot heights shown with tile.

- b. Finish reveals of openings with tile, except where other finish materials are shown or specified.
- c. At window openings, provide tile stools and reveals, except where other finish materials are shown or specified.
- d. Finish wall surfaces behind and at sides of casework and equipment, except those units mounted in wall recesses, with same tile as scheduled for room proper.
- 10. Joints:
 - a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise.
 - b. Make joints 2 mm (1/16 inch) wide for glazed wall tile and mosaic tile work.
 - c. Make joints in Paver tile, porcelain type; maximum 3 mm (1/8 inch) wide.

3.7 CERAMIC TILE INSTALLED WITH PORTLAND CEMENT MORTAR

- A. Mortar Mixes for Floor, Wall And Base Tile: ANSI A108.1.except specified otherwise.
- B. Installing Wall and Base Tile: ANSI A108.1, except specified otherwise.
- C. Installing Floor Tile: ANSI A108.1, except as specified otherwise.

3.8 GROUTING

- A. Grout Type and Location:
 - Grout for glazed wall and base tile and unglazed mosaic tile Portland cement grout, latex-Portland cement grout, dry-set grout, or commercial Portland cement grout.
- B. Workmanship:
 - 1. Install and cure grout in accordance with the applicable standard.
 - 2. Portland Cement grout: ANSI A108.1.
 - 3. Commercial Portland Cement Grout: ANSI A108.1 and in accordance with the manufacturer's printed instructions.
 - 4. Dry-set grout: ANSI A108.1.

3.9 MOVEMENT JOINTS

- A. Prepare tile expansion, isolation, construction and contraction joints for installation of sealant. Refer to Section 07 92 00, JOINT SEALANTS.
- B. TCA details EJ 171-02.
- C. At expansion joints, rake out joint full depth of tile and setting bed and mortar bed. Do not cut waterproof or isolation membrane.
- D. Rake out grout at toe of base, and where shown not less than 6 mm (1/4 inch) deep.

3.10 CLEANING

- A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths.
- B. Methods and materials used shall not damage or impair appearance of tile surfaces.
- C. The use of acid or acid cleaners on glazed tile surfaces is prohibited.

3.11 PROTECTION

- A. Keep traffic off tile floor, until grout and setting material is firmly set and cured.
- B. Where traffic occurs over tile floor, cover tile floor with not less than 9 mm (3/8 inch) thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover until time for final inspection. Clean tile of any tape, adhesive and stains.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1- GENERAL

1.1 DESCRIPTION

- A. Metal ceiling suspension system for acoustical ceilings.
- B. Acoustical units.

1.2 RELATED WORK

A. Color, pattern, and location of each type of acoustical unit: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTAL

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - Ceiling suspension system, each type, showing complete details of installation.
 - 2. Acoustical units, each type
- C. Manufacturer's Certificates: Acoustical units, each type, in accordance with specification requirements.

1.4 DEFINITIONS

- A. Standard definitions as defined in ASTM C634.
- B. Terminology as defined in ASTM E1264.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A641/A641M-03.....Zinc-coated (Galvanized) Carbon Steel Wire A653/A653M-07.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process C423-07.....Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method C634-02 (E2007).....Standard Terminology Relating to Environmental Acoustics C635-04.....Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings C636-06.....Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels

E84-07.....Surface Burning Characteristics of Building Materials E119-07.....Fire Tests of Building Construction and Materials

E413-04.....Classification for Rating Sound Insulation.

E1264-(R2005).....Classification for Acoustical Ceiling Products

PART 2- PRODUCTS

2.1 METAL SUSPENSION SYSTEM

- A. ASTM C635, heavy-duty system, except as otherwise specified.
 - Ceiling suspension system members may be fabricated from either of the following unless specified otherwise.
 - a. Galvanized cold-rolled steel, bonderized.
 - b. Extruded aluminum.
 - Use same construction for cross runners as main runners. Use of lighter-duty sections for cross runners is not acceptable.
- B. Exposed grid suspension system for support of lay-in panels:
 - Exposed grid width not less than 22 mm (7/8 inch) with not less than 8 mm (5/16 inch) panel bearing surface.
 - Fabricate wall molding and other special molding from the same material with same exposed width and finish as the exposed grid members.
 - 3. On exposed metal surfaces apply baked-on enamel flat white finish.

2.2 PERIMETER SEAL

- A. Vinyl, polyethylene or polyurethane open cell sponge material having density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
- B. Thickness as required to fill voids between back of wall molding and finish wall.
- C. Not less than 9 mm (3/8 inch) wide strip.

2.3 WIRE

- A. ASTM A641.
- B. For wire hangers: Minimum diameter 2.68 mm (0.1055 inch).
- C. For bracing wires: Minimum diameter 3.43 mm (0.1350 inch).

2.4 ANCHORS AND INSERTS

A. Use anchors or inserts to support twice the loads imposed by hangers attached thereto.

2.5 CARRYING CHANNELS FOR SECONDARY FRAMING

A. Fabricate from cold-rolled or hot-rolled steel, black asphaltic paint finish, free of rust.

B. Weighing not less than the following, per 300 m (per thousand linear feet):

Size mm	Size	Cold-rolled		Hot-rolled	
	Inches	Kg	Pound	Kg	Pound
38	1 1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

2.6 ADHESIVE

- A. ASTM D1779, having flame spread index of 25 or less when tested in accordance with ASTM E84.
- B. Developing minimum strength of 7 kg/m² (one psi) of contact surface 48 hours after installation in temperature of 21 °C (70 °F).

2.7 ACOUSTICAL UNITS

- A. General:
 - 1. ASTM E1264, weighing 3.6 kg/m^2 (3/4 psf) minimum for mineral fiber panels or tile.
 - 2. Class A Flame Spread: ASTM 84
 - 3. Minimum NRC (Noise Reduction Coefficient): 0.70 per ASTM C423.
 - 4. Minimum CAC (Ceiling Attenuation Class): 38 per ASTM E413.
 - 5. Manufacturers standard white finish.
 - Lay-in panels: As specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Vinyl Faced Gypsum Board Ceiling Tiles:
 - 1. ASTM E1264 Type XX, Pattern G.
 - 2. Class A Flame Spread: ASTM 84.
 - 3. ½" thickness, 2'x 2' nominal size.
 - 4. Zero VOC emissions.

2.8 ACCESS IDENTIFICATION

- A. Markers:
 - 1. Use colored markers with pressure sensitive adhesive on one side.
 - Make colored markers of paper of plastic, 6 to 9 mm (1/4 to 3/8 inch) in diameter.
- B. Use markers of the same diameter throughout building.
- C. Color Code: Use following color markers for service identification: Color.....Service

Red.....Sprinkler System: Valves and Controls Green....Domestic Water: Valves and Controls Yellow....Chilled Water and Heating Water Orange....Ductwork: Fire Dampers Blue.....Ductwork: Dampers and Controls

Black.....Gas: Laboratory, Medical, Air and Vacuum

PART 3 EXECUTION

3.1 CEILING TREATMENT

- A. Treatment of ceilings shall include sides and soffits of ceiling beams, furred work 600 mm (24 inches) wide and over, and vertical surfaces at changes in ceiling heights unless otherwise shown. Install acoustic tiles after wet finishes have been installed and solvents have cured.
- B. Lay out acoustical units symmetrically about center lines of each room or space unless shown otherwise on reflected ceiling plan.
- C. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- D. Perimeter Seal:
 - Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - 2. Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.

E. Existing ceiling:

- 1. Where extension of existing ceilings occur, match existing.
- Where acoustical units are salvaged and reinstalled or joined, use salvaged units within a space. Do not mix new and salvaged units within a space which results in contrast between old and new acoustic units.
- 3. Comply with specifications for new acoustical units for new units required to match appearance of existing units.

3.2 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General:
 - Install metal suspension system for acoustical tile and lay-in panels in accordance with ASTM C636, except as specified otherwise.
 - 2. Use direct or indirect hung suspension system or combination thereof as defined in ASTM C635.
 - 3. Support a maximum area of 1.48 m^2 (16 sf) of ceiling per hanger.
 - Prevent deflection in excess of 1/360 of span of cross runner and main runner.

- 5. Provide extra hangers, minimum of one hanger at each corner of each item of mechanical, electrical and miscellaneous equipment supported by ceiling suspension system not having separate support or hangers.
- 6. Provide not less than 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown,
- 7. Use main runners not less than 1200 mm (48 inches) in length.
- 8. Install hanger wires vertically. Angled wires are not acceptable.
- B. Anchorage to Structure:
 - 1. Concrete:
 - a. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger wire. Install in sides of concrete beams or joists at mid height.
- C. Direct Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - 2. Support main runners by hanger wires attached directly to the structure overhead.
 - 3. Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- D. Indirect Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - 2. Space carrying channels for indirect hung suspension system not more than 1200 mm (4 feet) on center. Space hangers for carrying channels not more than 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.
 - 3. Support main runners by specially designed clips attached to carrying channels.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Install lay-in acoustic panels in exposed grid with not less than 6 mm (1/4 inch) bearing at edges on supports.
 - 1. Install tile to lay level and in full contact with exposed grid.
 - 2. Replace cracked, broken, stained, dirty, or tile not cut for minimum bearing.
- C. Markers:

- 1. Install markers of color code specified to identify the various concealed piping, mechanical, and plumbing systems.
- 2. Attach colored markers to exposed grid on opposite sides of the units providing access.
- 3. Attach marker on exposed ceiling surface of upward access acoustical unit.

3.4 CLEAN-UP AND COMPLETION

- A. Replace damaged, discolored, dirty, cracked and broken acoustical units.
- B. Leave finished work free from defects.

- - - E N D - - -

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the installation of vinyl base.

1.2 RELATED WORK

A. Color and texture: Section 09 06 00, SCHEDULE FOR FINISHESS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Base material manufacturer's recommendations for adhesives.
 - 3. Application and installation instructions.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weather tight and dry storage facility.
- B. Protect material from damage by handling and construction operations before, during, and after installation.

1.6 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): F1861-08.....Resilient Wall Base

PART 2 - PRODUCTS

2.1 GENERAL

Use only products by the same manufacturer and from the same production run.

2.2 RESILIENT BASE

- A. ASTM F1861, 3 mm (1/8 inch) thick, 100 mm (4 inches) high, Thermoplastics, Group 2-layered. Style B-cove.
- B. Use only one type of base throughout.

2.3 ADHESIVES

- A. Use products recommended by the material manufacturer for the conditions of use.
- B. Use low-VOC adhesive during installation. Water based adhesive with low VOC is preferred over solvent based adhesive.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials above 21° C (70 $^{\circ}F),$ for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs, between 21° C and 27° C $(70^{\circ}F$ and $80^{\circ}F)$ for at least 48 hours, before, during, and after installation.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.

3.2 INSTALLATION REQUIREMENTS

- A. The respective manufacturer's instructions for application and installation will be considered for use when approved by the Resident Engineer.
- B. Submit proposed installation deviation from this specification to the Resident Engineer indicating the differences in the method of installation.
- C. The Resident Engineer reserves the right to have test portions of material installation removed to check for non-uniform adhesion and spotty adhesive coverage.

3.3 PREPARATION

- A. Examine surfaces on which material is to be installed.
- B. Fill cracks, pits, and dents with leveling compound.
- C. Level to 3 mm (1/8 inch) maximum variations.
- D. Do not use adhesive for leveling or filling.
- E. Grind, sand, or cut away protrusions; grind high spots.
- F. Clean substrate area of oil, grease, dust, paint, and deleterious substances.
- G. Substrate area dry and cured. Perform manufacturer's recommended bond and moisture test.
- H. Preparation of existing installation:
 - 1. Remove existing base including adhesive.
 - 2. Do not use solvents to remove adhesives.
 - 3. Prepare substrate as specified.

3.4 BASE INSTALLATION

- A. Location:
 - Unless otherwise specified or shown, where base is scheduled, install base over toe space of base of casework, lockers, and where other equipment occurs.
 - 2. Extend base scheduled for room into adjacent closet, alcoves, and around columns.
- B. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - 2. Set base with joints aligned and butted to touch for entire height.
 - Before starting installation, layout base material to provide the minimum number of joints with no strip less than 600 mm (24 inches) length.
 - a. Short pieces to save material will not be permitted.
 - b. Locate joints as remote from corners as the material lengths or the wall configuration will permit.
- C. Form corners and end stops as follows:
 - 1. Score back of outside corner.
 - 2. Score face of inside corner and notch cove.
- D. Roll base for complete adhesion.

3.5 CLEANING AND PROTECTION

- A. Clean all exposed surfaces of base and adjoining areas of adhesive spatter before it sets.
- B. Keep traffic off resilient material for at least 72 hours after installation.
- C. Clean and polish materials in the following order:
 - After two weeks, scrub resilient base materials with a minimum amount of water and a mild detergent. Leave surfaces clean and free of detergent residue. Polish resilient base to a gloss finish.
- D. Where protective materials are removed and immediately prior to acceptance, replace damaged materials and re-clean resilient materials. Damaged materials are defined as having cuts, gouges, scrapes or tears and not fully adhered.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the installation of vinyl tile flooring and accessories.

1.2 RELATED WORK

- A. Color and pattern and location in room finish schedule: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient Base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Resilient material manufacturers recommendations for adhesives, underlayment, primers and polish.
 - 3. Application and installation instructions.
- C. Test Reports:
 - 1. Abrasion resistance: Depth of wear for each tile type and color and volume loss of tile, certified by independent laboratory.
 - 2. Tested per ASTM F510.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weathertight and dry storage facility.
- B. Protect from damage from handling, water, and temperature.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): D4078-02 (2008).....Water Emulsion Floor Finish E648-10....Critical Radiant Flux of Floor Covering Systems Using a Radiant Energy Source

E662-09.....Specific Optical Density of Smoke Generated by Solid Materials E1155-96 (R2008).....Determining Floor Flatness and Floor Levelness Numbers F510-93 (R 2008).....Resistance to Abrasion of Resilient Floor Coverings Using an Abrader with a Grit Feed Method F710-08..... Preparing Concrete Floors to Receive Resilient Flooring F1066-04 (R2010).....Vinyl Composition Floor Tile F1344-10.....Rubber Floor Tile F1700-04 (R2010).....Solid Vinyl Floor Tile C. Resilient Floor Covering Institute (RFCI): IP #2.....Installation Practice for Vinyl Composition Tile (VCT) D. Federal Specifications (Fed. Spec.):

SS-T-312.....Tile Floor: Asphalt, Rubber, Vinyl and Vinyl Composition

PART 2 - PRODUCTS

2.1 GENERAL

- A. Furnish product type, materials of the same production run and meeting following criteria.
- B. Use adhesives, underlayment, primers and polish recommended by the floor resilient material manufacturer.
- C. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E 648.
- D. Smoke density: Less than 450 per ASTM E662.

2.2 VINYL COMPOSITION TILE

- A. ASTM F1066, Composition 1, Class 2 (through pattern), 300 mm (12 inches) square, 3 mm (1/8 inch) thick.
- B. Color and pattern uniformly distributed throughout thickness.

2.3 PLANK VINYL-TILE

A. ASTM F1700, 102 mm x 914 mm (4 by 36 inches), 3 mm (1/8 inch) thick.

2.4 ADHESIVES

- A. Comply with applicable regulations regarding toxic and hazardous materials Green Seal (GS-36) for commercial adhesive.
- B. Use low-VOC adhesive during installation. Water based is preferred over solvent based adhesives.

2.5 PRIMER (FOR CONCRETE SUBFLOORS)

As recommended by the adhesive and tile manufacturer.

2.6 LEVELING COMPOUND (FOR CONCRETE FLOORS)

- A. Provide cementitious products with latex or polyvinyl acetate resins in the mix.
- B. Determine the type of underlayment selected for use by the condition to be corrected.

2.7 POLISH AND CLEANERS

- A. Cleaners RFCI CL-1.
- B. Polish: ASTM D4078.

2.8 EDGE STRIPS

- A. 28 mm (1-1/8 inch) wide unless shown otherwise.
- B. Bevel from maximum thickness to minimum thickness for flush joint unless shown otherwise.
- C. Resilient Edge Strip or Reducer Strip: Fed. Specs. SS-T-312, Solid vinyl.

2.9 SCREWS

Stainless steel flat head screw.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials a minimum of 22 °C (70 °F,) for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs between 21 °C and 27 °C (70 °F and 80 °F), for at least 48 hours, before, during and after installation.
- C. Do not install flooring until building is permanently enclosed and wet construction in or near areas to receive tile materials is complete, dry and cured.

3.2 SUBFLOOR PREPARATION

- A. Verify that concrete slabs comply with ASTM F710. At existing slabs, determine levelness by F-number method in accordance with ASTM E1155. Overall value shall not exceed as follows: FF30/FL20
- B. Correct conditions which will impair proper installation.
- C. Fill cracks, joints and other irregularities in concrete with leveling compound:
 - 1. Do not use adhesive for filling or leveling purposes.

- 2. Do not use leveling compound to correct imperfections which can be corrected by spot grinding.
- Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joints.
- D. Clean floor of oil, paint, dust, and deleterious substances: Leave floor dry and cured free of residue from existing curing or cleaning agents.
- E. Concrete Subfloor Testing: Determine Adhesion and dryness of the floor by bond and moisture tests as recommended by RFCI manual MRP.
- F. Perform additional subfloor preparation to obtain satisfactory adherence of flooring if subfloor test patches allows easy removal of tile.
- G. Prime the concrete subfloor if the primer will seal slab conditions that would inhibit bonding, or if priming is recommended by the tile or adhesive manufacturers.
- H. Preparation of existing installation shall include the removal of existing resilient floor and existing adhesive. Do not use solvents to remove adhesives.

3.3 INSTALLATION

- A. Install in accordance with manufacturer's instructions for application and installation unless specified otherwise.
- B. Mix tile from at least two containers. An apparent line either of shades or pattern variance will not be accepted.
- C. Tile Layout:
 - 1. If layout is not shown on drawings, lay tile symmetrically about center of room or space with joints aligned.
 - 2. No tile shall be less than 150 mm (6 inches) and of equal width at walls.
 - 3. Place tile pattern in the same direction; do not alternate tiles.
- D. Trim tiles to touch for the length of intersections at pipes and vertical projections, seal joints at pipes with waterproof cement.
- E. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - a. Conform to RFC1-TM-6 for joint tightness and for corner intersection unless layout pattern shows random corner intersection.
 - b. More than 5 percent of the joints not touching will not be accepted.
 - 2. Roll tile floor with a minimum 45 kg (100 pound) roller. No exceptions.

- 3. The Resident Engineer may have test tiles removed to check for nonuniform adhesion, spotty adhesive coverage, and ease of removal. Install new tile for broken removed tile.
- F. Installation of Edge Strips:
 - 1. Locate edge strips under center line of doors unless otherwise shown.
 - 2. Set resilient edge strips in adhesive. Anchor metal edge strips with anchors and screws specified.
 - 3. Where tile edge is exposed, butt edge strip to touch along tile edge.
 - 4. Where thin set ceramic tile abuts resilient tile, set edge strip against floor file and against the ceramic tile edge.

3.4 CLEANING AND PROTECTION

- A. Clean adhesive marks on exposed surfaces during the application of resilient materials before the adhesive sets. Exposed adhesive is not acceptable.
- B. Keep traffic off resilient material for a minimum 72 hours after installation.
- C. Clean and polish materials in the following order:
 - 1. For the first two weeks sweep and damp mopped only.
 - After two weeks, scrub resilient materials with a minimum amount of water and a mild detergent. Leave surface clean and free of detergent residue.
 - 3. Apply 5 coats of polish to the floors in accordance with the polish manufacturer's instructions.
- D. When construction traffic occurs over tile, cover resilient materials with reinforced kraft paper properly secured and maintained until removal is directed by Resident Engineer. At entrances and where wheeled vehicles or carts are used, cover tile with plywood, hardboard, or particle board over paper, secured and maintained until removal is directed by Resident Engineer.
- E. When protective materials are removed and immediately prior to acceptance, replace any damage tile, re-clean resilient materials, lightly re-apply polish and buff floors.

3.5 LOCATION

- A. Unless otherwise specified or shown, install tile flooring, on floor under areas where casework, furniture and other equipment occurs, except where mounted in wall recesses.
- B. Extend tile flooring for room into adjacent closets and alcoves.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 09 68 00 CARPETING

PART 1 - GENERAL

1.1 DESCRIPTION

Section specifies carpet, edge strips, adhesives, and other items required for complete installation.

1.2 RELATED WORK

- A. Color and texture of carpet and edge strip: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient wall base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 QUALITY ASSURANCE

- A. Carpet installed by mechanics certified by the Floor Covering Installation Board.
- B. Certify and label the carpet that it has been tested and meets criteria of CRI IAQ Carpet Testing Program for indoor air quality.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Product Data:
 - Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading and flame resistance characteristics for each type of carpet material and installation accessory.
 - Manufacturer's printed installation instructions for the carpet, including preparation of installation substrate, seaming techniques and recommended adhesives and tapes.
 - 3. Manufacturer's certificate verifying carpet containing recycled materials include percentage of recycled materials as specified.
- C. Maintenance Data: Carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods and cleaning cycles.

1.5 DELIVERY AND STORAGE

- A. Deliver carpet in manufacturer's original wrappings and packages clearly labeled with manufacturer's name, brand, name, size, dye lot number and related information.
- B. Deliver adhesives in containers clearly labeled with manufacturer's name, brand name, number, installation instructions, safety instructions and flash points.

C. Store in a clean, dry, well ventilated area, protected from damage and soiling. Maintain storage space at a temperature above 16 degrees C (60 degrees F) for 2 days prior to installation.

1.6 ENVIRONMENTAL REQUIREMENTS

Areas in which carpeting is to be installed shall be maintained at a temperature above 16 degrees C (60 degrees F) for 2 days before installation, during installation and for 2 days after installation. A minimum temperature of 13 degrees C (55 degrees F) shall be maintained thereafter for the duration of the contract. Traffic or movement of furniture or equipment in carpeted area shall not be permitted for 24 hours after installation. Other work which would damage the carpet shall be completed prior to installation of carpet.

1.7 WARRANTY

Carpet and installation subject to terms of "Warranty of Construction" FAR clause 52.246-21, except that warranty period is extended to two years.

1.8 APPLICABLE PUBLICATIONS

- A. Publication listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI): ANSI/NSF 140-10.....Sustainable Carpet Assessment Standard C. American Association of Textile Chemists and Colorists (AATCC): AATCC 16-04.....Colorfastness to Light AATCC 129-10.....Colorfastness to Ozone in the Atmosphere under High Humidities AATCC 134-11.....Electric Static Propensity of Carpets AATCC 165-08.....Colorfastness to Crocking: Textile Floor Conerings-AATCC Crockmeter Method D. American Society for Testing and Materials (ASTM): ASTM D1335-05.....Tuft Bind of Pile Yarn Floor Coverings ASTM D3278-96 (R2004)...Flash Point of Liquids by Small Scale Closed-Cup Apparatus ASTM D5116-10.....Determinations of Organic Emissions from Indoor Materials/Products ASTM D5252-05..... Operation of the Hexapod Tumble Drum Tester ASTM D5417-05..... Operation of the Vettermann Drum Tester ASTM E648-10.....Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source
- E. The Carpet and Rug Institute (CRI):

CRI 104-11.....Installation of Commercial Carpet

PART 2 - PRODUCTS

2.1 CARPET

- A. Physical Characteristics:
 - Carpet free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains and other physical and manufacturing defects.
 - Manufacturers standard construction commercial carpet:
 a. Broadloom; maximum width to minimum use
 - Provide static control to permanently control static build upto less than 3.0 kV when tested at 20 percent relative humidity and 21 degrees C (70 degrees F) in accordance with AATCC 134.
 - 4. Pile Height: Maximum 3.25 mm (0.10 inch).
 - 5. Pile Fiber: Nylon with recycled content 20 percent minimum branded (federally registered trademark).
 - 6. Pile Type: Patterned Loop.
 - 7. Backing materials: Manufacturer's unitary backing designed for gluedown installation using recovered materials.
 - 8. Appearance Retention Rating (ARR): Carpet shall be tested and have the minimum 3.5-4.0 Severe ARR when tested in accordance with either the ASTM D 5252 (Hexapod) or ASTM D 5417 (Vettermann) test methods using the number of cycles for short and long term tests as specified.
 - 9. Tuft Bind: Minimum force of 40 N (10 lb) required to pull a tuft or loop free from carpet backing. Test per ASTM D1335.
 - 10. Colorfastness to Crocking: Dry and wet crocking and water bleed, comply with AATCC 165 Color Transference Chart for colors, minimum class 4 rating.
 - 11. Colorfastness to Ozone: Comply with AATCC 129, minimum rating of 4 on the AATCC color transfer chart.
 - Delamination Strength: Minimum of 440 N/m (2.5 lb/inch) between secondary backing.
 - 13. Flammability and Critical Radiant Flux Requirements:
 - a. Test Carpet in accordance with ASTM E 648.
 - b. Class I: Not less than 0.45 watts per square centimeter.
 - 14. Density: Average Pile Yarn Density (APYD):

a. Minimum APYD 6000.

15. VOC Limits: Use carpet and carpet adhesive that comply with the following limits for VOC content when tested according to ASTM D 5116:

- a. Carpet, Total VOCs: 0.5 mg/sq.m x hr.
- b. Carpet, 4-PC (4-Phenylcyclohexene): 0.05 mg/sq.m x hr.
- c. Carpet, Formaldehyde: 0.05 mg/sq.m x hr.
- d. Carpet, Styrene: 0.4 mg/sq.m x hr.
- e. Adhesive, Total VOCs: 10.00 mg/sq.m x hr.
- f. Adhesive, Formaldehyde: 0.05 mg/sq.m x hr.
- g. Adhesive, 2-Ethyl-1-Hexanol: 3.00 mg/sq.m x hr.
- B. Shall meet gold level of ANSI/NSF 140.
- C. Color, Texture, and Pattern: As specified in Section 09 06 00, SCHEDULE FOR FINISHES.

2.2 ADHESIVE AND CONCRETE PRIMER

- A. Waterproof, resistant to cleaning solutions, steam and water, nonflammable, complies with air-quality standards as specified. Adhesives flashpoint minimum 60 degrees C (140 degrees F), complies with ASTM D 3278.
- B. Seam Adhesives: Waterproof, non-flammable and non-staining.

2.3 SEAMING TAPE

- A. Permanently resistant to carpet cleaning solutions, steam, and water.
- B. Recommended by carpet manufacturer.

2.4 EDGE STRIPS (MOLDING)

- A. Metal:
 - 1. Hammered surface aluminum, pinless, clamp down type designed for the carpet being installed.
 - 2. Floor flange not less than 38 mm (1-/2 inches) wide, face not less than 16 mm (5/8 inch) wide.
 - 3. Finish: Clear anodic coating.
- B. Vinyl Edge Strip:
 - 1. Beveled floor flange minimum 50 mm (2 inches) wide.
 - 2. Beveled surface to finish flush with carpet for tight joint and other side to floor finish.
 - 3. Color to match wall base as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

2.5 LEVELING COMPOUND (FOR CONCRETE FLOORS)

- A. Provide Portland cement bases polymer modifier with latex or polyvinyl acetate resin manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Determine the type of underlayment selected for use by condition to be corrected.

PART 3 - EXECUTION

3.1 SURFACE PREPARATION

- A. Examine surfaces on which carpeting is to be installed.
- B. Clean floor of oil, waxy films, paint, dust and deleterious substances that prevent adhesion, leave floor dry and cured, free of residue from curing or cleaning agents and existing flooring materials.
- C. Correct conditions which will impair proper installation, including trowel marks, pits, dents, protrusions, cracks or joints.
- D. Fill cracks, joints depressions, and other irregularities in concrete with leveling compound.
 - 1. Do not use adhesive for filling or leveling purposes.
 - 2. Do not use leveling compound to correct imperfections which can be corrected by spot grinding.
 - Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joint lines.

3.2 CARPET INSTALLTION

- A. Do not install carpet until work of other trades including painting is complete and dry.
- B. Install in accordance with CRI 104 direct glue down installation.
 - 1. Relax carpet in accordance with Section 6.4.
 - 2. Comply with indoor air quality recommendations noted in Section 6.5.
 - 3. Maintain temperature in accordance with Section 15.3.
- C. Secure carpet to subfloor of spaces with adhesive applied as recommended by carpet manufacturer.
- D. Follow carpet manufacturer's recommendations for matching pattern and texture directions.
- E. Cut openings in carpet where required for installing equipment, pipes, outlets, and penetrations.
 - 1. Bind or seal cut edge of sheet carpet and replace flanges or plates.
 - 2. Use additional adhesive to secure carpets around pipes and other vertical projections.
- G. Broadloom Carpet:
 - 1. Install per CRI 104, Section 8.
 - Lay broadloom carpet lengthwise in longest dimension of space, with minimum seams, uniformly spaced to provide a tight smooth finish, free from movement when subjected to traffic.
 - 3. Use tape-seaming method to join sheet carpet edges. Do not leave visible seams.

3.3 EDGE STRIPS INSTALLATION

- A. Install edge strips over exposed carpet edges adjacent to uncarpeted finish flooring.
- B. Anchor metal strips to floor with suitable fasteners. Apply adhesive to edge strips, insert carpet into lip and press it down over carpet.
- C. Anchor vinyl edge strip to floor with adhesive apply adhesive to edge strip and insert carpet into lip and press lip down over carpet.

3.4 PROTECTION AND CLEANING

- A. Remove waste, fasteners and other cuttings from carpet floors.
- B. Vacuum carpet and provide suitable protection. Do not use polyethylene film.
- C. Do not permit traffic on carpeted surfaces for at least 48 hours after installation. Protect the carpet in accordance with CRI 104.
- D. Do not move furniture or equipment on unprotected carpeted surfaces.
- E. Just before final acceptance of work, remove protection and vacuum carpet clean.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

- A. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 - OPENINGS, Division 10 - SPECIALTIES, Division 11 -EQUIPMENT, Division 12 - FURNISHINGS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 - HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY sections.
- B. Prefinished flush doors with transparent finishes: Section 08 14 00, WOOD DOORS.
- C. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Operable partition to be field finished: Section 10 22 26, OPERABLE PARTITION.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

1.4 DELIVERY AND STORAGE

A. Deliver materials to site in manufacturer's sealed container marked to show following:

- 1. Name of manufacturer.
- 2. Product type.
- 3. Batch number.
- 4. Instructions for use.
- 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological

Exposure Indices (BEIs)

ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)

- C. American National Standards Institute (ANSI): A13.1-07.....Scheme for the Identification of Piping Systems
- D. American Society for Testing and Materials (ASTM): D260-86.....Boiled Linseed Oil
- E. Commercial Item Description (CID): A-A-1555.....Water Paint, Powder (Cementitious, White and Colors) (WPC) (cancelled)

A-A-3120.....Paint, For Swimming Pools (RF) (cancelled)

F. Federal Specifications (Fed Spec):

TT-P-1411A..... Paint, Copolymer-Resin, Cementitious (For

Waterproofing Concrete and Masonry Walls) (CEP)

G. Master Painters Institute (MPI):

No. 45-12.....Interior Primer Sealer

No. 46-12.....Interior Enamel Undercoat

No. 50-12..... Interior Latex Primer Sealer

No. 71-12.....Polyurethane, Moisture Cured, Clear, Flat (PV) No. 79-12.....Marine Alkyd Metal Primer No. 90-12.....Interior Wood Stain, Semi-Transparent (WS) No. 95-12.....Fast Drying Metal Primer No. 138-12....Interior High Performance Latex, MPI Gloss Level 2 (LF) No. 141-12....Interior High Performance Latex (SG) MPI Gloss Level 5 H. Steel Structures Painting Council (SSPC): SSPC SP 1-04 (R2004)....Solvent Cleaning SSPC SP 2-04 (R2004)....Hand Tool Cleaning SSPC SP 3-04 (R2004)....Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Wood Sealer: MPI 31 (gloss) or MPI 71 (flat) thinned with thinner recommended by manufacturer at rate of about one part of thinner to four parts of varnish.
- B. Plastic Tape:
 - Pigmented vinyl plastic film in colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES or specified.
 - 2. Pressure sensitive adhesive back.
 - 3. Widths as shown.
- C. Identity markers options:
 - 1. Pressure sensitive vinyl markers.
 - 2. Snap-on coil plastic markers.
- D. Interior Primer Sealer: MPI 45.
- E. Interior Enamel Undercoat: MPI 46.
- F. Interior Latex Primer Sealer: MPI 50.
- G. Polyurethane, Moisture Cured, Clear, Flat: MPI 71.
- H. Marine Alkyd Metal primer: MPI 79.
- I. Interior Wood Stain, Semi-Transparent (WS): MPI 90.
- J. Fast Drying Metal Primer: MPI 95.
- K. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138.
- L. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141.

2.2 PAINT PROPERTIES

A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives. B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
 - 3. Asbestos: Materials shall not contain asbestos.
 - Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
 - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
 - 6. Use high performance acrylic paints in place of alkyd paints, where possible.
 - 7. VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:

- a. Less than 3 degrees C (5 degrees F) above dew point.
- b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
- 2. Maintain interior temperatures until paint dries hard.
- 3. Do no exterior painting when it is windy and dusty.
- 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
- 5. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.
- 6. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.
 - c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.
- C. Wood:
 - 1. Sand to a smooth even surface and then dust off.
 - 2. Sand surfaces showing raised grain smooth between each coat.
 - 3. Wipe surface with a tack rag prior to applying finish.

- 4. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.
- 5. Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
 - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Zinc-Coated (Galvanized) Metal Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.
- F. Plaster and Gypsum Board:

- Remove efflorescence, loose and chalking plaster or finishing materials.
- 2. Remove dust, dirt, and other deterrents to paint adhesion.
- 3. Fill holes, cracks, and other depressions with CID-A-A-1272A Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Resident Engineer.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by Resident Engineer, except in spaces sealed from existing occupied spaces.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED,

07-01-13

motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.

H. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- E. Metals:
 - Steel and iron: MPI 79 (Marine Alkyd Metal Primer) or MPI 95 (Fast Drying Metal Primer).
 - Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non-Cementitious Galvanized Primer).

F. Gypsum Board:

- 1. Surfaces scheduled to be painted.
- Primer: MPI 50(Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) in bathrooms.

3.6 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation.
 - Ferrous Metal, Galvanized Metal, and Other Metals Scheduled: Apply two coats of MPI 141 Latex, Interior, High Performance, Semi-Gloss (MPI Gloss Level 5).
- C. Gypsum Board:
 - Ceilings: Two coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)).
 - Walls: Two coats of MPI 141 Latex, Interior, High Performance, Semi-Gloss (MPI Gloss Level 5).
- D. Wood:

- 1. Sanding:
 - a. Use 220-grit sandpaper.
 - b. Sand sealers and varnish between coats.
 - c. Sand enough to scarify surface to assure good adhesion of subsequent coats, to level roughly applied sealer and varnish, and to knock off "whiskers" of any raised grain as well as dust particles.
- 2. Sealers:
 - Apply sealers specified except sealer may be omitted where pigmented, penetrating, or wiping stains containing resins are used.
 - b. Allow manufacturer's recommended drying time before sanding, but not less than 24 hours or 36 hours in damp or muggy weather.
 - c. Sand as specified.
- 3. Transparent Finishes on Wood.
 - a. Natural Finish:
 - 1) One coat of sealer.
 - 2) Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat).
 - b. Stain Finish:
 - 1) One coat of MPI 90 (Interior Wood Stain, Semi-Transparent).
 - Use wood stain of type and color required to achieve finish specified. Do not use varnish type stains.
 - 3) One coat of sealer.
 - 4) Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat).

