
30 JANUARY 2015

CONSTRUCTION DOCUMENTS SPECIFICATIONS

RETROFIT INFRASTRUCTURE ELECTRICAL SYSTEMS, INSTALL AUXILIARY CAMPUS POWER AND RENEWABLE ENERGY

VA SORCC, WHITE CITY, OR

MANDEVILLE BERGE BOX Architects Engineers Planners Interior Designers SEATTLE WASHINGTON

PROJECT #: 692-14-101

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 10	Table of Contents	09-14
00 01 15	List of Drawing Sheets	09-11
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	08-14
01 32 16.15	Project Schedules	04-13
01 33 23	Shop Drawings, Product Data, and Samples	03-12
01 42 19	Reference Standards	09-11
01 45 29	Testing Laboratory Services	07-13
01 57 19	Temporary Environmental Controls	01-11
01 74 19	Construction Waste Management	09-13
01 81 11	Sustainable Design Requirements	02-13
01 91 00	General Commissioning Requirements	09-14
	DIVISION 02 - EXISTING CONDITIONS	
02 82 11	Traditional Asbestos Abatement	07-11
02 83 33	Lead-Containing Paint In Construction	08-11
02 84 16	Handling of Lighting Ballasts and Lamps Containing PCBs	04-06
	and Mercury	
	DIVISION 03 - CONCRETE	
03 30 00	Cast-in-Place Concrete	10-12
	DIVISION 05 - METALS	
05 12 00	Structural Steel Framing	11-12
05 12 00	Metal Fabrications	07-14
15 50 00		07-14
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	09-11
06 20 00	Finish Carpentry	06-13
		00 10
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 21 13	Thermal Insulation	06-12
07 31 13	Asphalt Shingles and Accessories	05-12
07 60 00	Flashing and Sheet Metal	07-14
0, 00 00		
07 92 00	Joint Sealants	12-11

	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-13
08 31 13	Access Doors and Frames	10-11
08 56 00	Vinyl Windows	09-15
08 50 00	Door Hardware	09-14
08 80 00	Glazing	09-14
08 80 00	Grazing	05-14
	DIVISION 09 - FINISHES	
09 06 00	Schedule for finishes	09-14
09 29 00	Gypsum Board	02-13
09 65 13	Resilient Base and Accessories	10-11
09 67 23.40	Resinous Poured in Place Resilient Flooring	09-15
09 91 00	Painting	07-13
	DIVISION 10 - SPECIALTIES	
10 44 13	Fire Extinguisher Cabinets	08-14
	DIVISION 11 - EQUIPMENT (NOT USED)	
	DIVISION 12 - FURNISHINGS (NOT USED)	
	DIVISION 13 - SPECIAL CONSTRUCTION	
13 05 41	Seismic Restraint Requirements for Non-Structural Components	01-14
	DIVISION 14- CONVEYING EQUIPEMENT (NOT USED)	
	DIVISION 21- FIRE SUPPRESSION (NOT USED)	
	DIVISION 22 - PLUMBING (NOT USED)	
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	11-10
23 05 12	General Motor Requirements for HVAC and Steam Generation Equipment	11-10
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	11-10
23 05 93	Testing, Adjusting, and Balancing for HVAC	05-11
23 07 11	HVAC and Boiler Plant Insulation	05-11
23 08 00	Commissioning of HVAC Systems	06-13
23 09 23	Direct-Digital Control System for HVAC	9-11
23 09 23.10	Status Monitoring Via Campus Automation Network	09-11
23 21 13	Hydronic Piping	09-12
23 23 00	Refrigerant Piping	02-10
23 31 00	HVAC Ducts and Casings	03-13
23 34 00	HVAC Fans	11-09
23 37 00	Air Outlets and Inlets	11-09

0.2 0.1 0.2		04 11
23 81 23	Computer-Room Air-Conditioners	04-11
25 10 10	DIVISION 25 - INTEGRATED AUTOMATION	2-10
25 10 10	Advanced Utility Metering System	2-10
	DIVISION 26 - ELECTRICAL	
	DIVISION 20 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	12-12
26 05 13	Medium-Voltage Cables	12-12
26 05 19	Low-Voltage Electrical Power Conductors and Cables	07-13
26 05 19	Grounding and Bonding for Electrical Systems	12-12
26 05 20	Raceway and Boxes for Electrical Systems	05-14
26 05 35	Underground Electrical Construction	12-12
26 08 00	Commissioning of Electrical Systems	06-13
26 12 19	Pad-Mounted, Liquid-Filled, Medium-Voltage Transformers	12-12
26 13 13	Medium-Voltage Circuit Breaker Switchgear	12-12
26 23 13	Generator Paralleling Controls	12-12
26 24 16	Panelboards	05-14
26 27 26	Wiring Devices	08-14
26 29 21	Enclosed Switches and Circuit Breakers	12-12
26 32 13	Engine Generators	12-12
20 32 13		12 12
	DIVISION 27 - COMMUNICATIONS (NOT USED)	
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY (NOT USED)	
	DIVISION 31 - EARTHWORK	
31 20 00	Earthwork	10-12
	DIVISION 32 - EXTERIOR IMPROVEMENTS	
32 05 23	Cement and Concrete for Exterior Improvements	05-13
32 12 16	Asphalt Paving	10-09
32 31 13	Chain Link Fences and Gates	05-13
32 90 00	Planting	
	DIVISION 33 - UTILITIES	
33 40 00	Storm Sewer Utilities	10-11
	DIVISION 34 - TRANSPORTATION	
34 71 13	Vehicle Barriers	05-13
	DIVISION 35 - WATERWAY AND MARINE CONSTRUCTION	
35 20 16	Fabricated Stainless Steel Slide Gates	01-15
	DIVISION 48 - Electrical Power Generation	

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the

contract.

Drawing No. Title

231-GI001	TITLE SHEET

231-HS001	GENERAL NOTES, ABBREVIATIONS AND MATERIALS SUMMARY
231-HA101	HAZMAT SORCC FLOOR PLAN
231-HA102	HAZMAT PARTIAL SITE PLAN

231-CS001	COVER SHEET
231-CS002	EROSION CONTROL NOTES & DETAILS
231-CS101	PV ARRAY GRADING AND UTILITY
231-CS102	BUILDING 231 GRADING AND UTILITIES
231-CS103	EROSION CONTROL PLAN
231-CS401	IRRIGATION STRUCTURES
231-CS501	CIVIL SITE DETAILS-PV Array
231-CS502	CIVIL SITE DETAILS
231-CS503	CIVIL SITE DETAILS
231-CS504	CIVIL SITE DETAILS

231-AS001	GENERAL NOTES, SYMBOLS, AND ABBREVIATIONS
231-AD101	DEMOTLITION PLAN AND ELEVATIONS
231-AS101	FLOOR PLAN AND REFLECTED CEILING PLAN
231-AS102	ROOF PLAN
231-AS201	EXTERIOR ELEVATIONS
231-AS202	INTERIOR ELEVATIONS
231-AS301	SECTIONS & WALL SECTIONS
231-AS401	WINDOW AND DOOR DETAILS
231-AS402	DETAILS
231-AS501	WINDOW, DOOR AND FINISH SCHEDULES

231-LS101	LANDSCAPE NOTES	PLAN:	TREE	PROTECTION,	IRRIGATION,	PLANTING	AND
231-LS102	LANDSCAPE	PLAN:	TREE	PROTECTION			
231-LS103	LANDSCAPE	PLAN:	TREE	PROTECTION	AND PLANTING		

CONSTRUCTION DOCUMENTS

231-SS001	STRUCTURAL GENERAL NOTES
231-SS002	STRUCTURAL GENERAL DETAILS
231-SS101	STRUCTURAL SECTIONS
231-SS301	STRUCTURAL SECTION

231-MS001	HVAC LEGEND, NOTES, AND SYMBOLS
231-MS101	MECHANICAL PLAN
231-MH401	HVAC CONTROL DIAGRAM AND SEQ OF OPS
231-MH402	SYSTEM SCHEMATIC DIAGRAM AND SEQ OF OPS
231-MH501	MECHANICAL DETAILS
231-MH601	HVAC EQUIPMENT SCHEDULES
231-MH602	HVAC EQUIPMENT SCHEDULES

231-ES001	SYMBOLS AND LEGEND
231-ES002	ABBREVIATIONS AND GENERAL NOTES
231-ES101	OVERALL SITE PLAN - REFERENCE ONLY
231-ES102	PARTIAL SITE PLAN - NORTHWEST
231-ES103	PARTIAL SITE PLAN - NORTHEAST
231-ES104	PARTIAL SITE PLAN - SOUTHEAST
231-ES105	PARTIAL SITE PLAN - SOUTHWEST
231-ES106	BLDG 231 ELECTRICAL PLANS
231-ES200	BLDG 231 COMM AND SECURITY PLAN
231-ES400	GROUNDING AND PLANS DETAILS
231-ES500	ELECTRICAL DETAILS
231-ES501	ELECTRICAL DETAILS
231-ES502	ELECTRICAL DETAILS
231-ES503	ELECTRICAL DETAILS
231-ES504	ELECTRICAL DETAILS
231-ES505	ELECTRICAL DETAILS
231-ES600	PANEL SCHEDULES
231-EP800	155V ONE-LINE DIAGRAM
231-EP801	ONE-LINE DIAGRAM - MEDIUM VOLTAGE FEEDERS A AND B
231-EP802	PARTIAL ONE-LINE DIAGRAM
231-EP803	PARTIAL ONE-LINE DIAGRAM

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 0	GENERAL INTENTION	1
1.2 5	STATEMENT OF BID ITEM(S)	2
1.3 5	SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	2
1.4 0	CONSTRUCTION SECURITY REQUIREMENTS	2
1.5 F	FIRE SAFETY	5
1.6 0	OPERATIONS AND STORAGE AREAS	7
1.9 E	DISPOSAL AND RETENTION	
	PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQU ITIES, AND IMPROVEMENTS	
1.12	PHYSICAL DATA	14
1.13	PROFESSIONAL SURVEYING SERVICES	15
1.14	LAYOUT OF WORK	15
1.15	AS-BUILT DRAWINGS	
1.16	USE OF ROADWAYS	
1.18	TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPME	NT17
1.21	TEMPORARY TOILETS	
1.22	AVAILABILITY AND USE OF UTILITY SERVICES	
1.23	NEW TELEPHONE EQUIPMENT	20
1.24	TESTS	20
1.25	INSTRUCTIONS	21
1.26	GOVERNMENT-FURNISHED PROPERTY	22
1.27	RELOCATED EQUIPMENT ITEMS	23
1.29	CONSTRUCTION SIGN	24
1.30	SAFETY SIGN	24
1.31	PHOTOGRAPHIC DOCUMENTATION	25
1.32	FINAL ELEVATION Digital Images	
	01 00 00 GENERAL REQUIREMENTS	30 JANUARY 2015 CONSTRUCTION DOCUMENTS

1.33 HISTORIC PRESERVATION	1.33	HISTORIC	PRESERVATION	. 2	9
----------------------------	------	----------	--------------	-----	---

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Subject to the conditions imposed by the Contracting Officer, Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for RETROFIT INFASTRUCTURE ELECTRICAL SYSTEMS, INSTALL AUXILIARY CAMPUS POWER, AND RENEWABLE ENERGY AT VA SORCC - WHITE CITY, OR as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Southern Oregon Rehabilitation Center and Clinics (SORCC) Engineering Officer.
- C. Offices of Mandeville Berge Box, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- E. Prior to commencing work, general contractor shall provide proof that a OSHA designated "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.
- F. Training:
 - All employees of general contractor or subcontractors shall have the 10-hour or 30-hour OSHA Construction Safety course and other relevant competency training, as determined by RE/COR acting as the Construction Safety Officer with input from the facility Construction Safety Committee.

- 2. Submit training records of all such employees for approval before the start of work.
- G. VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section.

1.2 STATEMENT OF BID ITEM(S)

- A. ITEM I, RETROFIT INFASTRUCTURE ELECTRICAL SYSTEMS, INSTALL AUXILIARY CAMPUS POWER, AND RENEWABLE ENERGY AT VA SORCC - WHITE CITY, OR Work includes general construction, alterations, roads, walks, grading, drainage, mechanical and electrical work, utility systems, fencing and necessary removal of existing structures and construction and certain other items.
- B. DEDUCTIVE ALTERNATE NO.1: Transformer P AND ALL RELATED WORK
- C. DEDUCTIVE ALTERNATE NO.2: Transformer B AND ALL RELATED WORK
- D. DEDUCTIVE ALTERNATE NO.3: Reduced Capacity PV Array (650 VS 1,300 KwDC)
- E. DEDUCTIVE ALTERNATE NO.4: SEAMLESS EPOXY FLOORING IN BLDG 231
- F. DEDUCTIVE ALTERNATE NO.5: MANHOLE SUMP PUMPS
- G. DEDUCTIVE ALTERNATE NO.6: BUILDING 231 SECURITY SYSTEM
- H. DEDUCTIVE ALTERNATE NO.7: XFMR 'SG' 45KVA, 480:208Y/120V, 3P, 4W

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, 1 electronic set of specifications and drawings will be furnished.
- B. Printed hard copy sets of drawings may be made by the Contractor, at Contractor's expense, from the electronic copy furnished by Issuing Office.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.

- 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
 - 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
 - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- D. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the Resident Engineer for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.
- E. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".

- 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - 1. American Society for Testing and Materials (ASTM):

E84-2009.....Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

10-2010.....Standard for Portable Fire Extinguishers

30-2008.....Flammable and Combustible Liquids Code

51B-2009..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2011.....National Electrical Code

101-2012....Life Safety Code

241-2009......Standard for Safeguarding Construction, Alteration, and Demolition Operations

3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926.....Safety and Health Regulations for Construction

- 4. VHA Directive 2005-007
- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Resident Project Engineer and Facility Safety Manager for review for compliance with VHA Directive 2005-007, NFPA 101 and NFPA 241.Prior to beginning work, all employees of the contractor and/or any subcontractors shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc.

01 00 00 GENERAL REQUIREMENTS 30 JANUARY 2015 CONSTRUCTION DOCUMENTS

Provide documentation to the Resident Engineer that all construction workers have undergone contractor's safety briefing.

- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Resident Project Engineer and facility Safety Manager.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Resident Project Engineer and facility Safety Manager.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions shown to be removed and capped in building 231 as part of this project. Provide fire watch for impairments more than 4 hours in a 24-hour period if buildings other than 231 are impacted. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Resident Project Engineer and facility Safety Manager. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.

01 00 00 GENERAL REQUIREMENTS 30 JANUARY 2015 CONSTRUCTION DOCUMENTS

- K. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Resident Project Engineer and facility Safety Manager.
- L. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Resident Project Engineer. Obtain permits from facility Safety Manager at least 24 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- M. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Resident Project Engineer and facility Safety Manager.
- N. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- O. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- P. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.
- Q. If required, submit documentation to the Resident Engineer that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The

01 00 00 GENERAL REQUIREMENTS

7

temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.

C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as shown on the drawings or as approved by the Resident Engineer.
- E. Workmen are subject to rules of VA SORCC applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of VA SORCC as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Provide unobstructed access to VA SORCC areas required to remain in operation.
- G. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer. All such actions shall be coordinated with the Utility Company involved:

- 1. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, irrigation, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- H. Phasing: To insure such executions, Contractor shall furnish the Resident Engineer with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the Resident Engineer two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to Resident Engineer and Contractor.
- I. Building No. 231 will be vacated by Government beginning immediately after date of receipt of Notice to Proceed and turned over to Contractor.
- J. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height with vinyl slats, around the construction trailer and storage area indicated on the drawings. Provide gates as required for access with necessary hardware, including hasps and padlocks. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade. Remove the fence when directed by Resident Engineer.
- K. When a building is turned over to Contractor, Contractor shall accept entire responsibility therefore.
 - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.

01 00 00 GENERAL REQUIREMENTS VA SORCC, White City, OR

- L. Utilities Services: Maintain existing utility services for VA SORCC at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, irrigation, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer.
 - No utility service such as water, irrigation, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Resident Engineer. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for additional requirements.
 - 2. Contractor shall submit a request to interrupt any such services to Resident Engineer, in writing, 96 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of VA SORCC. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
 - 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Resident Engineer.
 - 5. In case of a contract construction emergency, service will be interrupted on approval of Resident Engineer. Such approval will be confirmed in writing as soon as practical.
 - 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction 01 00 00 30 JANUARY 2015 GENERAL REQUIREMENTS CONSTRUCTION DOCUMENTS

project, for such items as water, irrigation, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.

- M. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- N. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times.
 - Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the Resident Engineer.
- O. Coordinate the work for this contract with other construction operations as directed by Resident Engineer. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.
- P. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.

 Protection of any building or site elements identified by VA for special treatment per historic preservation standards or agreements (See 1.33).

1.9 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are identified by attached tags or noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by Resident Engineer.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from the VA SORCC.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.
 - 4. PCB Transformers and Capacitors : According to the Hazardous Material Survey dated performed by EHS International, the transformers to be removed under this project are labeled as not containing Polychlorinated Biphenyl (PCB) materials. If the contractor finds conditions contrary to the report, the contractor shall notify the Contracting Officer and await direction as a changed condition.

1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils, historic properties or features, archaeological sites, graves and human remains, and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. Refer to FAR clause 52.236-7, "Permits and Responsibilities," which is included in General Conditions. A National Pollutant Discharge Elimination System (NPDES) permit is required for this project. The Contractor is considered an "operator" under the permit and has

01 00 00 GENERAL REQUIREMENTS

extensive responsibility for compliance with permit requirements. VA will make the permit application available at the (appropriate medical center) office. The apparent low bidder, contractor and affected subcontractors shall furnish all information and certifications that are required to comply with the permit process and permit requirements. Many of the permit requirements will be satisfied by completing construction as shown and specified. Some requirements involve the Contractor's method of operations and operations planning and the Contractor is responsible for employing best management practices. The affected activities often include, but are not limited to the following:

- Designating areas for equipment maintenance and repair;
- Providing waste receptacles at convenient locations and provide regular collection of wastes;
- Locating equipment wash down areas on site, and provide appropriate control of wash-waters;
- Providing protected storage areas for chemicals, paints, solvents, fertilizers, and other potentially toxic materials; and
- Providing adequately maintained sanitary facilities.

1.12 PHYSICAL DATA

A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.

(FAR 52.236-4)

- B. Subsurface conditions have been developed by test pits. Logs of subsurface exploration are shown diagrammatically in the report.
- C. A copy of the soil report will be made available for inspection by bidders upon request to the Engineering Officer at the VA SORCC Facilities Department and shall be considered part of the contract documents.

D. Government does not guarantee that other materials will not be encountered nor that proportions, conditions or character of several materials will not vary from those indicated by explorations. Bidders are expected to examine site of work and logs of borings; and, after investigation, decide for themselves character of materials and make their bids accordingly. Upon proper application to Department of Veterans Affairs, bidders will be permitted to make subsurface explorations of their own at site.

1.13 PROFESSIONAL SURVEYING SERVICES

A registered professional land surveyor or registered civil engineer whose services are retained and paid for by the Contractor shall perform services specified herein and in other specification sections. The Contractor shall certify that the land surveyor or civil engineer is not one who is a regular employee of the Contractor, and that the land surveyor or civil engineer has no financial interest in this contract.

1.14 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

01 00 00 GENERAL REQUIREMENTS 30 JANUARY 2015 CONSTRUCTION DOCUMENTS 15

- B. Establish and plainly mark center lines for each fence or site element and such other lines and grades that are reasonably necessary to properly assure that location, orientation, and elevations established for each such structure roads, fence or other major element, are in accordance with lines and elevations shown on contract drawings.
- C. Following completion of general mass excavation and before any other permanent work is performed, establish and plainly mark (through use of appropriate batter boards or other means) sufficient additional survey control points or system of points as may be necessary to assure proper alignment, orientation, and grade of all major features of work. Survey shall include, but not be limited to, location of lines and grades of footings, exterior walls, center lines of columns in both directions, major utilities and elevations of slabs:
 - Such additional survey control points or system of points thus established shall be checked and certified by a registered land surveyor or registered civil engineer. Furnish such certification to the Resident Engineer before any work (such as footings, slabs, fences, walls, utilities and other major controlling features) is placed.
- F. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

1.15 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the Resident Engineer within 15 calendar days after each

completed phase and after the acceptance of the project by the Resident Engineer.

D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.16 USE OF ROADWAYS

- A. For hauling, use only established public roads and roads on VA SORCC property and, when authorized by the Resident Engineer, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
- C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - Permission to use each unit or system must be given by Resident Engineer. If the equipment is not installed and maintained in accordance with the following provisions, the Resident Engineer will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted.

01 00 00 GENERAL REQUIREMENTS Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.

- Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.

1.21 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample dry temporary sanitary toilet accommodations approved by Resident Engineer. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.22 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - Obtain electricity by connecting to the VA SORCC electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the VA SORCC water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes

will be cause for revocation (at Resident Engineer's discretion) of use of water from Medical Center's system.

H. Fuel: Diesel fuel required for generator testing and setup and adjusting, and for performing the specified tests will be furnished by the contractor.

1.23 NEW TELEPHONE EQUIPMENT

The contractor shall coordinate with the work of installation of telephone equipment by others. This work shall be completed before the building is turned over to VA.

1.24 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a generator installation. Efficient and acceptable generator operation depends upon the coordination and proper operation of fuel, combustion air, controls, and other related components.

- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.25 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals (four hard copies and one electronic copy each on one compact disc) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and

01 00 00 GENERAL REQUIREMENTS 30 JANUARY 2015

CONSTRUCTION DOCUMENTS

complete maintenance for each piece of equipment. All such training will be at the job site except special at the factory generator equipment training as specified elsewhere. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the Resident Engineer and shall be considered concluded only when the Resident Engineer is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Resident Engineer, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.26 GOVERNMENT-FURNISHED PROPERTY

- A. The Government shall deliver to the Contractor, the Government-furnished property shown on the drawings.
- B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the VA SORCC.
- C'. Storage space for equipment will be provided by the Government and the Contractor shall be prepared to unload and store such equipment therein upon its receipt at the VA SORCC.
 - D. Notify Contracting Officer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment.
 - 1. Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government

01 00 00 GENERAL REQUIREMENTS

representative with a written statement as to its condition or shortages.

- 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government.
- E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government.
- F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings.
- G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer.

1.27 RELOCATED EQUIPMENT ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the Resident Engineer.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, whenever such lines are disconnected from equipment to be relocated or removed. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and

installation of relocated equipment; and leave such equipment in proper operating condition.

F. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.

1.29 CONSTRUCTION SIGN

- A. Provide a Construction Sign where directed by the Resident Engineer. All wood members shall be of framing lumber. Cover sign frame with 0.7 mm (24 gage) galvanized sheet steel nailed securely around edges and on all bearings. Provide three 100 by 100 mm (4 inch by 4 inch) posts (or equivalent round posts) set 1200 mm (four feet) into ground. Set bottom of sign level at 900 mm (three feet) above ground and secure to posts with through bolts. Make posts full height of sign. Brace posts with 50 x 100 mm (two by four inch) material as directed.
- B. Paint all surfaces of sign and posts two coats of white gloss paint. Border and letters shall be of black gloss paint, except project title which shall be blue gloss paint.
- C. Maintain sign and remove it when directed by the Resident Engineer.
- D. Detail Drawing of construction sign showing required legend and other characteristics of sign is attached hereto and made a part of this specification (See Page 32).