3.7 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. In existing rooms and areas where alterations occur, clean existing stained and natural finished wood retouch abraded surfaces and then give entire surface one coat of MPI 71 (Polyurethane, Moisture Cured, Clear Flat).
- G. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- H. Sand or dull glossy surfaces prior to painting.

I. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.8 PAINT COLOR

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.9 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified under paragraph H, colors.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces.
- G. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED.
- H. Color:
 - Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces.

- 2. Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following:
 - a. WhiteExterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.

 - c. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Interior Locations:
 - a. Apply two coats of Apply two coats of MPI 141 Latex, Interior, High Performance, Semi-Gloss (MPI Gloss Level 5) to following items:
 - Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports.
 - Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards.
 - 3) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.

3.10 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B.
 - Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 3. Painting of ferrous metal and galvanized metal.
 - 4. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.

- b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
- 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
- 3. Concealed surfaces:
 - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
- 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
- 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
- 6. Galvanized metal:
 - a. Except where specifically specified to be painted.
- 7. Metal safety treads and nosings.
- 8. Gaskets.
- 9. Ceilings, walls, columns in interstitial spaces.

3.11 IDENTITY PAINTING SCHEDULE

- A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.
 - Legend may be identified using 2.1 G options or by stencil applications.
 - Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000

mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.

- 3. Locate Legends clearly visible from operating position.
- 4. Use arrow to indicate direction of flow.
- 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
- 6. Legend name in full or in abbreviated form as follows:

6. Legend name in full or in abbreviated form as follows:					
	COLOR OF	COLOR OF	COLOR OF	LEGEND	
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	BBREVIATIONS	
Blow-off		Yellow	Black	Blow-off	
Boiler Feedwater		Yellow	Black	Blr Feed	
A/C Condenser Water Supply		Green	White	A/C Cond Wtr Sup	
A/C Condenser Water Return		Green	White	A/C Cond Wtr Ret	
Chilled Water Supply		Green	White	Ch. Wtr Sup	
Chilled Water Return		Green	White	Ch. Wtr Ret	
Shop Compressed Air		Yellow	Black	Shop Air	
Air-Instrument Controls		Green	White	Air-Inst Cont	
Drain Line		Green	White	Drain	
Emergency Shower		Green	White	Emg Shower	
High Pressure Steam		Yellow	Black	H.P*	
High Pressure Condensate Return		Yellow	Black	H.P. Ret*	
Medium Pressure Steam		Yellow	Black	M. P. Stm*	
Medium Pressure Condensate Return		Yellow	Black	M.P. Ret*	
Low Pressure Steam		Yellow	Black	L.P. Stm*	
Low Pressure Conder	nsate Return	Yellow	Black	L.P. Ret*	
High Temperature Wa	ater Supply	Yellow	Black	H. Temp Wtr Sup	
High Temperature Water Return		Yellow	Black	H. Temp Wtr Ret	
Hot Water Heating Supply		Yellow	Black	H. W. Htg Sup	
Hot Water Heating Return		Yellow	Black	H. W. Htg Ret	
Gravity Condensate Return		Yellow	Black	Gravity Cond Ret	
Pumped Condensate Return		Yellow	Black	Pumped Cond Ret	
Vacuum Condensate F	Return	Yellow	Black	Vac Cond Ret	

Evol Oil Crodo		Discours	White	Evol Oil Creado *			
Fuel Oil - Grade		Brown	White	Fuel Oil-Grade <u>*</u>			
(Diesel Fuel included under Fuel Oil)							
Boiler Water Sampling		Yellow Yellow	Black Black	Sample Chem Feed			
Chemical Feed							
Continuous Blow-Down		Yellow	Black	Cont. B D			
Pumped Condensate		Black		Pump Cond			
Pump Recirculating		Yellow	Black	Pump-Recirc.			
Vent Line		Yellow	Black	Vent			
Alkali		Yellow	Black	Alk			
Bleach		Yellow	Black	Bleach			
Detergent		Yellow	Black	Det			
Liquid Supply		Yellow	Black	Liq Sup			
Reuse Water		Yellow	Black	Reuse Wtr			
Cold Water (Domestic)	White	Green	White	C.W. Dom			
Hot Water (Domestic)							
Supply	White	Yellow	Black	H.W. Dom			
Return	White	Yellow	Black	H.W. Dom Ret			
Tempered Water	White	Yellow	Black	Temp. Wtr			
Ice Water							
Supply	White	Green	White	Ice Wtr			
Return	White	Green	White	Ice Wtr Ret			
Reagent Grade Water		Green	White	RG			
Reverse Osmosis		Green	White	RO			
Sanitary Waste		Green	White	San Waste			
Sanitary Vent		Green	White	San Vent			
Storm Drainage		Green	White	St Drain			
Pump Drainage		Green	White	Pump Disch			
Chemical Resistant Pipe							
Waste		Yellow	Black	Acid Waste			
Vent		Yellow	Black	Acid Vent			
Atmospheric Vent		Green	White	ATV			
Silver Recovery		Green	White	Silver Rec			
Oral Evacuation		Green	White	Oral Evac			
Fuel Gas		Yellow	Black	Gas			
Fire Protection Water							
Sprinkler		Red	White	Auto Spr			
Standpipe		Red	White	Stand			
Sprinkler		Red	White	Drain			

- B. Fire and Smoke Partitions:
 - 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
 - Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition.
 - 4. Use semigloss paint of color that contrasts with color of substrate.

3.12 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 10 11 13 MARKERBOARDS AND TACKBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies markerboards, tackboards, and related items.
- B. Boards may be either factory or field assembled.
- C. Where shown, assemble markerboards with tackboards into a single unit.

1.2 QUALITY ASSURANCE

Boards shall be the products of one manufacturer.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Shop Drawings: Identifying all parts by name and material and showing design, construction, installation, anchorage and relation to adjacent construction.
- C. Manufacturer's Literature and Data:
 - 1. Markerboard
 - 2. Tackboard

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards (ANSI):
 - Z97.1-09.....Safety Glazing Materials Used in Buildings -

Safety Performance Specifications and Methods of Test

C. American Society for Testing and Materials (ASTM):

B221/B221M-08.....Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Shapes and Tubes

C1036-06.....Flat Glass

C1048-04..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass

F104-03(R2009).....Nonmetallic Gasket Materials

- D. Composite Panel Association (CPA):
 - A208.1-09.....Particleboard
 - A135.4-04.....Basic Hardboard
- E. Porcelain Enamel Institute (PEI) 1001-11.....Architectural Porcelain Enamel

PART 2 - PRODUCTS

2.1 MARKERBOARD

Markerboards and tack boards shall consist of a writing or tack surface, snap on aluminum frame, marker tray, grounds and other items specified and shown.

2.2 FABRICATION

- A. Materials:
 - 1. Aluminum, extruded: ASTM B221.
 - 2. Backing: Hardboard, AHBA A135.4 or particleboard, CPA A208.1.
 - 3. Cork: ASTM F104, Type II, mildew resistant, Class 2.
- B. Components:
 - Writing Surface: Factory assembly consisting of face sheet of 24 gauge sheet steel with porcelain enamel board texture finish conforming to PEI 1001, laminated to a hardboard or particleboard backing, 9 mm to 13 mm (3/8 to 1/2-inch) thick, and a 0.13 mm (0.005inch) thick aluminum foil back sheet laminated to back-face.
 - Frames (Trim): Extruded aluminum, 1.5 mm (0.060-inch) thick, snap-on type, approximate face width 44 mm (1-3/4 inch), depth and configuration as required to return to wall and engage clips.
 - 3. Trough: Extruded aluminum, 2.34 mm (0.092-inch) thick, not less than 75 mm (3-inch) projection from writing surface with grooved top surface, closed ends and return to wall surface at underside. Design to be snap-on type with concealed fasteners.
 - 4. Tackboard: Cork face, 6 mm (1/4-inch) thick factory laminated to a hardboard or particleboard backing of thickness required so that the face of the cork will be in the same plane as the face of the writing surface, 6 mm to 9 mm (1/4 to 3/8-inch) thick.
 - 5. Mullions: Snap-on type, same material and face width as frames, designed to finish flush with frame.
 - 6. Grounds: Continuous zinc-coated (galvanized) steel or extruded aluminum members designed to support the board writing surface and clips for snap-on frames, map rail and chalk tray.
 - 7. Clips: Manufacturer's standard as required to support frame, mullions, display rail, and trough.
- C. Boards 3660 mm (12 feet) or less in length shall be in one piece. Joints shall have metal spline, with faces in same plane and edges shall touch along entire length.
- D. Finish exposed aluminum surfaces as follows:
 - AA 45 chemically etched medium matte, with clear anodic coating Class II Architectural, 0.4 mils thick (AA-M12C22A32).

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install units in accordance with the manufacturer's installation instructions, use concealed fasteners.
- B. Inspect surfaces and related construction to receive units. Partitions shall have reinforcing to receive fasteners. Verify type and placement of reinforcement.
- C. Do not proceed with the installation until reinforcement is in place and surfaces are flat.
- D. Assemble units as specified by the manufacturer.

3.2 INSTALLATION OF MARKERBOARD AND TACKBOARD

- A. Mount board with adhesive and blocking pads spaced 16 inches on center each way.
- B. Grounds designed to receive clips for snap-on trim shall be continuous and be secured 300 mm (12 inches) on center. Space clips 300 mm (12 inches) on center.
- C. Miter trim at corners, conceal fasteners. Modify trim as required to conform to surrounding construction details.

- - - E N D - - -

This Page Intentionally Left Blank

SECTION 10 14 00 SIGNAGE

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies interior signage for room numbers, directional signs, code required signs, identification signs and temporary interior signs.

1.2 RELATED WORK

- A. Lighted EXIT signs for egress purposes are specified under Division 26, ELECTRICAL.
- B. Color Finish: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 MANUFACTURER'S QUALIFICATIONS

Signs to be supplied by the following supplier to match the existing sign system.

Valerie Dye

Customer Service Lead 2/90 Sign Systems 5350 Corporate Grove Blvd SE Grand Rapids, MI 49512 Tel: 800.777.4310 x 3323 Fax: 616.656.4300

Email: valeriedye@290signs.com

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 00, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Manufacturer's Literature:
 - 1. Showing the methods and procedures proposed for the concealed anchorage of the signage system to each surface type.
 - Manufacturer's printed specifications, anchorage details, installation and maintenance instructions.
- C. Shop Drawings: Scaled for manufacture and fabrication of sign types. Identify materials, show joints, welds, anchorage, accessory items, mounting and finishes.

1.5 DELIVERY AND STORAGE

- A. Deliver materials to job in manufacturer's original sealed containers with brand name marked thereon. Protect materials from damage.
- B. Package to prevent damage or deterioration during shipment, handling, storage and installation. Maintain protective covering in place and in good repair until removal is necessary.

- C. Deliver signs only when the site and mounting services are ready for installation work to proceed.
- D. Store products in dry condition inside enclosed facilities.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-07.....Aluminum and Aluminum-Alloy Sheet and Plate B221-08....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and tubes.
- C. Federal Specifications (Fed Spec): MIL-PRF-8184F.....Plastic Sheet, Acrylic, Modified. MIL-P-46144C.....Plastic Sheet, Polycarbonate

1.7 MINIMUM SIGN REQUIREMENTS

- A. Permanent Rooms and Spaces:
 - Tactile and Braille Characters, raised minimum 0.793 mm (1/32 in). Characters shall be accompanied by Grade 2 Braille.
 - Type Styles: Characters shall be uppercase and lowercase, Helvetica Medium, Helvetica Medium Condensed and Helvetica Regular.
 - 3. Character Height: Minimum 16 mm (5/8 in) high, Maximum 50 mm (2 in).
 - 4. Symbols (Pictograms): Equivalent written description shall be placed directly below symbol, outside of symbol's background field. Border dimensions of symbol background shall be minimum 150 mm (6 in) high.
 - 5. Finish and Contrast: Characters and background shall be eggshell, matte or other non-glare finish with adequate contrast with background.
 - Mounting Location and Height: As shown. Mounted on wall adjacent to the latch side of the door and to avoid door swing and protruding objects.
- B. Overhead Signs:
 - Type Styles: As shown. Characters shall have a width-to-height ratio between 3:5 and 1:1. Characters shall have a stroke width-to-height ratio of between 1:5 and 1:10.
 - 2. Character Height: minimum 75 mm (3 in) high for overhead signs. As shown, for directional signs.
 - 3. Finish and Contrast: Same as for signs of permanent rooms and spaces.
 - 4. Mounting Location and Height: As shown.

1.8 COLORS AND FINISHES:

Section 09 06 00, SCHEDULE FOR FINSIHES.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Signs of type, size and design shown on the drawings and as specified.
- B. Signs complete with lettering, framing and related components for a complete installation.
- C. Provide graphics items as completed units produced by a single manufacturer, including necessary mounting accessories, fittings and fastenings.
- D. Do not scale drawings for dimensions. Contractor to verify and be responsible for all dimensions and conditions shown by these drawings. Resident Engineer to be notified of any discrepancy in drawing, in field directions or conditions, and/or of any changes required for all such construction details.
- E. The Sign Contractor, by commencing work of this section, assumes overall responsibility, as part of his warranty of work, to assure that assemblies, components and parts shown or required within the work of the section, comply with the Contract Documents. The Contractor shall further warrant: That all components, specified or required to satisfactorily complete the installation are compatible with each other and with conditions of installations.

2.2 PRODUCTS

A. Aluminum:

- 1. Sheet and Plate: ASTM B209.
- 2. Extrusions and Tubing: ASTM B221.
- B. Cast Acrylic Sheet: MIL-PRF-8184F; Type II, class 1, Water white nonglare optically clear. Matt finish water white clear acrylic shall not be acceptable.
- C. Polycarbonate: MIL-P-46144C; Type I, class 1.
- D. Vinyl: 0.1 mm thick machine cut, having a pressure sensitive adhesive and integral colors.

2.3 SIGN STANDARDS

A. Typography:

- 1. Type Style: Helvetica Medium and Helvetica Medium Condensed. Initial caps or all caps as indicated in Sign Message Schedule.
- 2. Arrow: See graphic standards in drawings.
- 3. Letter spacing: See graphic standards on drawings.
- 4. Letter spacing: See graphic standards on drawings.
- 5. All text, arrows, and symbols to be provided in size, colors, typefaces and letter spacing shown. Text shall be a true, clean, accurate reproduction of typeface(s) shown. Text shown in drawings

are for layout purposes only; final text for signs is listed in Sign Message Schedule.

B. Project Colors and Finishes: See Section 09 06 00, SCHEDULE FOR FINISHES.

2.4 SIGN TYPES

- A. General:
 - The interior sign system is comprised of sign types families that are identified by a letter and number which identify a particular group of signs. An additional number identifies a specific type of sign within that family.
 - a. IN indicates a component construction based sign.
- B. Interchangeable Component System:
 - 1. Sign Type Families: 03, 04, 11,14, 15, and 16.
 - Interior sign system capable of being arranged in a variety of configurations with a minimum of attachments, devices and connectors.
 - a. Interchangeable nature of the system shall allow for changes of graphic components of the installed sign, without changing sign in its entirety.
 - b. Component Sign System is comprised of the following primary components:
 - Rail Back utilizing horizontal rails, spaced to allow for uniform, modular sizing of sign types.
 - 2) Rail Insert mounted to back of Copy Panels to allow for attachment to Rail Back.
 - Copy Panels, made of a variety of materials to allow for different graphic needs.
 - 4) End Caps which interlock to Rail Back to enclose and secure changeable Copy Panels.
 - 5) Joiners and Accent Joiners connect separate Rail Backs together.
 - 6) Top Accent Bars which provide decorative trim cap that encloses the top of sign or can connect the sign to a Type 03 Room Number Sign.
 - c. Rail Back, Rail Insert and End Caps in anodized extruded aluminum to allow for tight tolerances and consistent quality of fit and finish.
 - d. Signs in system shall be convertible in the field to allow for enlargement from one size to another in height and width through use of Joiners or Accent Joiners, which connect Rail Back panels together blindly, providing a butt joint between Copy Panels.

Accent Joiners shall connect Rail Backs together with a visible 3 mm (1/8") horizontal rib, flush to the adjacent copy insert surfaces.

- e. Sign configurations shall vary in width from 225 mm (9 inches) to 2050 mm (80 inches), and have height dimensions of 50 mm (2 inches), 75 mm (3 inches), 150 mm (6 inches), 225 mm (9 inches) and 300 mm (12 inches). Height shall be increased beyond 300 mm (12 inches), by repeating height module in full or in part.
- 3. Rail Back functions as internal structural member of sign using 6063T5 extruded aluminum and anodized black.
 - a. Shall accept an extruded aluminum or plastic insert on one sign or on both sides, depending upon sign type.
 - b. Shall be convertible in field to allow for connection to other Rail Back panels, so that additive changes can be made to sign unit.
 - c. Rail shall allow for a variety of mounting devices including wall mounting for screw-on applications, using pressure sensitive tape, freestanding mount, ceiling mount and other mounting devices as needed.
- 4. Rail Insert functions as a mounting device for Copy Panels on to the Rail Back. The Rail Insert mounts to the back of the Copy Panel with adhesive suitable for use with the particular copy insert material.
 - a. Shall allow Copy Panels to slide or snap into the horizontal Rail Back for ease of changeability.
 - b. Shall mount to the back of the Copy Panel with adhesive suitable for use with particular Copy Panel material.
- 5. Copy Panels shall accept various forms of copy and graphics, and attaches to the Rail Back with the Rail Insert. Copy Panels shall be either ABS plastic with integral color or an acrylic lacquer finish; photo polymer; or, acrylic.
 - a. Interchangeable by sliding horizontally from either side of sign, and to other signs in system of equal or greater width or height.
 - b. Cleanable without use of special chemicals or cleaning solutions.
 - c. Copy Insert Materials.
 - 1) ABS Inserts 2.3 mm (.090 inches) extruded ABS plastic core with .07 mm (.003 inches) acrylic cap bonded during extrusion/texturing process. Pressure bonded to extruded Rail Insert using adhesive. Background color is either integral or painted in acrylic lacquer. ABS inserts finished in a chromium industries #HM335RA texture pattern to prevent glare.

- 2) Photo polymer Inserts 3 mm (.125 inches) phenolic photo polymer with raised copy etched to 2.3 mm (.0937 inches), bonded to an ABS plastic or extruded aluminum insert with adhesive. Background color is painted in acrylic enamel.
- 3) Changeable Paper/ Insert Holder Extruded insert holder with integral Rail Insert for connection with structural back panel in 6063T5 aluminum with a black anodized finish. Inserts into holder are paper with a clear 0.7 mm (.030 inches) textured cover. Background color is painted in acrylic lacquer.
- Acrylic 2 mm (.080 inches) non-glare acrylic. Pressure bonded to extruded Rail Insert using adhesive. Background color is painted in acrylic lacquer or acrylic enamel.
- 5) Extruded 6063T5 aluminum with a black anodized finish Insert Holder with integral Rail Insert for connection with Structural Back Panel to hold a 0.7 mm (.030 inches) textured polycarbonate insert and a Sliding Tile which mounts in the Inset Holder and slides horizontally.
- 6) End Caps Extruded using 6063T5 aluminum with a black anodized. End Caps interlock with Rail Back with clips to form an integral unit, enclosing and securing the changeable Copy Panels, without requiring tools for assembly.
 - a) Shall be interchangeable to either end of sign and to other signs in the system of equal height.
 - b) Mechanical fasteners can be added to the End Caps that will secure it to Rail Back to make sign tamper resistant.
- 7) Joiners Extruded using 6063T5 aluminum with a black anodized finish. Rail Joiners connect Rail Backs together blindly, providing a butt joint between Copy Inserts.
- 8) Accent Joiners Extruded using 6063T5 aluminum with a mirror polished finish. Joiner shall connect Rail Backs together with a visible 3 mm (.125 inches) horizontal rib, flush to the adjacent Copy Panel surfaces.
- 9) Top Accent Rail Extruded using 6063T5 aluminum with a mirror polished finish. Rail shall provide 3 mm (.125 inches) high decorative trim cap, which butts flush to adjacent Copy Panel and encloses top of Rail Back and Copy Panel.
- 10) Typography
 - a) Vinyl First Surface Copy (non-tactile) Applied Vinyl copy.
 - b) Subsurface Copy Inserts Textured 1 mm (.030 inches) clear polycarbonate face with subsurface applied Vinyl copy. Face

shall be back sprayed with paint and laminated to an extruded aluminum carrier insert.

- c) Integral Tactile Copy Inserts phenolic photo polymer etched with 2.3 mm (.0937 inches) raised copy.
- d) Silk-screened First Surface Copy (non-tactile) Injection molded or extruded ABS plastic or aluminum insert with first surface applied enamel silk-screened copy.
- C. Sign Type Family 01, 08, 09 and 20:
 - 1. All text and graphics are to be first surface silk-screened.
- D. Sign Type Families 03:
 - Tactile sign is to be made from a material that provides for letters, numbers and Braille to be integral with sign plaque material such as: photosensitive polyamide resin, etched metal, sandblasted phenolic or embossed material. Do not apply letters, numbers and Braille with adhesive.
 - Numbers, letters and Braille to be raised 0.793 mm (.0312 inches) from the background surface. The draft of the letters, numbers and Braille to be tapered, vertical and clean.
 - 3. Braille dots are to conform with standard dimensions for literary Braille; (a) Dot base diameter: 1.5 mm (.059 inches) (b) Inter-dot spacing: 2.3 mm (.090 inches) (c) Horizontal separation between cells: 6.0 mm (.241 inches) (d) Vertical separation between cells: 10.0 mm (.395 inches)
 - Entire assembly is painted in specified color. After painting, apply white or other specified color to surface of the numbers and letters. Entire sign is to have a protective clear coat sealant applied.
 - 5. Complete sign is to have an eggshell finish (11 to 19 degree on a 60 degree glossmeter).
- E. Sign Type Family 04:
 - 1. All text and graphics are to be first surface applied vinyl letters.
 - IN-04: When a Type IN-04 is to be mounted under a Type IN03, a connecting Accent Joiner is to be used to create a singular integrated sign.
- F. Sign Type Family 14, 15, and 16:
 - 1. All text and graphics are to be first surface applied vinyl letters.
 - IN-14.06: When added to top of IN-14.01, IN-14.04, or IN-14.05 a connecting Accent Joiner is to be used to create a singular integrated sign.

- 3. Ceiling mounted signs required mounting hardware on the sign that allows for sign disconnection, removal and reinstallation and reconnection.
- G. Other Manufacture Sign Types:
 - Fire Extinguisher Sign: Three dimensional sign equal to Manufacturer Prinzing Model No. V1FE15A, Fire Extinguisher sign, 6"x9", Red background with White Letters and Graphics. Mount above fire extinguisher cabinet per VA recommendations.
- H. Temporary Interior Signs:
 - 1. Fabricated from 50 kg (110 pound) matte finished white paper cut to 100 mm (4 inch) wide by 300 mm (12 inch) long. Punched 3 mm (.125 inch) hole with edge of hole spaced 13 mm (.5 inch) in from edge and centered on 100 mm (4 inch) side. Reinforce hole on both sides with suitable material that prevents tie form pulling through hole. Ties are steel wire 0.3 mm (0.120 inch) thick attached to tag with twist leaving 150 mm (6 inch) long free ends.
 - Mark architectural room number on sign, with broad felt marker in clearly legible numbers or letters that identify room, corridor or space as shown on floor plans.
 - 3. Install temporary signs to all rooms that have a room, corridor or space number. Attach to door frame, door knob or door pull.
 - a. Doors that do not require signs are: corridor doors in corridor with same number, folding doors or partitions, toilet doors, bathroom doors within and between rooms, closet doors within rooms, communicating doors in partitions between rooms with corridor entrance doors.
 - b. Replace any missing, damaged or illegible signs.

2.5 FABRICATION

- A. Design components to allow for expansion and contraction for a minimum material temperature range of 56 °C (100 °F), without causing buckling, excessive opening of joints or over stressing of adhesives, welds and fasteners.
- B. Form work to required shapes and sizes, with true curve lines and angles. Provide necessary rebates, lugs and brackets for assembly of units. Use concealed fasteners whenever and wherever possible.
- C. Shop fabricate so far as practicable. Joints fastened flush to conceal reinforcement, or welded where thickness or section permits.
- D. Contact surfaces of connected members be true. Assembled so joints will be tight and practically unnoticeable, without use of filling compound.

- E. Signs shall have fine, even texture and be flat and sound. Lines and miters sharp, arises unbroken, profiles accurate and ornament true to pattern. Plane surfaces be smooth flat and without oil-canning, free of rack and twist. Maximum variation from plane of surface plus or minus 0.3 mm (0.015 inches). Restore texture to filed or cut areas.
- F. Level or straighten wrought work. Members shall have sharp lines and angles and smooth sulrfaces.
- G. Extruded members to be free from extrusion marks. Square turns and corners sharp, curves true.
- H. Drill holes for bolts and screws. Conceal fastenings where possible. Exposed ends and edges mill smooth, with corners slightly rounded. Form joints exposed to weather to exclude water.
- I. Finish hollow signs with matching material on all faces, tops, bottoms and ends. Edge joints tightly mitered to give appearance of solid material.
- J. All painted surfaces properly primed. Finish coating of paint to have complete coverage with no light or thin applications allowing substrate or primer to show. Finished surface smooth, free of scratches, gouges, drips, bubbles, thickness variations, foreign matter and other imperfections.
- K. Movable parts, including hardware, are be cleaned and adjusted to operate as designed without binding of deformation of members. Doors and covers centered in opening or frame. All contact surfaces fit tight and even without forcing or warping components.
- L. Pre-assemble items in shop to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for re-assembly and coordinated installation.
- M. No signs are to be manufactured until final sign message schedule and location review has been completed by the Resident Engineer & forwarded to contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Protect products against damage during field handling and installation. Protect adjacent existing and newly placed construction, landscaping and finishes as necessary to prevent damage during installation. Paint and touch up any exposed fasteners and connecting hardware to match color and finish of surrounding surface.
- B. Mount signs in proper alignment, level and plumb according to the sign location plan and the dimensions given on elevation and sign location

drawings. Where otherwise not dimensioned, signs shall be installed where best suited to provide a consistent appearance throughout the project. When exact position, angle, height or location is in doubt, contact Resident Engineer for clarification.

- C. Contractor shall be responsible for all signs that are damaged, lost or stolen while materials are on the job site and up until the completion and final acceptance of the job.
- D. Remove or correct signs or installation work Resident Engineer determines as unsafe or as an unsafe condition.
- E. At completion of sign installation, clean exposed sign surfaces. Clean and repair any adjoining surfaces and landscaping that became soiled or damaged as a result of installation of signs.
- F. Locate signs as shown on the Sign Location Plans.
- G. Certain signs may be installed on glass. A blank glass back up is required to be placed on opposite side of glass exactly behind sign being installed. This blank glass back up is to be the same size as sign being installed.
- H. Contractor will be responsible for verifying that behind each sign location there are no utility lines that will be affected by installation of signs. Any damage during installation of signs to utilities will be the sole responsibility of the Contractor to correct and repair.
- I. Furnish inserts and anchoring devices which must be set in concrete or other material for installation of signs. Provide setting drawings, templates, instructions and directions for installation of anchorage devices which may involve other trades.

- - - END - - -

SECTION 10 21 13 TOILET COMPARTMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies solid polyethylene toilet partitions.

1.2 RELATED WORK

- A. Overhead structural steel supports for ceiling hung pilasters: Section 05 50 00, METAL FABRICATIONS.
- B. Grab bars and toilet tissue holders: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Specified items indicating all hardware and fittings, material, finish, and latching.
- C. Shop Drawings: Construction details at 1/2 scale, showing installation details, anchoring and leveling devices.
- D. Manufacturer's certificate, attesting that zinc-coatings conform to specified requirements.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.): FF-B-575C.....Bolt, Hexagon and Square
- C. Code of Federal Regulations (CFR): 40 CFR 247.....Comprehensive Procurement Guidelines for Products Containing Recovered Materials
- D. Commercial Item Descriptions (CID): A-A-1925.....Shield, Expansion (Nail Anchors) A-A-60003.....Partitions, Toilet, Complete

PART 2 - PRODUCTS

2.1 TOILET PARTITIONS:

- A. Solid polyethylene: water resistant; graffiti resistant; non-absorbent; contain a minimum 30 percent post consumer recycled plastic; Class C flame spread rating.
- B. Conform to Fed. CID A-A-60003, except as modified herein.
- C. Fabricate to dimensions shown or specified.
- D. Color to be selected by Architect from manufactures standard colors.

- E. Toilet Enclosures:
 - 1. Type 1, Style B (Ceiling hung).
 - 2. Reinforce panels shown to receive toilet tissue holders or grab bars.
 - 3. Upper pivots and lower hinges adjustable to hold doors open 30 degrees.
 - 4. Latching devices and hinges for handicap compartments shall comply with ADA requirements.
 - 5. Keeper:
 - a. U-slot to engage bar of throw latch.
 - b. Combined with rubber bumper stop.
 - 6. Wheelchair Toilets:
 - a. Upper pivots and lower hinges to hold out swinging doors in closed position.
 - b. Provide U-type doors pulls, approximately 100 mm (four inches) long on pull side.

2.2 FASTENERS

- A. Partition Fasteners: CID A-A-60003.
- B. Use expansion bolts, CID A-A-60003, for anchoring to solid masonry or concrete.
- C. Use toggle bolts, CID A-A-60003, for anchoring to hollow masonry or stud framed walls.
- D. Use steel bolts FS-B-575, for anchoring pilasters to overhead steel supports.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Install in rigid manner, straight, plumb and with all horizontal lines level.
 - 2. Conceal evidence of drilling, cutting and fitting in finish work.
 - 3. Use hex-bolts for through-bolting.
 - 4. Adjust hardware and leave in freely working order.
 - 5. Clean finished surfaces and leave free of imperfections.
- B. Panels and Pilasters:
 - Support panels and pilaster abutting building walls near top and bottom by stirrup supports secured to partitions with through-bolts.
 - 2. Secure stirrups to walls with two suitable anchoring devices for each stirrup.
 - Secure panels to faces of pilaster near top and bottom with stirrup supports, through-bolted to panels and machine screwed to each pilaster.

4. Secure edges of panels to edges of pilasters near top and bottom with "U" shaped brackets.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 10 26 00 WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies handrail/wall guard combinations, end wall corner guards, high impact wall covering and wall covering trim.

1.2 RELATED WORK

- A. Armor plates and kick plates not specified in this section: Section 08 71 00, DOOR HARDWARE.
- B. Color and texture of resilient material: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Show design and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Handrail/Wall Guard Combinations.
 - 2. End Wall Guards.
 - 3. High Impact Wall Covering and Trim.
- D. Test Report: Showing that resilient material complies with specified fire and safety code requirements.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers marked with the name and brand, or trademark of the manufacturer.
- B. Protect from damage from handling and construction operations before, during and after installation.
- C. Store in a dry environment of approximately 21° C (70 degrees F) for at least 48 hours prior to installation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes D256-06.....Impact Resistance of Plastics

D635-06.....Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position

E84-09.....Surface Burning Characteristics of Building Materials

- C. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- D. National Fire Protection Association (NFPA): 80-10.....Standard for Fire Doors and Windows
- E. Society of American Automotive Engineers (SAE): J 1545-05.....Instrumental Color Difference Measurement for Exterior Finishes.
- F. Underwriters Laboratories Inc. (UL): Annual Issue.....Building Materials Directory

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Stainless Steel: ASTM A167, Type 302B.
- B. Aluminum Extruded: ASTM B221, Alloy 6063, Temper T5 or T6.
- C. Resilient Material:
 - 1. Extruded and injection molded acrylic vinyl or extruded polyvinyl chloride meeting following requirements:
 - a. Minimum impact resistance of 1197 ps (25 ft lbs per sq.ft) when tested in accordance with ASTM D256 (Izod impact, ft.lbs. per inch notch).
 - b. Class 1 fire rating when tested in accordance with ASTM E84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less.
 - c. Rated self extinguishing when tested in accordance with ASTM D635.
 - d. Material shall be labeled and tested by Underwriters Laboratories or other approved independent testing laboratory.
 - e. Integral color with all colored components matched in accordance with SAE J 1545 to within plus or minus 1.0 on the CIE-LCH scales.
 - f. Same finish on exposed surfaces.

2.2 CORNER GUARDS

A. Resilient, Shock-Absorbing End-Wall Corner Guards: Flush Mounted, 2"(51mm) wing, .060"(1.5mm) rigid vinyl cover, .070"(1.8mm) continuous aluminum retainer. Extend from floor to ceiling height.

2.3 WALL GUARDS AND HANDRAILS

A. Resilient Wall Guards and Handrails:

- Handrail: Snap-on covers of resilient material, minimum 2 mm (0.078inch) thick, shall be free-floated on a continuous, extruded aluminum retainer, minimum 1.8 mm (0.072-inch) thick, anchored to wall at maximum 760 mm (30 inches) on center. 6 1/4" high profile with 1 1/2" diameter top with 2 1/2" wide accent strip, InPro Corporation model 1255 or equal.
- Provide handrails with prefabricated end closure caps, inside and outside corners, concealed splices, cushions, mounting hardware and other accessories as required. End caps and corners shall be field adjustable to assure close alignment with handrails and wall guards. Screw or bolt closure caps to aluminum retainer.

2.4 HIGH IMPACT WALL COVERING AND TRIM

- A. Fabricate from vinyl acrylic or polyvinyl chloride resilient material minimum 1.0mm (0.04 inch) thick designed for interior use. Provide wall covering sheet with pebblette texture and pattern per section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide 6" high x 1/2" thick horizontal top cap trim with recess for sheet material, 4" wide x 3/8" thick inside corner trim with mitered edge and 4" wide x 3/8" thick outside corner trim with mitered edge.
- C. Coordinate with guard rail protection material and supplier for proper fit and installation.
- D. Provide adhesive as recommended by the wall covering manufacturer.

2.5 FASTENERS AND ANCHORS

- A. Provide fasteners and anchors as required for each specific type of installation.
- B. Where type, size, spacing or method of fastening is not shown or specified, submit shop drawings showing proposed installation details.

2.6 FINISH

- A. In accordance with NAAMM AMP 500 series.
- B. Aluminum:
 - Concealed aluminum: Mill finish as fabricated, uniform in color and free from surface blemishes.
- C. Stainless Steel: NAAMM finish Number 4.
- D. Resilient Material: Embossed texture and color in accordance with SAE J 1545 and as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

PART 3 - INSTALLATION

3.1 RESILIENT CORNER GUARDS

Install corner guards on walls in accordance with manufacturer's instructions.

3.2 RESILIENT HANDRAIL AND RESILIENT WALL GUARDS

Secure guards to walls with mounting cushions, brackets and fasteners in accordance with manufacturer's details and instructions.

3.3 HIGH IMPACT WALL COVERING

- A. Surfaces to receive protection shall be clean, smooth and free of obstructions.
- B. Apply with adhesive in controlled environment according to manufacturer's recommendations.
- C. Apply trim in accordance with manufacturer's written instructions.