1.30 SAFETY SIGN

- A. Provide a Safety Sign where directed by Resident Engineer. Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide two 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground.
- B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of white gloss paint. Letters and design shall be painted with gloss paint of colors noted.

- C. Maintain sign and remove it when directed by Resident Engineer.
- D. Standard Detail Drawing Number SD10000-02(See Page 33) of safety sign showing required legend and other characteristics of sign is attached hereto and is made a part of this specification.
- E. Post the number of accident free days on a daily basis.

1.31 PHOTOGRAPHIC DOCUMENTATION

- A. During the construction period through completion, provide photographic documentation of construction progress and at selected milestones including electronic indexing, navigation, storage and remote access to the documentation, as per these specifications.
- B. Photographic documentation elements:
 - Each digital image shall be taken with a camera with minimum size of 6 megapixels (MP) capable of producing 200x250mm (8 x 10 inch) prints with a minimum of 2272 x 1704 pixels and 400x500mm (16 x 20 inch) prints with a minimum 2592 x 1944 pixels.
 - Indexing and navigation system shall utilize actual AUTOCAD construction drawings, making such drawings interactive on an online interface. For all documentation referenced herein, indexing and navigation must be organized by both time (date-stamped) and location throughout the project.
 - 3. Documentation shall combine indexing and navigation system with inspection-grade digital photography designed to capture actual conditions throughout construction and at critical milestones. Documentation shall be accessible on-line through use of an internet connection. Documentation shall allow for secure multiple-user access, simultaneously, on-line.
 - 4. Before construction, the building pad, adjacent streets, roadways, parkways, driveways, curbs, sidewalks, landscaping, adjacent utilities and adjacent structures surrounding the building pad and site shall be documented. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings. If site

01 00 00 GENERAL REQUIREMENTS

work or pad preparation is extensive, this documentation may be required immediately before construction and at several predetermined intervals before building work commences.

- 5. Construction progress for all trades shall be tracked at predetermined intervals, but not less than once every thirty (30) calendar days ("Progressions"). Progression documentation shall track both the exterior and interior construction of the building. Exterior Progressions shall track 360 degrees around the site and each building. Interior Progressions shall track interior improvements beginning when stud work commences and continuing until Project completion.
- 6. As-built condition of pre-slab utilities and site utilities shall be documented prior to pouring slabs, placing concrete and/or backfilling. This process shall include all underground and in-slab utilities within the building(s) envelope(s) and utility runs in the immediate vicinity of the building(s) envelope(s). This may also include utilities enclosed in slab-on-deck in multi-story buildings. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive site utility plans.
- 7. As-built conditions of mechanical, electrical, plumbing and all other systems shall be documented post-inspection and preinsulation, sheet rock or dry wall installation. This process shall include all finished systems located in the walls and ceilings of all buildings at the Project. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- 8. As-built conditions of exterior skin and elevations shall be documented with an increased concentration of digital photographs as directed by the Resident Engineer in order to capture pre-determined focal points, such as waterproofing, window flashing, radiused steel work, architectural or Exterior Insulation and Finish Systems (EIFS) detailing. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive elevations or elevation details.

01 00 00 GENERAL REQUIREMENTS

- 9. As-built finished conditions of the interior of each building including floors, ceilings and walls shall be documented at certificate of occupancy or equivalent, or just prior to occupancy, or both, as directed by the Resident Engineer. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- 10. Miscellaneous events that occur during any Contractor site visit, or events captured by the Department of Veterans Affairs independently, shall be dated, labeled and inserted into a Section in the navigation structure entitled "Slideshows," allowing this information to be stored in the same "place" as the formal scope.
- 11. Customizable project-specific digital photographic documentation of other details or milestones. Indexing and navigation accomplished through interactive architectural plans.
- 12. Monthly (29 max) exterior progressions (360 degrees around the project) and slideshows (all elevations and building envelope). The slideshows allow for the inclusion of Department of Veterans Affairs pictures, aerial photographs, and timely images which do not fit into any regular monthly photopath.
- 13. Weekly (21 Max) Site Progressions Photographic documentation capturing the project at different stages of construction. These progressions shall capture underground utilities, excavation, grading, backfill, landscaping and road construction throughout the duration of the project.
- 14. Regular (8 max) interior progressions of all walls of the entire project to begin at time of substantial framed or as directed by the Resident Engineer through to completion.
- 15. Detailed Exact-Built of all Slabs for all project slab pours just prior to placing concrete or as directed by the Resident Engineer.
- 16. Detailed Interior exact built overlapping photos of the entire building to include documentation of all mechanical, electrical and plumbing systems in every wall and ceiling, to be conducted after

rough-ins are complete, just prior to insulation and or drywall, or as directed by Resident Engineer.

- 17. Finished detailed Interior exact built overlapping photos of all walls, ceilings, and floors to be scheduled by Resident Engineer prior to occupancy.
- 18. In event a greater or lesser number of images than specified above are required by the Resident Engineer, adjustment in contract price will be made in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Images shall be taken by a qualified photographer and must show distinctly, at as large a scale as possible, all parts of work embraced in the picture.
- D. Coordination of photo shoots is accomplished through Resident Engineer. Contractor shall also attend construction team meetings as necessary. Contractor's operations team shall provide regular updates regarding the status of the documentation, including photo shoots concluded, the availability of new Progressions or Exact-Builts viewable on-line and anticipated future shoot dates.
- E. Contractor shall provide all on-line domain/web hosting, security measures, and redundant server back-up of the documentation.
- F. Contractor shall provide technical support related to using the system or service.
- G. Upon completion of the project, final copies of the documentation (the "Permanent Record") with the indexing and navigation system embedded (and active) shall be provided in an electronic media format, typically a DVD or external hard-drive. Permanent Record shall have Building Information Modeling (BIM) interface capabilities. On-line access terminates upon delivery of the Permanent Record.

1.32 FINAL ELEVATION DIGITAL IMAGES

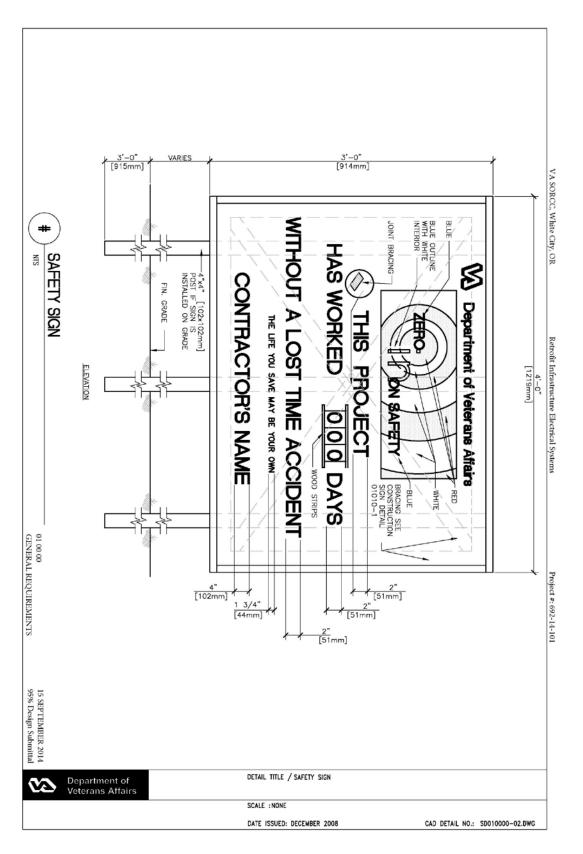
A. A minimum of four (4) images of each elevation shall be taken with a minimum 6 MP camera, by a qualified photographer with different settings to allow the Resident Engineer to select the image to be printed. All images are provided to the RE on a CD.

> 01 00 00 GENERAL REQUIREMENTS

30 JANUARY 2015 CONSTRUCTION DOCUMENTS 28

- B. Photographs shall be taken upon completion, including landscaping. They shall be taken on a clear sunny day to obtain sufficient detail to show depth and to provide clear, sharp pictures. Pictures shall be 400 mm x 500 mm (16 by 20 inches), printed on regular weight paper, matte finish archival grade photographic paper and produced by a RA4 process from the digital image with a minimum 300 PPI. Identifying data shall be carried on label affixed to back of photograph without damage to photograph and shall be similar to that provided for final construction photographs.
- C. Furnish six (6) 400 mm x 500 mm (16 by 20 inch) color prints of the following buildings constructed under this project (elevations as selected by the RE from the images taken above). Photographs shall be artistically composed showing full front elevations. All images shall become property of the Government. Each of the selected six prints shall be place in a frame with a minimum of 2 inches of appropriate matting as a border. Provide a selection of a minimum of 3 different frames from which the SRE will select one style to frame all six prints. Photographs with frames shall be delivered to the Resident Engineer in boxes suitable for shipping.
 - 1. Building No. 231_.
 - 2. Auxiliary Generators.
 - 3. Typical PV Array.
 - 4. PV Array Overall Site.


1.33 HISTORIC PRESERVATION


A. The Contractor will design, plan, schedule and execute work to accommodate the requirements of any stipulations imposed on the project under the National Historic Preservation Act (16 U.S.C. 470) or related historic preservation legal authorities, such as the stabilization, protection, rehabilitation, and/or documentation of historic buildings, structures, and landscape elements, the conduct of archaeological data recovery, the recovery and preservation of historic objects, documents, and architectural elements, and monitoring construction to identify, protect, and recover archaeological, paleontological, or other data and specimens or other significant resources.

B. Photographic documentation (See 1.31) should include documentation of significant historical and architectural features, as well as VA's and the Contractor's efforts to protect, preserve, maintain and restore

01 00 00 GENERAL REQUIREMENTS such features in accordance with any applicable standards or agreements.

C. Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible human grave sites or skeletal remains, or any archeological, historical and/or cultural resources, the Contractor shall immediately notify the Resident Engineer verbally, and then with a written follow up, and shall avoid disturbance of or damage to such resources except as directed by VA.

---END---

01 00 00 GENERAL REQUIREMENTS

SECTION 01 32 16.15 PROJECT SCHEDULES

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall

01 32 16.15 PROJECT SCHEDULE have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computerproduced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date 01 32 16 15 30 JANUARY 2015 CONSTRUCTION DOCUMENTS PROJECT SCHEDULE

2

constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- B. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- C. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

D. The Complete Project Schedule shall contain approximately <u>100</u> work activities/events.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.

01 32 16.15 PROJECT SCHEDULE

- c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
- e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
- 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
- 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work

> 01 32 16 15 PROJECT SCHEDULE

required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.

D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.

01 32 16.15 PROJECT SCHEDULE

- Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
- 5. Completion percentage for all completed and partially completed activities/events.
- Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work

01 32 16.15 PROJECT SCHEDULE

activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.

- 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
- 3. The schedule does not represent the actual prosecution and progress of the project.
- When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 - 4 (Changes) and VAAR 852.236 - 88 (Changes -Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computerproduced calendar-dated schedule, do not affect the extended and 01 32 16.15 30 JANUARY 2015 PROJECT SCHEDULE CONSTRUCTION DOCUMENTS

9

predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.

- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR

01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES 30 JANUARY 2015

CONSTRUCTION DOCUMENTS

52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples required by Section 09 06 00, SCHEDULE FOR FINISHES, in quadruplicate. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail (or equivalent private delivery service) and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
 - 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
 - C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory

01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.

- Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
- Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
- 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
- Contractor shall send a copy of transmittal letter to both Resident Engineer and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory.
- Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report.
- 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.
- D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- E. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy,

01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.

- 1. For each drawing required, submit one electronic .PDF or .DWG copy.
- Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
- A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
- 4. Submit hard copy drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
- 5. One electronic print of approved or disapproved shop drawings will be forwarded to Contractor.
- 6. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

MBB ARCHITECTS 500 UNION ST, SUITE 740 SEATTLE, WA 98101 - 2332

- 1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.
- 1-12. Samples for approval shall be sent to Architect-Engineer.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location: DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA	Aluminum Association Inc.
	http://www.aluminum.org
AABC	Associated Air Balance Council
	http://www.aabchq.com
AAMA	American Architectural Manufacturer's Association
	http://www.aamanet.org
AAN	American Nursery and Landscape Association
	http://www.anla.org
AASHTO	American Association of State Highway and Transportation Officials
	http://www.aashto.org
AATCC	American Association of Textile Chemists and Colorists
	http://www.aatcc.org
ACGIH	American Conference of Governmental Industrial Hygienists
	http://www.acgih.org
ACI	American Concrete Institute
	http://www.aci-int.net
ACPA	American Concrete Pipe Association
	http://www.concrete-pipe.org
ACPPA	American Concrete Pressure Pipe Association
	http://www.acppa.org
ADC	Air Diffusion Council
	http://flexibleduct.org
AGA	American Gas Association
	http://www.aga.org
AGC	Associated General Contractors of America
	http://www.agc.org
AGMA	American Gear Manufacturers Association, Inc.
	http://www.agma.org
AHAM	Association of Home Appliance Manufacturers
	http://www.aham.org
AISC	American Institute of Steel Construction
	http://www.aisc.org
AISI	American Iron and Steel Institute
	http://www.steel.org
AITC	American Institute of Timber Construction
	http://www.aitc-glulam.org
AMCA	Air Movement and Control Association, Inc.
	http://www.amca.org
ANLA	American Nursery & Landscape Association
	http://www.anla.org

ANSI	American National Standards Institute, Inc.
	http://www.ansi.org
APA	The Engineered Wood Association
	http://www.apawood.org
ARI	Air-Conditioning and Refrigeration Institute
	http://www.ari.org
ASAE	American Society of Agricultural Engineers
	http://www.asae.org
ASCE	American Society of Civil Engineers
	http://www.asce.org
ASHRAE	American Society of Heating, Refrigerating, and
	Air-Conditioning Engineers
	http://www.ashrae.org
ASME	American Society of Mechanical Engineers
	http://www.asme.org
ASSE	American Society of Sanitary Engineering
	http://www.asse-plumbing.org
ASTM	American Society for Testing and Materials
	http://www.astm.org
AWI	Architectural Woodwork Institute
	http://www.awinet.org
AWS	American Welding Society
	http://www.aws.org
AWWA	American Water Works Association
	http://www.awwa.org
BHMA	Builders Hardware Manufacturers Association
	http://www.buildershardware.com
BIA	Brick Institute of America
	http://www.bia.org
CAGI	Compressed Air and Gas Institute
	http://www.cagi.org
CGA	Compressed Gas Association, Inc.
	http://www.cganet.com
CI	The Chlorine Institute, Inc.
	http://www.chlorineinstitute.org
CISCA	Ceilings and Interior Systems Construction Association
	http://www.cisca.org
CISPI	Cast Iron Soil Pipe Institute
	http://www.cispi.org

CLFMI	Chain Link Fence Manufacturers Institute
	http://www.chainlinkinfo.org
CPMB	Concrete Plant Manufacturers Bureau
	http://www.cpmb.org
CRA	California Redwood Association
	http://www.calredwood.org
CRSI	Concrete Reinforcing Steel Institute
	http://www.crsi.org
CTI	Cooling Technology Institute
	http://www.cti.org
DHI	Door and Hardware Institute
	http://www.dhi.org
EGSA	Electrical Generating Systems Association
	http://www.egsa.org
EEI	Edison Electric Institute
	http://www.eei.org
EPA	Environmental Protection Agency
	http://www.epa.gov
ETL	ETL Testing Laboratories, Inc.
	http://www.etl.com
FAA	Federal Aviation Administration
	http://www.faa.gov
FCC	Federal Communications Commission
	http://www.fcc.gov
FPS	The Forest Products Society
	http://www.forestprod.org
GANA	Glass Association of North America
	http://www.cssinfo.com/info/gana.html/
FM	Factory Mutual Insurance
	http://www.fmglobal.com
GA	Gypsum Association
	http://www.gypsum.org
GSA	General Services Administration
	http://www.gsa.gov
HI	Hydraulic Institute
	http://www.pumps.org
HPVA	Hardwood Plywood & Veneer Association
	http://www.hpva.org
ICBO	International Conference of Building Officials
	http://www.icbo.org

ICEA	Insulated Cable Engineers Association Inc.
	http://www.icea.net
\ICAC	Institute of Clean Air Companies
	http://www.icac.com
IEEE	Institute of Electrical and Electronics Engineers
	http://www.ieee.org\
IMSA	International Municipal Signal Association
	http://www.imsasafety.org
IPCEA	Insulated Power Cable Engineers Association
NBMA	Metal Buildings Manufacturers Association
	http://www.mbma.com
MSS	Manufacturers Standardization Society of the Valve and Fittings
	Industry Inc.
	http://www.mss-hq.com
NAAMM	National Association of Architectural Metal Manufacturers
	http://www.naamm.org
NAPHCC	Plumbing-Heating-Cooling Contractors Association
	http://www.phccweb.org.org
NBS	National Bureau of Standards
	See - NIST
NBBPVI	National Board of Boiler and Pressure Vessel Inspectors
	http://www.nationboard.org
NEC	National Electric Code
	See - NFPA National Fire Protection Association
NEMA	National Electrical Manufacturers Association
	http://www.nema.org
NFPA	National Fire Protection Association
	http://www.nfpa.org
NHLA	National Hardwood Lumber Association
	http://www.natlhardwood.org
NIH	National Institute of Health
	http://www.nih.gov
NIST	National Institute of Standards and Technology
	http://www.nist.gov
NLMA	Northeastern Lumber Manufacturers Association, Inc.
	http://www.nelma.org
NPA	National Particleboard Association
	18928 Premiere Court
	Gaithersburg, MD 20879
	(301) 670-0604

NSF	National Sanitation Foundation
	http://www.nsf.org
NWWDA	Window and Door Manufacturers Association
	http://www.nwwda.org
OSHA	Occupational Safety and Health Administration
	Department of Labor
	http://www.osha.gov
PCA	Portland Cement Association
	http://www.portcement.org
PCI	Precast Prestressed Concrete Institute
	http://www.pci.org
PPI	The Plastic Pipe Institute
	http://www.plasticpipe.org
PEI	Porcelain Enamel Institute, Inc.
	http://www.porcelainenamel.com
PTI	Post-Tensioning Institute
	http://www.post-tensioning.org
RFCI	The Resilient Floor Covering Institute
	http://www.rfci.com
RIS	Redwood Inspection Service
	See - CRA
RMA	Rubber Manufacturers Association, Inc.
	http://www.rma.org
SCMA	Southern Cypress Manufacturers Association
	http://www.cypressinfo.org
SDI	Steel Door Institute
	http://www.steeldoor.org
IGMA	Insulating Glass Manufacturers Alliance
	http://www.igmaonline.org
SJI	Steel Joist Institute
	http://www.steeljoist.org
SMACNA	Sheet Metal and Air-Conditioning Contractors
	National Association, Inc.
	http://www.smacna.org
SSPC	The Society for Protective Coatings
	http://www.sspc.org
STI	Steel Tank Institute
	http://www.steeltank.com
SWI	Steel Window Institute
	http://www.steelwindows.com

TCA	Tile Council of America, Inc.
	http://www.tileusa.com
TEMA	Tubular Exchange Manufacturers Association
	http://www.tema.org
TPI	Truss Plate Institute, Inc.
	583 D'Onofrio Drive; Suite 200
	Madison, WI 53719
	(608) 833-5900
UBC	The Uniform Building Code
	See ICBO
UL	Underwriters' Laboratories Incorporated
	http://www.ul.com
ULC	Underwriters' Laboratories of Canada
	http://www.ulc.ca
WCLIB	West Coast Lumber Inspection Bureau
	6980 SW Varns Road, P.O. Box 23145
	Portland, OR 97223
	(503) 639-0651
WRCLA	Western Red Cedar Lumber Association
	P.O. Box 120786
	New Brighton, MN 55112
	(612) 633-4334
WWPA	Western Wood Products Association
	http://www.wwpa.org
	E N D

SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by Department of Veterans.

1.2 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): T27-11.....Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates T96-02 (R2006).....Standard Method of Test for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine T99-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 Kg (5.5 lb.) Rammer and a 305 mm (12 in.) Drop T104-99 (R2007).....Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate T180-10.....Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb.) Rammer and a 457 mm (18 in.) Drop T191-02(R2006).....Standard Method of Test for Density of Soil In-Place by the Sand-Cone Method C. American Concrete Institute (ACI): 506.4R-94 (R2004).....Guide for the Evaluation of Shotcrete D. American Society for Testing and Materials (ASTM): A325-10.....for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength A370-12.....Standard Test Methods and Definitions for Mechanical Testing of Steel Products A416/A416M-10.....Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete

A490-12	Standard Specification for Heat Treated Steel
	Structural Bolts, 150 ksi Minimum Tensile
	Strength
C31/C31M-10	Standard Practice for Making and Curing Concrete
	Test Specimens in the Field
C33/C33M-11a	Standard Specification for Concrete Aggregates
C39/C39M-12	Standard Test Method for Compressive Strength of
	Cylindrical Concrete Specimens
C109/C109M-11b	Standard Test Method for Compressive Strength of
	Hydraulic Cement Mortars
C136-06	Standard Test Method for Sieve Analysis of Fine
	and Coarse Aggregates
C138/C138M-10b	Standard Test Method for Density (Unit Weight),
	Yield, and Air Content (Gravimetric) of Concrete
C140-12	Standard Test Methods for Sampling and Testing
	Concrete Masonry Units and Related Units
C143/C143M-10a	Standard Test Method for Slump of Hydraulic
	Cement Concrete
C172/C172M-10	Standard Practice for Sampling Freshly Mixed
	Concrete
C173/C173M-10b	Standard Test Method for Air Content of freshly
	Mixed Concrete by the Volumetric Method
C330/C330M-09	Standard Specification for Lightweight
	Aggregates for Structural Concrete
C567/C567M-11	Standard Test Method for Density Structural
	Lightweight Concrete
C780-11	Standard Test Method for Pre-construction and
	Construction Evaluation of Mortars for Plain and
	Reinforced Unit Masonry
C1019-11	Standard Test Method for Sampling and Testing
	Grout
	Standard Test Method for Temperature of Freshly
	Mixed Portland Cement Concrete
	Standard Practice for Agencies Testing Concrete
	and Concrete Aggregates for Use in Construction
01014 11	and Criteria for Testing Agency Evaluation
	Standard Test Method for Compressive Strength of
	Masonry Prisms
D422-63(2007)	Standard Test Method for Particle-Size Analysis
	of Soils