- - - E N D - - -

SECTION 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies manufactured items usually used in dressing rooms, toilets, locker rooms and at sinks in related spaces.
- B. Items Specified:
 - 1. Paper towel dispenser.
 - 2. Toilet tissue dispenser.
 - 3. Grab Bars.
 - 4. Clothes hooks, robe or coat.
 - 5. Metal framed mirror.
 - 6. Soap dispenser.
 - 7. Mop racks.
 - 8. Stainless steel shelves.
 - 9. Baby changing stations.
 - 10. Sharps containers.
 - 11. Sanitary napkin disposals.
 - 12. Sanitary napkin dispenser.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. All accessories specified.
 - 2. Show type of material, gages or metal thickness in inches, finishes, and when required, capacity of accessories.

1.3 QUALITY ASSURANCE

- A. Each product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each accessory type shall be the same and be made by the same manufacturer.
- C. Each accessory shall be assembled to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.4 PACKAGING AND DELIVERY

A. Pack accessories individually to protect finish.

- B. Deliver accessories to the project only when installation work in rooms is ready to receive them.
- C. Deliver inserts and rough-in frames to site at appropriate time for building-in.
- D. Deliver products to site in sealed packages of containers; labeled for identification with manufacturer's name, brand, and contents.

1.5 STORAGE

- A. Store products in weathertight and dry storage facility.
- B. Protect from damage from handling, weather and construction operations before, during and after installation in accordance with manufacturer's instructions.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

в.	. American Society for Testing and Materials (ASTM):	
	A167-99(R2009)Stainless and Heat-Resisting Chromium-Nick	
		Steel Plate, Sheet and Strip.
	A176-99(R2009)	.Stainless and Heat-Resisting Chromium Steel
		Plate, Sheet, and Strip
	A269-10	.Seamless and Welded Austenitic Stainless Steel
		Tubing for General Service
	A312/A312M-09	.Seamless and Welded Austenitic Stainless Steel
		Pipes
	A653/A653M-10	.Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
		Iron Alloy-Coated (Galvannealed) by the Hot-Dip
		Process
	B221-08	.Aluminum and Aluminum-Alloy Extruded Bars, Rods,
	B221-08	.Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes
		Wire, Shapes, and Tubes
		Wire, Shapes, and Tubes .Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium
	B456-03(R2009)	Wire, Shapes, and Tubes .Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium
	B456-03(R2009)	Wire, Shapes, and Tubes .Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium .Flat Glass
	B456-03(R2009) C1036-06 C1048-04	Wire, Shapes, and Tubes .Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium .Flat Glass .Heat-Treated Flat Glass-Kind HS, Kind FT Coated
	B456-03(R2009) C1036-06 C1048-04	Wire, Shapes, and Tubes .Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium .Flat Glass .Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass
	B456-03(R2009) C1036-06 C1048-04	Wire, Shapes, and Tubes .Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium .Flat Glass .Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass .Rate of Burning and/or Extent and Time of
	B456-03(R2009) C1036-06 C1048-04 D635-10	Wire, Shapes, and Tubes Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium Flat Glass Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass Rate of Burning and/or Extent and Time of Burning of Self Supporting Plastics in a
	B456-03(R2009) C1036-06 C1048-04 D635-10	<pre>Wire, Shapes, and Tubes .Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium .Flat Glass .Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass .Rate of Burning and/or Extent and Time of Burning of Self Supporting Plastics in a Horizontal Position</pre>

D3453-07.....Flexible Cellular Materials - Urethane for Furniture and Automotive Cushioning, Bedding, and Similar Applications

D3690-02(R2009).....Vinyl-Coated and Urethane-Coated Upholstery Fabrics

C. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual

D. American Welding Society (AWS): D10.4-86 (R2000).....Welding Austenitic Chromium-Nickel Stainless Steel Piping and Tubing

E. Federal Specifications (Fed. Specs.): A-A-3002......Mirrors, Glass FF-S-107C (2)....Screw, Tapping and Drive FF-S-107C....Screw, Tapping and Drive. WW-P-541E(1).....Plumbing Fixtures (Accessories, Land Use) Detail Specification

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum: ASTM B221, alloy 6063-T5 and alloy 6463-T5.
- B. Stainless Steel:
 - Plate or sheet: ASTM A167, Type 302, 304, or 304L, except ASTM A176 where Type 430 is specified, 0.0299-inch thick unless otherwise specified.
 - 2. Tube: ASTM A269, Alloy Type 302, 304, or 304L.
- C. Stainless Steel Tubing: ASTM A269, Grade 304 or 304L, seamless or welded.
- D. Stainless Steel Pipe: ASTM A312; Grade TP 304 or TP 304L.
- E. Steel Sheet: ASTM A653, zinc-coated (galvanized) coating designation G90.
- F. Glass:
 - 1. ASTM C1036, Type 1, Class 1, Quality q2, for mirrors, and for mirror doors in medicine cabinets.
 - 2. ASTM C1036, Type 1 Class 1 Quality q3, for shelves in medicine cabinets.
 - 3. ASTM C1048, Kind FT, Condition A, Type 1, Class 1 (use in Mental Health and Behavior Nursing Unit Psychiatric Patient Areas and Security Examination Rooms where mirrors and glass are specified).
- G. Foam Rubber: ASTM D3453, Grade BD, Type 2.
- H. Vinyl Covering: ASTM D3690, Vinyl coated fabric, Class A.
- I. Plywood: PS1, Grade CD.

2.2 FASTENERS

- A. Exposed Fasteners: Stainless steel or chromium plated brass, finish to match adjacent surface.
- B. Concealed Fasteners: Steel, hot-dip galvanized (except in high moisture areas such as showers or bath tubs use stainless steel).
- C. Toggle Bolts: For use in hollow masonry or frame construction.
- D. Hex bolts: For through bolting on thin panels.
- E. Expansion Shields: Lead or plastic as recommended by accessory manufacturer for component and substrate for use in solid masonry or concrete.
- F. Screws:
 - 1. ASME B18.6.4.
 - 2. Fed Spec. FF-S-107, Stainless steel Type A.

2.3 FINISH

- A. In accordance with NAAMM AMP 500 series.
- B. Anodized Aluminum:
 - 1. AA-C22A41 Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick.
- C. AA-M32 Mechanical finish, medium satin.
 - 1. Chromium Plating: ASTM B456, satin or bright as specified, Service Condition No. SC2.
 - 2. Stainless Steel: NAAMM AMP 503, finish number 4.
 - 3. Ferrous Metal:
 - a. Shop Prime: Clean, pretreat and apply one coat of primer and bake.
 - b. Finish: Over primer apply two coats of alkyd or phenolic resin enamel, and bake.
 - 4. Nylon Coated Steel: Nylon coating powder formulated for a fluidized bonding process to steel to provide a hard smooth, medium gloss finish, not less than 0.3 mm (0.012-inch) thick, rated as selfextinguishing when tested in accordance with ASTM D635.

2.4 FABRICATION - GENERAL

- A. Welding, AWS D10.4.
- B. Grind dress, and finish welded joints to match finish of adjacent surface.
- C. Form exposed surfaces from one sheet of stock, free of joints.
- D. Provide steel anchors and components required for secure installation.
- E. Form flat surfaces without distortion. Keep exposed surfaces free from scratches and dents. Reinforce doors to prevent warp or twist.
- F. Isolate aluminum from dissimilar metals and from contact with building materials as required to prevent electrolysis and corrosion.

- G. Hot-dip galvanized steel, except stainless steel, anchors and fastening devices.
- H. Shop assemble accessories and package with all components, anchors, fittings, fasteners and keys.
- I. Key items alike.
- J. Provide templates and rough-in measurements as required.
- K. Round and deburr edges of sheets to remove sharp edges.

2.5 PAPER TOWEL DISPENSERS

A. Provided by owner, installed by contractor.

2.6 TOILET TISSUE DISPENSERS

A. Provided by owner, installed by contractor.

2.7 GRAB BARS

- A. Fed. Spec WW-P-541/8B, Type IV, bars, surface mounted, Class 2, grab bars and ASTM F446.
- B. Fabricate of stainless steel: Grab bars, flanges, mounting plates, supports, screws, bolts, and exposed nuts and washers.
- C. Concealed mount, except grab bars mounted on toilet partitions.
- D. Bars:
 - Fabricate from 38 mm (1-1/2 inch) outside diameter tubing.
 a. Stainless steel, minimum 1.2 mm (0.0478 inch) thick.
 - 2. Fabricate in one continuous piece with ends turned toward walls.
 - 3. Continuous weld intermediate support to the grab bar.
- E. Flange for Concealed Mounting:
 - Minimum of 2.65 mm (0.1046 inch) thick, approximately 75 mm (3 inch) diameter by 13 mm (1/2 inch) deep, with provisions for not less than three set screws for securing flange to back plate.
 - 2. Insert grab bar through center of the flange and continuously weld perimeter of grab bar flush to back side of flange.

2.8 CLOTHES HOOKS-ROBE OR COAT

- A. Fabricate hook units either of chromium plated brass with a satin finish, or stainless steel, using 6 mm (1/4 inch) minimum thick stock, with edges and corners rounded smooth to the thickness of the metal, or 3 mm (1/8 inch) minimum radius.
- B. Fabricate each unit as a double hook on a single shaft, integral with or permanently fastened to the wall flange, provided with concealed fastenings.

2.9 METAL FRAMED MIRRORS

- A. Fed. Spec. A-A-3002 metal frame; chromium finished steel, anodized aluminum or stainless steel, type 302 or 304.
- B. Mirror Glass:

- 1. Minimum 6 mm (1/4 inch) thick.
- 2. Set mirror in a protective vinyl glazing tape.
- C. Frames:
 - Channel or angle shaped section with face of frame not less than 9 mm (3/8 inch) wide. Fabricate with square corners.
 - Use either 0.9 mm (0.0359 inch) thick stainless steel, chrome finished steel, or extruded aluminum, with clear anodized finish 0.4 mils thick.
 - 3. Filler:
 - a. Where mirrors are mounted on walls having ceramic tile wainscots not flush with wall above, provide fillers at void between back of mirror and wall surface.
 - b. Fabricate fillers from same material and finish as the mirror frame, contoured to conceal the void behind the mirror at sides and top.
- D. Back Plate:
 - Fabricate backplate for concealed wall hanging of either zinc-coated, or cadmium plated 0.9 mm (0.036 inch) thick sheet steel, die cut to fit face of mirror frame, and furnish with theft resistant concealed wall fastenings.
 - Use set screw type theft resistant concealed fastening system for mounting mirrors.
- E. Mounting Bracket:
 - 1. Designed to support mirror tight to wall.
 - 2. Designed to retain mirror with concealed set screw fastenings.

2.10 SOAP DISPENSER

A. Provided by owner, installed by contractor.

2.11 MOP RACKS

- A. Minimum 1.0M (40 inches) long with five holders.
- B. Clamps:
 - Minimum of 1.3 mm (0.050-inch) thick stainless steel bracket retaining channel with a hard rubber serrated cam; pivot mounted to channel.
 - Clamps to hold handles from 13 mm (1/2-inch) minimum to 32 mm (1-1/4 inch) maximum diameter.
- C. Support:
 - Minimum of 1 mm (0.0375 inch) thick stainless steel hat shape channel to hold clamps away from wall as shown.
 - 2. Drill wall flange for 3 mm (1/8 inch) fasteners above and below clamp locations.

- D. Secure clamps to support with oval head machine screws or rivets into continuous reinforcing back of clamps.
- E. Finish on stainless Steel: AMP 503-No. 4.

2.12 STAINLESS STEEL SHELVES

- A. Shelves:
 - Fabricate shelves of 1.2 mm (0.0478-inch) thick stainless steel sheet to size 6"D x 18"W.

2.13 BABY CHANGING STATION

A. Provide surface mounted baby changing station, complying with ASTM F2285 static load performance requirements. Construct of high-density polyethylene with Microban Antimicrobial additive. Station to be ADA compliant with proper installation. Provide concealed pneumatic cylinder and hinge structure to provide controlled, slow opening and closing of bed. Provide reinforced full-length steel-on-steel hinge mechanism. Unit to include child protection straps, diaper bag hooks and two built-in liners dispensers that will hold approximately 40 sanitary liners.

2.14 SHARPS CONTAINERS

A. Provided by owner, installed by contractor.

2.15 SANITARY NAPKIN DISPOSAL AND DISPENSER

- A. Semi-recessed mounted stainless steel sanitary napkin dispenser and surface mounted stainless steel sanitary napkin disposal.
 - 1. Fabricate of 22 gauge stainless steel with exposed surfaces in satin finish. All welded construction.
 - 2. Napkin dispenser dispensing mechanism shall be convertible in field for free operation.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Before starting work notify Resident Engineer in writing of any conflicts detrimental to installation or operation of units.
- B. Verify with the Resident Engineer the exact location of accessories.

3.2 INSTALLATION

- A. Set work accurately, in alignment and where shown. Items shall be plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Toggle bolt to steel anchorage plates in frame partitions or hollow masonry. Expansion bolt to concrete or solid masonry.
- C. Install accessories in accordance with the manufacturer's printed instructions and ASTM F446.

- E. Install accessories in a manner that will permit the accessory to function as designed and allow for servicing as required without hampering or hindering the performance of other devices.
- F. Align mirrors, dispensers and other accessories even and level, when installed in battery.
- G. Install accessories to prevent striking by other moving, items or interference with accessibility.

3.3 CLEANING

After installation, clean as recommended by the manufacturer and protect from damage until completion of the project.

- - - E N D - - -

SECTION 10 44 13 FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 DESCRIPTION

This section covers recessed fire extinguisher cabinets.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Fire extinguisher cabinet including installation instruction and rough opening required.

1.3 APPLICATION PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): D4802-10.....Poly (Methyl Methacrylate) Acrylic Plastic Sheet

PART 2 - PRODUCTS

2.1 FIRE EXTINGUISHER CABINET

- A. Recessed type with flat trim.
- B. Size to accommodate a 2 $\frac{1}{2}$ gallon pressurized water extinguisher, 27" H x 12" W x 8" D minimum inside dimensions.

2.2 FABRICATION

- A. Form body of cabinet from 0.9 mm (0.0359 inch) thick sheet steel.
- B. Fabricate door and trim from 1.2 mm (0.0478 inch) thick sheet steel with all face joints fully welded and ground smooth.
 - Glaze doors with 6 mm (1/4 inch) thick ASTM D4802, clear acrylic sheet, Category B-1, Finish 1.
 - 2. Design doors to open 180 degrees.
 - 3. Provide continuous hinge, pull handle, and adjustable roller catch.

2.3 FINISH

A. Finish with baked-on semigloss white enamel.

PART 3 - EXECUTION

- A. Install fire extinguisher cabinets in prepared openings and secure in accordance with manufacturer's instructions.
- B. Install cabinet so that bottom of cabinet is 975 mm (39 inches) above finished floor.

- - - E N D - - -

THIS PAGE INTENTIONALLY BLANK

SECTION 12 24 00 WINDOW SHADES

PART 1 - GENERAL

1.1 DESCRIPTION

Cloth shades are specified in this section. Window shades shall be furnished complete, including brackets, fittings and hardware.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data; showing details of construction and hardware for:

Cloth and window shades

- C. Samples:
 - 1. Shade cloth, samples for color selection to match existing shades, showing color, finish and texture.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced to in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.): AA-V-00200B.....Venetian Blinds, Shade, Roller, Window, Roller, Slat, Cord, and Accessories C. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip B221/B221M-08.....Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes D635-10.....Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position D648-07.....Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position D1784-08.....Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds

PART 2 - PRODUCTS

2.1 MATERIALS

Similar in function and appearance to Hunter Douglas Contract Roller Shades, cloth as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.

- A. FABRICS: Inherently anti-static, flame retardant, fade and stain resistant. 51% Acrylic, 42% Fiberglass, 7% Titanium Oxide & cotton flocked backing, 0% openness.
- B. CONTROL SYSTEM: Adjustment-free continuous qualified #10 stainless steel ball chain ((90-lb. test)) and pulley clutch operating system. Clutch will develop no more than ½ pound drag for ease of lifting. Glass reinforced polyester thermopolymer (PBT) plastic components conforming to military specification MIL M-24519.
- C. ROLLER: Circular-shaped painted extruded aluminum tubes, locking into place the clutch & end plug.
- D. END PLUG: Heat stabilized fiber reinforced plastic outside sleeve and center shaft provide bearing surfaces on which the roller rides ensuring smooth, wear resistant operation.
- E. BOTTOM ROD: Extruded aluminum weight in a sealed pocket hem bar.
- F. MOUNTING HARDWARE: Manufacturer's standard .07" nickel-plated, C1008/1010 cold rolled steel universal brackets including end plug bracket with lock down retainer device.
- G. Extruded Aluminum: ASTM B221/B221M.

2.2 FASTENINGS

Zinc-coated or cadmium plated metal, aluminum or stainless steel fastenings of proper length and type. Except as otherwise specified, fastenings for use with various structural materials shall be as follows:

Type of Fastening	Structural Material
Wood screw	Wood
Tap screw	Metal
Case-hardened, self- tapping screw	Sheet Metal
Screw or bolt in expansion shields	Solid masonry
Toggle bolts	Hollow blocks, wallboard and plaster

2.3 FABRICATION

A. Fabricate cloth shades to fit measurements of finished openings obtained at site.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Cloth Window Shades: Mount window shades in accordance with manufacturer's written installation directions.
 - Locate rollers in level position as high as practicable at heads of windows to prevent infiltration of light over rollers.
 - Where extension brackets are necessary, on mullions or elsewhere, for alignment of shades, provide metal lugs, and rigidly anchor lugs and brackets.
 - 3. Place brackets and rollers so that shades will not interfere with window hardware.
 - 4. Shade installation methods not specifically described, are subject to approval of Resident Engineer.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 21 00 02 FIRE SUPPRESSION COORDINATION DRAWINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and Division-1 Specification sections, apply to work specified in this section.

1.2 SUBMITTALS

- A. Refer to Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, for submittal procedures.
- B. Submit completed coordinated documents for review by Architect and Engineer.

1.3 COORDINATION DRAWINGS

- A. The Fire Protection Subcontractor shall prepare a complete set of three dimensional CAD generated background drawings at a scale not less than 3/8 inch equals 1'-0", showing structure, owner furnished equipment, etc., and other information as needed for coordination. The contractor shall show fire protection piping and equipment layout thereon. These will be the Coordination Drawings.
- B. All firewalls and smoke partitions must be highlighted on the coordination drawings for appropriate coordination.
- C. The main paths of egress and for equipment removal, from main mechanical and electrical rooms must be clearly shown on the coordination drawings.
- D. Illustrate clear maintenance access, coil pull, and code required electrical clearance for all equipment.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

- **3.1** The successful bidder shall include work required to install systems coordinated with existing systems, including necessary modifications to existing. Contractor shall include in coordination drawings the necessary survey work to detail routing of existing systems to finalize routing of new work.
- **3.2** Electronic coordination drawings shall be distributed sequentially to each specialty trade. Each of the below specialty trades shall add its work to these background drawings with appropriate elevations and grid dimensions. Specialty trade information is required for the entire building. Drawings shall indicate horizontal and vertical dimensions, to avoid interference with structural framing, ceilings, partitions, and other services.
 - A. Specialty Trades:
 - 1. Plumbing System.

- 2. HVAC Piping and Associated Control System.
- 3. Electrical.
- 4. Sheet Metal Work.
- 5. Sprinkler System.
- B. Each specialty trade shall sign and date each coordination drawing. Return drawings to the Fire Protection Subcontractor, who shall route them sequentially to all specialty trades.
- C. Where conflicts occur with placement of materials of various trades, the Fire Protection Subcontractor will be responsible to coordinate the available space to accommodate all trades. Any resulting adjustments shall be initialed and dated by the specialty trade. The Fire Protection Subcontractor shall then final date and sign each drawing. If he cannot resolve conflicts, the decision of the General Contractor shall be final.
- D. A Subcontractor who fails to promptly review and incorporate his work on the drawings shall assume full responsibility of any installation conflicts affecting his work and of any schedule ramifications.
- E. Fire Protection Subcontractor shall make three dimensional electronic drawings, in PDF and Navisworks format, of all coordination drawings. Fabrication of any Mechanical, Electrical, Plumbing or Fire Protection systems shall not start until copies of completed coordination drawings are received by the Architect/Engineer and have been reviewed.
- F. Review of coordination drawings shall not diminish responsibility under this Contract for final coordination of installation and maintenance clearances of all systems and equipment with Architectural, Structural, Mechanical, Electrical and other work.
- G. After Approval:
 - After written approval of coordination drawings, the method used to resolve interferences not previously identified shall be as defined above.
 - All changes to approved coordination drawings shall be approved in writing by the Architect/Engineer prior to start of work in affected areas.
- H. Distribution of Coordination Drawings:
 - 1. The Fire Protection Subcontractor shall provide the following distribution of documents:

- a. One set of Coordination Drawings in electronic PDF and Navisworks format to each specialty trade, and affected Contractor and General Contractor for their use.
- b. One full size hard copy of each Coordination Drawing to Owner.
- 2. Coordination Drawings include but are not necessarily limited to new and existing for:
 - a. Structure.
 - b. Equipment.
 - c. Partition/room layout.
 - d. Ceiling tile and grid.
 - e. Light fixtures.
 - f. Access panels.
 - g. Sheet metal, heating coils, boxes, grilles, diffusers, etc.
 - h. All piping and valves.
 - i. Smoke and fire dampers.
 - j. Soil, waste and vent piping.
 - k. Domestic water piping.
 - 1. Medical gas piping.
 - m. Roof drain piping.
 - n. Reverse osmosis piping.
 - Major electrical conduit runs, panelboards, feeder conduit and racks of branch conduit.
 - p. Above ceiling miscellaneous metal.
 - q. Sprinkler piping and heads.
 - r. Heat tracing of piping.

END OF SECTION

INTENTIONALLY LEFT BLANK

SECTION 21 05 02 FIRE SUPPRESSION DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions, Special Conditions, Division-1 Specification sections, apply to work specified in this section.

1.2 JOB CONDITIONS

- A. Perform all demolition as needed to accomplish new work.
- B. Refer to Demolition Section of specifications and to the Drawings for areas and equipment being remodeled.
- C. This Contractor is responsible for all charges, fees etc. incurred as a result of the fire protection portion of the demolition.
- D. This contractor shall maintain fire protection to spaces adjacent to area of work including but not limited to construction phases.
- E. Prior to demolition or alteration of structures, the following shall be accomplished:
 - Coordinate sequencing with Owner and other Contractors a minimum of 10 days prior to work.
 - 2. Coordinate means to separate construction zones from non-renovated zones to prevent the spread of dust, fumes and debris.
 - 3. Except as noted otherwise, remove from the premises, all materials and equipment removed in the demolition work.
 - 4. Equipment noted to be removed and turned over to the Owner, shall be delivered to the Owner at a place and time he so designates.
 - 5. Where the materials are to be turned over to the Owner or reused and installed by the Contractor, it shall be the Contractor's responsibility to maintain the condition of the materials and equipment equal to that existing before work began. Damaged materials or equipment shall be repaired or replaced at no additional cost to the Owner.
 - 6. Survey and record condition of existing facilities to remain in place that may be affected by demolition operations. After demolition operations are completed, survey conditions again and restore existing facilities to their pre-demolition condition, at no additional cost to Owner.
 - Salvage equipment scheduled for reuse in new work or scheduled to be delivered to Owner's storage facility.

PART 3 - EXECUTION

3.1 DEMOLITION

- A. Existing fire protection equipment in conflict with new construction shall be removed and/or relocated as indicated on the drawings, as directed or needed. This Contractor shall remove all fire protection equipment released from service as a result of construction, and no equipment removed shall be reused, except as specifically directed on the drawings or elsewhere herein. Except for piping and miscellaneous hardware, all fire protection equipment shall remain the property of the Owner and shall be stored on the site for removal by the Owner. Properly dispose or remove from site any piping, hangers, or other items not retained by Owner.
- B. Where materials are to be turned over to the Owner or reused and installed by the Contractor, it shall be the Contractor's responsibility to maintain the condition of the materials and equipment equal to that existing before work began. Damaged materials or equipment shall be repaired or replaced at no additional cost to the Owner.
- C. Any existing services or equipment not shown on the drawings and which are logically expected to be continued in service and which may be interrupted or disturbed during construction, shall be reconnected in an approved manner. Provide temporary piping as needed to prevent interruption of service to occupied areas caused by demolition operations. In addition, piping or equipment which may require relocation or rerouting as a result of construction, shall be considered a part of the work of this section and shall be done by this Contractor with no additional compensation, provided that the referenced relocation is discernible from the pre-bid review of the site, and associated documents.
- D. This Contractor shall remove all piping, straps, and existing equipment, being discontinued or removed due to construction. Abandoned or removed services shall be disconnected and capped at the perimeter of the project or as required elsewhere in the documents.
- E. The existing building is to remain in operation during construction. This Contractor shall coordinate all work that will interfere with the present operation of the facility with the Owner and Construction Manager.

- F. All existing equipment that is to remain shall be cleaned. Touch up paint equipment in exposed areas.
- G. All coring that is required for fire protection work shall be done by this Contractor.
- H. All cutting and patching required for fire protection work shall be by this Contractor.
- I. This Contractor shall provide required additional support for existing ductwork and piping in remodeled area that is not being removed and is not properly supported in accordance with Specification Sections 21 05 19.
- J. When existing piping or related equipment in remodeled areas prevents the installation of other work, remove and reinstall existing materials, making necessary modifications and transitions to coordinate with other trades.
- K. Maintain construction zone at adequate negative pressure by providing exhaust by mechanical means until all work which creates dust or fumes is completed.

3.2 TESTING

A. Existing equipment shall be tested before demolition begins to determine existing operating conditions and capacities. Upon completion of all new work, the existing equipment shall be rebalanced to serve the new areas and maintain existing capacities in existing areas.

----- END -----

INTENTIONALLY LEFT BLANK

SECTION 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.3 QUALITY ASSURANCE

A. Installer Reliability: The installer shall possess a valid State of Michigan fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.

B. Products Criteria:

- Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.
- Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site.
- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 4. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

- Asbestos products or equipment or materials containing asbestos shall not be used.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Guaranty: In GENERAL CONDITIONS.
- E. Supports for sprinkler piping shall be in conformance with NFPA 13.
- F. Supports for standpipe shall be in conformance with NFPA 14.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire-stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- C. Coordination Drawings: Provide detailed layout drawings of all piping systems. Provide details of the following.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.
 - 6. Drawings must show GPM and calculated pressure at each zone valve.
- D. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. NFPA 13 most recently published version: All NFPA codes are to be most recent publication.
- C. American Society for Testing and Materials (ASTM): A36/A36M-2001.....Carbon Structural Steel. A575-96....Steel Bars, Carbon, Merchant Quality, M-Grades R (2002). E84-2003....Standard Test Method for Burning Characteristics of Building Materials. E119-2000....Standard Test Method for Fire Tests of Building Construction and Materials.D. National Fire Protection Association (NFPA): 90A-96.....Installation of Air Conditioning and Ventilating Systems.

101-97.....Life Safety Code.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Valve Tags and Lists:
 - Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.2 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.3 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint form.

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of Resident Engineer.
- D. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- E. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- F. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.5 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and

type, in unopened containers and properly identified as to use for each different application.

2.6 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment.
- C. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position gages to be easily read by operator or staff standing on floor or

walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

- E. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- F. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- G. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.3 INSTRUCTIONS TO VA PERSONNEL

A. Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 21 08 00

COMMISSIONING OF FIRE SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Fire Suppression systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 21 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 21, is required in cooperation with the VA and the Commissioning Agent.
- B. The Fire Suppression systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the building fire suppression systems will require inspection of individual elements of the fire suppression construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and

Upgrade Five East

resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 21 Sections for additional Contractor training requirements.

----- END -----

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SCOPE OF WORK

- A. Design, installation and testing shall be in accordance with the most recently published version of NFPA 13 except for specified exceptions.
- B. The design and installation of a hydraulically calculated automatic wet system complete and ready for operation, for portions of the second floor as indicated on the drawings.
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING, Treatment of penetrations through rated enclosures.
- C. Section 09 91 00, PAINTING.
- D. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION.

1.3 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Michigan fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL and approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA.
- C. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13. Recommendations in appendices shall be treated as requirements.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: To determine spacing and sizing, apply the following coverage classifications:

- a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.
- b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, and Electric Closets.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, storage areas, and building management storage.
- Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Base water supply on a flow test of:
 - a. Coordinate with owner most resent fire pump flow test data.
- 5. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch and a test and drain assembly with pressure gauge.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings.

1.4 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering. As Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide index referencing the appropriate specification section. Submittals shall include, but not be limited to, the following:
 - 1. Qualifications:
 - a. Provide a copy of the installing contractor's fire sprinkler and state contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering.

- Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to NFPA 13. Include a site plan showing the piping to the water supply test location.
- 3. Manufacturers Data Sheets:
 - a. Provide for materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheet describes items in addition to that item being submitted, clearly identify proposed item on the sheet.
- 4. Calculation Sheets: Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of NFPA 13.
- 5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submittals shall include, but not be limited to, the following:
 - a. One complete set of reproducible as-built drawings showing the installed system with the specific interconnections between the waterflow switch or pressure switch and the fire alarm equipment.
 - b. Complete, simple, understandable, step-by-step, testing instructions giving recommended and required testing frequency of all equipment, methods for testing all equipment, and a complete trouble shooting manual. Provide maintenance instructions on replacing any components of the system including internal parts, periodic cleaning and adjustment of the equipment and components with information as to the address and telephone number of both the manufacturer and the local supplier of each item.
 - c. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13.
 - d. Certificates shall document all parts of the installation.
 - e. Instruction Manual: Provide one copy of the instruction manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser.

1.5 APPLICABLE PUIBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. All reference publications shall be most recently published version.

B. National Fire Protection Association (NFPA):

13-2002.....Installation of Sprinkler Systems.

101-22003.....Safety to Life from Fire in Buildings and Structures (Life Safety Code).

170-1999.....Fire Safety Symbols.

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory.
- D. Factory Mutual Engineering Corporation (FM): Approval Guide.
- E. Uniform Building Code.
- F. Foundation for Cross-Connection Control and Hydraulic Research.

PART 2 PRODUCTS

2.1 PIPING & FITTINGS

- A. Sprinkler systems in accordance with NFPA 13.
- B. Steel Pipe: ASTM A 53 Schedule 40, black or galvanized.
 - 1. Steel Fittings: ASME B16.9, wrought steel, buttwelded,
 - 2. Cast Iron Fittings: ASME B16.1, flanges and flanged fittings and ASME B16.4, threaded fittings.
 - 3. Malleable Iron Fittings: ASME B16.3, threaded fittings.
 - 4. Mechanical Grooved Couplings: Malleable iron housing clamps to engage and lock, "C" shaped elastomeric sealing gasket, steel bolts, nuts, and washers; galvanized for galvanized pipe.

2.2 VALVES

- A. Valves in accordance with NFPA 13.
- B. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- C. The wet system control valve shall be a listed indicating type valve. Control valve shall be UL Listed and FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI. (No Substitutions Allowed).

2.3 SPRINKLERS

- A. All sprinklers except "institutional" type sprinklers shall be FM approved. Provide quick response sprinklers in all areas, except where specifically prohibited by their listing or approval.
- B. Temperature Ratings: In accordance with NFPA 13.
- C. Suspended and gypsum board ceiling type (unless noted otherwise): FM approved concealed type with matching escutcheon plate.
 - 1. Response Type: Quick.
 - 2. Coverage Type: Standard.
 - 3. Finish: Enamel, color white.

- 4. Escutcheon Plate Finish: Enamel, color white.
- 5. Fusible Link: Glass bulb type temperature rated for specific area hazard.

2.4 IDENTIFICATION SIGNS/HYDRAULIC PLACARDS

A. Plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Enter pertinent data for each system on the hydraulic placard.

2.5 SWITCHES

- A. Contain in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.
- C. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.6 GAUGES

A. Provide gauges as required by NFPA 13.

2.7 PIPE HANGERS AND SUPPORTS

A. Supports, hangers, etc., of an approved pattern placement to conform to NFPA 13. System piping shall be substantially supported to the building structure. The installation of hangers and supports shall adhere to the requirements set forth in NFPA 13, Standard for Installation of Sprinkler Systems. Materials used in the installation or construction of hangers and supports shall be listed and approved for such application. Hangers or supports not specifically listed for service shall be designed and bear the seal of a professional engineer.

2.8 WALL, FLOOR AND CEILING PLATES

A. Provide chrome plated steel escutcheon plates for exposed piping passing though walls, floors or ceilings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In

any situation where bending of the pipe is required, use a standard pipe-bending template. Install concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. Locate piping in stairways as near to the ceiling as possible to prevent tampering by unauthorized personnel, and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). To prevent an obstruction to egress, provide piping clearances in accordance with NFPA 101.

- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow switch and adjacent valves in easily accessible locations.
- G. Inspector's Test Connection: Install and supply in conformance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- I. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- J. Provide pressure gauge at each water flow alarm switch location and at each main drain connection.
- K. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- L. Securely attach identification signs to control valves, drain valves, and test valves. Locate hydraulic placard information signs at each sectional control valve where there is a zone water flow switch.

- M. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- N. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve in occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Technical Representative (COTR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COTR/Resident Engineer to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test.

3.3 INSTRUCTIONS

A. Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COTR/Resident Engineer.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 22 00 02 PLUMBING COORDINATION DRAWINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and Division-1 Specification sections, apply to work specified in this section.

1.2 SUBMITTALS

- A. Refer to Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, for submittal procedures.
- B. Submit completed coordinated documents for review by Architect and Engineer.

1.3 COORDINATION DRAWINGS

- A. The Plumbing Subcontractor shall prepare a complete set of three dimensional CAD generated background drawings at a scale not less than 3/8 inch equals 1'-0", showing structure, owner furnished equipment, etc., and other information as needed for coordination. The contractor shall show fire protection piping and equipment layout thereon. These will be the Coordination Drawings.
- B. All firewalls and smoke partitions must be highlighted on the coordination drawings for appropriate coordination.
- C. The main paths of egress and for equipment removal, from main mechanical and electrical rooms must be clearly shown on the coordination drawings.
- D. Illustrate clear maintenance access, coil pull, and code required electrical clearance for all equipment.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

- **3.1** The successful bidder shall include work required to install systems coordinated with existing systems, including necessary modifications to existing. Contractor shall include in coordination drawings the necessary survey work to detail routing of existing systems to finalize routing of new work.
- 3.2 Electronic coordination drawings shall be distributed sequentially to each specialty trade. Each of the below specialty trades shall add its work to these background drawings with appropriate elevations and grid dimensions. Specialty trade information is required for the entire building. Drawings shall indicate horizontal and vertical dimensions, to avoid interference with structural framing, ceilings, partitions, and other services.
 - A. Specialty Trades:
 - 1. Plumbing System.

- 2. HVAC Piping and Associated Control System.
- 3. Electrical.
- 4. Sheet Metal Work.
- 5. Sprinkler System.
- B. Each specialty trade shall sign and date each coordination drawing. Return drawings to the Plumbing Subcontractor, who shall route them sequentially to all specialty trades.
- C. Where conflicts occur with placement of materials of various trades, the Plumbing Subcontractor will be responsible to coordinate the available space to accommodate all trades. Any resulting adjustments shall be initialed and dated by the specialty trade. The Plumbing Subcontractor shall then final date and sign each drawing. If he cannot resolve conflicts, the decision of the General Contractor shall be final.
- D. A Subcontractor who fails to promptly review and incorporate his work on the drawings shall assume full responsibility of any installation conflicts affecting his work and of any schedule ramifications.
- E. Plumbing Subcontractor shall make three dimensional electronic drawings, in PDF and Navisworks format, of all coordination drawings. Fabrication of any Mechanical, Electrical, Plumbing or Fire Protection systems shall not start until copies of completed coordination drawings are received by the Architect/Engineer and have been reviewed.
- F. Review of coordination drawings shall not diminish responsibility under this Contract for final coordination of installation and maintenance clearances of all systems and equipment with Architectural, Structural, Mechanical, Electrical and other work.
- G. After Approval:
 - After written approval of coordination drawings, the method used to resolve interferences not previously identified shall be as defined above.
 - All changes to approved coordination drawings shall be approved in writing by the Architect/Engineer prior to start of work in affected areas.
- H. Distribution of Coordination Drawings:
 - 1. The Plumbing Subcontractor shall provide the following distribution of documents:

- a. One set of Coordination Drawings in electronic PDF and Navisworks format to each specialty trade, and affected Contractor and General Contractor for their use.
- b. One full size hard copy of each Coordination Drawing to Owner.
- Coordination Drawings include but are not necessarily limited to new and existing for:
 - a. Structure.
 - b. Equipment.
 - c. Ceiling tile and grid.
 - d. Light fixtures.
 - e. Access panels.
 - f. Sheet metal, heating coils, boxes, grilles, diffusers, etc.
 - g. All piping and valves.
 - h. Smoke and fire dampers.
 - i. Soil, waste and vent piping.
 - j. Domestic water piping.
 - k. Roof drain piping.
 - Major electrical conduit runs, panelboards, feeder conduit and racks of branch conduit.
 - m. Above ceiling miscellaneous metal.
 - n. Sprinkler piping and heads.

END OF SECTION

INTENTIONALLY LEFT BLANK

SECTION 22 05 02 PLUMBING DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions, Special Conditions, and Division-1 Specification sections, apply to work specified in this section.

1.2 JOB CONDITIONS

- A. Perform all demolition as needed to accomplish new work.
- B. Refer to Demolition Section of specifications and to the Drawings for areas and equipment being remodeled.
- C. This Contractor is responsible for all charges, fees etc. incurred as a result of the plumbing portion of the demolition.
- D. Prior to demolition or alteration of structures, the following shall be accomplished:
 - Coordinate sequencing with Owner and other Contractors a minimum of 10 days prior to work.
 - 2. Coordinate means to separate construction zones from non-renovated zones to prevent the spread of dust, fumes and debris.
 - 3. Except as noted otherwise, remove from the premises, all materials and equipment removed in the demolition work.
 - 4. Equipment noted to be removed and turned over to the Owner, shall be delivered to the Owner at a place and time he so designates.
 - 5. Where the materials are to be turned over to the Owner or reused and installed by the Contractor, it shall be the Contractor's responsibility to maintain the condition of the materials and equipment equal to that existing before work began. Damaged materials or equipment shall be repaired or replaced at no additional cost to the Owner.
 - 6. Survey and record condition of existing facilities to remain in place that may be affected by demolition operations. After demolition operations are completed, survey conditions again and restore existing facilities to their pre-demolition condition, at no additional cost to Owner.
 - Salvage equipment scheduled for reuse in new work or scheduled to be delivered to Owner's storage facility.

PART 3 - EXECUTION

3.1 DEMOLITION

- A. Existing plumbing equipment in conflict with new construction shall be removed and/or relocated as indicated on the drawings, as directed or needed. This Contractor shall remove all plumbing equipment released from service as a result of construction, and no equipment removed shall be reused, except as specifically directed on the drawings or elsewhere herein. Except for ductwork and miscellaneous hardware, all plumbing equipment shall remain the property of the Owner and shall be stored on the site for removal by the Owner. Properly dispose or remove from site any piping, hangers, or other items not retained by Owner.
- B. Where materials are to be turned over to the Owner or reused and installed by the Contractor, it shall be the Contractor's responsibility to maintain the condition of the materials and equipment equal to that existing before work began. Damaged materials or equipment shall be repaired or replaced at no additional cost to the Owner.
- C. Any existing services or equipment not shown on the drawings and which are logically expected to be continued in service and which may be interrupted or disturbed during construction, shall be reconnected in an approved manner. Provide pipes, etc., as needed to prevent interruption of service to occupied areas caused by demolition operations. In addition, any ductwork, piping or equipment which may require relocation or rerouting as a result of construction, shall be considered a part of the work of this section and shall be done by this Contractor with no additional compensation, provided that the referenced relocation is discernible from the pre-bid review of the site, and associated documents.
- D. This Contractor shall remove all piping, straps, and existing equipment, being discontinued or removed due to construction. Abandoned or removed services shall be disconnected and capped at the perimeter of the project or as required elsewhere in the documents.
- E. The existing building is to remain in operation during construction. This Contractor shall coordinate all work that will interfere with the present operation of the facility with the Owner and Construction Manager.

- F. All existing equipment that is to remain shall be cleaned. Touch up paint equipment in exposed areas.
- G. All core drilling that is required for plumbing work shall be done by this Contractor.
- H. All cutting and patching required for plumbing work shall be by this Contractor.
- I. This Contractor shall provide required additional support for existing ductwork and piping in remodeled area that is not being removed and is not properly supported in accordance with Specification 22 05 19.
- J. When existing ductwork, piping, or related equipment in remodeled areas prevents the installation of other work, remove and reinstall existing materials, making necessary modifications and transitions to coordinate with other trades.
- K. Maintain construction zone at adequate negative pressure by providing exhaust by mechanical means until all work which creates dust or fumes is completed.

3.2 TESTING

A. Existing equipment shall be tested before demolition begins to determine existing operating conditions and capacities. Upon completion of all new work, the existing equipment shall be rebalanced to serve the new areas and maintain existing capacities in existing areas.

----- END -----

INTENTIONALLY LEFT BLANK

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 05 31 00, STEEL DECKING and Section 05 36 00, COMPOSITE METAL DECKING.
- D Section 07 84 00, FIRESTOPPING.
- E. Section 09 91 00, PAINTING.

1.3 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Michigan plumbing contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial plumbing systems for the past ten years.
- B. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
 - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency.

Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Resident Engineer (RE).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- C. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.

- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- D. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- E. Execution (Installation, Construction) Quality:
 - All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the RE/COTR for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the RE/COTR at least two weeks prior to commencing installation of any item.
 - 2. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved.
- F. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- G. Plumbing Systems: IPC, International Plumbing Code.

1.4 SUBMITTALS

- A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMNON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment

have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.

- F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Fire stopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.

- I. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided.
 - 3. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Damaged equipment shall be replaced with an identical unit as determined and directed by the RE/COTR. Such replacement shall be at no additional cost to the Government.
 - Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.

 Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): SEC IX-2007.....Boiler and Pressure Vessel Code; Section IX,
 - Welding and Brazing Qualifications.
- C. American Society for Testing and Materials (ASTM):
 - A36/A36M-2008.....Standard Specification for Carbon Structural Steel.

A575-96 (R 2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002).

- E84-2005.....Standard Test Method for Surface Burning Characteristics of Building Materials.
- E119-2008a.....Standard Test Methods for Fire Tests of Building Construction and Materials.
- D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:

SP-58-02.....Pipe Hangers and Supports-Materials, Design and Manufacture.

- SP 69-2003 (R 2004)....Pipe Hangers and Supports-Selection and Application.
- E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007...Motors and Generators.
- F. International Code Council, (ICC): IBC-06, (R 2007).....International Building Code. IPC-06, (R 2007).....International Plumbing Code.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.

- Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified.
- C. Valve Tags and Lists:
 - Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage, 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 216 mm (8-1/2 inches) by 280 mm

(11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.

4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling.

2.4 FIRE STOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.5 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.6 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- B. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
- C. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8-inch) outside diameter.
- D. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- E. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches

by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping.

- 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- F. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

- Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
 - Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.

2.7 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and

partitions, unless brass or steel pipe sleeves are specifically called for below.

- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- H. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.8 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.9 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3 inch) pipe, 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead.

A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.10 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by RE/COTR where working area space is limited.
 - 2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by RE/COTR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to RE/COTR for approval.

- 3. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- J. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service

piping at times that will cause the least interfere with normal operation of the facility.

- K. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers' putty.
- L. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- M. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the Resident Engineer.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications.
- E. Overhead Supports:
 - The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.

- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.3 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material And Equipment shall NOT be painted:
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.

- i. Pressure gages and thermometers.
- k. Name plates.
- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this.

3.4 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.5 STARTUP AND TEMPORARY OPERATION

A. Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.6 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work.

3.7 OPERATION AND MAINTENANCE MANUALS

- A. Provide four bound copies and a PDF version. The Operations and maintenance manuals shall be delivered to RE/COTR not less than 30 days prior to completion of a phase or final inspection.
- B. All new and temporary equipment and all elements of each assembly shall be included.
- C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- E. Lubrication instructions, type and quantity of lubricant shall be included.
- F. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- G. Set points of all interlock devices shall be listed.
- H. Trouble-shooting guide for the control system troubleshooting guide shall be inserted into the Operations and Maintenance Manual.
- The combustion control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- J. Emergency procedures.

3.8 INSTRUCTIONS TO VA PERSONNEL

A. Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 22 05 19

METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section describes the requirements for water meters and pressure gages.

1.2 RELATED WORK

A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pressure Gages.
 - 2. Product certificates for each type of meter and gauge.
- C. Shop Drawings shall include the following:
 - One line, wiring and terminal diagrams including terminals identified, protocol or communication modules, and Ethernet connections.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI):
 American Society of Mechanical Engineers (ASME): (Copyrighted Society)
 B40.1-05.....Gauges-Pressure Indicating Dial Type-Elastic.
- C. American Water Works Association (AWWA): C700-07 (R 2003).....Standard for Cold Water Meters, Displacement Type, Bronze Main Case.
 - C701-07.....Cold Water Meters-Turbine Type, for Customer Service AWWA/ ANSI.

C702-01.....Cold water meters - Compound Type.

D. International Code Council (ICC):

IPC-06......(2007 Supplement) International Plumbing Code.

1.5 AS-BUILT DOCUMENTATION

A. Four sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.

PART 2 - PRODUCTS

2.1 WATER METER STRAINER

A. All meters sizes 50 mm or DN50 (2 inches) and above, shall be fitted with a bronze inlet strainer with top access. The strainer shall conform to AWWA 702.

2.2 PRESSURE GAGES FOR WATER AND SEWAGE USAGE

- A. ANSI B40.1 all metal case 114 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1375 kPa (0 to 200 psi) gauge.
- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psi.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gages shall be installed in piping tees with pressure gage located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gage.
- C. Test plugs shall be installed on the inlet and outlet pipes all heat exchangers or water heaters serving more than one plumbing fixture.
- D. Pressure gages shall be installed where indicated on the drawings and at the following locations:
 - 1. At main water line serving a floor.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section describes the requirements for general-duty valves for domestic water and sewer systems.

1.2 RELATED WORK

A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Valves.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):A536-84(R 2004) Standard Specification for Ductile Iron Castings.
- C. American Society of Sanitary Engineering (ASSE) ASSE 1003-01 (R 2003)...Performance Requirements for Water Pressure Reducing Valves. ASSE 1012-02.....Backflow Preventer with Intermediate

Atmospheric Vent.

- ASSE 1013-05.....Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers.
- D. International Code Council (ICC)

IPC-06 (R 2007).....International Plumbing Code.

- E. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS):
 - SP-25-98.....Standard Marking System for Valves, Fittings, Flanges and UnionsSP-67-02a (R 2004) Butterfly Valve of the Single flange Type (Lug Wafer).
 - SP-70-06.....Cast Iron Gate Valves, Flanged and Threaded Ends.
 - SP-72-99.....Ball Valves With Flanged or Butt Welding For General Purpose.

SP-80-03.....Bronze Gate, Globe, Angle and Check Valves. SP-110-96.....Ball Valve Threaded, Socket Welding, Solder Joint, Grooved and Flared Ends.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 meters (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. Ball valves, pressure regulating valves, gate valves, globe valves, and plug valves used to supply potable water shall meet the requirements of NSF 61.

- F. Shut-off:
 - 1. Cold, Hot and Re-circulating Hot Water:
 - a. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-72, SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4140 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be solder,
 - b. Less than 100 mm DN100 (4 inches): Butterfly shall have a ductile iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A 536, ductile iron. Butterfly valves shall be slow close variety, with manual gear drive. Stem shall be stainless steel.
- G. Balancing:
 - 1. Hot Water Re-circulating, 80 mm or DN80 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (¼" NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
- H. Check:
 - 1. Check valves less than 80 mm or DN80 (3 inches) and smaller) shall be class 125, bronze swing check valves with non metallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B 62, solder joints, and PTFE or TFE disc.

2.2 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
 - 1. Shall meet ASSE requirements for water temperature control.
 - The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.
 - 3. No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
 - 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
 - 5. Valve finish shall be chrome plated in exposed areas.
 - 6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures up to 82°C (180°F) for 30 minutes or 50 mg/L (50 ppm) chlorine residual concentration for 24 hours.
 - 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
 - 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.
 - 9. Provide mixing valves with integral check valves with screens and stop valves.
- B. Water Temperature Limiting Devices:
 - Application: Single plumbing fixture point-of-use such as sinks or lavatories.
 - 2. Standard: ASSE 1070.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
 - 5. Connections: Threaded union, compression or soldered inlets and outlet.
 - Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe
- D. Valves shall be installed in a position to allow full stem movement.
- E. Check valves shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
- F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- G. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for:
 - 1. Plumbing piping and equipment.
- B. Definitions:
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Piping above ceilings and in chases, and pipe spaces.
 - 5. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: Plumbing equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per square meter (BTU per hour per linear foot).
 - 10. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 11. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

- 12. R: Pump recirculation.
- 13. CW: Cold water.
- 14. SW: Soft water.
- 15. HW: Hot water.
- 16. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT: Insulation containing asbestos material.
- B. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- D. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING and Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- E. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, unless otherwise provided for in <u>4.3.3.1.12</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.3 Pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.10.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.10.2.6.7 Smoke detectors shall not be required to meet the provisions of this section.

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. Schedule of all pipes and equipment to be insulated.
 - g. Thickness for each system.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)-91.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.):
 - MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation. MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation.
 - MIL-C-19565C (1)-88....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier.

MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass.

D. American Society for Testing and Materials (ASTM):

A167-04Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip.

B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate.

C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation.

- C449-07.....for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement.
- C533-09..... Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation.

	C534-08	Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form.
	C547-07	Standard Specification for Mineral Fiber pipe
		Insulation.
	C552-07	Standard Specification for Cellular Glass
		Thermal Insulation.
	C553-08	Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications.
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998).
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation.
	C1126-10	Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation.
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation.
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing.
	E84-10	.Standard Test Method for Surface Burning
		Characteristics of Building
		Materials.
	E119-09C	.Standard Test Method for Fire Tests of Building
		Construction and Materials.
	E136-09 b	Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F).
Ε.	National Fire Protection	n Association (NFPA)- most recently published
	version:	
	101-09	Life Safety Code.
	251-06	.Standard methods of Tests of Fire Endurance of
		Building Construction Materials.
	255-06	Standard Method of tests of Surface Burning
		Characteristics of Building Materials.

F. Underwriters Laboratories, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 08/03.

- G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2002.....Pipe Hangers and Supports Materials, Design, and Manufacture.
- H. Energy Code most recently published version.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Factory composite materials may be used provided
- D. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.3 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass insulation of the same thickness as adjacent insulation.

Nominal Pipe Size and Accessories Material (Insert Blocks)							
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)						
Up through 125 (5)	150 (6) long						
150 (6)	150 (6) long						
200 (8), 250 (10), 300 (12)	225 (9) long						
350 (14), 400 (16)	300 (12) long						
450 through 600 (18 through 24)	350 (14) long						

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.4 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- C. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.

2.5 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel

2.6 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F).

Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.7 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00 FIRESTOPPING.

2.8 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.

- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Plumbing work not to be insulated:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Distilled water piping.
- I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights.Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- K. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors.
 - b. Pipe chase walls and floors.
 - c. Smoke partitions.
 - d. Fire partitions.

3.2 INSULATION INSTALLATION

- A. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 22 08 00 - COMMISSIONING OF PLUMBING SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 22 08 00 -COMMISSIONING OF PLUMBING SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)										
	Nominal Pipe Size Millimeters (Inches)									
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above					
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	25 (1.0)	25 (1.0)	25 (1.0)	25 (1.0)					
4-38 degrees C (40-100 degrees F) (Domestic Cold Water and Storm Sewer)	Mineral Fiber (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)					

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 22 08 00

COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.
- B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

----- END -----

SECTION 22 11 00

FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING.
- B. Section 09 91 00, PAINTING.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Section 23 07 11, HVAC INSULATION.
- E. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS: Requirements for commissioning, systems readiness checklist, and training.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

1. All items listed in Part 2 - Products.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI):

American Society of Mechanical Engineers (ASME): (Copyrighted Society) Al3.1....Scheme for Identification of Piping Systems Bl6.3-2011....Malleable Iron Threaded Fittings Classes 150 and 300

B16.9-2007.....Factory-Made Wrought Butt Welding Fittings B16.11-2011....Forged Fittings, Socket-Welding and Threaded B16.12-2009Cast Iron Threaded Drainage Fittings B16.15-2006Cast Copper Alloy Threaded Fittings Classes 125 and 250 B16.18-2001 (R2005)....Cast Copper Alloy Solder-Joint Pressure Fittings B16.22-2012....Wrought Copper and Copper Alloy Solder Joint

Pressure Fittings

	B16.51-2011Copper and Copper Alloy Press-Connect Fittings
	NSF/ANSI 61-2012Drinking Water System Components - Health
	Effects
C.	American Society for Testing and Materials (ASTM):
	A47/A47M-99(2009)Ferritic Malleable Iron Castings
	A53/A53M-12Pipe, Steel, Black and Hot-Dipped, Zinc Coated
	Welded and Seamless
	A183-03(2009)Carbon Steel Track Bolts and Nuts
	A269-10Seamless and Welded Austenitic Stainless Steel
	Tubing for General Service
	A312/A312M-12Seamless, Welded, and Heavily Cold Worked
	Austenitic Stainless Steel Pipes
	A403/A403M-12Wrought Austenitic Stainless Steel Piping
	Fittings
	A536-84(2009)Ductile Iron Castings
	A733-03(2009)e1Welded and Seamless Carbon Steel and Austenitic
	Stainless Steel Pipe Nipples
	B32-08Solder Metal
	B61-08Steam or Valve Bronze Castings
	B62-09 Metal Castings
	B75/B75M-11Seamless Copper Tube
	B88-09Beamless Copper Water Tube
	B584-12aGopper Alloy Sand Castings for General
	Applications
	B687-99(2011)Brass, Copper, and Chromium-Plated Pipe Nipples
	D1785-12Poly (Vinyl Chloride) (PVC) Plastic Pipe,
	Schedules 40, 80, and 120
	D2000-12 Aubber Products in Automotive Applications
	D4101-11and Extrusion
	Materials
	D2564-04(2009) e1Solvent Cements for Poly (Vinyl Chloride) (PVC)
	Plastic Pipe and Fittings
	E1120-08Liquid Chlorine
	E1229-08Calcium Hypochlorite
D.	American Water Works Association (AWWA):
	C110/A21.10-12Ductile Iron and Gray Iron
	C151/A21.51-09Ductile-Iron Pipe, Centrifugally Cast

C203-08.....Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot Applied

C213-07.....Fusion Bonded Epoxy Coating for the Interior & Exterior of Steel Water Pipelines

C651-05.....Disinfecting Water Mains

E. American Welding Society (AWS):

A5.8/A5.8M-2011.....Filler Metals for Brazing

- F. International Plumbing Code International Plumbing Code - 2009
- G. American Society of Sanitary Engineers (ASSE): ANSI/ASSE 1001-2008....Pipe Applied Atmospheric Type Vacuum Breakers ANSI/ASSE 1010-2004....Water Hammer Arresters ANSI/ASSE 1018-2001....Trap Seal Primer Valves - Potable Water Supplied

ANSI/ASSE 1020-2004....Pressure Vacuum Breaker Assembly

H. Plumbing and Drainage Institute (PDI):
 PDI WH-201 2010.....Water Hammer Arrestor

1.5 QUALITY ASSURANCE

- A. A certificate of Welder's certification shall be submitted prior to welding of steel piping. The certificate shall be current and no more than one year old.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type L, drawn. For pipe 6 inches (150 mm) and larger, stainless steel, ASTM A312, schedule 10 shall be used.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ANSI B16.18 and B16.22. Unions shall be bronze, MSS SP72 & SP 110, Solder or braze joints. Use 95/5 tin and antimony for all soldered joints.

- C. Adapters: Provide adapters for joining screwed pipe to copper tubing.
- D. Solder: ASTM B32 Composition Sb5 HA or HB. Provide non-corrosive flux.

2.2 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: Fed. Spec. WW-P-351, standard weight.
 - 2. Fittings: ANSI B16.15 cast bronze threaded fittings with chrome finish.
 - 3. Nipples: ASTM B 687, Chromium-plated.
 - Unions: Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 2-1/2 inches (65 mm) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.3 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Smaller than 3 inches (80 mm), brass or bronze; 3 inches (80 mm) and larger, cast iron or semi-steel.

2.4 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between ferrous and non-ferrous pipe.

2.5 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1120-08
- B. Liquid Chlorine: ASTM E1229-08

2.6 WATER HAMMER ARRESTER:

A. Closed copper tube chamber with permanently sealed 60 psig (410 KpA) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010 for sealed wall installations without an access panel. Size and install in accordance with Plumbing and Drainage Institute requirements (PDI-WH 201). Provide water hammer arrestors at:

- 1. All solenoid valves.
- 2. All groups of two or more flush valves.
- 3. All quick opening or closing valves.
- 4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to full size after cutting.
 - 3. All pipe runs shall be laid out to avoid interference with other work.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the International Plumbing Code.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with red lead or zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Riser Clamps: Malleable iron or steel.
 - 8) Rollers: Cast iron.

- Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
- 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gauge steel. The shield shall be sized for the insulation.
- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints.
- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00. Completely fill and seal clearances between raceways and openings with the fire stopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00.
- B. Piping shall conform to the following:
 - 1. Domestic Water:
 - a. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - b. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect

branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to Resident Engineer/COR 14 days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 150 psi (1040 kPa) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested.
- C. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- D. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

3.4 COMMISSIONING

- A. Provide commissioning documentation accordance with the requirements of Section 22 08 00.
- B. Components provided under this section of the specification will be tested as part of a larger system.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- D. Section 07 92 00 Joint Sealants: Sealant products.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Cleanouts.
 - 4. All items listed in Part 2 Products.
- C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): (Copyrighted Society) All2.6.3-01 (R 2007)....Standard for Floor and Trench Drains Al3.1-07.....Scheme for Identification of Piping Systems Bl6.3-06.....Malleable Iron Threaded Fittings, Classes 150 and 300. Bl6.4-06.....Standard for Grey Iron Threaded Fittings Classes 125 and 250 Bl6.12-98 (R 2006).....Cast Iron Threaded Drainage Fittings

	B16.15-06Cast Bronze Threaded Fittings, Classes 125 and 250
C.	American Society for Testing and Materials (ASTM):
	A47/A47M-99 (R 2004)Standard Specification for Steel Sheet,
	Aluminum Coated, by the Hot Dip Process
	A53/A53M-07Standard Specification for Pipe, Steel, Black
	And Hot-Dipped, Zinc-coated, Welded and
	Seamless
	A74-06 Standard Specification for Cast Iron Soil Pipe
	and Fittings
	A183-03 Standard Specification for Carbon Steel Track
	Bolts and Nuts
	A536-84(R 2004)Standard Specification for Ductile Iron
	Castings
	B584-06aStandard Specification for Copper Alloy Sand
	Castings for General Applications
	C564-03aStandard Specification for Rubber Gaskets for
	Cast Iron Soil Pipe and Fittings
	D2000-08for Rubber
	Products in Automotive Applications
	D2564-04E1Standard Specification for Solvent Cements for
	Poly (Vinyl Chloride) (PVC) Plastic Pipe and
	Fittings
	D2665-08 Over the standard Specification for Poly (Vinyl
	Chloride) (PVC) Plastic Drain, Waste, and Vent
	Pipe and Fittings
D.	International Code Council:
	IPC-12International Plumbing Code 2012
Ε.	Cast Iron Soil Pipe Institute (CISPI):
	301-05 Hubless Cast Iron Soil Pipe and Fittings for
	Sanitary and Storm Drain, Waste, and Vent
	Piping Applications
	310-04 Coupling for Use in Connection with Hubless
	Cast Iron Soil Pipe and Fittings for Sanitary
	and Storm Drain, Waste, and Vent Piping
	Applications

F. American Society of Sanitary Engineers (ASSE):
 1018-01.....Trap Seal Primer Valves - Potable, Water
 Supplied

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. interior waste and vent piping above grade.
 - 2. Cast iron Pipe shall be hubless (plain end or no-hub or hubless).
 - The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
 - Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310.

2.2 EXPOSED WASTE PIPING

A. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 860 kPa (125 psig) at a minimum temperature of 82°C (180°F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non conducting materials

for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.

D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F 1545 with a pressure ratings of 2070 kPa (300 psig) at 107°C (225°F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- C. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

A. Type 1 (FD-1) floor drain shall comply with ANSI A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening will not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe. For drains not installed in connection with a waterproof membrane, a 2.2 kg (16-ounce) soft copper membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.

B. Open Site Drains (OSDs/OS) shall be cast iron, constructed as shown by detail.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as pipe connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 WATERPROOFING

- A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.
- B. Walls: See detail shown on drawings.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.

- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. Unless specifically indicated on the drawings, the minimum slope shall be 2% slope.
- H. The piping shall be installed free of sags and bends.
- I. Seismic restraint shall be installed where required by code.
- J. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"

3.2 JOINT CONSTRUCTION

- A. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- B. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

3.3 SPECIALTY PIPE FITTINGS

A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.

B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be zinc plated in wet areas, and steel in all other areas. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 80 mm or DN 80 (NPS 3 inch): 1500 mm (60 inches) with 13 mm (½
 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 to NPS 5): 1500 mm (60 inches) with 16 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 19 mm (¾ inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN 300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 22 mm (7/8 inch) rod.
- E. The maximum spacing for plastic pipe shall be 1.22 m (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.57 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at

each end with two removable nuts at each end for positioning rod and hanger and locking each in place.

- 6. Riser clamps shall be malleable iron or steel.
- 7. Rollers shall be cast iron.
- See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- Chrome escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Piping shall conform to the following:
 - 1. Waste and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
80 mm or DN 80 (3 inches) and smaller	2%
100 mm or DN 100 (4 inches) and larger	1%

2. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - For an air test, an air pressure of 35 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
 - 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1.3 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Cleanouts.
 - 3. All items listed in Part 2 Products.
- C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. All publications shall be most recently published version.
- B. American National Standards Institute (ANSI).
- C. American Society of Mechanical Engineers (ASME): (Copyrighted Society) A13.1-07.....Scheme for Identification of Piping Systems
- D. American Society for Testing and Materials (ASTM):

A47-99 (R 2004).....Standard Specification for Steel Sheet, Aluminum Coated, by the Hot-Dip Process A53-07....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated Welded and Seamless A74-06....Standard Specification for Cast Iron Soil Pipe and Fittings

	A183-03)Standard Specification for Carbon Steel Track	
	Bolts and Nuts	
	B306-02 Standard Specification for Copper Drainage Tube	
	(DWV)	
	B584-08for Copper Alloy Sand	
	Castings for General Applications	
	B687-99Standard Specification for Brass, Copper, and	
	Chromium-Plated Pipe Nipples	
	C564-06aStandard Specification for Rubber Gaskets for	
	Cast Iron Soil Pipe and Fittings	
Ε.	. American Welding Society (AWS):	
	A5.8-04Specification for Filler Metals for Brazing and	
	Braze Welding	
F.	. International Code Council (ICC):	
	IPC-06Code	
G.	. Cast Iron Soil Pipe Institute (CISPI):	
	301-05 Hubless Cast Iron Soil and Fittings for	
	Sanitary and Storm Drain, Waste, and Vent	
	Piping Applications	
	310-04 With Hubless	
	Cast Iron Soil and Fittings for Sanitary and	
	Storm Drain, Waste, and Vent Piping	
	Applications	
Η.	I. Manufacturers Standardization Society of the Valve and Fittings	
	Industry, Inc. (MSS):	
	SP-72-99Standard for Ball Valves with Flanged or Butt	
	Welding For General Purpose	
	SP-110-96Ball Valve Threaded, Socket Welding, Solder	
	Joint, Grooved and Flared Ends	

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - 1. Cast iron storm pipe and fittings shall be used for the following
 applications:
 - a. Interior storm piping above grade.
 - b. All mechanical equipment rooms or other areas containing mechanical air handling equipment.
 - 2. The cast iron storm Pipe shall be hubless (plain end or no-hub).

- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
- Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310.
- B. Roof drain piping shall be insulated.

2.2 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear erring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 860 kPa (125 psig) at a minimum temperature of 82°C (180°F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The dielectric nipples shall be electroplated steel nipple comply with ASTM F 1545 with a pressure ratings of 2070 kPa (300 psig) at 107°C (225°F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.3 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.

- B. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- C. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.4 WATERPROOFING

- A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.
- B. Walls: See detail shown on drawings.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International code and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every1.22 m (4 feet) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.

- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep ¼ bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"

3.2 JOINT CONSTRUCTION

A. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

- A. All piping shall be supported according to the International plumbing code, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.
- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 13 mm (1/2 inch) rod.

- 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 19 mm (3/4 inch) rod.
- 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 22 mm (7/8 inch) rod.
- E. The maximum support spacing for horizontal plastic shall be 1.22 m (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.57 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.

(5/8 inch) rod.

- 2. All plates shall be provided with set screws.
- 3. Height adjustable clevis type pipe hangers.
- 4. Adjustable Floor Rests and Base Flanges shall be steel.
- 5. Hanger Rods shall be low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 6. Riser Clamps shall be malleable iron or steel.
- 7. Roller shall be cast iron.
- 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gage steel. The shield shall be sized for the insulation.
- H. Miscellaneous Materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- Chrome escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

- J. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - 2. Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Piping shall conform to the following:
 - 1. Storm Water Drain and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
80 mm (3 inches) and smaller	2%
100 mm (4 inches) (4 inches) and larger	1%

3.5 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- For an air test, an air pressure of 35 kPa (5 psi) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
- 3. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1.3 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.

1.2 RELATED WORK

- A. Sealing between fixtures and other finish surfaces: Section 07 92 00, JOINT SEALANTS.
- B. Flush panel access doors: Section 08 31 13, ACCESS DOORS AND FRAMES.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Requirements for commissioning, systems readiness checklist, and training.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submit plumbing fixture information in an assembled brochure, showing cuts and full detailed description of each fixture.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI): The American Society of Mechanical Engineers (ASME): A112.6.1M-02(R2008)....Floor Affixed Supports for Off-the-Floor Plumbing Fixtures for Public Use A112.19.1M-08Enameled Cast Iron Plumbing Fixtures A112.19.2M-03.....Vitreous China Plumbing Fixtures A112.19.3-2001(R2008)...Stainless Steel Plumbing Fixtures (Designed for Residential Use)
 C. American Society for Testing and Materials (ASTM):
 - A276-2010Stainless and Heat-Resisting Steel Bars and Shapes

WW-P-541-E/GENPlumbing Fixtures with Amendment 1

D. National Association of Architectural Metal Manufacturers (NAAMM): NAAMM AMP 500-505

Metal Finishes Manual (1988)

03-11

E. American Society of Sanitary Engineers (ASSE):

1016-05.....Performance Requirements for Individual

Thermostatic, Pressure Balancing and Combination Pressure Balancing and Thermostatic Control

Valves for Individual Fixture Fittings

F. National Sanitation Foundation (NSF)/American National Standards
Institute (ANSI):

61-2009Drinking Water System Components-Health Effects

- G. American with Disabilities Act (A.D.A) Section 4-19.4 Exposed Pipes and Surfaces
- H. Environmental Protection Agency EPA PL 93-523 1974; A 1999) Safe Drinking Water Act.
- I. International Building Code, ICC IPBC 2009.

PART 2 - PRODUCTS

2.1 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.2 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to Resident Engineer.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.
- E. Mental Health Area: Provide stainless steel drain guard for all lavatories not installed in casework.

2.3 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.4 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing.
- B. Flow Control Restrictor:
 - Capable of restricting flow from 95 ml/s to 110 ml/s (1.5 gpm to 1.7 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks P-505 through P-520, P-524 and P-528; and 170 ml/s to 190 ml/s (2.75 gpm to 3.0 gpm) for dietary food preparation and rinse sinks or as specified.
 - Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psi and 80 psi).
 - Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.5 CARRIERS

- A. ASME/ANSI A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME/ANSI A112.6.1M, lavatory, chair carrier for thin wall construction. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.
- C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.

2.6 WATER CLOSETS

- A. Water Closet (Wall Hung, ASME/ANSI A112.19.2M, Figure 9) office and industrial, elongated bowl, siphon jet 6 L (1.6 gallons) per flush, wall outlet. Top of rim shall be between 406 mm and 432 mm (16 inches and 17 inches) above finished floor. Handicapped water closet shall have rim set 457 mm (18 inches) above finished floor.
 - Seat: Institutional/Industrial, extra heavy duty, chemical resistant, solid plastic, open front less cover for elongated bowls, integrally molded bumpers, concealed check hinge with stainless steel post. Seat shall be posture contoured body design. Color shall be white.

- 2. Fittings and Accessories: Gaskets neoprene; bolts with chromium plated caps nuts and washers.
- 3. Flush valve: Large chloramines resistant diaphragm, semi-red brass valve body, exposed chrome plated, non-hold open ADA approved side oscillating handle, 25 mm (1 inch) screwdriver back check angle stop with vandal resistant cap, adjustable tailpiece, a high back pressure vacuum breaker, spud coupling for 38 mm (1 1/2 inches) top spud, wall and spud flanges, and sweat solder adapter with cover tube and set screw wall flange. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM alloy classification for semi-red brass. Seat bumpers shall be integral part of flush valve. Set centerline of inlet 292 mm (11 1/2 inches) above rim.

2.7 URINALS

- A. Urinal (Wheelchair, Wall Hung, ANSI A112.19.2M, Figure 30) bowl with integral flush distribution, wall to front of flare 356 mm (14 inches). Wall hung with integral trap, siphon jet flushing action 4 L (1.0 gallon per flush) with 51 mm (2 inches) back outlet and 19 mm (3/4 inch) top inlet spud.
 - Support urinal with chair carrier and install with rim 381 mm (15 inches) above finished floor.
 - 2. Flushing Device: Large chloramines resistant diaphragm, semi-red brass body, exposed flush valve, non-hold-open, water saver design, 19 mm (3/4 inch) capped screwdriver angle stop valve. Set centerline of inlet 292 mm (11 1/2 inches) above urinal. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM alloy classification for semi-red brass.