D698-07e1Standard Test Methods for Laboratory Co	mpaction
Characteristics of Soil Using Standard	Effort
D1140-00(2006)Standard Test Methods for Amount of Mat	erial in
Soils Finer than No. 200 Sieve	
D1143/D1143M-07e1Standard Test Methods for Deep Foundati	ons Under
Static Axial Compressive Load	
D1188-07e1Standard Test Method for Bulk Specific	Gravity
and Density of Compacted Bituminous Mix	tures
Using Coated Samples	
D1556-07Standard Test Method for Density and Un	it Weight
of Soil in Place by the Sand-Cone Metho	d
D1557-09Standard Test Methods for Laboratory Com	mpaction
Characteristics of Soil Using Modified	Effort
(56,000ft lbf/ft3 (2,700 KNm/m3))	
D2166-06Standard Test Method for Unconfined Com	pressive
Strength of Cohesive Soil	
D2167-08)Standard Test Method for Density and Un	it Weight
of Soil in Place by the Rubber Balloon	Method
D2216-10Standard Test Methods for Laboratory	
Determination of Water (Moisture) Conte	nt of
Soil and Rock by Mass	
D2974-07aStandard Test Methods for Moisture, Ash	, and
Organic Matter of Peat and Other Organi	c Soils
D3666-11for Minimum Requ	irements
for Agencies Testing and Inspecting Roa	d and
Paving Materials	
D3740-11 Standard Practice for Minimum Requirement	nts for
Agencies Engaged in Testing and/or Insp	ection
of Soil and Rock as used in Engineering	Design
and Construction	
D6938-10Standard Test Method for In-Place Densi	ty and
Water Content of Soil and Soil-Aggregat	e by
Nuclear Methods (Shallow Depth)	
E94-04(2010)Standard Guide for Radiographic Examina	tion
E164-08 Standard Practice for Contact Ultrasoni	c Testing
of Weldments	
E329-11cfor Agencies Eng	aged in
Construction Inspection, Testing, or Sp	ecial
Inspection	

E543-09	Standard Specification for Agencies Performing
	Non-Destructive Testing
E605-93(R2011)	Standard Test Methods for Thickness and Density
	of Sprayed Fire Resistive Material (SFRM)
	Applied to Structural Members
E709-08	Standard Guide for Magnetic Particle Examination
E1155-96(R2008)	Determining FF Floor Flatness and FL Floor
	Levelness Numbers

E. American Welding Society (AWS): D1.D1.1M-10.....Structural Welding Code-Steel

1.3 REQUIREMENTS:

- A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office."
- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by Resident Engineer. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of Resident Engineer to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to Resident Engineer, Contractor, unless other arrangements are agreed to in writing by the Resident Engineer. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- D. Verbal Reports: Give verbal notification to Resident Engineer immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EARTHWORK:

A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following:

- 1. Observe subgrades during proof-rolling to evaluate suitability of material to receive fill or base course. Provide recommendations to the Resident Engineer regarding suitability or unsuitability of areas where proof-rolling was observed. Where unsuitable results are observed, witness excavation of unsuitable material and recommend to Resident Engineer extent of removal and replacement of unsuitable materials and observe proof-rolling of replaced areas until satisfactory results are obtained.
- B. Testing Compaction:
 - Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used, in compliance with ASTM D698.
 - 2. Make field density tests in accordance with the primary testing method following ASTM D6938 wherever possible. Field density tests utilizing ASTM D1556 shall be utilized on a case by case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative methods, they should provide satisfactory explanation to the Resident Engineer before the tests are conducted.
 - a. Structure Aggregate Base: At least one test of aggregate base for every 185 m² (2000 square feet) of structure, but in no case fewer than two tests. In each compacted fill layer, perform one test for every 185 m² (2000 square feet) of overlaying building slab, but in no case fewer than two tests.
 - b. Precast PV Array Foundation Base: Test one of every 10 footings, not less than one test for every 92.5 m^2 (1000 square feet).
 - d. Trenches: One test at maximum 30 m (100 foot) intervals per 1200
 mm (4 foot) of vertical lift and at changes in required density,
 but in no case fewer than two tests.
- C. Fill and Backfill Material Gradation: One test per 1000 yards stockpiled or in-place source material (two minimum). Gradation of fill and backfill material shall be determined in accordance with ASTM C136.
- D. Testing Materials: Test suitability of on-site and off-site borrow as directed by Resident Engineer.

3.2 ASPHALT CONCRETE PAVING:

- A. Aggregate Base Course:
 - 1. Determine maximum density and optimum moisture content for aggregate base material in accordance with ASTM D698
 - 2. Make field density tests in accordance with ASTM D6938. Make one test per 400 square yards of base course (2 minimum).
- B. Asphalt Concrete:
 - Aggregate: Sample and test aggregates in stock pile and hot-bins as necessary to insure compliance with specification requirements for gradation (AASHTO T27), wear (AASHTO T96), and soundness (AASHTO T104).
 - 2. Temperature: Check temperature of each load of asphalt concrete at mixing plant and at site of paving operation.
 - Density: Make a minimum of two field density tests in accordance with ASTM D1188 of asphalt base and surface course for each day's paving operation.

3.3 SITE WORK CONCRETE:

Test site work concrete including materials for concrete as required in Article CONCRETE of this section.

3.4 CONCRETE:

- A. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.
 - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
 - 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least five cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least five cylinders for any one day's pour for each concrete type. Label each cylinder with an identification number. Resident Engineer may require additional cylinders to be molded and cured under job conditions.

- 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the beginning of each day's pumping operations to determine change in slump.
- 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
- 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 9. Verify that specified mixing has been accomplished.
- 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:
 - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
 - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.
- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.

- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for levelness and flatness as follows:
 - a. Perform Floor Tolerance Measurements F_F and F_L in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.
 - b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.
 - c. Provide the Contractor and the Resident Engineer with the results of all profile tests, including a running tabulation of the overall F_F and F_L values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Other inspections:
 - a. Grouting under base plates.
 - b. Grouting anchor bolts and reinforcing steel in hardened concrete.
- B. Laboratory Tests of Field Samples:
 - Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and three cylinders at 28 days. Use remaining cylinder as a spare tested as directed by Resident Engineer. Compile laboratory test reports as follows: Compressive strength test shall be the average result of three cylinders, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.
 - 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
 - Furnish certified compression test reports (duplicate) to Resident Engineer. In test report, indicate the following information:
 a. Cylinder identification number and date cast.

- b. Specific location at which test samples were taken.
- c. Type of concrete, slump, and percent air.
- d. Compressive strength of concrete in MPa (psi).
- e. Weight of lightweight structural concrete in kg/m³ (pounds per cubic feet).
- f. Weather conditions during placing.
- g. Temperature of concrete in each test cylinder when test cylinder was molded.
- h. Maximum and minimum ambient temperature during placing.
- i. Ambient temperature when concrete sample in test cylinder was taken.
- j. Date delivered to laboratory and date tested.

3.5 REINFORCEMENT:

A. Review mill test reports furnished by Contractor.

3.14 STRUCTURAL STEEL:

- A. General: Provide shop and field inspection and testing services to certify structural steel work is done in accordance with contract documents, excluding fillet welds less than 5/16". Welding shall conform to AWS D1.1 Structural Welding Code.
- B. Prefabrication Inspection:
 - 1. Review design and shop detail drawings for size, length, type and location of all welds to be made.
 - 2. Approve welding procedure qualifications either by pre-qualification or by witnessing qualifications tests.
 - 3. Approve welder qualifications by certification or retesting.
 - 4. Approve procedure for control of distortion and shrinkage stresses.
 - 5. Approve procedures for welding in accordance with applicable sections of AWS D1.1.
- C. Fabrication and Erection:
 - 1. Weld Inspection:
 - a. Inspect welding equipment for capacity, maintenance and working condition.
 - b. Verify specified electrodes and handling and storage of electrodes in accordance with AWS D1.1.
 - c. Inspect preparation and assembly of materials to be welded for conformance with AWS D1.1.
 - d. Inspect preheating and interpass temperatures for conformance with AWS D1.1.
 - e. Measure 25 percent of fillet welds.

- f. Welding Magnetic Particle Testing: Test in accordance with ASTM E709 for a minimum of:
 - 20 percent of all shear plate fillet welds at random, final pass only.
 - 20 percent of all continuity plate and bracing gusset plate fillet welds, at random, final pass only.
 - 3) 100 percent of tension member fillet welds (i.e., hanger connection plates and other similar connections) for root and final passes.
 - 20 percent of length of built-up column member partial penetration and fillet welds at random for root and final passes.
 - 5) 100 percent of length of built-up girder member partial penetration and fillet welds for root and final passes.
- g. Welding Ultrasonic Testing: Test in accordance with ASTM E164 and AWS D1.1 for 100 percent of all full penetration welds, braced and moment frame column splices, and a minimum of 20 percent of all other partial penetration column splices, at random.
- h. Welding Radiographic Testing: Test in accordance with ASTM E94, and AWS D1.1 for 5 percent of all full penetration welds at random.
- i. Verify that correction of rejected welds are made in accordance with AWS D1.1.
- j. Testing and inspection do not relieve the Contractor of the responsibility for providing materials and fabrication procedures in compliance with the specified requirements.
- 2. Bolt Inspection:
 - a. Inspect high-strength bolted connections in accordance AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts.
 - b. Slip-Critical Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in each connection in accordance with AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.
 - c. Fully Pre-tensioned Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in 25 percent of connections in accordance with AISC Specification for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.

- d. Bolts installed by turn-of-nut tightening may be inspected with calibrated wrench when visual inspection was not performed during tightening.
- e. Snug Tight Connections: Inspect 10 percent of connections verifying that plies of connected elements have been brought into snug contact.
- f. Inspect field erected assemblies; verify locations of structural steel for plumbness, level, and alignment.
- D. Submit inspection reports, record of welders and their certification, and identification, and instances of noncompliance to Resident Engineer.

3.18 TYPE OF TEST:

Approximate Number of Tests Required

A. Earthwork:

Laboratory Compaction Test,	Aggregate:(ASTM D698)	2
Field Density, Aggregate (A	STM D1556)	85

- B. Aggregate Base:
 Laboratory Compaction, (ASTM D698)
 Field Density, (ASTM D6938)
 Aggregate, Base Course Gradation (AASHTO T27)
- C. Asphalt Concrete: Field Density, (AASHTO T230)
- D. Concrete: Making and Curing Concrete Test Cylinders (ASTM C31) 15 Compressive Strength, Test Cylinders (ASTM C39) 12 Concrete Slump Test (ASTM C143) 5 Concrete Air Content Test (ASTM C173) 6

- - - E N D - - -

2

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
 - Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
 - 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 PERMIT

- A. Contractor is responsible for obtaining a Construction Permit (1200-CN) from Rogue Valley Sewer Services (138 W. Vilas Road, Central Point, OR).
 - An Owner-developed Erosion and Sediment Control Plan (ESCP) has been provided as part of a conventional contract plan set. This initial ESCP may be used as the basis of the construction ESCP. Additional or revised erosion and sediment control features, not shown on the initial ESCP, may be required depending on the Contractor's methods of operation and schedule.

1.5 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan and Erosion and Sediment Control Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Resident Engineer to discuss the proposed Environmental Protection Plan, Erosion and Sediment Control Plan, and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Resident Engineer for approval, a written and/or graphic EPP and ESCP including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan. Responsible Person shall be designated as the Erosion and Sediment Control Inspector and shall be qualified for

such work through certification, training, and/or experience in accordance with Oregon Department of Environmental Quality standards.

- b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
- c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
- d. Description of the Contractor's environmental protection personnel training program.
- e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, stream crossings, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.

- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.
- C. RVSS Construction Permit (1200-CN)

1.6 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the Resident Engineer. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted.
 - Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
 - Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
 - 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
 - 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction

site to protected drainage areas approved under paragraph 208 of the Clean Water Act.

- a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local 1-year (design year) storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.
- B. Reuse or conserve the collected topsoil sediment as directed by the Resident Engineer. Topsoil use and requirements are specified in Section 31 20 00, EARTHWORK.
- c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown on the Environmental Protection Plan. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- Manage borrow areas on and off Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- Manage and control spoil areas on Government property to limit spoil to areas shown on the Environmental Protection Plan and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.

5

- 11. Handle discarded materials other than those included in the solid waste category as directed by the Resident Engineer.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Oregon ORS 468, ORS 468A, OAR 340-014, and OAR 340-200 through OAR 340-268 and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic

6

precipitators, or other methods are permitted to control particulates in the work area.

- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Resident Engineer. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00p.m unless otherwise permitted by local ordinance or the Resident Engineer. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA):

EARTHMOVING		MATERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	N/A
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the Resident Engineer noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Resident Engineer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.

01 74 19 CONSTRUCTION WASTE MANAGEMENT 30 JANUARY 2015 CONSTRUCTION DOCUMENTS 1 B. Lead Paint: Section 02 83 33, LEAD BASED PAINT REMOVAL AND DISPOSAL.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction/ Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

01 74 19 CONSTRUCTION WASTE MANAGEMENT CONSTRUCTION DOCUMENTS

30 JANUARY 2015 2

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.

- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:

- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.

> 01 74 19 CONSTRUCTION WASTE MANAGEMENT

30 JANUARY 2015 CONSTRUCTION DOCUMENTS 5 B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 01 81 11

SUSTAINABLE DESIGN REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

This Section describes general requirements and procedures to comply with the Guiding Principles for Leadership in High Performance and Sustainable Buildings Memorandum of Understanding incorporated in the Executive Orders 13423 and 13514; Energy Policy Act of 2005 (EPA 2005) and the Energy Independence and Security Act of 2007 (EISA 2007).

1.2 OBJECTIVES

- A. To maximize resource efficiency and reduce the environmental impacts of construction and operation, the Contractor during the construction phase of this project shall implement the following procedures:
 - Select products that minimize consumption of energy, water and nonrenewable resources, while minimizing the amounts of pollution resulting from the production and employment of building technologies. It is the intent of this project to conform with EPA's Five Guiding Principles on environmentally preferable purchasing. The five principles are:
 - a. Include environmental considerations as part of the normal purchasing process.
 - b. Emphasize pollution prevention early in the purchasing process.
 - c. Examine multiple environmental attributes throughout a product's or service's life cycle.
 - d. Compare relevant environmental impacts when selecting products and services.
 - e. Collect and base purchasing decisions on accurate and meaningful information about environmental performance.
 - Control sources for potential Indoor Air Quality (IAQ) pollutants by controlled selection of materials and processes used in project construction in order to attain superior IAQ.
 - 3. Products and processes that achieve the above objectives to the extent currently possible and practical have been selected and included in these Construction Documents. The Contractor is responsible to maintain and support these objectives in developing means and methods for performing the work of this Contract and in

proposing product substitutions and/or changes to specified processes.

 Use building practices that insure construction debris and particulates do not contaminate or enter duct work prior to system startup and turn over.

1.3 RELATED DOCUMENTS

- A. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT
- B. Section 01 91 00 GENERAL COMMISSIONG REQUIREMENTS

1.4 DEFINITIONS

- A. Agrifiber Products: Composite panel products derived from agricultural fiber
- B. Biobased Product: As defined in the 2002 Farm Bill, a product determined by the Secretary to be a commercial or industrial product (other than food or feed) that is composed, in whole or in significant part, of biological products or renewable domestic agricultural materials (including plant, animal, and marine materials) or forestry materials
- C. Biobased Content: The weight of the biobased material divided by the total weight of the product and expressed as a percentage by weight
- D. Certificates of Chain-of-Custody: Certificates signed by manufacturers certifying that wood used to make products has been tracked through its extraction and fabrication to ensure that is was obtained from forests certified by a specified certification program
- E. Composite Wood: A product consisting of wood fiber or other plant particles bonded together by a resin or binder
- F. Construction and Demolition Wast.e: Includes solid wastes, such as building materials, packaging, rubbish, debris, and rubble resulting from construction, remodeling, repair and demolition operations. A construction waste management plan is to be provided by the Contractor as defined in Section 01 74 19.
- G. Third Party Certification: Certification of levels of environmental achievement by nationally recognized sustainability rating system.
- H. Light Pollution: Light that extends beyond its source such that the additional light is wasted in an unwanted area or in an area where it inhibits view of the night sky
- I. Recycled Content Materials: Products that contain pre-consumer or postconsumer materials as all or part of their feedstock

- J. Post-Consumer Recycled Content: The percentage by weight of constituent materials that have been recovered or otherwise diverted from the solid-waste stream after consumer use
- K. Pre-Consumer Recycled Content: Materials that have been recovered or otherwise diverted from the solid-waste stream during the manufacturing process. Pre-consumer content must be material that would not have otherwise entered the waste stream as per Section 5 of the FTC Act, Part 260 "Guidelines for the Use of Environmental Marketing Claims": www.ftc.gov/bcp/grnrule/guides980427
- L. Regional Materials: Materials that are extracted, harvested, recovered, and manufactured within a radius of 250 miles (400 km) from the Project site
- M. Salvaged or Reused Materials: Materials extracted from existing buildings in order to be reused in other buildings without being manufactured
- N. Sealant: Any material that fills and seals gaps between other materials
- O. Type 1 Finishes: Materials and finishes which have a potential for short-term levels of off gassing from chemicals inherent in their manufacturing process, or which are applied in a form requiring vehicles or carriers for spreading which release a high level of particulate matter in the process of installation and/or curing.
- P. Type 2 Finishes: "Fuzzy" materials and finishes which are woven, fibrous, or porous in nature and tend to adsorb chemicals offgas
- Q. Volatile Organic Compounds (VOCs): Any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions. Compounds that have negligible photochemical reactivity, listed in EPA 40 CFR 51.100(s), are also excluded from this regulatory definition.

1.5 SUBMITTALS

- A. Sustainable Design Submittals:
 - 1. Heat Island Effect:
 - a. Site Paving: Provide manufacturer's cut sheets for all impervious paving materials, highlighting the Solar Reflectance Index (SRI) of the material. Also, provide cut sheets for all pervious paving materials.

- b. Roofing Materials: Submittals for roofing materials must include manufacturer's cut sheets or product data highlighting the Solar Reflectance Index (SRI) of the material.
- 2. Exterior Lighting Fixtures: Submittals must include cut sheets with manufacturer's data on initial fixture lumens above 90° from nadir for all exterior lighting fixtures, and, for parking lot lighting, verification that the fixtures are classified by the IESNA as "full cutoff" (FCO); OR provide documentation that exterior luminaires are IDA-Approved as Dark-Sky Friendly by the International Dark Sky Association (IDA) Fixture Seal of Approval Program.
- 3. Elimination of CFCs AND HCFCs: Provide manufacturer's cut sheets for all cooling equipment with manufacturer's product data, highlighting refrigerants; provide manufacturer's cut sheets for all firesuppression equipment, highlighting fire-suppression agents; provide manufacturer's cut-sheets for all polystyrene insulation (XPS) and closed-cell spray foam polyurethane insulation, highlighting the blowing agent(s).
- 4. On-Site Renewable Energy Systems: Provide cut sheets and manufacturer's product data for all on-site renewable energy generating components and equipment, including documentation of output capacity.
- 5. Measurement and Verification Systems: Provide cut sheets and manufacturer's product data for all controls systems, highlighting electrical metering and trending capability components.
- 6. Salvaged or Reused Materials: Provide documentation that lists each salvaged or reused material, the source or vendor of the material, the purchase price, and the replacement cost if greater than the purchase price.
- 7. Recycled Content: Submittals for all materials with recycled content (excluding MEP systems equipment and components) must include the following documentation: Manufacturer's product data, product literature, or a letter from the manufacturer verifying the percentage of post-consumer and pre-consumer recycled content (by weight) of each material or product
 - a. An electronic spreadsheet that tabulates the Project's total materials cost and combined recycled content value (defined as the sum of the post-consumer recycled content value plus one-half of the pre-consumer recycled content value) expressed as a

01 81 11 SUSTAINABLE DESIGN REQUIREMENTS 30 JANUARY 2015 CONSTRUCTION DOCUMENTS

percentage of total materials cost. This spreadsheet shall be submitted every third month with the Contractor's Certificate and Application for Payment. It should indicate, on an ongoing basis, line items for each material, including cost, pre-consumer recycled content, post-consumer recycled content, and combined recycled content value.

- 8. Regional Materials: Submittals for all products or materials expected to contribute to the regional calculation (excluding MEP systems equipment and components) must include the following documentation:
 - a. Cost of each material or product, excluding cost of labor and equipment for installation
 - b. Location of product manufacture and distance from point of manufacture to the Project Site
 - c. Location of point of extraction, harvest, or recovery for each raw material in each product and distance from the point of extraction, harvest, or recovery to the Project Site
 - d. Manufacturer's product data, product literature, or a letter from the manufacturer verifying the location and distance from the Project Site to the point of manufacture for each regional material
 - e. Manufacturer's product data, product literature, or a letter from the manufacturer verifying the location and distance from the Project Site to the point of extraction, harvest, or recovery for each regional material or product, including, at a minimum, gravel and fill, planting materials, concrete, masonry, and GWB
 - f. An electronic spreadsheet that tabulates the Project's total materials cost and regional materials value, expressed as a percentage of total materials cost. This spreadsheet shall be submitted every third month with the Contractor's Certificate and Application for Payment. It should indicate on an ongoing basis, line items for each material, including cost, location of manufacture, distance from manufacturing plant to the Project Site, location of raw material extraction, and distance from extraction point to the Project Site.
- 9. Outdoor Air Delivery Monitoring: Provide manufacturer's cut sheets highlighting the installed carbon dioxide monitoring system 01 81 11 30 JANUARY 2015 SUSTAINABLE DESIGN REQUIREMENTS CONSTRUCTION DOCUMENTS

components and sequence of controls shop drawing documentation, including CO2 differential set-points and alarm capabilities.

- 10. Interior Adhesives and Sealants: Submittals for all field-applied adhesives and sealants, which have a potential impact on indoor air, must include manufacturer's MSDSs or other Product Data highlighting VOC content.
 - a. Provide manufacturers' documentation verifying all adhesives used to apply laminates, whether shop-applied or field-applied, contain no urea-formaldehyde.
- 11. Interior Paints and Coatings: Submittals for all field-applied paints and coatings, which have a potential impact on indoor air, must include manufacturer's MSDSs or other Product Data highlighting VOC content
- 12. Exterior Paints and Coatings: Submittals for all field-applied paints and coatings, which have a potential impact on ambient air quality, must include manufacturer's MSDSs or other manufacturer's Product Data highlighting VOC content.
- 13. Composite Wood and Agrifiber Binders: Submittals for all composite wood and agrifiber products (including but not limited to particleboard, wheatboard, strawboard, agriboard products, engineered wood components, solid-core wood doors, OSB, MDF, and plywood products) must include manufacturer's product data verifying that these products contain no urea-formaldehyde resins.
- 14. Air Filtration: Provide manufacturer's cut sheets and product data highlighting the following:
 - a. Minimum Efficiency Reporting Value (MERV) for filtration media in all air handling units (AHUS) per ASHRAE HVAC Design Manual for Hospitals and Clinics.
 - b. Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed AHUs are used during construction. See above for requirements
- 15. Mercury in Lighting: Provide manufacturer's cut sheets or product data for all fluorescent or HID lamps highlighting mercury content.
- 16. Lighting Controls: Provide manufacturer's cut sheets and shop drawing documentation highlighting all lighting controls systems components.

- 17. Thermal Comfort Controls: Provide manufacturer's cut sheets and shop drawing documentation highlighting all thermal comfort-control systems components.
- 18. Blended Cement: It is the intent of this specification to reduce CO2 emissions and other environmentally detrimental effects resulting from the production of portland cement by requiring that all concrete mixes, in aggregate, utilize blended cement mixes to displace portland cement as specified in Section 03 30 00, CONCRETE typically included in conventional construction. Provide the following submittals:
 - a. Copies of concrete design mixes for all installed concrete
 - b. Copies of typical regional baseline concrete design mixes for all compressive strengths used on the Project
 - c. Quantities in cubic yards of each installed concrete mix
- 19. Gypsum Wall Board: Provide manufacturer's cut sheets or product data verifying that all gypsum wallboard products are moisture and mold-resistant.
- 20. Fiberglass Insulation: Provide manufacturer's cut sheets or product data verifying that fiberglass batt insulation contains no urea-formaldehyde.
- 21. Duct Acoustical Insulation: Provide manufacturer's cut sheets or product data verifying that mechanical sound insulation materials in air distribution ducts consists of an impervious, non-porous coatings that prevent dust from accumulating in the insulating materials.
- 22. Green Housekeeping: Provide documentation that all cleaning products and janitorial paper products meet the VOC limits and content requirements of this specification section.
- B. Project Materials Cost Data: Provide a spreadsheet in an electronic file indicating the total cost for the Project and the total cost of building materials used for the Project, as follows:
 - Not more than 60 days after the Preconstruction Meeting, the General Contractor shall provide to the Owner and Architect a preliminary schedule of materials costs for all materials used for the Project organized by specification section. Exclude labor costs and all mechanical, electrical, and plumbing (MEP) systems materials and labor costs. Include the following:

- a. Identify each reused or salvaged material, its cost, and its replacement value.
- b. Identify each recycled-content material, its post-consumer and pre-consumer recycled content as a percentage the product's weight, its cost, its combined recycled content value (defined as the sum of the post-consumer recycled content value plus one-half of the pre-consumer recycled content value), and the total combined recycled content value for all materials as a percentage of total materials costs.
- c. Identify each regional material, its cost, its manufacturing location, the distance of this location from the Project site, the source location for each raw material component of the material, the distance of these extraction locations from the Project site, and the total value of regional materials as a percentage of total materials costs.
- d. Identify each biobased material, its source, its cost, and the total value of biobased materials as a percentage of total materials costs. Also provide the total value of rapidly renewable materials (materials made from plants that are harvested in less than a 10-year cycle) as a percentage of total materials costs.
- e. Identify each wood-based material, its cost, the total wood-based materials cost, each FSC Certified wood material, its cost, and the total value of Certified wood as a percentage of total wood-based materials costs.
- 2. Provide final versions of the above spreadsheets to the Owner and Architect not more than 14 days after Substantial Completion.
- C. Construction Waste Management: See Section 01 74 19 "Construction Waste Management" for submittal requirements.
- D. Construction Indoor Air Quality (IAQ) Management: Submittals must include the following:
 - Not more than 30 days after the Preconstruction Meeting, prepare and submit for the Architect and Owner's approval, an electronic copy of the draft Construction IAQ Management Plan in an electronic file including, but not limited to, descriptions of the following:
 - 2. Instruction procedures for meeting or exceeding the minimum requirements of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines for Occupied

Buildings Under Construction, 1995, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling

- a. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage
- b. Schedule of submission to Architect of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials
- c. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille
- d. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit
- 3. Not more than 30 days following receipt of the approved draft CIAQMP, submit an electronic copy of the approved CIAQMP in an electronic file, along with the following:
 - a. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for all filtration media to be installed at return air grilles during construction if permanently installed AHUs are used during construction.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media in all air handling units (AHUS).
- 4. Not more than 14 days after Substantial Completion provide the following:
 - a. Documentation verifying required replacement of air filtration media in all air handling units (AHUs) after the completion of construction and prior to occupancy and, if applicable, required installation of filtration during construction.
 - b. Minimum of 18 Construction photographs: Six photographs taken on three different occasions during construction of the SMACNA approaches employed, along with a brief description of each approach, documenting implementation of the IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.

- E. Commissioning: See Section 01 91 00 "General Commissioning Requirements" for submittal requirements.
- F. Sustainable Design Progress Reports: Concurrent with each Application for Payment, submit reports for the following:
 - Construction Waste Management: Waste reduction progress reports and logs complying with the requirements of Section 01 74 19 "Construction Waste Management."
 - Construction IAQ Management: See details below under Section 3.2 Construction Indoor Air Quality Management for Construction IAQ management progress report requirements.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to the commencement of the Work, schedule and conduct meeting with Owner, Architect, and all Subcontractors to discuss the Construction Waste Management Plan, the required Construction Indoor Air Quality (IAQ) Management Plan, and all other Sustainable Design Requirements. The purpose of this meeting is to develop a mutual understanding of the Project's Sustainable Design Requirements and coordination of the Contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: The status of compliance with the Sustainable Design Requirements of these specifications will be an agenda item at all regular job meetings conducted during the course of work at the site.

PART 2 - PRODUCTS

2.1 PRODUCT ENVIRONMENTAL REQUIREMENTS

- A. Site Clearing: Topsoil shall be provided by the Contractor from on-site material which has been stockpiled for reuse. Off-site borrow should only be used when on-site sources are exhausted. Chip and/or compost on site all vegetated material identified for removal.
- B. Do not burn rubbish, organic matter, etc. or any material on the site. Dispose of legally in accordance with Specifications Sections 01 74 19.
- C. Roofing Materials: All roofing systems, other than vegetated roof systems, must comply with the following requirements:
 - 1. Low-Sloped roofing less than or equal to 2:12 slope must have an SRI of at least 78.
 - 2. Steep-Sloped roofing greater than 2:12 slope must have an SRI of at least 29.

- 3. Roofing Materials: Light-colored, reflective, and high-emissivity roofing helps to reduce localized heat build-up from roof surfaces that contribute to the urban heat island effect.
- D. Exterior Lighting Fixtures:
 - All exterior luminaires must emit 0% of the total initial designed fixture lumens at an angle above 90° from nadir and/or meet the requirements of the Dark Sky certification program.
 - Exterior lighting cannot exceed 80% of the lighting power densities defined by ASHRAE/IESNA Standard 90.1-2004, Exterior Lighting Section, without amendments.
 - 3. No lighting of building facades or landscape features is permitted.
- E. Herbicides and Pest Control: Herbicides shall not be permitted, and pest control measures shall utilize EPA-registered biopesticides only.
- F. Elimination of CFCs AND HCFCs:
 - Ozone Protection and Greenhouse Gas Reduction: Base building cooling equipment shall contain no refrigerants other than the following: HCFC-123, HFC-134a, HFC-245fa, HFC-407c, or HFC 410a.
 - 2. Fire suppression systems may not contain ozone-depleting substances such as halon 1301 and 1211.
 - 3. Extruded polystyrene insulation (XPS) and closed-cell spray foam polyurethane insulation shall not be manufactured with hydrochlorofluorocarbon (HCFC) blowing agents.
- G. Appliances and Equipment: All materials and equipment being installed that falls under the Energy Star or FEMP programs must be Energy Star or FEMP-rated. Eligible equipment includes refrigerators, motors, laundry equipment, office equipment and more. Refer to each program's website for a complete list.
- H. HVAC Distribution Efficiency:
 - All duct systems shall be constructed of aluminum, stainless steel or galvanized sheet metal, as deemed appropriate based on the application requirements. No fiberglass duct board shall be permitted.
 - 2. All medium- and high-pressure ductwork systems shall be pressuretested in accordance with the current SMACNA standards.
 - 3. All ductwork shall be externally insulated. No interior duct liner shall be permitted.

- 4. Where possible, all air terminal connections shall be hard-connected with sheet metal ductwork. If flexible ductwork is used, no flexible duct extension shall be more than six feet in length.
- 5. All HVAC equipment shall be isolated from the ductwork system with flexible duct connectors to minimize the transmittance of vibration.
- 6. All supply and return air branch ducts shall include the appropriate style of volume damper. Air terminal devices such as grilles, registers, and diffusers shall be balanced at duct branch dampers, not at terminal face.
- I. Measurement and Verification: Install controls and monitoring devices as required by MEP divisions order to comply with International Performance Measurement & Verification Protocol (IPMVP), Volume III: Concepts and Options for Determining Energy Savings in New Construction, April 2003, Option D.
 - The IPMVP provides guidance on situation-appropriate application of measurement and verification strategies.
- J. Salvaged or Reused materials: There shall be no substitutions for specified salvaged and reused materials and products.
 - Salvaged materials: Use of salvaged materials reduces impacts of disposal and manufacturing of replacements.
- K. Recycled Content of Materials:
 - Provide building materials with recycled content such that postconsumer recycled content value plus half the pre-consumer recycled content value constitutes a minimum of 30% of the cost of materials used for the Project, exclusive of all MEP equipment, labor, and delivery costs. The Contractor shall make all attempts to maximize the procurement of materials with recycled content.
 - a. e post-consumer recycled content value of a material shall be determined by dividing the weight of post-consumer recycled content by the total weight of the material and multiplying by the cost of the material.
 - b. Do not include mechanical and electrical components in the calculations.
 - c. Do not include labor and delivery costs in the calculations.
 - d. Recycled content of materials shall be defined according to the Federal Trade Commission's "Guide for the Use of Environmental Marketing Claims," 16 CFR 260.7 (e).

- e. Utilize all on-site existing paving materials that are scheduled for demolition as granulated fill, and include the cost of this material had it been purchased in the calculations for recycled content value.
- f. The materials in the following list must contain the minimum recycled content indicated:

Category	Minimum Recycled Content
Compost/mulch	100% post-consumer
Asphaltic Concrete Paving	25% post-consumer
Cast-in-Place Concrete	6% pre-consumer
CMU: Gray Block	20% pre-consumer
Steel Reinforcing Bars	90% combined
Structural Steel Shapes	90% combined
Steel Joists	75% combined
Steel Deck	75% combined
Steel Fabrications	60% combined
Steel Studs	30% combined
Steel Roofing	30% post-consumer
Aluminum Fabrications	35% combined
Rigid Insulation	20% pre-consumer
Batt insulation	30% combined

- L. Biobased Content:
 - For products designated by the USDA's BioPreferred program, provide products that meet or exceed USDA recommendations for biobased content, so long as products meet all other performance requirements in VA master specifications. For more information regarding the product categories covered by the BioPreferred program, visit http://www.biopreferred.gov

- - - E N D - - -

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 23, Division 26, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 23, Division 26, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup, control system calibration, testing and balancing, performance testing

and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- 1. Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Resident Engineer as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA Resident Engineer and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the Resident Engineer and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the Resident Engineer.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication

and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.

- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and Resident Engineer. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - 1. No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the Resident Engineer and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the Resident Engineer to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or Resident Engineer will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the Resident Engineer of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or Resident Engineer, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

A. Section 01 00 00 GENERAL REQUIREMENTS.

- B. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- D. Section 01 81 11 SUSTAINABNLE DESIGN REQUIREMENTS
- E. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. The commissioning activities have been developed to support the Green Buildings Initiative's Green Globes rating program and to support delivery of project performance in accordance with the VA requirements developed for the project.