2.8 LAVATORIES

- A. Dimensions for lavatories are specified, Length by width (distance from wall) and depth.
- B. Brass components in contact with water shall contain no more than 3 percent lead content by dry weight.
- C. Lavatory (Wrist Control, ASME/ANSI All2.19.2M, Figure 16) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) minimum apron, first quality vitreous china. Punching for faucet shall be on 203 mm (8 inches) centers. Set rim 864 mm (34 inches) above finished floor.
 - Faucet: Solid cast brass construction with washerless ceramic mixing cartridge type and centrally exposed rigid gooseneck spout with outlet 102 mm to 127 mm (4 inches to 5 inches) above rim. Provide laminar flow control device. One hundred two millimeter (4-inch)

wrist blade type, handles on faucets shall be cast, formed or drop forged copper alloy. Faucet, wall and floor escutcheons shall be either copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall be chrome plated with a smooth bright finish.

- Drain: Cast or wrought brass with flat grid strainer, offset tailpiece, chrome plated.
- 3. Stops: Angle type. See paragraph 2.2.Stops.
- 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches)P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extension to wall. Exposed metal trap surface, and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to the wall.
- 5. Provide cover for drain, stops and trap per A.D.A 4-19.4.

2.9 SINKS

- A. Dimensions for sinks and laundry tubs are specified, length by width (distance from wall) and depth.
- B. Service Sink (Corner, Floor Mounted) stain resistant terrazzo, 711 mm by 711 mm by 305 mm (28 inches by 28 inches by 12 inches) with 152 mm (6 inches) drop front. Terrazzo, composed of marble chips and white Portland cement, shall develop compressive strength of 20684 kPa (3000 psi) seven days after casting. Provide extruded aluminum cap on front side.
 - 1. Faucet: Solid brass construction, combination faucet with replaceable monel seat, removable replacement unit containing all parts subject to wear, integral stops, mounted on wall above sink. Spout shall have a pail hook, 19 mm (3/4 inch) hose coupling threads, vacuum breaker, and top or bottom brace to wall. Four-arm handles on faucets shall be cast, formed, or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Provide 914 mm (36 inches) hose with wall hook. Centerline of rough in is 1219 mm (48 inches) above finished floor with ASSE 1011 vacuum breaker.
 - 2. Drain: Seventy six millimeter (3 inches) cast brass drain with nickel bronze strainer.
 - 3. Trap: P-trap, drain through floor.
- C. Sink (CRS, Single Compartment, Counter Top ASME/ANSI A112.19.2M, Kitchen Sinks, Figure 5) self rimming, back faucet ledge, approximately 533 mm by 559 mm (21 inches by 22 inches) with single compartment inside

dimensions approximately 406 mm by 483 mm by 191 mm (16 inches by 19 inches by 7 1/2 inches) deep. Shall be minimum of 1.3 mm thick (18 gauge) CRS. Corners and edges shall be well rounded:

- Faucet: Solid brass construction, deck mounted combination faucet with monel or ceramic seats, removable replacement unit containing all parts subject to ware, swivel gooseneck spout with approximately 203 mm (8 inches) reach with spout outlet 152 mm (6 inches above deck and 102 mm (4 inches) wrist blades single lever with hose spray. Faucet shall be polished chrome plated.
- 2. Drain: Drain plug with cup strainer, stainless steel.
- 3. Trap: Cast copper alloy 38 mm (1 1/2 inches) P-trap with cleanout plug. Provide wall connection and escutcheon.
- 4. Provide cover for drain, stops and trap per A.D.A 4-19.4.

2.10 DISPENSER, DRINKING WATER

- A. Standard rating conditions: 10 degrees C (50 degrees F) water with 27 degrees C (80 degrees F) inlet water temperature and 32 degrees C (90 degrees F) ambient air temperature.
- B. (P-604) Electric Water Cooler (Mechanically Cooled, Wall Hung, Selfcontained, Dual Level, Wheelchair) bubbler style, 30 l/h (8 gph) minimum capacity, lead free. Top shall be CRS anti-splash design. Cabinet, CRS, satin finish, approximately 457 mm by 457 mm by 635 mm (18 inches by 18 inches by 25 inches) high with mounting plate. Set bubbler 914 mm (36 inches) above finished floor. Unit shall be push bar operated with front and side bar and automatic stream regulator. All trim polished chrome plated. Provide with bottle filler option.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Through Bolts: For free standing marble and metal stud partitions.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.
- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.

- F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 1/4 inches) into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- I. Do not use aerators on lavatories and sinks.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00 - COMMISSIONING OF PLUMBING SYSTEMS for all inspection, startup, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 22 08 00 -COMMISSIONING OF PLUMBING SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 23 00 02 MECHANICAL COORDINATION DRAWINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions, Special Conditions, and Division-1 Specification sections, apply to work specified in this section.

1.2 REFERENCE

A. Refer to Section 01 10 00 - Summary.

1.3 SUBMITTALS

- A. Refer to Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Submit completed coordinated documents for review by Architect and Engineer.

1.4 COORDINATION DRAWINGS

- A. The Mechanical Piping Subcontractor shall prepare a complete set of three dimensional CAD generated background drawings at a scale not less than 3/8 inch equals 1'-0", showing structure, owner furnished equipment, etc., and other information as needed for coordination. He shall show mechanical piping layout thereon. These will be the Coordination Drawings.
- B. All firewalls and smoke partitions must be highlighted on the coordination drawings for appropriate coordination.
- C. The main paths of egress and for equipment removal, from main mechanical and electrical rooms must be clearly shown on the coordination drawings.
- D. Illustrate clear maintenance access, coil pull, and code required electrical clearance for all equipment.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

- 3.1 The successful bidder shall include work required to install systems coordinated with existing systems, including necessary modifications to existing. Contractor shall include in coordination drawings the necessary survey work to detail routing of existing systems to finalize routing of new work.
- **3.2** Plots of the Electronic coordination drawings shall be distributed sequentially to each specialty trade. Each of the below specialty trades shall add its work to these background drawings with appropriate elevations and grid dimensions. Specialty trade information is required for the entire project fan rooms and mechanical rooms, horizontal exits

from duct shafts, crossovers, and for spaces in and above ceilings where congestion of work may occur such as corridors, and even entire floors. Drawings shall indicate horizontal and vertical dimensions, to avoid interference with structural framing, ceilings, partitions, and other services.

- A. Specialty Trades:
 - 1. Plumbing System.
 - 2. HVAC Piping and Associated Control System.
 - 3. Electrical.
 - 4. Sheet Metal Work.
 - 5. Sprinkler System.
- B. Each specialty trade shall sign and date each coordination drawing. Return drawings to the Subcontractor, who shall route them sequentially to all specialty trades.
- C. Where conflicts occur with placement of materials of various trades, the Mechanical Piping Subcontractor will be responsible to coordinate the available space to accommodate all trades. Any resulting adjustments shall be initialed and dated by the specialty trade. The Subcontractor shall then final date and sign each drawing. If he cannot resolve conflicts, the decision of the General Contractor shall be final.
- D. A Subcontractor who fails to promptly review and incorporate his work on the drawings shall assume full responsibility of any installation conflicts affecting his work and of any schedule ramifications.
- E. Mechanical Piping Subcontractor shall make three dimensional electronic drawings, in PDF and Navisworks format, of all coordination drawings. Fabrication of any Mechanical, Electrical, Plumbing or Fire Protection systems shall not start until copies of completed coordination drawings are received by the Architect/Engineer and have been reviewed.
- F. Review of coordination drawings shall not diminish responsibility under this Contract for final coordination of installation and maintenance clearances of all systems and equipment with Architectural, Structural, Mechanical, Electrical and other work.
- G. After Approval:
 - After written approval of coordination drawings, the method used to resolve interferences not previously identified shall be as defined above.

- All changes to approved coordination drawings shall be approved in writing by the Architect/Engineer prior to start of work in affected areas.
- H. Distribution of Coordination Drawings:
 - The Mechanical Piping Subcontractor shall provide the following distribution of documents:
 - a. One set of Coordination Drawings, in electronic PDF and Navisworks format, to each specialty trade, and affected Contractor and General Contractor for their use.
 - b. One full size hard copy of each Coordination Drawing to Owner.
 - Coordination Drawings include but are not necessarily limited to new and existing for:
 - a. Structure.
 - b. Equipment.
 - c. Partition/room layout.
 - d. Ceiling tile and grid.
 - e. Light fixtures.
 - f. Access panels.
 - g. Sheet metal, heating coils, boxes, grilles, diffusers, etc.
 - h. All piping and valves.
 - i. Smoke and fire dampers.
 - j. Soil, waste and vent piping.
 - k. Domestic water piping.
 - 1. Medical gas piping.
 - m. Roof drain piping.
 - n. Reverse osmosis piping.
 - o. Major electrical conduit runs, panelboards, feeder conduit and racks of branch conduit.
 - p. Above ceiling miscellaneous metal.
 - q. Sprinkler piping and heads.
 - r. Heat tracing of piping.

END OF SECTION

INTENTIONALLY LEFT BLANK

SECTION 23 05 02 MECHANICAL DEMOLITION AND ALTERATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 JOB CONDITIONS

- A. Perform all demolition as needed to accomplish new work.
- B. Refer to Demolition Section of specifications and to the Drawings for areas and equipment being remodeled.
- C. This Contractor is responsible for all charges, fees etc. incurred as a result of the mechanical portion of the demolition.
- D. Prior to demolition or alteration of structures, the following shall be accomplished:
 - 1. Coordinate sequencing with Owner and other Contractors.
 - 2. Coordinate means to separate construction zones from non-renovated zones to prevent the spread of dust, fumes and debris.
 - Coordinate means to provide exhaust and makeup air to maintain the construction zone at an adequate negative pressure to contain all construction dust and fumes.
 - 4. Except as noted otherwise, remove from the premises, all materials and equipment removed in the demolition work.
 - 5. Equipment noted to be removed and turned over to the Owner, shall be delivered to the Owner at a place and time he so designates.
 - 6. Where the materials are to be turned over to the Owner or reused and installed by the Contractor, it shall be the Contractor's responsibility to maintain the condition of the materials and equipment equal to that existing before work began. Damaged materials or equipment shall be repaired or replaced at no additional cost to the Owner.
 - 7. Survey and record condition of existing facilities to remain in place that may be affected by demolition operations. After demolition operations are completed, survey conditions again and restore existing facilities to their pre-demolition condition, at no additional cost to Owner.

 Salvage equipment scheduled for reuse in new work or scheduled to be delivered to Owner's storage facility.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 DEMOLITION

- A. Existing mechanical equipment in conflict with new construction shall be removed and/or relocated as indicated on the drawings, as directed or needed. This Contractor shall remove all mechanical equipment released from service as a result of construction, and no equipment removed shall be reused, except as specifically directed on the drawings or elsewhere herein. Except for ductwork and miscellaneous hardware, all mechanical equipment shall remain the property of the Owner and shall be stored on the site for removal by the Owner. Properly dispose or remove from site any piping, hangers, or other items not retained by Owner.
- B. Where materials are to be turned over to the Owner or reused and installed by the Contractor, it shall be the Contractor's responsibility to maintain the condition of the materials and equipment equal to that existing before work began. Damaged materials or equipment shall be repaired or replaced at no additional cost to the Owner.
- C. Any existing services or equipment not shown on the drawings and which are logically expected to be continued in service and which may be interrupted or disturbed during construction, shall be reconnected in an approved manner. Provide temporary ducts, pipes, controls, etc., as needed to prevent interruption of service to occupied areas caused by demolition operations. In addition, any ductwork, piping or equipment which may require relocation or rerouting as a result of construction, shall be considered a part of the work of this section and shall be done by this Contractor with no additional compensation, provided that the referenced relocation is discernible from the pre-bid review of the site, and associated documents.
- D. This Contractor shall remove all ductwork, piping, straps, and existing equipment, being discontinued or removed due to construction. Abandoned or removed services shall be disconnected and capped at the perimeter of the project or as required elsewhere in the documents. Any asbestos removal required as part of demolition work to follow procedures in Section 02 82 13.13 Glovebag Asbestos Abatement.

- E. The existing building is to remain in operation during construction. This Contractor shall coordinate all work that will interfere with the present operation of the facility with the Owner and Construction Manager.
- F. All existing equipment that is to remain shall be cleaned. Touch up paint on equipment in exposed areas.
- G. Ductwork systems indicated to remain shall be cleaned inside and out.
- H. Existing ductwork in remodeled area that is not being removed shall be sealed as necessary to comply with SMACNA standards and requirements of ductwork section of the specifications.
- I. All coring that is required for mechanical work shall be done by this Contractor.
- J. All cutting and patching required for mechanical work shall be by this Contractor.
- K. This Contractor shall provide required additional support for existing ductwork and piping in remodeled area that is not being removed and is not properly supported.
- L. When existing ductwork, piping, or related equipment in remodeled areas prevents the installation of other work, remove and reinstall existing materials, making necessary modifications and transitions to coordinate with other trades.
- M. Maintain construction zone at adequate negative pressure by providing exhaust by mechanical means until all work which creates dust or fumes is completed.

3.2 TESTING

A. Existing equipment shall be tested before demolition begins to determine existing operating conditions and capacities. T&B report due to Engineer prior to starting demo work. Upon completion of all new work, the existing equipment shall be rebalanced to serve the new areas and maintain existing capacities in existing areas.

----- END -----

INTENTIONALLY LEFT BLANK

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS
- B. Section 01 00 00, GENERAL REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout
- F. Section 05 31 00, STEEL DECKING
- G. Section 05 50 00, METAL FABRICATIONS
- H. Section 07 84 00, FIRESTOPPING
- I. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations
- J. Section 07 92 00, JOINT SEALANTS
- K. Section 09 91 00, PAINTING
- L. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- M. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- N. Section 23 07 11, HVAC INSULATION
- O. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- P. Section 23 21 13, HYDRONIC PIPING
- Q. Section 23 31 00, HVAC DUCTS and CASINGS
- R. Section 23 36 00, AIR TERMINAL UNITS
- S. Section 23 37 00, AIR OUTLETS and INLETS
- T. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS
- U. Section 23 82 16, AIR COILS
- V. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training
- W. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.
 - Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.

- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Layout Drawings:
 - Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas. Refer to Section 00 72 00, GENERAL CONDITIONS, SUBCONTRACTS AND WORK COORDINATION.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:
 - a. Hangers, inserts, supports, and bracing.
 - b. Pipe sleeves.

- c. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- H. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Manuals shall be submitted in hard copy and PDF formats.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment.
- I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2012.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA):

IP-20-2007.....Specifications for Drives Using Classical V-Belts and Sheaves

IP-21-2009.....Specifications for Drives Using Double-V (Hexagonal) Belts

IP-22-2007.....Specifications for Drives Using Narrow V-Belts and Sheaves

E. Air Movement and Control Association (AMCA): 410-96......Recommended Safety Practices for Air Moving

Devices (2009 ed.)

- F. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): Section I-2010.....Power Boilers Section IX-2010......Welding and Brazing Qualifications Code for Pressure Piping: B31.1-2007.....Power Piping G. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-12c.....Standard Test Method for Surface Burning Characteristics of Building Materials (2012 ed.) E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials (2009 ed.) H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application I. National Electrical Manufacturers Association (NEMA): MG-1-2013..... Motors and Generators J. National Fire Protection Association (NFPA): 31-11.....of Oil-Burning Equipment 54-12.....National Fuel Gas Code 70-11.....National Electrical Code 85-11.....Boiler and Combustion Systems Hazards Code 90A-11.....of Air Conditioning and Ventilating Systems 101-12....Life Safety Code 1.6 DELIVERY, STORAGE AND HANDLING A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and

material. The Contractor is solely responsible for the protection of such equipment and material against any damage.

- Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Phasing of Work: Comply with all requirements shown on drawings or specified.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Corridor work outside of the designated work zones shall be between the hours of 4:30 PM and 10:00 PM.

E. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - HVAC: Provide for all valves other than for equipment in Section 23
 82 00, CONVECTION HEATING AND COOLING UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.5 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.6 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.7 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.

- C. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
- D. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- E. Attachment to existing structure: Support from existing floor/roof frame.
- F. Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- I. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.

- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- J. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.8 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- F. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- G. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- H. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.9 DUCT PENETRATIONS

A. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.10 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.11 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.12 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves,

filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.

- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment

against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- M. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

Upgrade Five East

585-10-127

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.

- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.4 MECHANICAL DEMOLITION

- A. See Section 23 05 02 Mechanical Demolition for additional detail.
- B. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- C. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.

- D. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- E. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- F. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.5 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.

- i. Pressure gauges and thermometers.
- j. Glass.
- k. Name plates.
- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.6 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.7 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation.Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.

D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.9 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.11 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 31 00, HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- C. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
- D. SECTION 23 37 00, AIR OUTLETS and INLETS: noise requirements for G-grilles.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Noise Criteria:
 - Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors(Public)	40
Examination Rooms	35
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Patient Rooms	35
Recreation Rooms	40-45
Treatment Rooms	35

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Acoustical enclosures.

C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): 2009Fundamentals Handbook, Chapter 7, Sound and

Vibration

C. American Society for Testing and Materials (ASTM):

A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

A307-07b.....Standard Specification for Carbon Steel Bolts

and Studs, 60,000 PSI Tensile Strength

```
D2240-05(2010).....Standard Test Method for Rubber Property -
Durometer Hardness
```

D. Manufacturers Standardization (MSS): SP-58-2009.....Pipe Hangers and Supports-Materials, Design and

Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):
 ASCE 7-10Minimum Design Loads for Buildings and Other
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008......Seismic Restraint Manual: Guidelines for

Structures.

Mechanical Systems, 3rd Edition.

- H. International Code Council (ICC): 2009 IBC.....International Building Code.
- I. Department of Veterans Affairs (VA):

H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.

- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- D. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.

2.3 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - 1. No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
 - Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
 - 5. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.

3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes glycol-water systems.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- C. Section 23 07 11, HVAC INSULATION: Piping and Equipment Insulation.
- D. Section 23 36 00, AIR TERMINAL UNITS: Terminal Units Performance.
- E. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.

- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- G. Section 23 82 16, AIR COILS
- H. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS
- I. Section 23 37 00, AIR OUTLETS AND INLETS
- J. Section 23 21 13, HYDRONIC PIPING
- K. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section23 05 11, COMMON WORK RESULTS FOR HVAC
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five

years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance

during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
- b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
- c. Minimum outside air: 0 percent to plus 10 percent.
- d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
- e. Hot water coils: Minus 5 percent to plus 5 percent.
- Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.

- 3. Duct Air Leakage Test Report.
- 4. Systems Readiness Report.
- 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
- Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

2007HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter 47, Sound and Vibration Control

- C. Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System Balance
- D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration

3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction

- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.

C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow sufficient time in the construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, terminal units, and room diffusers/outlets/inlets.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.

- 3. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 4. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include coils:
 - Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating coils. Include entering and leaving air temperatures (DB/WB) for reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - Take readings in rooms, approximately fifteen (15) percent of all rooms. The Resident Engineer may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified
 equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level.

Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.

- 3. Where sound pressure levels are specified in terms of dB(A) measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 23 07 11 HVAC INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 2. Re-insulation of HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Ductwork and piping above ceilings and in chases and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F);HVAC equipment or piping handling media above 41 degrees C (105 degrees F);and piping media and equipment 32 to 230 degrees C(90 to 450 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 14. LPR: Low pressure steam condensate gravity return.
- 15. HWH: Hot water heating supply.
- 16. HWHR: Hot water heating return.
- 17. GH: Hot glycol-water heating supply.
- 18. GHR: Hot glycol-water heating return.
- 19. VR: Vacuum condensate return.
- 20. CW: Cold water.

difference).

- 21. SW: Soft water.
- 22. HW: Hot water.
- 23. CH: Chilled water supply.
- 24. CHR: Chilled water return.
- 25. GC: Chilled glycol-water supply.
- 26. GCR: Chilled glycol-water return.
- 27. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- D. Section 23 21 13, HYDRONIC PIPING: Hot water, chilled water, and glycol piping.
- E. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4. $4.3.3.5^*$ Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84 (2012 ed.), UL 723 (2003 ed.), or NFPA 255 (2006 ed.).
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-99(2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B209-10......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-11.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-07.....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C533-11.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534-11.....for Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-12.....Standard Specification for Mineral Fiber pipe Insulation C552-12b..... Standard Specification for Cellular Glass

Thermal Insulation

	C553-11	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-10	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-12	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-12	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-12	.Standard Test Method for Surface Burning
		Characteristics of Building (2012 ed.)
		Materials
	E119-09c	.Standard Test Method for Fire Tests of Building
		Construction and Materials (2009 ed.)
	E136-12	.Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
Е.	National Fire Protectio	n Association (NFPA):
	90.1-10	.Energy Code
	90A-11 (2011 ed.)	.Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-11	.Standard s for Ventilation Control and Fire
		Protection of Commercial Cooking Operations
	101-12	.Life Safety Code (2012 ed.)
	251-06	.Standard methods of Tests of Fire Endurance of
		Building Construction Materials
	255-06	.Standard Method of tests of Surface Burning
		Characteristics of Building Materials
F.	Underwriters Laboratori	es, Inc (UL):
	723 (2003 ed.)	.UL Standard for Safety Test for Surface Burning
		Characteristics of Building Materials with
		Revision of 09/08

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.3 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for

painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.4 REMOVABLE INSULATION JACKETS

A. Insulation and Jacket:

- 1. Non-Asbestos Glass mat, type E needled fiber.
- Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
- 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
- Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.5 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass insulation of the same thickness as adjacent insulation.

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				

05-11

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation.
- 2.6 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
 - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
 - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
 - D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
 - E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
 - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
 - G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.8 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.

05-11

- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.9 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.10 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and

uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
 - 5. Specialties:
 - a. Control valves-water
 - b. Strainers under 65 mm (2-1/2 inch) pipe size
 - c. Flexible connectors
 - d. Ball joints except piping between joints
- Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.

- K. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions

3.2 INSULATION INSTALLATION

- A. Flexible Mineral Fiber Blanket:
 - Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
 - 4. Concealed return air duct:
 - a. In interstitial spaces (where not subject to damage): 40 mm (1 1/2 inch thick insulation faced with FSK.
 - b. Concealed return air ductwork in other locations need not be insulated.

- B. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
 - 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 40 mm (1-1/2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct, unlined air handling units.
 - b. 40 mm (1-1/2 inch) thick insulation faced with ASJ: Mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 75 mm (3 inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (3 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
 - 4. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.

- a. Chilled water pumps
- Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 a. Convertors, air separators.
 - Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:

- Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
- 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Calcium Silicate:
 - Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.

3.3 APPLICATION - PIPE, VALVES, STRAINERS AND FITTINGS:

- A. Temperature range 32 to 99 degrees C (90 to 211 degrees F):
 - 1. Application: Pumped heating supply and returns.
 - 2. Insulation Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (six feet above boiler room floor, feedwater heater mezzanine floor and access platform and any floor or access platform on which tanks or pumps are located.
 - b. Mineral fiber or rigid closed-cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.

Nominal Thickness Of Insulation					
Pipe Diameter mm (in)	Insulation Thickness mm (in)				
25 (1 and below)	38 (1.5)				
25 to 38 (1-1/4 to 1-1/2)	50(2)				
38 (1-1/2) and above	75 (3)				

3. Thickness-calcium silicate and mineral fiber insulation:

4. Thickness-rigid closed-cell phenolic foam insulation:

Nominal Thickness Of Insulation					
Pipe Diameter mm (in)	Insulation Thickness mm (in)				
25 (1 and below)	19 (0.75)				
25 to 38 (1-1/4 to 1-1/2)	19 (0.75)				
38 (1-1/2) and above	25 (1)				

- B. Protective insulation to prevent personnel injury:
 - Application: Piping from zero to 1800 mm (6 feet) above all floors and access platforms including continuous blowoff, feedwater and boiler water sample, blowoff tank vent, flash tank vents and condensater tank vent, shot-type chemical feed, fire tube boiler bottom blowoff after valves, valve by-passes.
 - 2. Insulation thickness: 25 mm (1 inch).
- C. Installation:
 - At pipe supports, weld pipe covering protection saddles to pipe, except where MS-SP58, type 3 pipe clamps are utilized.
 - Insulation shall be firmly applied, joints butted tightly, mechanically fastened by stainless steel wires on 300 mm (12 inch) centers.
 - 3. At support points, fill and thoroughly pack space between pipe covering protective saddle bearing area.
 - 4. Terminate insulation and jacket hard and tight at anchor points.
 - Terminate insulation at piping facilities not insulated with a 45 degree chamfered section of insulating and finishing cement covered with jacket.
 - 6. On calcium silicate, mineral fiber and rigid closed-cell phenolic foam systems, insulated flanged fittings, strainers and valves with sections of pipe insulation cut, fitted and arranged neatly and firmly wired in place. Fill all cracks, voids and coat outer surface

with insulating cement. Install jacket. Provide similar construction on welded and threaded fittings on calcium silicate systems or use premolded fitting insulation.

- 7. On mineral fiber systems, insulate welded and threaded fittings more than 50 mm (2 inches) in diameter with compressed blanket insulation (minimum 2/1) and finish with jacket or PVC cover.
- 8. Insulate fittings 50 mm (2 inches) and smaller with mastic finishing material and cover with jacket.
- 9. Insulate valve bonnet up to valve side of bonnet flange to permit bonnet flange removal without disturbing insulation.
- 10. Install jacket smooth, tight and neatly finish all edges. Over wrap ASJ butt strips by 50 percent. Secure aluminum jacket with stainless steel bands 300 mm (12 inches) on center or aluminum screws on 200 mm (4 inch) centers.
- 11. Do not insulate basket removal flanges on strainers.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal Pipe Size Millimeters (Inches)			
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)

38-99 degrees C	Rigid Cellular	38	38 (1.5)	50 (2.0)	50 (2.0)
(100-211 degrees F)	Phenolic Foam	(1.5)			
(LPR, PC, HWH, HWHR,					
GH and GHR)					

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

1.6 SUBMITTALS

A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.

B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 14 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

INTENTIONALLY LEFT BLANK

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, graphics, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system shall be Siemens PL-1 protocol. All controllers, devices and components shall be Siemens or approved by Siemens for use in a Siemens PL-1 protocol Network. All new workstations, controller, devices and components shall be accessible using the Siemens PL-1 communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - 2. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
 - 3. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
 - The controls contractor at this facility is Energy Control & Design, Inc((920)739-6885). This firm will be responsible for all

changes/additions to the DDC system unless directed otherwise by the Resident Engineer.

- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Sensor wells and sockets in piping.
 - 3. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - 2. Terminal units' velocity sensors
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Controllers for terminal units	23 09 23	23	23 09 23	26
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Automatic Damper Acutators	23 09 23	23 09 23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
A controls requiring Line Power	23 09 23	23 09 23	N/A	26
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	26
Fire Dampers	23	23	N/A	N/A
Fire-fighter's smoke control station (FSCS)	28	28	28	28

- F. This facility's existing direct-digital APOGEE control system is manufactured by Siemens, and its ECC is located in the A/C shop. The existing system's top-end communications is via Ethernet cabling over the site network. The existing system's ECC and top-end controllers were installed 15 - 20 years ago. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
- G. This campus has standardized on an existing standard Siemens P1 Network Control System supported by a preselected controls service company, the controls contractor; Energy Control & Design, Inc. This entity provides the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible

for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.

- The General Contractor of this project shall directly hire the controls contractor administered by this Section of the technical specifications. The controls contractor work shall provide services described as those provided by a Control System Integrator in a contract separate from the contract procuring the.
- 2. The contractor administered by this Section of the technical specifications shall provide all controls work including that described as provided by the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the Siemens P1 Network with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring. Responsibility Table:

Item/Task	Section 23 09 23 contractor	Control system integrator	VA
ECC expansion	Х		
ECC programming	Х		
Devices, controllers, control panels and equipment	X		
Point addressing: all hardware and software points including setpoint, calculated point, data point(analog/ binary), and reset schedule point	Х		
Point mapping	Х		
Network Programming	Х		
ECC Graphics	Х		
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training	Х		
LAN connections to devices	Х		

LAN connections to ECC	Х	
IP addresses		Х
Overall system verification	Х	
Controller and LAN system verification	Х	

H. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators.

1.2 RELATED WORK

- A. Section 13 21 29, Constant Temperature Rooms.
- B. Section 21 05 11, Common Work Results for Fire Suppression.
- C. Section 23 21 13, Hydronic Piping.
- D. Section 23 31 00, HVAC Ducts and Casings.
- E. Section 23 36 00, Air Terminal Units.
- F. Section 26 05 11, Requirements for Electrical Installations.
- G. Section 26 05 19, Low-Voltage Electrical Power Conductors and Cables.
- H. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- I. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- J. Section 26 09 23, Lighting Controls.
- K. Section 26 27 26, Wiring Devices.
- L. Section 27 15 00, Communications Horizontal Cabling
- M. Section 28 31 00, Fire Detection and Alarm.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- D. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- E. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.

- F. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- G. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- H. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- I. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- J. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- K. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- L. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- M. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.

- N. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- O. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- P. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- Q. GIF: Abbreviation of Graphic interchange format.
- R. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- S. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- T. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- U. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- V. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- W. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- X. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- Y. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required.

- Z. Operating system (OS): Software, which controls the execution of computer application programs.
- AA. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- BB. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- CC. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- DD. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- EE. Repeater: A network component that connects two or more physical segments at the physical layer.
- FF. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- GG. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

properties.

- A. Criteria:
 - Single Source Responsibility of subcontractor: The Contractor for this project will be Energy Control & Design, Inc. (EC&D) unless different direction is given by the Resident Engineer.
 - Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls contractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - 4. The controls contractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5)

years, and necessary test and diagnostic equipment to support the control systems.

- 5. The controls contractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.
 - 3. Peer-to-peer controllers, unitary controllers shall conform to the requirements of UL 916, Category PAZX.
- C. System Modifications: Make recommendations for system modification in writing to the VA. No system modifications shall be made without prior written approval of the VA. Any modifications made to the system shall be incorporated into the Operations and Maintenance Instructions, and other documentation affected. Provide to the VA software updates for all software furnished under this specification during this contract's construction and verification periods and for the first two years after government acceptance. All updated software shall be verified as part of this contract.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per

graphic. All current data shall be displayed within ten (10) seconds of the request.

- Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
- 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two (2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH

Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after

business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.

D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.

- 5. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 6. Color prints of proposed graphics with a list of points for display.
- 7. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 8. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 10. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, and larger controlled devices.
- 11. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 12. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):

585-10-127

- 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 8 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the

completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.

- 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- C. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.
- D. The associated equipment used in controlled environment shall be mounted in NEMA 1 enclosures for operation at 0 to 50 degrees C (32 to 122 degrees F) at a relative humidity of 10 to 90 percent noncondensing.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings.

B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-08.....Standard Specification for Solder Metal B88-09....Standard Specifications for Seamless Copper Water Tube B88M-09....Standard Specification for Seamless Copper Water Tube (Metric) B280-08....Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service D2737-03...Standard Specification for Polyethylene (PE) Plastic Tubing

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11.....National Electric Code 90A-09....Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10.....Access Control System Units 486A/486B-10.....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10.....Energy Management Equipment 1076-10.....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

- The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
- The building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. Existing fixed ECC and portable operator's terminal.
 - b. Existing network computer processing, data storage and Seimens P1 Network-compliant communication equipment including Servers and digital data processors.
 - c. Active processing network area controllers connected to programmable field panels and controllers together with their power supplies and associated equipment.
 - d. Addressable elements, sensors, transducers and end devices.
 - e. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - f. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Existing Network Architecture
 - The Controls communication network shall utilize Seimens P1 communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.

- 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Existing server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a Siemens P1 Network. Controller and operator interface communication shall conform to the Siemens P1 Network.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and Siemens P1.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- D. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC exists and resides on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- B. ECC and controllers shall communicate using Siemens P1 network protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and Siemens P1 network protocol.
- C. Hardware: ECC shall conform to the Siemens P1 network protocol.
 - 1. ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive.
 - a. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store:
 - 1) All required operator workstation software
 - 2) A DDC database at least twice the size of the delivered system database
 - One year of trend data based on the points specified to be trended at their specified trend intervals.
 - b. Real-time clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
 - c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
 - d. Parallel port: Enhanced.

- e. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm.
- f. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
- g. Mouse: Standard, compatible with installed software.
- h. Removable disk storage: Include the following, each with appropriate controller:
 - Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
- i. Network interface card (NIC): integrated 10-100-1000 Base-TX
 Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC
 with an SC/ST connector.
- Cable modem: 42.88 MBit/s, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity.
- 3. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
- 4. Auto-dial modem: 56,600 bps, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction, and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.
- 5. Audible Alarm: Manufacturer's standard.
- 6. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
 - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
 - d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a

signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.

e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

1) NFPA 70, Type CMP.

2) Flame Resistance: NFPA 262, Flame Test.

- D. ECC Software:
 - 1. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
 - 2. Graphics Library. Utilize existing graphics library to extent possible.
 - 3. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
 - Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
 - 5. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and

other Windows based software programs, while concurrently on-line system alarms and monitoring information.

- 6. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
- 7. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
- 8. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.
 - c. Collection and analysis of historical data.
 - d. Alarm reporting, routing, messaging, and acknowledgement.
 - e. Definition and construction of dynamic color graphic displays.
 - f. Real-time graphical viewing and control of environment.
 - g. Scheduling trend reports.
 - h. Program editing.
 - i. Operating activity log and system security.
 - j. Transfer data to third party software.
- 9. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.

- c. Event scheduling.
- d. Dynamic trend definition and presentation.
- e. Program and database editing.
- f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.
- 10. Graphic Displays:
 - a. System Graphics shall be project specific and schematically correct for each system. (ie: coils and dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
 - b. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
 - c. Color shall be used to indicate status and change in status of the equipment. The status colors shall be user definable.
- 11. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g. List of weekly schedules.
 - h. List of holiday programming.

- i. List of limits and dead bands.
- j. Custom reports.
- k. System diagnostic reports, including, list of digital controllers on the network.
- 1. List of programs.
- 12. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
 - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.
- 13. Collection and Analysis of Historical Data:
 - a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
 - b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
 - c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.

- d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.
- 14. Alarm Management:
 - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
 - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
 - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
 - d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
 - e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- 15. Remote Communications: The system shall have the ability to dial out in the event of an alarm. Receivers shall include operator workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself.
- 16. System Configuration:
 - a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all

other network devices to allow the development of global control strategies.

b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.

2.5 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - Siemens network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or

controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1. STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the Siemens Device objects of the controllers involved so that the Siemens name and the EMCS name are the same.

2.6 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.

- 6. The controller shall communicate with other devices on the internetwork using the Siemens P1 Network protocol.
- 7. Communication.
 - a. Each controller shall reside on the Siemens network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform Siemens Network routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using Siemens Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other Siemens devices on the internetwork using the Siemens Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a Siemens network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its

communications. Each building controller also shall perform Siemens Network routing if connected to a network of custom application and application specific controllers.

- b. Each controller shall reside on an ARCNET network using the ISO 8802-2 Data Link/Physical layer protocol for its communications.
- c. Each controller shall have a Siemens P1 Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or,

if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
 - b. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of

the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.

- c. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.
- d. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- e. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators

defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.7 SPECIAL CONTROLLERS

- A. Room Differential Pressure Controller: The differential pressure in designated spaces shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space, and display the value on its monitor. The sensorcontroller shall meet the following as a minimum:
 - 1. Operating range: -0.25 to +0.25 inches of water column
 - 2. Resolution: 5 percent of reading
 - 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
 - 4. Analog output: 0-10 VDC or 4-20 ma
 - 5. Operating temperature range: 32°F-120°F

2.8 SENSORS (AIR AND WATER)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on

sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.

- Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
- d. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- e. Wire: Twisted, shielded-pair cable.
- f. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.9 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and

electronic private branch exchange (EPBX) equipment the System may service.

- The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.10 THERMOSTATS AND HUMIDISTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have finish specified by architect, setpoint range and temperature display and external adjustment:

- 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.11 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: Except as specified in subparagraph 2 below, maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200

L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.

- 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
- Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- D. Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Two-way modulating values shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - b. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
 - 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be

aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

- a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
- 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
- 3. See drawings for required control operation.

2.12 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Pneumatic Type:
 - Airflow measuring stations shall measure airflow by the pitot tube traverse method. Each unit shall consist of a network of static and total pressure sensors, factory positioned and connected in parallel, to produce an equalized velocity pressure. The measured velocity pressure converted to airflow (cfm) shall have accuracy

within 2 percent of the full scale throughout the velocity range from 200 to 1,200 meter per minute (700 to 4,000 fpm).

- 2. Airflow measuring stations shall consist of 16-gauge sheet metal casing, an aluminum air velocity treatment and air straightening section with an open face area not less than 97 percent and a total and static pressure sensing manifold made of copper. Each station shall contain noncombustible sensors which shall be incapable of producing toxic gases or fumes in the event of elevated duct temperatures. All interconnecting tubing shall be internal to the unit with the exception of one total pressure and one static pressure meter connection.
- 3. Each air flow measuring station shall be installed to meet at least the manufacturer's minimum installation conditions and shall not amplify the sound level within the duct. The maximum resistance to airflow shall not exceed 0.3 times the velocity head for the duct stations and 0.6 times the velocity head for the fan stations. The unit shall be suitable for continuous operation up to a temperature of 120°C (250°F).
- 4. Differential pressure transducers shall measure and transmit pressure signals to the direct digital controller.
- C. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire,

09-11

wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.

- 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
 - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
 - c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
 - b. Electronics Panel shall be A/C powered 120 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
 - c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
 - d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.

- 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F).
- 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density	
Area (sq.ft.)	Qty. Sensors
<=1	2
>1 to <4	4
4 to <8	6
8 to <12	8
12 to <16	12
>=16	16

- a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan

capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.

- 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.
- F. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
 - The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.

- Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations

shall be in accessible locations. Cables shall be harnessed with cable ties.

- b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
- c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. All pipe mounted temperature sensors shall be installed in wells.

- g. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- h. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor

humidity, or space temperature could be located on any of the remote control units.

- Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SEQUENCE OF OPERATIONS

- A. SETPOINTS:
 - 1. All setpoints indicated in the control specification are to be adjustable. The setpoints shall be readily available to be modified in the mechanical system software system summary (either textual or graphic based) and under the same software level as hardware points. Some less used setpoints may be provided on a lower software level, if requested by the Owner for clarity. The setpoints indicated herein are only specified as a calculated starting point (or initial system operation). It is expected that setpoint adjustments and control loop tuning shall be required to provide optimum system operation based on requirements of the building. The control Contractor shall work with the balancing Contractor and the Owner to provide the final system setpoint adjustments and control loop tuning after the system is in operation and building is in use. Document all final setpoints on the as-built control drawings. Any questions regarding the intended operation of the HVAC equipment and control systems shall be referred to the HVAC design engineer through the appropriate construction communication process. The following setpoints should be used as initial setpoints unless otherwise specified in the individual control sequences: a. Occupied Space Terminal Unit Heating: 68 °F.
 - b. Occupied Space Terminal Unit Cooling: 76 °F.
 - c. Entry Way Heating: 60 °F.
 - d. Mechanical or Unoccupied Space Ventilation: 82 °F.

e. Mechanical or Unoccupied Space Heating: 60 °F.

- B. Anti-cycling:
 - 1. When HVAC equipment or a sequence is specified to be started and stopped by a temperature, humidity, pressure setpoint or any other controlled variable, there shall be an adjustable differential setpoint that shall be set to prevent short cycling of the systems and equipment due to minor changes in the controlled variable. Temperature differential setpoints shall be set at 2 °F and nontemperature setpoints shall be set at 10% of the controlled range unless otherwise specified. Setpoints shall indicate at when the process should be turned on. Heating and cooling differentials shall be set for above setpoint and will be used to turn the process off. For example, an economizer sequence called to switch at 68 °F, would turn on at 68 °F and off at 70 °F since it is a cooling function. A heating lockout setpoint of 50 °F would turn on heating control at 50 °F and off at 52 °F Non-temperature differentials shall be set above setpoint if the setpoint is indicating a minimum value or below setpoint if the setpoint is indicating a maximum value. Provide minimum runtime timers for loads that are cycled to prevent over-cycling. Timers shall be set as specified or as needed to prevent damage or excessive wear to the equipment. Unless otherwise specified in the individual control sequences, fans and pumps shall have a minimum runtime on timers of 15 minutes (adj.) and off timers of 5 minutes (adj.). Safeties shall override runtime timers.
- C. DEADBANDS:
 - Provide deadbands for all DDC control loops to prevent constant hunting of output signals to controlled devices. Deadbands shall be set to provide adequate control around setpoint as follows unless otherwise specified in the individual control sequences:
 - a. Temperature Control: ±0.5 °F.
 - b. Humidity Control: ±1% RH.
 - c. Airflow Control: $\pm 2\%$ of total flow.
 - d. AHU Static Pressure Control: ±0.01 in. w.c.
- D. ALARMS:
 - Provide all alarmed points with adjustable time delays to prevent nuisance tripping under normal operation and on equipment start-up. Provide alarms on all points as indicated on point charts. For

existing campus automations systems, add/delete what is called on the point charts for after consultation with user Owner to provide consistent alarming throughout the automation system.

- E. EQUIPMENT START/STOP FAILURE STATES:
 - All start/stop points for equipment shall utilize normally open contacts unless called out specifically in the individual control sequences.
- F. CURRENT SWITCH SETUP:
 - When current switches are used for proving fan or pump status, they shall be set up so that they will detect belt or coupling loss by the reduction in current draw on loss of coupled load. The current switch set up shall be redone by the 23 09 23 Contractor after the balancer is complete.
- G. SMOKE DAMPER CONTROL:
 - Smoke dampers provided in ducts are required to close by building code in the event their associated smoke detectors are in alarm or if the associated duct smoke detector requires a minimum velocity to operate and the associated fan(s) that supply, return, or exhaust air through them are shutdown.
 - 2. For software interlocks of smoke dampers to the fan systems, the smoke dampers will be commanded open and closed on fan status.
 - 3. For fan systems with safety circuit hardwire interlocks and fan fails to start after an appropriate time delay (not longer than five minutes), smoke dampers shall close, the fan shall be latched off, and an alarm sent through the DDC system. A software reset point and a momentary pushbutton located at the temperature control panel for the associated fan system shall be provided to reset the fan system. On fan system start-up, a time delay shall allow the dampers to open before the fan is started. All necessary software and hardware interlocks shall be provided to perform these functions. See individual fan system control sequences for the type of smoke damper interlock to use and more details on how this should be accomplished.
 - 4. Alarms shall be provided for each smoke damper by the 23 09 23 Contractor. The alarm shall be generated when the smoke damper is not in its commanded position after the appropriate time delay to allow for the smoke damper to actuate fully. Alarms shall be provided regardless if the smoke damper command is from the DDC

system or fire alarm system. Binary inputs to the DDC system from the fire alarm system devices commanding the dampers shall be provided for to allow for all required alarming.

- H. THERMOSTATS AND SENSORS:
 - All devices and equipment including terminal units, specified to be controlled in a control sequence by a thermostat or sensor, shall be provided with a thermostat or sensor, whether or not the device is indicated on the plans. Consult the HVAC design engineer for the thermostat or sensor location.
- I. WEEKLY SCHEDULING:
 - Provide scheduling of DDC terminal units in groups based on occupancy. Work with the Owner to determine how many groups are required and which zones should be included. Individual terminal units shall be able to receive temporary schedules that will override the group schedules. Temporary override buttons at the zone sensor (where specified on point charts) shall override the scheduling to occupied. When groups that consist of more than 20% of terminal units are indexed to occupied, the associated air handling unit shall start if not already running.

J. CALCULATED DATA POINTS:

- Provide calculated data points for actual dirty pressure drop for all variable volume air handling units with supply flow measurement based on the following equation:
 - a. Actual Dirty Filter ΔP = (Measured Supply CFM/Design CFM) 2 x Design Dirty Filter ΔP
- 2. Provide a calculated data point for outside airflow for all fans that have return and outside air mixing dampers and the points required to allow for the following equation:

a. Outside Airflow = Supply CFM x (MAT-RAT)/(OAT-RAT).

3. Where Supply CFM is measured either on variable volume fans or as balanced on constant volume units, MAT is Mixed Air Temperature, RAT is Return Air Temperature, and OAT is Outside Air Temperature. This point is designed as a check for outside air flow stations accuracy and outside air ventilation minimum damper positions. It should be noted that the accuracy of the calculated outside airflow will diminish as outside air temperature approaches return air temperature. It should be used as a check only when the RAT and OAT are greater than 20 $^\circ F$ and the accuracy of the RAT and OAT temperature sensors are assured.

- K. Terminal Unit Control DDC
 - 1. DDC CONTROLLED TERMINAL UNIT MASTER COMMAND POINTS:
 - a. Provide individual master software points for each of the following functions that can be executed from a single command through the DDC system:
 - Command all terminal unit heating valves open (i.e. reheat, fan coil, etc.).
 - 2) Command all terminal unit heating valves closed.
 - 3) Command all VAV terminals to scheduled minimum flow.
 - 4) Command all VAV terminals to scheduled maximum flow.
- L. VAV TERMINAL UNIT WITH REHEAT DDC CONTROL:
 - 1. Provide a DDC space temperature sensor to control, in sequence, a modulating electronic control valve for the hot water reheat coil and actuator for terminal air flow. When space temperature is below setpoint, the air terminal damper shall modulate toward the cooling minimum flow position. After the air terminal damper is at its minimum flow, the hot water valve shall modulate open to maintain space temperature. The reverse shall occur when space temperature is above setpoint. The heating coil valve shall be commanded closed whenever the associated AHU is off. Provide a discharge air temperature sensor for monitoring purposes.
- M. Control of Supply Air Dampers
 - The BAS shall control the supply air damper in the branch ductwork, and modulate to maintain a fixed static pressure as determined by the balancing contractor to maintain one VAV box at 90% open.
- N. Control of Return Air Dampers
 - The BAS shall sum all supply air VAV boxes and subtract the fixed exhaust CFM, this equals the return air CFM. The return dampers shall modulate to maintain this CFM based on the return air measuring stations.

3.3 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation:

- 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance wantle manual with performance verification test.
- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration:
 - System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.

- c. Demonstrate the software ability to edit the control program offline.
- d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
- e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
- f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

----- END -----

INTENTIONALLY LEFT BLANK

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Heating hot water and drain piping.
 - 2. Glycol-water piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 07 11, HVAC INSULATION.
- E. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS: VAV and CV units and radiant ceiling panels.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.

23 21 13-1

- 4. Flanges, gaskets and bolting.
- 5. Grooved joint couplings and fittings.
- 6. Valves of all types.
- 7. Strainers.
- 8. Flexible connectors for water service.
- 9. Pipe alignement guides.
- 10. Expansion joints.
- 11. Expansion compensators.
- 12. All specified hydronic system components.
- 13. Gages.
- 14. Thermometers and test wells.
- C. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. As-Built Piping Diagrams: Provide drawing as follows for heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.

 B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI):
 B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch)
 B16.4-06....Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings
 B16.23-02...Cast Copper Alloy Solder joint Drainage

fittings

B40.100-05.....Pressure Gauges and Gauge Attachments

C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI):

70-2-2006.....Control Valve Seat Leakage

D. American Society of Mechanical Engineers (ASME): B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-2006.....Malleable Iron Threaded Fittings: Class 150 and 300 B16.4-2006.....Gray Iron Threaded Fittings: (Class 125 and 250) B16.5-2003.....Pipe Flanges and Flanged Fittings: NPS ½ through NPS 24 Metric/Inch Standard B16.9-07.....Factory Made Wrought Butt Welding Fittings B16.11-05.....Forged Fittings, Socket Welding and Threaded B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-01.....Wrought Copper and Bronze Solder Joint Pressure Fittings. B16.24-06.....Cast Copper Alloy Pipe Flanges and Flanged Fittings B16.39-06.....Malleable Iron Threaded Pipe Unions B16.42-06.....Ductile Iron Pipe Flanges and Flanged Fittings B31.1-08.....Power Piping E. American Society for Testing and Materials (ASTM): A47/A47M-99 (2004).....Ferritic Malleable Iron Castings A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-04.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A183-03 Standard Specification for Carbon Steel Track Bolts and Nuts A216/A216M-08 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A234/A234M-07 Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service A307-07 Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

A536-84 (2004)	Standard Specification for Ductile Iron Castings
A615/A615M-08	Deformed and Plain Carbon Steel Bars for
	Concrete Reinforcement
A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy Coated (Galvannealed) By the Hot-Dip
	Process
B32-08	Standard Specification for Solder Metal
B62-02	Standard Specification for Composition Bronze or
	Ounce Metal Castings
B88-03	Standard Specification for Seamless Copper Water
	Tube
B209-07	Aluminum and Aluminum Alloy Sheet and Plate
C177-04	Standard Test Method for Steady State Heat Flux
	Measurements and Thermal Transmission Properties
	by Means of the Guarded Hot Plate Apparatus
	Precast Reinforced Concrete Manhole Sections
C533-07	Calcium Silicate Block and Pipe Thermal
	Insulation
C552-07	Cellular Glass Thermal Insulation
D3350-08	Polyethylene Plastics Pipe and Fittings
	Materials
C591-08	Unfaced Preformed Rigid Cellular
	Polyisocyanurate Thermal Insulation
D1784-08	Rigid Poly (Vinyl Chloride) (PVC) Compounds and
	Chlorinated Poly (Vinyl Chloride) (CPVC)
	Compound
D1785-06	Poly (Vinyl Chloride0 (PVC) Plastic Pipe,
	Schedules 40, 80 and 120
D2241-05	Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe
	(SDR Series)
F439-06	Standard Specification for Chlorinated Poly
	(Vinyl Chloride) (CPVC) Plastic Pipe Fittings,
	Schedule 80
F441/F441M-02	Other deal of the state of the
	Standard Specification for Chlorinated Poly
	(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules
	(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
	(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules

F. American Water Works Association (AWWA): C110-08..... Ductile Iron and Grey Iron Fittings for Water C203-02.....Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied G. American Welding Society (AWS): B2.1-02..... Standard Welding Procedure Specification H. Copper Development Association, Inc. (CDA): CDA A4015-06.....Copper Tube Handbook I. Expansion Joint Manufacturer's Association, Inc. (EJMA): EMJA-2003.....s Association Joint Manufacturer's Association Standards, Ninth Edition J. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-02a.....Butterfly Valves SP-70-06.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-05.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-08.....Bronze Gate, Globe, Angle and Check Valves SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-96.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-00.....Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI): 14-06.....Plastic Piping System Components and Related Materials 50-2009a......Equipment for Swimming Pools, Spas, Hot Tubs and other Recreational Water Facilities -Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities 61-2008..... Drinking Water System Components - Health Effects

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

- 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES
 - A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Heating Hot Water, and Glycol-Water:
 - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.

- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.
- D. Grooved Mechanical Pipe Couplings and Fittings (Contractor's Option): Grooved Mechanical Pipe Couplings and Fittings may be used, with cut or roll grooved pipe, in water service up to 110 degrees C (230 degrees F) in lieu of welded, screwed or flanged connections. All joints must be rigid type.
 - Grooved mechanical couplings: Malleable iron, ASTM A47 or ductile iron, ASTM A536, fabricated in two or more parts, securely held together by two or more track-head, square, or oval-neck bolts, ASTM A449 and A183.
 - 2. Gaskets: Rubber product recommended by the coupling manufacturer for the intended service.
 - 3. Grooved end fittings: Malleable iron, ASTM A47; ductile iron, ASTM A536; or steel, ASTM A53 or A106, designed to accept grooved mechanical couplings. Tap-in type branch connections are acceptable.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.

- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 4140 kPa (600 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely

isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.

- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) 3. Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves):
 - a) 50 mm (2 inches) and smaller: MSS-SP 80, Bronze, 1034 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- F. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - Gray iron (ASTM A126) or brass body rated 1205 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - Brass or ferrous body designed for 2067 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.

- Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 STRAINERS

- А. Ү Туре.
 - Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.

2.9 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.
- B. Mechanical Pipe Couplings:

See other fittings specified under Part 2, PRODUCTS.

2.10 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.

C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.

2.11 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
- B. Provide one each of the following test items to the Resident Engineer:
 - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel
 pressure gage adapter probe for extra long test plug. PETE'S 500 XL
 is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, -100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
 - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.12 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:

2. Hot Water and Glycol-Water: -1 - 116 degrees C (30-240 degrees F).

2.13 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:

- 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- E. Solvent Welded Joints: As recommended by the manufacturer.

3.3 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate

equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.4 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer.
 - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
 - 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently

operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.5 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping, where called out on plans.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the Resident Engineer, for instructing VA operating personnel.

3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Test requirements and instructions on use of equipment/system: Section 01 00 00, GENERAL REQUIREMENTS.
- B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Piping and valves: Section 23 21 13, HYDRONIC PIPING

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
 - 3. Glycol-water system materials, equipment, and installation.
- C. Water analysis verification.

- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2008.....National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02 (2008) ... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration;

ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

2.3 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 30 percent for hydronic system.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.

- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. Seismic Reinforcing: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Duct Insulation: Section 23 07 11, HVAC INSULATION
- G. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- H. Air Flow Control Valves and Terminal Units: Section 23 36 00, AIR TERMINAL UNITS.
- I. Duct Mounted Coils: Section 23 82 16, AIR COILS.
- J. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- L. Smoke Detectors: Section 28 31 00, FIRE DETECTION and ALARM.

1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - 7. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
 - 9. Instrument test fittings.
 - 10. Details and design analysis of alternate or optional duct systems.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11- Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS

A.	The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the			
	basic designation only.			
в.	American Society of Civil Engineers (ASCE):			
	ASCE7-05			
	Structures			
С.	C. American Society for Testing and Materials (ASTM):			
	A167-99(2009)Standard Specification for Stainless and			
	Heat-Resisting Chromium-Nickel Steel Plate,			
	Sheet, and Strip			
	A653-09Standard Specification for Steel Sheet,			
	Zinc-Coated (Galvanized) or Zinc-Iron Alloy			
	coated (Galvannealed) by the Hot-Dip process			
	A1011-09aStandard Specification for Steel, Sheet and			
	Strip, Hot rolled, Carbon, structural, High-			
	Strength Low-Alloy, High Strength Low-Alloy with			
	Improved Formability, and Ultra-High Strength			
	B209-07 and Specification for Aluminum and			
	Aluminum-Alloy Sheet and Plate			
	C1071-05e1 Standard Specification for Fibrous Glass Duct			
	Lining Insulation (Thermal and Sound Absorbing			
	Material)			
	E84-09aBurning			
	Characteristics of Building Materials			
D.	<pre>D. National Fire Protection Association (NFPA): 90A-09of Air</pre>			
	Conditioning and Ventilating Systems			
	96-08 Control and Fire			
	Protection of Commercial Cooking Operations			
Ε.	Sheet Metal and Air Conditioning Contractors National Association (SMACNA):			
	2nd Edition - 2005HVAC Duct Construction Standards, Metal and Flexible			
	1st Edition - 1985HVAC Air Duct Leakage Test Manual			
	6th Edition - 2003Fibrous Glass Duct Construction Standards			
F.	Underwriters Laboratories, Inc. (UL):			
	181-08 Air Connectors			
	555-06Standard for Fire Dampers			
	555S-06Standard for Smoke Dampers			

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
 - Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.

- Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
- Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- G. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- H. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- I. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- J. Ductwork in excess of 620 cm² (96 square inches) shall be protected unless the duct has one dimension less than 150 mm (6 inches)if it passes through the areas listed below. Refer to the Mission Critical Physical Design Manual for VA Facilities. This applies to the following:

- 1. Agent cashier spaces
- 2. Perimeter partitions of caches
- 3. Perimeter partitions of computer rooms
- 4. Perimeter of a COOP sites
- 5. Perimeter partitions of Entrances
- 6. Security control centers (SCC)

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream,
 - in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - 2. Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

03-01-13

2.5 COMBINATION FIRE AND SMOKE DAMPERS

- A. Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.
- B. Provide 110 Volt actuator
- C. Provide end switch

2.6 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 71 degrees C (160 degrees F) fusible link, 3 hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.7 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.8 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

2.9 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.10 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.11 SEISMIC RESTRAINT FOR DUCTWORK

Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.12 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.13 AIR FLOW CONTROL VALVES (AFCV)

Refer to Section 23 36 00 / 23 82 00, AIR TERMINAL UNITS / CONVECTION HEATING and COOLING UNITS.

2.14 LEAD COVERED DUCT

- A. Sheet Lead: 3.1 mm (1/8 inch) thick, securely installed, free of waves, lumps or wrinkles and with as few joints as possible.
- B. Joints shall be made to obtain X-ray absorption equivalent to adjacent sheet lead, and finished smooth and neat.

2.15 ELECTROSTATIC SHIELDING

- A. At the point of penetration of shielded rooms ducts shall be made electrically discontinuous by means of a flexible, nonconductive connection outside shielded room.
- B. Metallic duct portion inside shielded room shall be electrically bonded to shielding.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions

with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.

- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the Resident Engineer on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.

- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise requirements.
- C. Section 23 31 00, HVAC DUCTS AND CASINGS: Ducts and flexible connectors.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- E. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: Flow rates adjusting and balancing.
- F. Section 23 82 16, AIR COILS: Heating and Cooling Coils pressure ratings.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-11.....Air Control and Distribution Devices.

C. National Fire Protection Association (NFPA):

90A-11.....Standard for the Installation of Air Conditioning and Ventilating Systems.

D. Underwriters Laboratories, Inc. (UL): 181-08.....Standard for Factory-Made Air Ducts and Air Connectors.

E. American Society for Testing and Materials (ASTM):

C 665-12.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing.

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - 1. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.
 - Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts,

and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.

- Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

11-09

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- C. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE): ASCE7-05.....Minimum Design Loads for Buildings and Other Structures

D. American Society for Testing and Materials (ASTM):

A167-99 (2009).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip B209-10.....standard Specification for Aluminum and

Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA):

90A.....Standard for the Installation of Air Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL): 181-08.....UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 AIR OUTLETS AND INLETS

- A. Materials:
 - 1. Steel or aluminum. Provide manufacturer's standard gasket.
 - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Volume control damper shall not be integral to the diffuser. See plans for damper locations.
 - b. Louver face type: Square or rectangular, removable core for 1, 2,
 3, or 4 way directional pattern. Provide equalizing or control grid. Volume control damper shall not be integral to the diffuser. See plans for damper locations.
 - c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid. Volume control damper shall not be integral to the diffuser. See plans for damper locations. Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.

- d. Slot diffuser/plenum:
 - Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Form slots or use adjustable pattern controllers, to provide stable, horizontal air flow pattern over a wide range of operating conditions.
 - 2) Galvanized steel boot lined with 13 mm (1/2 inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, antimicrobial, and non-friable.
 - 3) Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet duct and plenum size shall be as recommended by the manufacturer.
 - 4) Maximum pressure drop at design flow rate: 37 Pa (0.15 inch W.G.)
- Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- 3. Supply Grilles: Same as registers but without the opposed blade damper.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
 - 5. Linear Type: To match supply units.
 - 6. Door Grilles: Are furnished with the doors.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.

- a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
- b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.
- E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Radiant ceiling panels (for bathrooms), Convectors.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- C. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- F. Section 23 82 16, AIR COILS: Additional coil requirements.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- H. Section 01 09 00, GENERAL COMMISSIONING REQUIREMENTS.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Convectors.
 - 2. Radiant ceiling panels.
- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician

and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI):

440-08..... Performance Rating of Room Fan Coils.

National Fire Protection Association (NFPA):

90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems.

70-11.....National Electrical Code.

C. Underwriters Laboratories, Inc. (UL):

181-08.....Standard for Factory-Made Air Ducts and Air Connectors.

1995-05..... Heating and Cooling Equipment.

1.6 GUARANTY

A. In accordance with FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 RADIANT CEILING PANELS

- A. Control values and remote wall mounted space thermostats where shown or specified are to be field installed. Provide two-way modulating control values unless shown or specified otherwise.
- B. Hydronic Radiant Panels: Lay-in type, 1.00 mm (0.040) inch aluminum faceplate with 13 mm (1/2-inch) I.D copper serpentine water coil mechanically bonded to faceplate, finished with two coats baked white polyester finish with a light reflection value of 70 to 80 percent. Panels shall weigh no more than 0.68 kg (1.5 pounds) per square foot when filled with water. Provide 75 mm (3-inch) un-faced fiberglass blanket insulation pre-cut for installation above panels. Panels shall be 600 mm x 1200 mm (2' x 4') continuous linear arranged as shown on the drawings.

2.2 CONVECTORS

- A. Ratings: In accordance with Commercial Standard CS140.
- B. Enclosure: Steel panels, minimum 1.651 mm (16 gage) front and top1.3 mm (18 gage) back and end panels. Provide baked enamel finish and

coordinate finish color with the Architect before ordering. Provide easy access to heating elements, valves and controls.

- Fully recessed units: Flanged enclosure with 13 mm (l/2-inch) thick fiber-glass insulation on the back. Provide one-piece front panel with integral perforated inlet and outlet grilles.
- 2. Coordinate the size of the sheetmetal enclosure once the walls are opened up with engineer.
- C. Hydronic Heating Elements: Copper tubing expanded into cast iron or cast brass headers and aluminum fins with integral collars bonded by mechanical expansion of tubing. Elements shall withstand 690 kPa (100 psig) air pressure when factory tested under water.
- D. Provide field installed low voltage wiring thermostats, where shown or specified on hot water units to operate the unit control valve.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Install fiberglass blanket insulation with a minimum R value of 8 above hydronic radiant panels.
- E. Install wall mounted convectors 6" aff. See enclosed detail for your reference for the new convectors.

3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent or VA Representative will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

Heating coils for terminal unit and radiant ceiling panel applications.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS
- C. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- E. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- D. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- F. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- B. Unless specifically exempted by these specifications, heating coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS, Section 23 36 00, AIR TERMINAL UNITS, or Section 23 82 00, CONVECTION HEATING UNITS.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-01.....Forced-Circulation Air-Cooling and Air-Heating Coils
- C. American Society for Testing and Materials (ASTM): B75/75M-02.....Standard Specifications for Seamless Copper Tube
- D. National Fire Protection Association (NFPA): 70-11.....National Electric Code
- E. National Electric Manufacturers Association (NEMA): 250-11.....Enclosures for Electrical Equipment (1,000 Volts Maximum)
- F. Underwriters Laboratories, Inc. (UL):
 1996-09.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- C. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- D. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- E. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- F. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- G. Pressures kPa (PSIG):

Pressure	Water Coil	Steam Coil	Refrigerant Coil
Test	2070 (300)	1725 (250)	2070 (300)
Working	1380 (200)	520 (75)	1725 (250)

H. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities. I. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.

2.2 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:1. Heating or preheat.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 14 days prior notice.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 26 00 02 ELECTRICAL COORDINATION DRAWINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions, Special Conditions and Division-1 Specification sections, apply to work specified in this section.

1.2 REFERENCE

A. Refer to Section 01 10 00 - Summary.

1.3 SUBMITTALS

- A. Refer to Section 01 30 00 Administrative Requirements, for Submittal Procedures.
- B. Submit completed coordinated documents for review by Architect and Engineer.

1.4 COORDINATION DRAWINGS

- A. The Electrical Subcontractor shall coordinate with all trades and provide input to a master coordination of CAD generated background drawings at a scale not less than 3/8 inch equals 1'-0". The final drawings shall include structure, owner furnished equipment, etc., and other information as needed for coordination with all trades. The final coordination drawings shall show electrical conduit equipment layout. These will be the Coordination Drawings.
- B. All firewalls and smoke partitions shall be highlighted on the coordination drawings for appropriate coordination.
- C. The main paths of egress and equipment removal from main mechanical and electrical rooms shall be clearly shown on the coordination drawings.
- D. Illustrate clear maintenance access and code required electrical clearances for all equipment.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

- 3.1 The successful bidder shall include work required to install systems coordinated with existing systems, including necessary modifications to existing. Contractor shall include in coordination drawings the necessary survey work to detail routing of existing systems to finalize routing of new work.
- 3.2 Electronic coordination drawings shall be distributed sequentially to each specialty trade. Each of the below specialty trades shall add its work to these background drawings with appropriate elevations and grid

dimensions. Specialty trade information is required for the entire project. Drawings shall indicate horizontal and vertical dimensions, to avoid interference with structural framing, ceilings, partitions, and other services.

- A. Specialty Trades:
 - 1. Plumbing System.
 - 2. HVAC Piping and Associated Control System.
 - 3. Electrical.
 - 4. Sheet Metal Work.
 - 5. Sprinkler System.
- B. Each specialty trade shall sign and date each coordination drawing. Return drawings to the Mechanical Piping Subcontractor, who shall route them sequentially to all specialty trades.
- C. Where conflicts occur with placement of materials of various trades, the Mechanical Piping Subcontractor will be responsible to coordinate the available space to accommodate all trades. Any resulting adjustments shall be initialed and dated by the specialty trade. The Mechanical Piping Subcontractor shall then final date and sign each drawing. If he cannot resolve conflicts, the decision of the General Contractor shall be final.
- D. A Subcontractor who fails to promptly review and incorporate his work on the drawings shall assume full responsibility of any installation conflicts affecting his work and of any schedule ramifications.
- E. Mechanical Piping Subcontractor shall make three dimensional electronic drawings, in PDF and Navisworks format, of all coordination drawings. Fabrication of any Mechanical, Electrical, Plumbing or Fire Protection systems shall not start until copies of completed coordination drawings are received by the Architect/Engineer and have been reviewed.
- F. Review of coordination drawings shall not diminish responsibility under this Contract for final coordination of installation and maintenance clearances of all systems and equipment with Architectural, Structural, Mechanical, Electrical and other work.
- G. After Approval:
 - After written approval of coordination drawings, the method used to resolve interferences not previously identified shall be as defined above.

- All changes to approved coordination drawings shall be approved in writing by the Architect/Engineer prior to start of work in affected areas.
- H. Distribution of Coordination Drawings:
 - The General Contractor will provide the following distribution of documents:
 - a. One set of Coordination Drawings, in electronic PDF and Navisworks format, to each specialty trade, and affected Contractor and General Contractor for their use.
 - b. Electronic PDF drawings of one full size hard copy of each Coordination Drawing to Owner.
 - Coordination Drawings include but are not limited to new and existing for:
 - a. Structure.
 - b. Equipment.
 - c. Ceiling tile and grid.
 - d. Light fixtures.
 - e. Access panels.
 - f. Sheet metal, heating coils, boxes, grilles, diffusers, etc.
 - g. All piping and valves.
 - h. Smoke and fire dampers.
 - i. Soil, waste and vent piping.
 - j. Domestic water piping.
 - k. Roof drain piping.
 - Major electrical conduit runs, panelboards, feeder conduit and racks of branch conduit.
 - m. Above ceiling miscellaneous metal.
 - n. Sprinkler piping and heads.

END OF SECTION

INTENTIONALLY LEFT BLANK

SECTION 26 05 02 ELECTRICAL DEMOLITION FOR REMODELING

PART 1 - GENERAL

1.1 SCOPE

- A. The work under this section includes Phased demolition of complete areas as shown on the drawings and described in this specification. Systems being removed shall be removed in their entirety and new systems shall be installed to replace them. Some existing electrical feeders will be reused to feed new panelboards. Demolition of existing Fire Alarm, Nurse Call, Public Address / Paging, and Access Control / Security System devices shall be coordinated to minimize the impact of that demolition on the existing systems. Those systems and the electrical power distribution system in the building will remain in service throughout the project. Also contractor shall provide temporary heat detectors circuited to the Fire Alarm System in all construction areas where the sprinkler system is disabled during construction. Shutdowns to any of these systems need to be scheduled with the Resident Engineer at least 5 business days in advance. Included are the following topics:
 - 1. PART 1 GENERAL.
 - a. Scope.
 - b. Related Work.
 - 2. PART 2 PRODUCTS.
 - a. Material and Equipment.
 - 3. PART 3 EXECUTION.
 - a. Examination.
 - b. Preparation.
 - c. Demolition and Extension of the Existing Electrical Work.
 - d. Lamp Handling and Disposal.
 - e. Cleaning and Repair.
 - f. Installation.

1.2 RELATED WORK

A. Applicable provisions of Division 1 govern work under this Section.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work as specified in the individual Sections.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify field measurements and circuiting arrangements as shown on Drawings.
- B. Verify that abandoned wiring and equipment serve only abandoned facilities.
- C. Demolition Drawings are based on casual field observation and/or existing record documents. This building has been remodeled many times and every effort has been made to accurately represent the existing conditions on the demolition plans. It is likely that there will be some unforeseen conditions that are discovered during the construction process. When preparing their proposal, the contractor shall take this fact into consideration. Report discrepancies to the Architect/Engineer before disturbing existing installation.
- D. Beginning of demolition means installer accepts existing conditions.

3.2 PREPARATION

- A. Disconnect electrical systems in walls, floors, and ceilings scheduled for removal.
- B. Coordinate electrical system service outages with the Owner, Architect, and Engineer.
- C. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits use personnel experienced in such operations. In particular, all security and safety systems must be maintained in operation at all times as required by the Owner. This includes security and safety lighting.
- D. Existing Fire Alarm System: Maintain existing system in service until each portion of the revised system is accepted. Disable system only to make switchovers and connections. Obtain permission from the Owner at least 5 days before partially or completely disabling system. Minimize outage duration. If required, make temporary connections to maintain service in areas adjacent to work area.
- E. Existing Communication/Data System: Maintain existing system in service until modified system is complete and ready for service. Disable system only to make switchovers and connections. Obtain prior permission from the Owner. If required, make temporary connections to maintain service in areas adjacent to work area.
- F. Existing Nurse Call and Security Systems: Maintain existing system in

service until new system is complete and ready for service. Disable system only to make switchovers and connections. Obtain permission from the Owner at least 5 days before partially or completely disabling system. Minimize outage duration. If required, make temporary connections to maintain service in areas adjacent to work area.

3.3 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. Demolish and extend existing electrical work to meet all requirements of these specifications.
- B. If certain raceways and boxes are abandoned but not scheduled for removal, those items must be shown on the "As Built Drawings".
- C. Remove, relocate, and extend existing installations to accommodate new construction.
- D. Remove abandoned wiring to source of supply.
- E. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.
- F. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets which are not removed.
- G. Disconnect and remove abandoned panelboards and distribution equipment.
- H. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.
- I. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories.
- J. Repair adjacent construction and finishes damaged during demolition and extension work.
- K. Maintain access to existing electrical installations which remain active. Modify installation or provide access panel as appropriate.
- L. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified. This includes the extension of the circuit from the last active device to the next device in the system to be activated.

3.4 LAMP HANDLING AND DISPOSAL

A. All lamps (fluorescent, incandescent, and HID) contain mercury and/or lead (in the base) as well as other heavy metals and compounds which are regulated by the EPA and DNR during the disposal process. As a result, regulations have been issued covering the handling and disposal of all lamps. Therefore, lamps which have been removed from service for disposal shall be handled as follows by the Contractor.

- The Contractor shall very carefully remove all lamps (fluorescent, incandescent, and HID) from light fixtures before removal of the fixture from its mounted position. This is to reduce the likelihood that the lamp(s) will be broken.
- 2. The Contractor shall obtain approved containers from a licensed lamp recycling vendor. Removed lamps shall be placed in containers and marked with the number and type of lamps. Containers shall be placed in storage in a location on the Owner's property (this may be in another building) arranged by the Owner. The Contractor shall label the area as "Hazardous Material Storage - Mercury".
- 3. Contractor shall make arrangements for lamps to be picked up by a licensed lamp recycling vendor.

3.5 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment which remain or are to be reused.
- B. Panelboards: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.
- C. Luminaires: Remove existing luminaires for cleaning. Use mild detergent to clean all exterior and interior surfaces; rinse with clean water and wipe dry. Replace lamps, ballasts (if required) and broken electrical parts.

3.6 INSTALLATION

A. Install relocated materials and equipment under the provisions of other sections.

----- END -----

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, panelboards, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:
 - Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that

maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COTR a minimum of 15 working days prior to the manufacturer's performing the factory tests.
 - Four copies of certified test reports shall be furnished to the COTR two weeks prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When materials and equipment fail factory tests, and re-testing and re-inspection is required, the Contractor shall be liable for all additional expenses for the Government to witness re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall

include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - Damaged equipment shall be repaired or replaced, as determined by the COTR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.

- 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the COTR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COTR.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as panelboards, cabinets, motor controllers, fused and non-fused safety switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.

- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the COTR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include electronic PDF copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval. Submittals shall be complete by Specification Section and shall have a single submittal per section.

26 05 11 - 6

.....

- 1. Mark the submittals, "SUBMITTED UNDER SECTION____
- 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
- 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.

- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COTR at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

INTENTIONALLY LEFT BLANK

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
 - D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials
 - D3005-10..... Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):

70-11...... National Electrical Code (NEC)

- E. Underwriters Laboratories, Inc. (UL):
 - 44-10..... Thermoset-Insulated Wires and Cables
 - 83-08.....Thermoplastic-Insulated Wires and Cables
 - 467-07.....Grounding and Bonding Equipment
 - 486A-486B-03.....Wire Connectors
 - 486C-04.....Splicing Wire Connectors
 - 486D-05.....Sealed Wire Connector Systems
 - 486E-09.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
 - 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables
 - 514B-04.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - Conductors of all sizes: Solid color insulation or solid color coating.
 - 2. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	C	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

3. Conductors shall be color-coded as follows:

4. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COTR.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.

- 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
- 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.

B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, or pullboxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.

K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

INTENTIONALLY LEFT BLANK

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COTR.
 - 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

A.	Publications listed below (including amendments, addenda, revisions,
	supplements, and errata) form a part of this specification to the
	extent referenced. Publications are referenced in the text by
	designation only.
в.	American Society for Testing and Materials (ASTM):
	B1-07for Hard-Drawn Copper
	Wire
	B3-07for Soft or Annealed
	Copper Wire
	B8-11for Concentric-Lay-
	Stranded Copper Conductors, Hard, Medium-Hard,
	or Soft
С.	Institute of Electrical and Electronics Engineers, Inc. (IEEE):
	81-83 EEE Guide for Measuring Earth Resistivity,
	Ground Impedance, and Earth Surface Potentials
	of a Ground System Part 1: Normal Measurements
D.	National Fire Protection Association (NFPA):
	70-11National Electrical Code (NEC)
	70E-12Code National Electrical Safety Code
	99-12Health Care Facilities
Ε.	Underwriters Laboratories, Inc. (UL):
	44-10 Thermoset-Insulated Wires and Cables
	83-08 Thermoplastic-Insulated Wires and Cables
	467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.

D. Insulation: THHN-THWN and XHHW-2.

2.2 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- C. For patient care area electrical power system grounding, conform to NFPA 99 and NEC.

3.2 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Panelboards, Disconnect Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

3.3 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 3. Metallic conduits which terminate without mechanical connection to electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.4 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.5 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus. B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.6 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull-boxes.
 - 3. Layout of required conduit penetrations through structural elements.

- C. Certifications:
 - Two weeks prior to the final inspection, submit four copies of the following certifications to the COTR:
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):
 C80.1-05.....Electrical Rigid Steel Conduit
 C80.3-05....Steel Electrical Metal Tubing
 C80.6-05....Electrical Intermediate Metal Conduit
 C. National Fire Protection Association (NFPA):

70-08..... National Electrical Code (NEC)

- D. Underwriters Laboratories, Inc. (UL):
 - 1-05......Flexible Metal Conduit 5-04....Surface Metal Raceway and Fittings 6-07....Electrical Rigid Metal Conduit - Steel 50-95....Enclosures for Electrical Equipment 360-093....Liquid-Tight Flexible Steel Conduit 467-07....Grounding and Bonding Equipment 514A-04....Metallic Outlet Boxes 514B-04....Conduit, Tubing, and Cable Fittings 514C-96....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 797-07....Electrical Metallic Tubing

1242-06.....Electrical Intermediate Metal Conduit - Steel

E. National Electrical Manufacturers Association (NEMA): FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and

Cable

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.

09-10

- B. Conduit:
 - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
 - 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
 - 4. Flexible galvanized steel conduit: Shall conform to UL 1.
 - 5. Liquid-tight flexible metal conduit: Shall conform to UL 360.
 - 6. Surface metal raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.

- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 5. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COTR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the COTR as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.

- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
- Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COTR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.

- 4. Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for conductors 600 V and below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - 2. Align and run conduit parallel or perpendicular to the building lines.
 - 3. Connect recessed lighting fixtures to conduit runs with maximum 6 ft [1.8 M] of flexible metal conduit extending from a junction box to the fixture.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide

legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

3.5 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.6 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.
- C. Install expansion and deflection couplings where shown.

3.7 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:

- a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
- b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
- c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.8 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."

G. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, indicated as the study in this section.
- B. A short-circuit and selective coordination study shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from all new individual devices up to the utility source and the on-site generator sources.
- D. Regardless of the manufacturer selected for the new distribution equipment for this project, contractor shall work with Schneider Electric / Square D to obtain the proper device and system characteristics for the existing portion of the system.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 242-01.....Protection and Coordination of Industrial and Commercial Power Systems 399-97....Industrial and Commercial Power Systems Analysis 1584a-04....Guide for Performing Arc-Flash Hazard Calculations

1.6 STUDY REQUIREMENTS

- A. The study shall include one line diagram, short-circuit and ground fault analysis, and protective coordination plots for all overcurrent protective devices.
- B. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- C. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the

momentary and interrupting ratings of the overcurrent protective devices.

- 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- D. Coordination Curves:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
 - 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

- A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

----- END -----

09-10

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- C. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting control, submit the following information.
 - 1. Manufacturer's catalog data.
 - 2. Wiring schematic and connection diagram.
 - 3. Installation details.
- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer.
- D. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A.	Publications listed below (including amendments, addenda, revisions,
	supplements, and errata) form a part of this specification to the extent
	referenced. Publications are referenced in the text by designation only.
в.	Green Seal (GS):
	GC-12Occupancy Sensors
С.	Illuminating Engineering Society of North America (IESNA):
	IESNA LM-48Guide for Calibration of Photoelectric Control
	Devices
D.	National Electrical Manufacturer's Association (NEMA)
	ICS-1 and Systems
	General Requirements
	ICS-2 and Systems:
	Controllers, Contractors, and Overload Relays
	Rated Not More than 2000 Volts AC or 750 Volts
	DC: Part 8 - Disconnect Devices for Use in
	Industrial Control Equipment
	ICS-6 Standard for Industrial Controls and Systems
	Enclosures
Е.	Underwriters Laboratories, Inc. (UL):
	20Standard for General-Use Snap Switches
	98Switches
	917Clock Operated Switches
PART 2 - PRODUCTS	

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- Automatic Light-Level Sensor: Adjustable from 2 to 200 fc [21.5 to 2152 lx]; keep lighting off when selected lighting level is present.
- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch [150mm] minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. [232 sq. cm], and detect a person of average size and weight moving not less than 12 inches [305 mm] in either a horizontal or a vertical manner at an approximate speed of 12 inches/s [305 mm/s].
 - 3. Detection Coverage: as scheduled on drawings.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- C. Set occupancy sensor "on" duration to 5 minutes.
- D. Locate light level sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the scheduled light level at the typical work plane for that area.
- E. Label time switches and contactors with a unique designation.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.

- 1) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code

Maximum)

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings. Panel Boards shall be Sq D only.
- B. Panelboards shall have main breaker, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings or required for specific installation conditions.

- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100%rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 22,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 22,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.

- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 22,000 A symmetrical.
 - 2. 277/480 V Panelboard: 22,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study as specified.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line

currents), or other accessory devices or functions shall be provided where shown on the drawings.

10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COTR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims with finishes to match surrounding surfaces after the panelboards have been installed. Do not paint nameplates.
- G. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of enclosures with rust-preventive paint before the new interior components are installed. Provide new trim. Trim shall fit tight to the enclosure.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.

- d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA):
 - 70-11.....National Electrical Code (NEC)
 - 99-12.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):
 WD 1-10......General Color Requirements for Wiring Devices
 WD 6-08Wiring Devices Dimensional Specifications
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-11.....Surface Metal Raceways and Fittings
 - 20-10.....General-Use Snap Switches
 - 231-07.....Power Outlets
 - 467-07.....Grounding and Bonding Equipment
 - 498-07.....Attachment Plugs and Receptacles
 - 943-11....Ground-Fault Circuit-Interrupters
 - 1449-07.....Surge Protective Devices

1472-96.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - Bodies shall be ivory in color. Receptacles circuited to any of the Emergency Power System branches shall be Red in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring.
 - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the hospital-grade listing.
 - 5. Safety Type Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - Screws exposed while the wall plates are in place shall be the tamperproof type.
 - 6. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the hospital grade listing and as follows.

- a. Bodies shall be brown nylon. Receptacles circuited to Emergency Power shall be Red in Color.
- C. Receptacles; 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole or three-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be stainless steel unless otherwise specified.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.

- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit (Both Life Safety and Critical Branch):
 - Bodies shall be red in color. Wall plates shall be red enameled stainless steel with the word "EMERGENCY" engraved in 6 mm, (1/4 inch) white letters. Any outlets that are on UPS branch of the emergency system shall also have "UPS" engraved on the wall plate.

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - 2. Receptacles shall be duplex.. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.

- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multigang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (44 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (44 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the left.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical condition.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable

receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.

- d. Test GFCI receptacles.
- 2. Healthcare Occupancy Tests:
 - a. Test hospital grade receptacles for retention force per NFPA 99.

---END---

INTENTIONALLY LEFT BLANK

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
- Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU 1-07.....Low Voltage Cartridge Fuses
 - KS 1-06..... Enclosed and Miscellaneous Distribution

Equipment Switches (600 Volts Maximum)

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

98-07..... Enclosed and Dead-Front Switches

- 248-00.....Low Voltage Fuses
- 489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.

- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.4 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: Class RK5 time delay.
- C. Other Branch Circuits: Class RK1, time delay, time delay
- D. Control Circuits: Class CC, fast acting.

2.5 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.

B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COTR.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.

- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C78.1-91.....Fluorescent Lamps - Rapid-Start Types -Dimensional and Electrical Characteristics C78.376-01.....Chromaticity of Fluorescent Lamps
- C. American Society for Testing and Materials (ASTM): C635-07.....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings
- D. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste E. Federal Communications Commission (FCC):
- CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment

F. Illuminating Engineering Society (IES): LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products LM-80-08..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature G. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91.....Surge Voltages in Low Voltage AC Power Circuits H. International Code Council (ICC): IBC-12..... International Building Code I. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 101-12....Life Safety Code J. National Electrical Manufacturer's Association (NEMA): C82.1-04..... Lamp Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02..... Method of Measurement of Fluorescent Lamp Ballasts C82.4-02.....Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-11..... Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL-9-09......Dimming of T8 Fluorescent Lighting Systems SSL-1-10..... Electronic Drivers for LED Devices, Arrays, or Systems K. Underwriters Laboratories, Inc. (UL): 496-08.....Lampholders 542-0599.....Fluorescent Lamp Starters 844-12..... (Classified) Locations 924-12..... Emergency Lighting and Power Equipment 935-01..... Fluorescent-Lamp Ballasts 1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts

12-01-12

1598-08.....Luminaires
1574-04....Track Lighting Systems
2108-04...Low-Voltage Lighting Systems
8750-09...Light Emitting Diode (LED) Light Sources for

Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Lamp Sockets:
 - Fluorescent: Single slot entry type, requiring a one-quarter turn of the lamp after insertion. Lampholder contacts shall be the biting edge type.
- E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- G. Metal Finishes:
 - The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges

of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.

- Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- I. Light Transmitting Components for Fluorescent Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
 - 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.
- J. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.
- K. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures.

2.2 BALLASTS

- A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic programmed-start type, designed for type and quantity of lamps indicated. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated. Ballasts shall include the following features:
 - 1. Automatic lamp starting after lamp replacement.
 - 2. Sound Rating: Class A.
 - 3. Total Harmonic Distortion (THD): 10 percent or less.
 - Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 5. Operating Frequency: 20 kHz or higher.
 - 6. Lamp Current Crest Factor: 1.7 or less.

- 7. Ballast Factor: 0.87 or higher unless otherwise indicated.
- 8. Power Factor: 0.98 or higher.
- 9. EMR/RFI Interference: Comply with CFR Title 47 Part 18 for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
- 10. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled.
- 11. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp.
- B. Low-Frequency Linear T8 Fluorescent Lamp Ballasts (allowed for Surgery Suites, Critical Care Units, and Animal Labs): Multi-voltage (120 – 277V), hybrid electronic-electromagnetic rapid-start type, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output. Ballasts shall include the following features:
 - 1. Automatic lamp starting after lamp replacement.
 - 2. Sound Rating: Class A.
 - 3. Total Harmonic Distortion (THD): 20 percent or less.
 - Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 5. Operating Frequency: 60 Hz.
 - 6. Lamp Current Crest Factor: 1.7 or less.
 - 7. Ballast Factor: 0.85 or higher unless otherwise indicated.
 - 8. Power Factor: 0.90 or higher.
 - 9. Interference: Comply with CFR Title 47 Part 18 for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
 - 10. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the

same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled.

11. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp.

2.3 LAMPS

- A. Linear and U-shaped T5 and T8 Fluorescent Lamps:
 - Except as indicated below, lamps shall be low-mercury energy saving type, have a color temperature between 3500° and 4100°K, a Color Rendering Index (CRI) equal or greater than 80, average rated life equal to or greater than 24,000 hours when used with an instant start ballast and 30,000 hours when used with a programmed or rapid start ballast (based on 3 hour starts), and be suitable for use with dimming ballasts, unless otherwise indicated.
 - a. Over the beds in Intensive Care, Coronary Care, Recovery, Life Support, and Observation and Treatment areas; Electromyographic, Autopsy (Necropsy), Surgery, and certain dental rooms (Examination, Oral Hygiene, Oral Surgery, Recovery, Labs, Treatment, and X-Ray) use color corrected lamps having a CRI of 85 or above and a correlated color temperature between 5000 and 6000°K, as shown on the drawings.
 - b. Other areas as shown on the drawings.
 - Lamps shall comply with EPA Toxicity Characteristic Leachate Procedure (TCLP) requirements.

2.4 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.

- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.5 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20 $^{\circ}$ C. (-4 $^{\circ}$ F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.

- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed fluorescent fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
 - 5. Hardware for surface mounting fluorescent fixtures to suspended ceilings:

- a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 6 mm (1/4 inch) secured to channel members attached to and spanning the tops of the ceiling structural grid members. Nonturning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
- b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 6 mm (1/4 inch) studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 6 mm (1/4 inch) toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.
- 6. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.

- 2) The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
- The outlet box is supported vertically from the building structure.
- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 7. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COTR. Observe for visually detectable

flicker over full dimming range, and replace defective components at no cost to the Government.

b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
- B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings.

1.2 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.

- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.5 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.6 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.

- 3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.7 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.9 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as a standard catalog item, or where other method of identification is herein specified, are exceptions.

1.10 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.

- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
- 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation and maintenance instructions.
 - e. Safety precautions.
 - f. Diagrams and illustrations.
 - g. Testing methods.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Raceway and pathway hangers, clamps and supports.
 - 4. Duct sealing compound.
- I. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see

typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.11 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.12 TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Mounting board for communication closets: Section 06 10 00, ROUGH CARPENTRY.
- B. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building: Section 07 92 00, JOINT SEALANTS.
- D. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- E. General electrical requirements and items that is common to more than one section of Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

1.3 SUBMITTALS

In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

- A. Shop Drawings:
 - 1. Size and location of panels and pull boxes
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Certification: Prior to final inspection, deliver to the COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

- B. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC)
- C. Underwriters Laboratories, Inc. (UL):

5-01	Surface Metal Raceway and Fittings
50-03	Enclosures for Electrical Equipment
360-03	Liquid-Tight Flexible Steel Conduit
467-01	Grounding and Bonding Equipment
514A-01	Metallic Outlet Boxes
514B-02	Fittings for Cable and Conduit
797-03	Electrical Metallic Tubing

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (1/2 inch) unless otherwise shown. Where permitted by the NEC, 13 mm (1/2 inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.
 - 2. Surface metal raceway: Shall Conform to UL 5.
- C. Conduit Fittings:
 - 1. Electrical metallic tubing fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - d. Indent type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 2. Surface metal raceway fittings: As recommended by the raceway manufacturer.

- 3. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COTR prior to drilling through structural sections.

- 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.

- 12. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COTR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: EMT.
 - Align and run conduit in direct lines, parallel and perpendicular to building lines.
 - 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - 4. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - Conduit for communications conductors 600 volts and below:
 a. EMT.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 3. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for communications conductors 600 volts and below:
 - 1. EMT.
- C. Align and run conduit parallel or perpendicular to the building lines.

- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.

- 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

3.8 COMMUNICATION SYSTEM CONDUIT

- A. Install the communication raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.

- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Were drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 27 08 00

COMMISSIONING OF COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 27.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility communications systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 27 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 27, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Communications systems will require inspection of individual elements of the communications system construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule communications systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 27 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 27 Sections for additional Contractor training requirements.

----- END -----

SECTION 27 10 00 STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of the structured cabling system to provide a comprehensive telecommunications infrastructure.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain the integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape.
- C. Federal Specifications (Fed. Spec.):
 A-A-59544-00.....Cable and Wire, Electrical (Power, Fixed
 Installation).

- D. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC).
- E. Underwriters Laboratories, Inc. (UL):
 - 44-02.....Thermoset-Insulated Wires and Cables.
 - 83-03..... Wires and Cables.
 - 467-01..... Electrical Grounding and Bonding Equipment.
 - 486A-01.....Wire Connectors and Soldering Lugs for Use with Copper Conductors.
 - 486C-02.....Splicing Wire Connectors.
 - 486D-02.....Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations.
 - 486E-00.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors.
 - 493-01.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable.

514B-02.....Fittings for Cable and Conduit.

```
1479-03.....Fire Tests of Through-Penetration Fire Stops.
```

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Unless otherwise specified in other sections of these specifications, control wiring shall be as specified for power and lighting wiring, except the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough so that the voltage drop under inrush conditions does not adversely affect operation of the controls.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Shall conform to the recommendations of the manufacturers of the communication and signal systems; however, not less than what is shown.
- B. Wiring shown is for typical systems. Provide wiring as required for the systems being furnished.
- C. Multi-conductor cables shall have the conductors color coded.

2.3 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.4 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt

water, sewage, or fungus and be resistant to sunlight and ultraviolet light.

- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install all wiring in raceway systems.
- B. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- C. Wire Pulling:
 - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - 2. Use ropes made of nonmetallic material for pulling feeders.
 - Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer.
 - 4. Pull in multiple cables together in a single conduit.

3.2 CONTROL, COMMUNICATION AND SIGNAL WIRING INSTALLATION

- A. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panelboards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- D. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- E. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.

3.3 CONTROL, COMMUNICATION AND SIGNAL SYSTEM IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.

- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.4 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 27 11 00 COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- D. The Voice and Digital Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary

Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

- E. The VA Project Manager (PM) and/or if delegated, Resident Engineer (RE) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the RE before proceeding with the change.
- F. System Performance:
 - At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - a. Expansion of existing system shall meet the standards of the existing system:

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.
- E. Specification Section 26 27 26, WIRING DEVICES.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
- B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)
75	Protection of Electronic Computer/Data Processing Equipment
77	Recommended Practice on Static Electricity
	Standard for Health Care Facilities
101	Life Safety Code
1221	Emergency Services Communication Systems

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568B	Commercial Building Telecommunications Wiring Standard
569B	Commercial Building Standard for Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.

- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.

1.5 SUBMITTALS

- A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The RE shall retain one copy for review and approval.
 - If the submittal is approved the RE shall retain one copy for Official Records and return three (3) copies to the Contractor.
 - 2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The RE shall retain one copy for Official Records.
- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
 - Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
 - Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
 - 7. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
 - Conduit size requirement (between main TC, computer, and console rooms).
 - 9. Main trunk line and riser pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.
 - b. Contractor's name, address, and telephone (including FAX)
 numbers.
 - c. Date of Submittal.

d. VA Project No.

- 2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 - a. Installation Location and Name.
 - b. Owner's or User's name, address, and telephone (including FAX) numbers.
 - c. Date of Project Start and Date of Final Acceptance by Owner.
 - d. System Project Number.
 - e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
- 3. Narrative Description of the system. The work on this project consists of the expansion of the existing data communication system for both the building network and the cabling for the revised PACS (Picture Archiving and Communication System)
- 4. Contractor shall provide all equipment described in these specifications, shown on the drawings, or as required to make connection to all horizontal cable at the Data Closet or at the PACS racks in the PACS equipment room. The quantity, make, and model number of each item is required. The following is the minimum equipment required by the system:

QUANTITY	UNIT
As required	Cabinet Assembly(s)
As required	Environmental Cabinet
As required	Distribution/Interface Cabinet
As required	Cross Connection (CCS) Systems
As required	Wire Management System/Equipment
As required	Telecommunications Outlets (TCO)
As required	Distribution Cables
As required	TCO Connection Cables
As required	System Connectors
As required	Terminators
As required	Distribution Frames
As required	Telecommunications Closets (TC)
As required	Environmental Requirements

- 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin, fiberoptic jack.
- 8. List of test equipment as per paragraph 1.5.D. below.
- 9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- 10. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:
 - The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
 - 2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
 - e. Bit Error Test Set (BERT).
 - f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
- E. Samples: A sample of each of the following items shall be furnished to the RE for approval prior to installation.
 - 1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 - a. One each telephone (or voice) rj45 jack installed.

- b. Two each multi pin data rj45 jacks installed.
- c. Cover Plate installed.
- 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
- 3. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
- 4. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- F. Certifications:
 - Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
 - 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
 - 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the RE. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
- H. Record Wiring Diagrams:
 - Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the RE. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
 - 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current

operating version of Computer Aided Drafting (AutoCAD) system. The RE shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.

3. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. System Requirements:
 - The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data, service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:
 - a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
 - b. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment

necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.

- 2. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional voice and digital telecommunications cabling system: "Main" (MTC), "intermediate" (IMTC), and "riser" (RTC) TC's; "vertical" (or "riser") trunk cabling system; vertical cross-connection (VCC) cabling systems, and TCO's with a minimum of three (3) RJ-45 jacks for the appropriate telephone, Data connections, and additional jacks, connectors, drop and patch cords, terminators, and adapters provided.
 - a. Telecommunication Closet (TC):
 - 1) There shall be a minimum of one TC that serves the project area.
 - 2) Additionally, the TC's may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all vertical copper and fiber optic cables shall be terminated on appropriate cross-connection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.
 - a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with "U" grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every 800M² (or 8,000 ft²) of useable floor space. Additional outlets shall be equally spaced along the wall.

- b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications.
- B. System Performance:
 - At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - a. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.
 - 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
 - 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.
 - c) System speed: 540 mBps, minimum.
 - d) System data error: 10 to the -6 BPS, minimum.
- C. General:
 - 1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - a. Maintains a stock of replacement parts for the item submitted.
 - b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
 - c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.

- 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
- 3. The Contractor shall provide written verification, in writing to the RE at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
- 4. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 5. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
- 6. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- D. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 27 05 11,

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.

- 3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
- 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 EQUIPMENT ITEMS

- A. Cabinet with Internal Equipment Mounting Rack (Contractor shall provide all necessary equipment mounting racks in the revised data closet:
 - 1. The provided equipment cabinet shall be lockable, fabricated of heavy 16 gauge (ga) steel, and have fully adjustable internal equipment mounting racks or rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief. It shall be floor or wall mounted with knock-out holes for cable entrance and conduit connection, contain ventilation ports and a quiet fan with non disposable air filter for equipment cooling. Two keys shall be provided to the RE for each lock when the VA accepts the System.
 - 2. A minimum of three cabinets shall be provided with blank rack space, for additional equipment. Blank panels shall be installed to cover any open or unused rack space. In addition, provide two 120 VAC power strips connected to surge protectors, a ventilation fan with non-disposable air filter, and a conduit or cable duct interfaced to adjacent cabinet(s), as part of this cabinet.
 - 3. Blank panels shall be color matched to the cabinet, 3.175 mm (1/8in.) aluminum with vertical dimensions in increments of one rack unit 45 mm (or 1.75in.) with mounting holes spaced to correspond to EIA 480 mm (or 19in.) rack dimensions. Single standard size blank panels shall be used to fill unused panel or rack spaces in lieu of

numerous 45 mm (1.75in.) types. One blank 45 mm (1.75in.) high blank panel shall be installed between each item of equipment.

4. Technical Characteristics:

Overall Height	2180 mm (85 7/8in.), maximum
Overall Depth	650 mm (25 1/2in.), maximum
Overall Width	535 mm (21 1/16in.), maximum
Front Panel Opening Width	480 mm (19in.), EIA horizontal
Hole Spacing	per EIA and Industry Standards

- 5. Internal Cabinet Components (minimum required):
 - a. AC power outlet strip(s):
 - 1) Power outlet strip(s) shall be provided as directed by the RE or the IRM. The additional equipment cabinet with no installed items in the cabinet, shall contain strip(s) with a minimum of 12 ea. AC power outlets. Each strip shall be mounted inside and at the rear of the cabinet. It shall contain "U" grounded AC outlets for distributing AC power to the installed electronic equipment. The strip shall be self-contained in a metal enclosure and may be provided with a 2 M (6 ft.) long (maximum) connecting cord with three prong plug.
 - 2) Technical Characteristics:
 - a) Power capacity20 Ampere (AMP), 120 VAC continuous duty.
 - b) Wire gauge: Three conductor, #12 AWG copper.
 - b. Cabinet AC Power Line Surge Protector and Filter:
 - 1) Each cabinet shall be equipped with a AC Surge Protector and Filter. The Protector and Filter shall be housed in one single enclosure. The Protector and Filter shall perform instantaneous regulation of the AC input voltage and isolate and filter any noise present on the AC input line. The unit shall be equipped with AC voltage and current surge protectors to prevent damage to the electronic equipment from power line induced voltage spikes, surges, lightning, etc. It shall be cabinet mounted and the cabinet AC power strip (maximum of two strips) may be connected to it as long as the system design is met.

2) Technical Characteristics:

Input Voltage range	120 VAC <u>+</u> 15%
Power capacity	20 AMP, 120 VAC
Voltage output regulation	<u>+</u> 3.0%
Circuit breaker	15 AMP, may be self contain
Noise filtering	Greater than -45 dB
AC outlets	Four duplex grounded types, minimum
Response time	5.0 ns
Surge suppression	10,000 AMPS
Noise suppression	
Common	-40 dB
Differential	-45 dB

- 3) Specific requirements for current and surge protection shall include:
 - a) Voltage protection threshold, line to neutral, starts at no more than 220 Volts peak. The transient voltage shall not exceed 300 volts peak. The Contractor shall furnish documentation on peak clamping voltage as a function of transient AMP.
 - b) Peak power dissipation minimum 35 Joules per phase, as measured for 1.0 mS at sub branch panels, 100 Joules per phase at branch panels and 300 Joules per phase at service entrance panels. The Contractor shall furnish an explanation of how the ratings were measured or empirically derived.
 - c) Surge protector must not short circuit the AC power line at any time.

 The primary surge protection components must be silicon semiconductors. Secondary stages, if used, may include other types of devices.

(2) Surge protectors shall incorporate a visual device which indicates whether the surge suppression component(s) is(are) functioning.

(3) Surge protection devices shall be UL listed.

(4) Voltage and current surge protectors shall be provided on all ancillary equipment provided by the Contractor.

- d) Power dissipation 12,000 Watts (W) for 1.0 mS (or 12 Joules).
- e) Voltage protection threshold starts at not more than 100 VAC.
- C. Distribution or System Interface Cabinet:
 - 1. The cabinet shall be constructed of heavy 16 gauge cold rolled steel, have top and side panels and hinged front and rear (front door only if wall mounted) doors. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the RE, contain integral and adjustable predrilled rack mounting rails or frame that allows front panel equipment mounting and access. When all equipment, doors and panels are installed, snap-in-place chrome trim strip covers are required to be installed that will cover all front panel screw fasteners. It shall be equipped the same as the equipment cabinet.
 - 2. Technical Characteristics:

Overall height	2180 mm (85 7/8in.), maximum
Overall depth	650 mm (25 1/2in.), maximum
Overall width	535 mm (21 1/16in.), maximum
Equipment vertical mounting space	1960 mm (77 1/8in.), maximum
Front panel horizontal	484 mm (19 1/16in.), maximum width

- F. Wire Management System and Equipment:
 - 1. Wire Management System: The system(s) shall be provided as the management center of the respective cable system, CCS, and TC it is incorporated. It shall perform as a platform to house peripheral equipment in a standard relay rack or equipment cabinet. It shall be arranged in a manner as to provide convenient access to all installed management and other equipment. All cables and connections shall be at the rear of each system interface to IDC and/or patch panels, punch blocks, wire wrap strips, and/or barrier strip.
 - 2. Wire Management Equipment: The wire management equipment shall be the focal point of each wire management system. It shall provide an

orderly interface between outside and inside wires and cables (where used), distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide a uniform connection media for all system fire retardant wires and cables and other subsystems. It shall be fully compatible and interface to each cable tray, duct, wireway, or conduit used in the system. All interconnection or distribution wires and cables shall enter the system at the top (or from a wireway in the floor) via a overhead protection system and be uniformly routed down either side (or both at the same time) of the frames side protection system then laterally via a anchoring or routing shelf for termination on the rear of each respective terminating assembly. Each system shall be custom configured to meet the System design and user needs.

2.3 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

- A. Floor loading for batteries and cabinets.
- B. Minimum floor space and ceiling heights.
- C. Minimum size of doors for equipment passage.
- D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
- E. Air conditioning, heating, and humidity requirements. The bidder shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
- F. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
- G. Proposed floor plan based on the expanded system configuration of the bidder's proposed EPBX for this Facility.
- H. Conduit size requirement (between equipment room and console room).

2.4 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

- A. System Grounding:
 - The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields.
 - b. Control Cable Shields.
 - c. Data Cable Shields.
 - d. Equipment Racks.
 - e. Equipment Cabinets.
 - f. Conduits.
 - g. Duct.
 - h. Cable Trays.
 - i. Power Panels.
 - j. Connector Panels.
 - k. Grounding Blocks.
- B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.

- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
 - Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the RE and PM.
 - 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
 - 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to

meet the requirements of Paragraph 2.1.C and the System performance standards.

- 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
- 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
- All vertical copper and fiber optic cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
- 8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair cables carrying telephone and data signals in telephone and data systems.
- 9. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the RE if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles

517 for Critical Care and 800 for Communications systems, at a minimum.

- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- g. Ensure that Critical Care Nurse Call, and PA Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication

circuits and/or systems. The RE shall approve width and height dimensions.

- D. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
 - 1. Wires:
 - a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
 - b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
 - Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
 - 3. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
 - a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
 - b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or 1/8" phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
 - c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.
- E. AC Power: AC power wiring shall be run separately from signal cable.
- F. Grounding:
 - General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.

- a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
- b. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
- c. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
- 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
- 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
- 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
- G. Equipment Assembly:
 - 1. Cabinets:
 - a. Each enclosure shall be: floor or wall mounted with standard knockout holes for conduit connections or cable entrance; provide for ventilation of the equipment; have front and rear locking doors (except wall mounted cabinets that require only a front

locking door); power outlet strip(s), and connector or patch
panel(s).

- b. Rack (including freestanding radio relay) mounted equipment shall be installed in the enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustment(s) can be conveniently made. Heavy equipment shall be mounted with rack slides or rails allowing servicing from the front of the enclosure. Heavy equipment shall not depend only upon front panel mounting screws for support. Equipment shall be provided with sufficient cable slack to permit servicing by removal of the installed equipment from the front of the enclosure. A color matched blank panel (spacer) of 44 mm (1.75 in.) high, shall be installed between each piece of equipment (active or passive) to insure adequate air circulation. The enclosure shall be designed for efficient equipment cooling and air ventilation. Each console or cabinet shall be equipped with a quiet fan and nondisposable air filter.
- c. Enclosures and racks shall be installed plumb and square. Each shall be permanently attached to the building structure and held firmly in place. Fifteen inches of front vertical space opening shall be provided for additional equipment.
- d. Signal connector, patch, and bulkhead panels (i.e.: audio, data, control, analog video, etc.) shall be connected so that outputs from each source, device or system component shall enter the panel at the top row of jacks, beginning left to right as viewed from the front, which will be called "inputs". Each connection to a load, device or system component shall exit the panel at the bottom row of jacks, beginning left to right as viewed from the front, which will be called "outputs".
 - Equipment located indoors shall be installed in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
 - Cables shall enter the equipment racks or enclosures in such a manner that allows all doors or access panels to open and close without disturbing or damaging the cables.
 - All distribution hardware shall be securely mounted in a manner that allows access to the connections for testing and

provides sufficient room for the doors or access panels to open and close without disturbing the cables.

- H. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
 - 4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Interim Inspection:
 - 1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B or T568A pin assignments (verify proper pin assignments with Government) and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
 - 2. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with

manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.

- 3. The Contractor shall notify the RE, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
- 4. Results of the interim inspection shall be provided to the RE and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
- 5. The RE and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.
- B. Pretesting:
 - Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
 - 2. Pretesting Procedure:
 - a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.

- 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- C. Acceptance Test:
 - 1. After the System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- D. Verification Tests:
 - Test the UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
- E. Performance Testing:
 - Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- F. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s)after the complete telecommunication distribution system and workstation outlet are installed.
 - Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.

 Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

- A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
- B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 WARRANTY

- A. Comply with FAR clause 52.246-21, except that warranty shall be as follows:
 - 1. The Contractor shall warranty that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
 - 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year warranty period:
 - a. Response Time:
 - The RE (or facility Contracting Officer if the facility has taken possession of the building[s]) are the Contractor's

reporting and contact officials for the System trouble calls, during the guarantee period.

- A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
- 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
- 4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 - a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
 - b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the RE or Facility Director. The RE or Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
- b. Required on-site visits during the one year warranty period
 - The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.

- a) The Contractor shall arrange all Facility visits with the RE or Facility Contracting Officer prior to performing the required maintenance visits.
- b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the RE or Facility Contracting Officer and the Contractor.
- c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE or Facility Contracting Officer.
- 2) The Contractor shall provide the RE or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
 - a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to RE or Facilities Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
 - b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- The RE or Facility Contracting Officer shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.

- a) The RE or Facility Contracting Officer shall ensure copies of these reports are entered into the System's official acquisition documents.
- b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
- B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

INTENTIONALLY LEFT BLANK

SECTION 27 15 00 COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- D. The Voice and Digital Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary

Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

- E. The VA Project Manager (PM) and/or if delegated, Resident Engineer (RE) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the RE before proceeding with the change.
- F. System Performance:
 - At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service.
 - 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 dB.
 - 5) System data error: 10 to the -10 Bps, minimum.
 - 6) Loss: Measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of <u>+</u> 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data:(1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic

overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.
 - 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
 - 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.
 - c) System speed: 540 mBps, minimum.
 - d) System data error: 10 to the -6 bps, minimum.

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.
- E. Specification Section 26 27 26, WIRING DEVICES.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.

B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)
75	Protection of Electronic Computer/Data Processing Equipment
77	Recommended Practice on Static Electricity
	Standard for Health Care Facilities
101	Life Safety Code
1221	Emergency Services Communication Systems

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568B	Commercial Building Telecommunications Wiring Standard
569B	Commercial Building Standard for Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).

- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s)

for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.

1.5 SUBMITTALS

- A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The RE shall retain one copy for review and approval.
 - If the submittal is approved the RE shall retain one copy for Official Records and return three (3) copies to the Contractor.
 - If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The RE shall retain one copy for Official Records.
- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
 - 5. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
 - Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
 - 7. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
 - Conduit size requirement (between main TC, computer, and console rooms).
 - 9. Main backbone, trunk line, riser, and horizontal cable pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.

- b. Contractor's name, address, and telephone (including FAX)
 numbers.
- c. Date of Submittal.
- d. VA Project No.
- 2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 - a. Installation Location and Name.
 - b. Owner's or User's name, address, and telephone (including FAX) numbers.
 - c. Date of Project Start and Date of Final Acceptance by Owner.
 - d. System Project Number.
 - e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
- 3. Narrative Description of the system.
- 4. A List of the equipment to be furnished.
- 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin jack.
- 8. List of test equipment as per paragraph 1.5.D. below.
- 9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:
 - The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
 - The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test

equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:

- a. Spectrum Analyzer.
- b. Signal Level Meter.
- c. Volt-Ohm Meter.
- d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
- e. Bit Error Test Set (BERT).
- f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
- E. Samples: A sample of each of the following items shall be furnished to the RE for approval prior to installation.
 - 1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 - a. One each telephone (or voice) rj45 jack installed.
 - b. Two each multi pin data rj45 jacks installed.
 - c. Cover Plate installed.
 - 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
 - 3. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
 - 4. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
 - 5. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
 - 6. 610 mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- F. Certifications:
 - Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
 - Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and

guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.

- 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the RE. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
- H. Record Wiring Diagrams:
 - Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the RE. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
 - 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The RE shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.
- I. Surveys Required As A Part Of The Technical Submittal: The Contractor shall provide the following surveys that depict various system features and capacities are required in addition to the on site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal survey requirements), as a minimum:
 - 1. The required EPBX connections (each CSU shall be compatible with) shall be compatible with the following:
 - a. Initially connect:

EQUIPPED ITEM	CAPACITY	<u>WIREDCAPACITY</u>
Main Station Lines		
Single Line		

Multi Line (Equipped for direct input dial [DID])	
Central Office (CO) Trunks	
TWO WAY	
DID	
Two-way DRTL	
Foreign Exchange (FX)	
Conference	
Radio Paging Access	
Audio Paging Access	
Off-Premise Extensions	
CO Trunk By-pass	
CRT w/keyboard	
Printers	
Attendant Consoles	
T-1 Access/Equipment	
Maintenance console	

b. Projected Maximum Growth: The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.1.a. as a part of the technical submittal. For this purpose, the following definitions and sample connections are provided to detail the system's capability:

EQUIPPED ITEM	CAPACITY	WIRED CAPACITY
Servers		
PC's		
Projected Maximum Growth		

The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.2.a. as a part of the technical submittal.

2. Cable Distribution System Design Plan: A design plan for the entire cable distribution systems requirements shall be provided with this document. A specific cable count shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems entire cable requirements and engineer a distribution system requirement plan using the format of the following paragraph(s), at a minimum:

a. UTP (and/or STP) Requirements/Column Explanation:

Column	Explanation
FROM BUILDING	Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from
BUILDING	Identifies the building by number, title, or location cabling is to be provided in
TO BUILDING IMC	Identifies building main terminal signal closet, by room number or location, to which cabling is provided too, in, and from
FLOOR	Identifies the floor by number (i.e. 1st, 2nd, etc.) cabling and TCOs are to be provided
TC ROOM NUMBER	Identifies the floor signal closet room, by room number, which cabling shall be provided
ROOM NUMBER	Identifies the room, by number, from which cabling and TCOs shall be provided
NUMBER OF CABLE PAIR	Identifies the number of cable pair required to be provided on each floor designated OR the number of cable pair (VA Owned) to be retained
NUMBER OF STRANDS USED/SPARE	Identifies the number of strands provided in each run

3. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. System Requirements:

 The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data, service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:

- a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
- b. Be a voice and data cable distribution system that is based on a physical "Star" Topology.
- c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.
- 2. Cable Systems Twisted Pair
 - a. General:
 - The Contractor shall be responsible for providing a new system conforming to current and accepted telephone and digital industrial/commercial cable distribution standards. The distribution cable installation shall be fully coordinated with the Facility, the PM, the RE and the Contractor prior to the start of installation.

- 2) The Contractor is responsible for complete knowledge of the space and cable pathways (i.e. equipment rooms, TCs, conduits, wireways, etc.) of the Facility. The Contractor shall at a minimum design and install the System using the Pathway Design Handbook H-088C3, TIA/EIA Telecommunications Building Wiring Standards, and Facility Chief of Information Resource Management's (IRM) instructions, as approved in writing by the PM and/or RE.
- 3) The System cables shall be fully protected by cable duct, trays, wireways, conduit and when specifically approved, flexible innerduct. It is the responsibility of the Contractor to confirm all contract drawings and the Facility's physical layout to determine the necessary cable protective devices to be provided. If flexible innerduct is used, it shall be installed in the same manner as conduit.
- 4) Cable provided in the system (i.e. backbone, outside plant, inside plant, and station cabling) shall conform to accepted industry and OEM standards with regards to size, color code, and insulation. The pair twists of any pair shall not be exactly the same as any other pair within any unit or sub-unit of cables that are bundled in twenty-five (25) pairs or less. The absence of specifications regarding details shall imply that best general industry practices shall prevail and that first quality material and workmanship shall be provided. Certification Standards, (i.e., EIA, CCITT, FIPPS, and NFPA) shall prevail.
- 5) Some areas of this Facility may be considered "plenum". All wire and cable used in support of the installation in those areas (if any) shall be in compliance with national and local codes pertaining to plenum environments. It is the responsibility of the Contractor to review the VA's cable and wire requirements with the RE and the IRM prior to installation to confirm the type of environment present at each location.
- 6) The Contractor shall provide outside and inside plant cables that furnishes the number of cable pairs required in accordance with the System requirements described herein. The

Contractor shall fully coordinate and obtain approval of the design with the OEM, RE and the IRM prior to installation.

- 7) All metallic cable sheaths, etc. shall be grounded by the Contractor (i.e.: risers, underground, station wiring, etc.) as described herein.
- 8) If temporary cable and wire pairs are used, they shall be installed so as to not present a pedestrian safety hazard and the Contractor shall be responsible for all work associated with the temporary installation and for their removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the RE and the IRM prior to installation.
- 9) Conductors shall be cabled to provide protection against induction in voice and data circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 10) Measures shall be employed by the Contractor to minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 11) The System's cables shall be labeled on each end and been fully tested and certified in writing by the Contractor to the RE before proof of performance testing can be conducted. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The tests required for data cable must be made to guarantee the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. All cable installation and test records shall be made available at acceptance testing by the RE or Contractor and thereafter maintained in the Facility's Telephone Switch

Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 12) The Contractor shall coordinate with the LEC to install the telephone entrance cable to the nearest point of entry into the Facility and as shown on the drawings. The Contractor shall coordinate with the RE and the LEC to provide all cable pairs/circuits from the Facility point of entry to the Telephone Switch Room all telephone, FTS, DHCP, ATM, Frame Relay, data, pay stations, patient phones, and any low voltage circuits as described herein.
- 13) The Contractor shall provide proper test equipment to guarantee that cable pairs and analog RF coaxial cable meet each OEM's standard transmission requirements, and guarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
- b. Telecommunications Closets (TC): In TC's that are served with both a UTP backbone cable and a fiber optic backbone cable, the UTP cable shall be terminated on separate RJ-45, 8-pin connectors with 110A or equivalent type punch down blocks located on the back or front of a 48-port modular patch panel dedicated to data applications. Only the UTP backbone cable pairs, identified as being connected to the fiber optic backbone, shall be extended to the fiber optic interface device. All connecting cables required to extend these cables (i.e. patch cords, twenty-five pair connectors, etc.), to the fiber optic interface device, in the TC's shall also be provided by the Contractor to insure a complete and operational fiber optic distribution system:
 - In TC's, which are only served by a UTP backbone cable, the cable shall be terminated on separate modular connecting devices (110A or equivalent) that are dedicated to data applications. In order to provide full service to all data cable pairs as identified in each TC/cabinet including spare capacity noted herein, the size of all vertical (riser) cables and/or outside cables serving these TC's shall be increased as required.
- c. Horizontal and Station Cable:
 - 1) A Four (4) UTP 24 AWG station wiring cable shall be installed from the top TCO jack to the TC and shall be of a type

designed to support Category 6 communications (250 mega-Hertz [mHz] or above). At the jack location, terminate all four pair on the RJ-45/11 jack. At the signal closet, all four pair shall be terminated on the modular punch down blocks dedicated to telephone applications.

- 2) A Four (4) UTP 24 AWG (in thermoplastic jacket unless otherwise specified by RE) station wiring cable shall be installed from each of the two (2) bottom TCO RJ-45 jacks (shall conform to EIA/TIA 568 Standard "T568A" and NFPA) to the TC and shall be of a type designed to support Category 6 communications (250 mHz or above).
- d. Telecommunication Outlets (TCO), Jacks: All TCO's shall have a minimum of three (3) RJ-45 type jacks. The top jack shall be an eight pin RJ-45/11 compatible jack, labeled, and designated for telephone applications only. The bottom two jacks shall be eight pin RJ-45 type unkeyed (sometimes called center keyed) jacks, labeled, and designated for data.
- 3. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional voice and digital telecommunications cabling system: "horizontal" (or "lateral") sub-trunk cabling system, vertical and horizontal cross-connection (VCC and HCC respectively) cabling systems, and TCO's with a minimum of three (3) RJ-45 jacks for the appropriate telephone, Data connections, and additional jacks, connectors, drop and patch cords, terminators, and adapters provided.
 - a. Telecommunication Closet (TC):
 - 1) There shall be a minimum of one TC for the this project.
 - 2) Additionally, the TC's may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all backbone, vertical, and horizontal copper and fiber optic cables shall be terminated on appropriate crossconnection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.

- a) A minimum of 12 110-120 VAC active quad outlets shall be provided; each with "U" grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every 800M² (or 8,000 ft²) of useable floor space. Additional outlets shall be equally spaced along the wall.
- b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications.
- 3) Grounding: Proper grounding and bonding shall be provided for each TC and all internal equipment. Reference shall be made to proper codes and standards, such that all grounding systems must comply with all applicable National, Regional, and Local Building and Electrical codes. The most stringent code of these governing bodies shall apply.
 - a) If local grounding codes do not exist for the System location, then at a minimum, a #6 American Wire Gauge (AWG) stranded copper wire, or equivalent copper braid, shall be connected to a separate earth grounding system for each TC (the looping of TC's in a general location is allowed as long as the specifications contained herein are met). Under no circumstance shall the AC neutral be used for this ground. See PART 3 - EXECUTION for specific grounding instructions.
 - b) Each copper UTP or STP cable that enters a TC from the outside of a building (regardless if the cable is installed underground or aerial) shall be provided with a surge protector and grounded an to earth ground at each cable's entry point in and out of the MTC and each IMTC.
- b. System Telecommunication Outlets (TCO): The System shall be capable of receiving the specified telephone (or voice) and data signals acquired from the LEC, FTS contracted carrier and

computer system, and shall process and distribute them to the designated TCO's and as shown on the drawings. At a minimum, one TCO shall be provided on each room wall, associated with an active 120 VAC shall be provided and as shown on the drawings. The only exception to the general rule, of one outlet per wall, shall be those "special" locations (e.g., surgical suites, radiology MRI rooms, labs, patient bed rooms, warehouse, loading docks, storage rooms, etc.) where there is usually only one TCO provided as designated on the drawings.

- Each TCO shall consist of three multipin modular RJ45 jacks, one designated for telephone and two for data service. Each TCO with appropriate jacks installed shall be provided by the Contractor in each designated location and as shown on the drawings.
- 2) The Contractor shall connect each telephone multipin modular RJ45 jack to a separate "right side as you look at it" telephone HC distribution system HCCS "punch down" 110A block or approved IDC terminating device in each associated RTC. The modular RJ45 jack shall be able to accept and operate with smaller modular RJ11 plugs while providing proper connection and not damaging the modular jack. he OEM shall warrant all modular RJ45/11 jacks in such a manner to be usable for modular RJ11 plugs.
- 3) The Contractor shall connect each TCO data multipin modular RJ45 jack to a separate lower row jack on the HCCS "patch panel" in each associated RTC. The Contractor is not to "cross-connect" VCCS and HCCS data distribution cables <u>or</u> provides active electronic data distribution equipment as a part of the System.
- 4) A non-impact termination method, using either a stuffer cap with installation tool or full-cycle terminating tool having both tactile and audible feedback to indicate proper termination shall be used. High impact installation tools shall not be used.
- 5) Each terminated conductor end shall be properly trimmed to assure a minimum clearance of 6.35 mm (0.250 in) clearance between the conductors of adjacent modules.

- 6) The multipin RJ45 jack shall be modular in construction that will accept and operate with a modular UTP and STP RJ45 connector and its pin assignments.
- 7) The Contractor shall connect each fiber optic TCO "ST" connector to a separate fiber optic "bottom" row "ST" connector HCCS "patch panel" or "breakout" terminating device in each associated TC. The Contractor is not to "interconnect" VCCS and HCCS fiber optic distributions cables or provide active fiber optic electronic distribution equipment as a part of the system.
- B. System Performance:
 - At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 Db.
 - 5) System data error: 10 to the -10 Bps, minimum loss measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of <u>+</u> 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data:
 - (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the

EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.
 - 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
- C. General:
 - 1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - a. Maintains a stock of replacement parts for the item submitted.
 - b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
 - c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
 - 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
 - 3. The Contractor shall provide written verification, in writing to the RE at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct

and/or conduit and wiring even though the actual installation may be by another subcontractor.

- 4. The Telephone Contractor is responsible for providing interfacing cable connections for the telephone, PA systems with the System.
- 5. The telephone equipment and PA interface equipment shall be the interface points for connection of the PA interface cabling from the telephone switch via the system telephone interface unit.
- 6. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone equipment, systems, and service.
- 7. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
- 8. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 27 10 00, STRUCTURED CABLING and Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
- 9. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 10. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.

11. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.

2.2 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet (TCO):
 - 1. The TCO shall consist of one telephone multipin jack and three data multipin jacks , jacks mounted in a steel outlet box. A separate 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled stainless steel faceplate will be used. A second 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled faceplate shall be provided as required adjacent to the first box to ensure system connections and expandability requirements are met.
 - All telephone multipin connections shall be RJ-45/11 compatible female types. All data multipin connections shall be RJ-45 female types.
 - 3. The TCO shall be fed from the appropriate CCS located in the respective RTC in a manner to provide a uniform and balanced distribution system.
 - 4. Interface of the data multipin jacks to appropriate patch panels (or approved "punch down" blocks) in the associated RTC, is the responsibility of the Contractor. The Contractor shall not extend data cables from the RTCs to data terminal equipment or install data terminal equipment.
 - 5. The wall outlet shall be provided with a stainless steel or approve alternate cover plate to fit the telephone multipin jack, data multi- pin jacks and the outlet box provided (100mm (4in.) x 100mm (4in.) for single and 100mm (4in.) x 200mm (8in.) for dual outlet box applications). For PBPU installations, the cover plate shall be stainless steel.
- B. Distribution Cables: Each cable shall meet or exceed the following specifications for the specific type of cable. Each cable reel shall be sweep tested and certified by the OEM by tags affixed to each reel. The Contractor shall turn over all sweep tags to the RE or PM. Additionally, the Contractor shall provide a 610 mm (2 ft.) sample of each provided cable, to the RE and receive approval before installation. Cables installed in any outside location (i.e. above ground, under ground in conduit, ducts, pathways, etc.) shall be filled

with a waterproofing compound between outside jacket (not immediately touching any provided armor) and inter conductors to seal punctures in the jacket and protect the conductors from moisture.

- 1. Remote Control:
 - a. The remote control cable shall be multi-conductor with stranded (solid is permissible) conductors. The cable shall be able to handle the power and voltage necessary to control specified system equipment from a remote location. The cable shall be UL listed and pass the FR-1 vertical flame test, at a minimum. Each conductor shall be color-coded. Combined multi-conductor and coaxial cables are acceptable for this installation, as long as all system performance standards are met.

Length	As required, in 1K (3,000 ft.) reels minimum
Connectors	As required by system design
Size	18 AWG, minimum, Outside
	20 AWG, minimum, Inside
Color coding	Required, EIA industry standard
Bend radius	10X the cable outside diameter
Impedance	As required
Shield coverage	As required by OEM specification
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

b. Technical Characteristics:

2. Telephone:

- a. The System cable shall be provided by the Contractor to meet the minimum system requirements of Category Six service. The cable shall interconnect each part of the system. The cable shall be completely survivable in areas where it is installed.
- b. Technical Characteristics:

Length	As required, in 1K (3,000 ft.) reels minimum
Cable	Voice grade category six
Connectors	As required by system design
Size	22 AWG, minimum, Outside
	24 AWG, minimum, Inside
Color coding	Required, telephone industry standard
Bend radius	10X the cable outside diameter
Impedance	120 Ohms <u>+</u> 15%, BAL
Shield coverage	As required by OEM specification
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
62.0	52.0
100.0	68.0

- 3. Data Multi-Conductor:
 - a. The cable shall be multi-conductor, shielded or unshielded cable with stranded conductors. The cable shall be able to handle the power and voltage used over the distance required. It shall meet Category Six service at a minimum.
 - b. Technical Characteristics:

Wire size	22 AWG, minimum
Working shield	350 V
Bend radius	10X the cable outside diameter
Impedance	100 Ohms <u>+</u> 15%, BAL
Bandwidth	100 mHz, minimum
DC RESISTANCE	10.0 Ohms/100M, maximum
Shield coverage	
Overall Outside (if OEM specified)	100%
Individual Pairs (if OEM specified)	100%
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
62.0	52.0
100.0	68.0

- 4. AC Power Cable: AC power cable(s) shall be 3-conductor, no. 12 AWG minimum, and rated for 13A-125V and 1,625W. Master AC power, installation specification and requirements, are given in the NEC and herein.
- 5. Public Address and/or General Purpose Audio:
 - a. The audio cable shall be two-conductor, STP cable with stranded conductors. The cable shall be able to handle the power used for the load impedance over the distance required, with not more than 5% power loss. This cable is to be provided in local PA areas only and is not to be used as a part of the telephone system.
 - b. Technical Characteristics:

Impedance	70.7VRMS audio signal
Wire size	20 AWG, minimum
Working shield	350 V
Color coding	Required, EIA audio industry standard
Connectors	As required
Bend radius	10X the cable outside diameter
Impedance	100 Ohms <u>+</u> 15%, BAL
Bandwidth	20 mHz, minimum
DC resistance	10.0 Ohms/100M (330 ft.), maximum
Shield coverage	
Overall Outside (if OEM specified)	100%
Individual Pairs (if OEM specified)	100%
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0

- C. Outlet Connection Cables:
 - 1. Telephone:
 - a. The Contractor shall provide a connection cable for each TCO telephone jack in the System with 10% spares. The telephone connection cable shall connect the telephone instrument to the TCO telephone jack. The Contractor shall not provide telephone instrument(s) or equipment.
 - b. Technical Characteristics:

Length	1.8M (6ft.), minimum
Cable	Voice Grade
Connector	RJ-11/45 compatible male on each end
Size	24 AWG, minimum

Color coding	Required,	telephone	industry
	standard		

- 2. Data:
 - a. The Contractor shall provide a connection cable for each TCO data jack in the system with 10% spares. The data connection cable shall connect a data instrument to the TCO data jack. The Contractor shall not provide data terminal(s)/equipment.
 - b. Technical Characteristics:

Length	1.8M (6 ft.), minimum
Cable	Data grade Category Six
Connector	RJ-45 male on each end
Color coding	Required, data industry standard
Size	24 AWG, minimum

- 3. Analog Audio:
 - a. The Contractor shall provide a connection cable for each TCO analog audio jack in the System with 10% spares. The analog audio connection cable shall connect a analog audio instrument to the TCO analog audio jack. The Contractor shall not provide analog audio instrument(s)/equipment.
 - b. Technical Characteristics:

Length	1.8M (6 ft.), minimum
Cable	Flexible 22 AWG, STP, minimum
Connector	"XL" male on each end //

- D. System Connectors:
 - 1. Solderless (Forked Connector):
 - a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector barrel shall be insulated and color-coded.
 - b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V

- 2. Multipin:
 - a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector housing shall be fully enclosed and shielded. It shall be secured to the cable group by screw type compression sleeves.
 - b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V
Number of pins	As requires, usually 25 pairs minimum

- 3. Modular (RJ-45/11 and RJ-45): The connectors shall be commercial types for voice and high speed data transmission applications. he connector shall be compatible with telephone instruments, computer terminals, and other type devices requiring linking through the modular telecommunications outlet to the System. The connector shall be compatible with UTP and STP cables.
 - a. Technical Characteristics:

Туре	Number of Pins
RJ-11/45	Compatible with RJ45
RJ-45	Eight
Dielectric	Surge
Voltage	1,000V RMS, 60 Hz @ one minute, minimum
Current	2.2A RMS @ 30 Minutes or 7.0A RMS @ 5.0 seconds
Leakage	100 μA, maximum
Connectability	
Initial contact resistance	20 mili-Ohms, maximum
Insulation displacement	10 mili-Ohms, maximum
Interface	Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs shall provide connection when used in RJ-45 jacks.
Durability	200 insertions/withdrawals, minimum

- E. Distribution Frames:
 - 1. A new stand-alone (i.e., self supporting, free standing) MDF shall be provided to interconnect the EPBX and computer room. The MDF shall be modular and equipped with modular terminating mini blocks (i.e. Ericsson, 3M, etc.), and patch panels that are as small as possible and provide all the requirements of this specifications as described herein.
 - 2. All cable distribution closets and MDFs shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The MDF/telephone closet riser cable shall be sized to satisfy all voice requirements plus not less than 50% spare (growth) capacity in each telephone closet which includes a fiber optic backbone. The MDF/telephone closet riser cable shall be sized to satisfy all voice and data requirements plus not less than 50% spare (growth) capacity in each telephone closet which does not include a fiber optic backbone.
 - 3. The MDF and all intermediate distribution frames shall be connected to the EPBX system ground.
 - 4. Technical Characteristics:

Telephone	
IDC type unit	As described in Part 2
Contact wires	50 micron of Gold over Nickel
Contact pressure	100 Grams, MIN
110A Punch blocks	Acceptable alternate to IDC
Data	110A blocks as described in Part 2
Fiber optic	Patch panel as described in Part 2
Analog Video	Patch panel as described in Part 2

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.

- 2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the RE and PM.
 - 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
 - 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
 - 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
 - 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
 - 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
 - All vertical and horizontal copper cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
 - 8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating twisted pair

cables carrying telephone and data signals in telephone and data systems.

- 9. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the RE if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 - c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with

the NEC. AC power conduit shall be run separate from signal conduit.

- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- g. Ensure that Critical Care Nurse Call, and PA Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.
- D. Distribution System Signal Wires and Cables:
 - 1. Wires and cables shall be provided in the same manner and use like construction practices as Fire Protective and other Emergency Systems that are identified and outlined in NFPA 101, Life Safety Code, Chapters 7, 12, and/or 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions. The wires and cables shall be able to withstand adverse environmental conditions in their respective location without deterioration. Wires and cables shall enter each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of the cables.
 - a. Each wire and cable shall terminate on an item of equipment by direct connection. Spare or unused wire and cable shall be provided with appropriate connectors (female types) that are

installed in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.

- b. Fiber optic cables that are spare, unused or dark shall be provided with Industry Standard "ST" type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
- c. Coaxial cables that are spare, unused or dark shall be provided with the cable OEM specified type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
- d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible.
- 2. Routing and Interconnection:
 - a. Wires or cables between consoles, cabinets, racks and other equipment shall be in an approved conduit, signal duct, cable duct, or cable tray that is secured to building structure.
 - b. Wires and cables shall be insulated to prevent contact with signal or current carrying conductors. Wires or cables used in assembling consoles, panels, equipment cabinets and racks shall be formed into harnesses that are bundled and tied. Harnessed wires or cables shall be combed straight, formed and dressed in either a vertical or horizontal relationship to equipment, controls, components or terminations.
 - c. Harnesses with intertwined members are not acceptable. Each wire or cable that breaks out from a harness for connection or termination shall have been tied off at that harness or bundle point, and be provided with a neatly formed service loop.
 - d. Wires and cables shall be grouped according to service (i.e.: AC, grounds, signal, DC, control, etc.). DC, control and signal cables may be included with any group. Wires and cables shall be neatly formed and shall not change position in the group throughout the conduit run. Wires and cables in approved signal duct, conduit, cable ducts, or cable trays shall be neatly formed, bundled, tied off in 600 mm to 900 mm (24 in. to 36 in.)

lengths and shall not change position in the group throughout the run. Concealed splices are not allowed.

- e. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right. This installation shall be accomplished with ties and/or fasteners that will not damage or distort the wires or cables. Limit spacing between tied off points to a maximum of 150 mm (6 inches).
- f. Do not pull wire or cable through any box, fitting or enclosure where change of cable tray or signal or cable duct alignment or direction occurs. Ensure the proper bend radius is maintained for each wire or cable as specified by its OEM.
- g. Employ temporary guides, sheaves, rollers, and other necessary items to protect the wire or cable from excess tension or damage from bending during installation. Abrasion to wire or cable jackets is not acceptable and will not be allowed. Replace all cables whose jacket has been abraded. The discovery of any abraded and/or damaged cables during the proof of performance test shall be grounds for declaring the entire system unacceptable and the termination of the proof of performance test. Completely cover edges of wire or cable passing through holes in chassis, cabinets or racks, enclosures, pull or junction boxes, conduit, etc., with plastic or nylon grommeting.
- h. Cable runs shall be splice free between conduit junction and interface boxes and equipment locations.
- Cables shall be installed and fastened without causing sharp bends or rubbing of the cables against sharp edges. Cables shall be fastened with hardware that will not damage or distort them.
- j. Cables shall be labeled with permanent markers at the terminals of the electronic and passive equipment and at each junction point in the System. The lettering on the cables shall correspond with the lettering on the record diagrams.
- k. Completely test all of the cables after installation and replace any defective cables.

- 1. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
- m. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.
 - Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - 2) Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - 3) Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - 4) Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in <u>air plenum</u> areas.
- n. Wires or cables installed in underground conduit, duct, etc.
 - Wires or cables installed in underground installations shall be waterproofed by the inclusion of a water protective barrier (i.e. gel, magma, etc.) or flooding compound between the outside jacket and first shield. Each underground connection shall be accessible in a manhole, recessed ground level junction box, above ground pedestal, etc., and shall be

provided with appropriate waterproof connectors to match the cable being installed. Once the System has been tested and found to meet the System performance standards and accepted by VA, the Contractor shall provide waterproof shrink tubing or approved mastic to fully encompass each wire or cable connection and overlay at least 150 mm (6 inches) above each wire or cable jacket trim point.

- 2) It is not acceptable to connect waterproofed cable directly to an inside CCS punch block or directly to an equipment connection port. When an under ground cable enters a building, it shall be routed directly to the closest TC that has been designated as the building's IMTC. The Contractor shall provide a "transition" splice in this TC where the "water proofed" cable enters on one side and "dry" cable exits on the other side. The "transition" splice shall be fully waterproof and be capable of reentry for system servicing. Additionally, the transition splice shall not allow the waterproofing compound to migrate from the water proof cable to the dry cable.
- Warning tape shall be continuously placed 300 mm (12 inches) above buried conduit, cable, etc.
- E. Outlet Boxes, Back Boxes, and Faceplates:
 - Outlet Boxes: Signal, power, interface, connection, distribution, and junction boxes shall be provided as required by the system design, on-site inspection, and review of the contract drawings.
 - Back Boxes: Back boxes shall be provided as directed by the OEM as required by the approved system design, on-site inspection, and review of the contract drawings.
 - 3. Face Plates (or Cover Plates): Faceplates shall be of a standard type, stainless steel, anodized aluminum or UL approved cycolac plastic construction and provided by the Contractor for each identified system outlet location. Connectors and jacks appearing on the faceplate shall be clearly and permanently marked.
- F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system. 1. Wires:

- a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
- b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
- Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
- 3. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
 - a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
 - b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or 1/8" phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
 - c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.

G. AC Power: AC power wiring shall be run separately from signal cable.

- H. Grounding:
 - General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
 - a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
 - b. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.

- c. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
- 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
- 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
- 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
- I. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.

- 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
- 4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Interim Inspection:
 - 1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B or T568A pin assignments (verify with Government) and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
 - 3. The Contractor shall notify the RE, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
 - 4. Results of the interim inspection shall be provided to the RE and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
 - 5. The RE and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.

- B. Pretesting:
 - Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
 - 2. Pretesting Procedure:
 - a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.
 - 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
 - 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- C. Acceptance Test: After the System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

- D. Performance Testing:
 - Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- E. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
 - Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.
 - Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

- A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
- B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 WARRANTY

- A. Comply with FAR clause 52.246-21, except that warranty shall be as follows:
 - 1. The Contractor shall warranty that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
 - The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in

resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.

- 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
- 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year warranty period:
 - a. Response Time:
 - The RE (or facility Contracting Officer if the facility has taken possession of the building[s]) are the Contractor's reporting and contact officials for the System trouble calls, during the warranty period.
 - 2) A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
 - 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
 - The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 - a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.

- b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the RE or Facility Director. The RE or Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
- b. Required on-site visits during the one year warranty period
 - The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the warranty period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.
 - a) The Contractor shall arrange all Facility visits with the RE or Facility Contracting Officer prior to performing the required maintenance visits.
 - b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the RE or Facility Contracting Officer and the Contractor.
 - c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE or Facility Contracting Officer.
 - 2) The Contractor shall provide the RE or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
 - a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to RE or Facilities Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance

- b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 3) The RE or Facility Contracting Officer shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The RE or Facility Contracting Officer shall ensure copies of these reports are entered into the System's official acquisition documents.
 - b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
- B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

SECTION 28 08 00

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

----- END -----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes modifications and additions to the existing Simplex Grinnell addressable, voice annunciating system. It includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, fire safety control devices, power supplies, and wiring as shown on the drawings and specified. The fire alarm system wiring shall not be combined with other systems such as building automation, energy management, security, etc. Contractor shall contract with Simplex Grinnell to perform all the system modifications shown on the drawings and described in these specifications. Contact Scott Nielson at 920-494-8741 to coordinate this work.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Resident Engineer his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building 1 shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
- D. The main fire alarm control unit is existing.

1.2 SCOPE

A. A fully addressable fire alarm system as an extension of an existing

fully addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with

- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed. Modified duct smoke detectors shall be reprogrammed as supervisory.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style4 in accordance with NFPA 72. Individual signaling line circuits

shall be limited to covering 22,500 square feet (2,090 square

6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.

meters) of floor space or 3 floors whichever is less.

- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 08 71 00 DOOR HARDWARE. For combination Closer-Holders.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS
- B. Drawings:
 - Prepare drawings using AutoCAD (verify Release version with VA) software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety

interfaces. Show wiring Styles on the riser diagram for all circuits.

- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturers' installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.

- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major

equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.

- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

A. All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):

NFPA	13	Standard	for	the	Installation	of	Sprinkler	
		Systems,						
	7 /	Otendend	fan	+ h a	Tratallation	<u>ہ</u> ج		

NFPA 14 Standard for the Installation of Standpipes and Hose Systems, .

NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection,.

NFPA 70.....National Electrical Code (NEC).

NFPA 72.....National Fire Alarm Code.

NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems.

NFPA 101.....Life Safety Code.

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory.
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011.

E. American National Standards Institute (ANSI):

S3.41..... Audible Emergency Evacuation Signal.

F. International Code Council, International Building Code (IBC).

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

A. Conduit shall be as follows:

- 1. All new conduits shall be installed in accordance with NFPA 70.
- 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
- All new conduits shall be 3/4 inch (19 mm) minimum and be shall red in color as purchased from the factory. Painted conduit not acceptable.
- B. Wire:
 - 1. Wiring shall be per manufacturer requirements for the devices and systems used.
 - Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - 1. Fire Alarm Control Panel is existing and shall be upgraded or modified as required to meet the requirements of this project.

2.4 ALARM NOTIFICATION APPLIANCES

All alarm notification devices shall be compatible with the existing system and shall be manufactured by Simplex Grinnell.

- A. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
 - Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- B. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - 4. Strobes may be combined with the audible notification appliances specified herein.

2.5 ALARM INITIATING DEVICES

- All alarm initiating devices shall be compatible with the existing system and shall be manufactured by Simplex Grinnell and shall match existing devices.
- A. Manual Fire Alarm Stations:
 - 1. Shall be non-break glass, address reporting type.

- 2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - 4. All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.
- C. Heat Detectors:
 - Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.

- Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
- 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.

2.6 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - 1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
 - 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.

5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.

2.7 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.8 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit. Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with

Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.

- D. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- E. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
- F. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- G. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- H. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- I. Contractor shall provide temporary heat detectors with coverage as recommended per UL and Manufacturer listing of devices in all areas during construction when the sprinkler Fire Protection System is out of operation. Electrical contractor to coordinate with General Contractor and Fire Protection Contractor.

3.2 TYPICAL OPERATION

A. System shall operate per existing system.

3.3 TESTS

A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.

- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion

of installation and 2 sessions 3 months after the completion of installation.

- Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
- 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 DIGITIZED VOICE MESSAGES:

A. Digitized voice messages shall be per existing.

- - END - -