1.5 ACRONYMS

List of Acronyms		
Acronym	Meaning	
A/E	Architect / Engineer Design Team	
AHJ	Authority Having Jurisdiction	
ASHRAE	Association Society for Heating Air Condition and	
	Refrigeration Engineers	
BOD	Basis of Design	
BSC	Building Systems Commissioning	
CCTV	Closed Circuit Television	
CD	Construction Documents	
CMMS	Computerized Maintenance Management System	
CO	Contracting Officer (VA)	
COR	Contracting Officer's Representative (see also VA-RE)	
COBie	Construction Operations Building Information Exchange	
CPC	Construction Phase Commissioning	
Cx	Commissioning	
CxA	Commissioning Agent	
CxM	Commissioning Manager	
CxR	Commissioning Representative	

4

List of Ad	List of Acronyms		
Acronym	Meaning		
DPC	Design Phase Commissioning		
FPT	Functional Performance Test		
GBI-GG	Green Building Initiative - Green Globes		
HVAC	Heating, Ventilation, and Air Conditioning		
LEED	Leadership in Energy and Environmental Design		
NC	Department of Veterans Affairs National Cemetery		
NCA	Department of Veterans Affairs National Cemetery		
NCA	Administration		
NEBB	National Environmental Balancing Bureau		
0&M	Operations & Maintenance		
OPR	Owner's Project Requirements		
PFC	Pre-Functional Checklist		
PFT	Pre-Functional Test		
SD	Schematic Design		
SO	Site Observation		
TAB	Test Adjust and Balance		
VA	Department of Veterans Affairs		
VAMC	VA Medical Center		
VA CFM	VA Office of Construction and Facilities Management		
VACO	VA Central Office		
VA PM	VA Project Manager		
VA-RE	VA Resident Engineer		
USGBC	United States Green Building Council		

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training. Accuracy: The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines. Benchmarks: Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself.. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

Calibrate: The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument. CCTV: Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

COBie: Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

Commissionability: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of

> 01 91 00 GENERAL COMMISSIONING REQUIREMENTS CONSTRUCTION DOCUMENTS

30 JANUARY 2015 6

the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

Commissioning Checklists: Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation). Commissioning Manager (CxM): A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

Commissioning Observation: An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

Commissioning Plan: A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

Commissioning Process: A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

Commissioning Report: The final commissioning document which presents the commissioning process results for the project. Cx reports include

an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms. Commissioning Representative (CxR): An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

Commissioning Specifications: The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

Commissioning Team: Individual team members whose coordinated actions are responsible for implementing the Commissioning Process. Construction Phase Commissioning: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

Contract Documents (CD): Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

Construction Phase Commissioning (CPC): All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

Coordination Drawings: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

Data Logging: The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

Deferred System Test: Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

Design Criteria: A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR. Design Intent: The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

Design Narrative: A written description of the proposed design solutions that satisfy the requirements of the OPR.

Design Phase Commissioning (DPC): All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Industry Accepted Best Practice: A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

Installation Verification: Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems

Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process. Lessons Learned Workshop: A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

Maintainability: A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment. Maintainability also includes components that have readily obtainable repair parts or service.

Manual Test: Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation'). Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

Peer Review: A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

Precision: The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

Pre-Design Phase Commissioning: Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project Pre-Functional Checklist (PFC): A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing. Pre-Functional Test (PFT): An inspection or test that is done before functional testing. PFT's include installation verification and system

and component start up tests.

Procedure or Protocol: A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

Range: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated. Resolution: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

Site Observation Visit: On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

Site Observation Reports (SO): Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

Special System Inspections: Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

Static Tests: Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

Start Up Tests: Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

Systems Manual: A system-focused composite document that includes all information required for the owners operators to operate the systems.

Test Procedure: A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Testing: The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function. Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC. Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

Training Plan: A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

Unresolved Commissioning Issue: Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).

 Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

<u>Verification</u>: The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

Warranty Phase Commissioning: Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

Warranty Visit: A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.

B. The following systems will be commissioned as part of this project:

Systems To Be Commissioned								
System	Description							
Building Exterior Closure								
Foundations (excluding	Standard, special, slab-on-grade, vapor							
structural)	barriers, air barriers							
Exterior Closure	Exterior walls, exterior windows, exterior							
	doors, louvers, grilles and sunscreens,							

Systems To Be Commissio	oned
System	Description
Roofing	Roof system (including parapet), roof openings
	(skylights, pipe chases, ducts, equipment
	curbs, etc.)
Note:	The emphasis on commissioning the above
	building envelope systems is on control of air
	flow, heat flow, noise, infrared, ultraviolet,
	rain penetration, moisture, durability,
	security, reliability, constructability,
	maintainability, and sustainability.
HVAC	1
See section 230800	
Electrical	
Medium-Voltage	Medium-Voltage Switchgear, Medium-Voltage
Electrical	Switches, Underground ductbank and
Distribution Systems	distribution, Pad-Mount Transformers, Medium-
	Voltage Load Interrupter Switches,
Grounding & Bonding	Witness 3rd party testing, review reports
Systems	
Electric Power	Metering, sub-metering, power monitoring
Monitoring Systems	systems, PLC control systems
Electrical System	Review reports, verify field settings
Protective Device	consistent with Study
Study	
Low-Voltage	Normal power distribution system, Life-safety
Distribution System	power distribution system, critical power
	distribution system, equipment power
	distribution system, switchboards,
	distribution panels, panelboards, verify
	breaker testing results (injection current,
	etc)
	Generators, Generator paralleling switchgear,
	automatic transfer switches, PLC and other
	control systems

Systems To Be Commissioned								
System	Description							
Lighting & Lighting	occupancy sensors, ,							
Control Systems								
Communications								
Grounding & Bonding	Witness 3rd party testing, review reports							
System								
Structured Cabling	Campus network optical fiber cable connections							
System	associated with medium-voltage paralleling							
	switchgear monitoring, control, and status							
	alert/alarm notifications.							
Renewable Energy Source	s							
Solar Energy	Solar collector modules, DC-AC inverter,							
Electrical Power	storage batteries, combiners, Switchgear,							
Generation Systems **	instrumentation, monitoring and control							
	systems							
Site Utilities								
Water Utilities	Backflow Prevention, Irrigation Systems							
Storm Drainage	Site Storm Water Distribution							
Utilities								
Integrated Systems Test	s							
Loss of Power Response	Loss of power to building, loss of power to							
	campus, restoration of power to building,							
	restoration of power to campus.							
Fire Alarm Response	Integrated System Response to Fire Alarm							
	Condition and Return to Normal							

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - 1. Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.

- 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - 1. Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - 2. User: Representatives of the facility user and operation and maintenance personnel.
 - 3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of

the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:

- 1. Participate in commissioning coordination meetings.
- 2. Conduct operation and maintenance training sessions in accordance with approved training plans.
- 3. Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
- 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
- 5. Review and comment on commissioning documentation.
- 6. Participate in meetings to coordinate Systems Functional Performance Testing.
- 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
- 8. Provide information to the Commissioning Agent for developing commissioning plan.
- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on

performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.

- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents. Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.

- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

- A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
 - 2. Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
 - 3. Identification of systems and equipment to be commissioned.
 - 4. Schedule of Commissioning Coordination meetings.
 - 5. Identification of items that must be completed before the next operation can proceed.
 - 6. Description of responsibilities of commissioning team members.
 - 7. Description of observations to be made.
 - 8. Description of requirements for operation and maintenance training.
 - 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.

- 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:
 - 1. Name and identification code of tested system.
 - 2. Test number.
 - 3. Time and date of test.
 - 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
 - 5. Dated signatures of the person performing test and of the witness, if applicable.
 - 6. Individuals present for test.
 - 7. Observations and Issues.
 - 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance

Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.

- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results. The Contractor is liable for any costs incurred by the VA for retesting. These costs may include additional fees to the Commissioning Agent and/or A/E.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating an Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - q. Include information that may be helpful in diagnosing or evaluating the issue.

- h. Note recommended corrective action.
- i. Identify commissioning team member responsible for corrective action.
- j. Identify expected date of correction.
- k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents and those that do not meet requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:
 - 1. Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
 - 2. Commissioning plan.
 - 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
 - 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.

- 5, Commissioning Issues Log.
- 6. Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - 2. Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.
 - 4. Updated Commissioning Issues Log, including status of unresolved issues.
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - 1. Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.

- 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
- 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
- 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
- 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
- 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary stepby-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent.

The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.

- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA Resident Engineer with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - 1. The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
 - 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.

- B. Within 90 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 90 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and

predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.

- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum

requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5°C (1.0 °F) and a resolution of + or - 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or -2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Construction Ph	CxA =	Commis	sioni	L = Lead			
		Resider	-	P = Participate			
Commissioning R	Roles & Responsibilities	A/E =	Design	Arch,	/Engın	eer	A = Approve
		PC = I	Prime C	ontra	ctor		R = Review
		0&M =	Gov't	Facil	ity O&	М	O = Optional
Category	Task Description	CxA	RE	A/E	PC	0&M	Notes
Meetings	Construction Commissioning Kick Off meeting	L	A	Р	Ρ	0	
	Commissioning Meetings	L	A	Ρ	Ρ	0	
	Project Progress Meetings		А	Р	L	0	
	Controls Meeting	L	A	P	P	0	
Coordination	Coordinate with OGC's, AHJ, Vendors, etc. to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	A	Р	P	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	A	R	R	0	
Schedules	Duration Schedule for Commissioning Activities	L	A	R	R	N/A	
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	

01 91 00 GENERAL COMMISSIONING REQUIREMENTS 30 JANUARY 2015 CONSTRUCTION DOCUMENTS

Construction Ph	CxA =	Commis	sionir	L = Lead			
	RE = I	Resider	nt Eng:	P = Participate			
Commissioning Roles & Responsibilities		A/E =	Desigr	n Arch,	/Engin	eer	A = Approve
Commissioning F	COIES & RESPONSIBILITIES	PC = 1	Prime C	Contrad	ctor		R = Review
		O&M =	Gov't	Facil	ity O&	М	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	
Document	TAB Plan Review	L	A	R	R	0	
Reviews	Submittal and Shop Drawing Review	R	A	R	L	0	
	Review Contractor Equipment Startup Checklists	L	A	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	A	R	R	N/A	
Site	Witness Factory Testing	P	A	P	L	0	
Observations	Construction Observation Site Visits	L	L A R R C L A R R C L A R R C L A R R C R A R L C L A R R C L A R R N L A R R N L A R R N P A P L C P A R R C L A R R C L A R R C L A R R C L A R R C L A R R C L A R R C L A R C C L A R C C L A R <td>0</td> <td></td>	0			
Functional	Final Pre-Functional Checklists	L	A	R	R	0	
Test Protocols	Final Functional Performance Test Protocols	L	A	R	R	0	
Technical Activities	Issues Resolution Meetings	P	A	P		0	
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	А	R	R	0	

01 91 00 GENERAL COMMISSIONING REQUIREMENTS

30 JANUARY 2015 CONSTRUCTION DOCUMENTS B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phas	CxA =	Commi	ssion	ent	L = Lead		
	RE = F	Reside	ent En	P = Participate			
Commissioning Roles & Responsibilities			Desig	n Arc	h/Engi	neer	A = Approve
Commissioning R	Roles & Responsibilities	PC = E	Prime	Contra	actor		R = Review
		0&M =	Gov ' t	Faci	lity O	Μ&	O = Optional
Category	Task Description	CxA	RE	A/E	PC	0&M	Notes
Meetings	Commissioning Meetings	L	A	Р	Р	0	
	Project Progress Meetings	Р	A	Р	L	0	
	Pre-Test Coordination Meeting	L	A	Р	Р	0	
	Lessons Learned and Commissioning Report Review Meeting	L	A	Р	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	P	P	P	0	
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	A	R	R	0	
Schedules	Prepare Functional Test Schedule	L	A	R	R	0	
			-	-			
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	
							•

30 JANUARY 2015 CONSTRUCTION DOCUMENTS

Acceptance Phas	CxA =	Commi	ssion	L = Lead			
	RE = R	leside	ent Eng		P = Participate		
			Desig	n Arcl	n/Engi	neer	A = Approve
Commissioning F	Roles & Responsibilities	PC = P	rime	Contra	actor		R = Review
		O&M =	Gov ' t	Faci	lity O	δM	O = Optional
Category	Task Description	CxA	RE	A/E	PC	0&M	Notes
	Review Operations & Maintenance Manuals	L	А	R	R	R	
	Training Plan Review	L	A	R	R	R	
	Warranty Review	L	A	R	R	0	
	Review TAB Report	L	А	R	R	0	
Site Observations	Construction Observation Site Visits		А	R	R	0	
Observations	Witness Selected Equipment Startup		A	R	R	0	
Functional	TAB Verification	L	A	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	А	Р	Р	Р	
	Retesting	L	A	P	Ρ	P	
Technical	Issues Resolution Meetings	P	A	P	L	0	
Activities	Systems Training	L	S	R	P	P	
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	A	R	R	0	
	Final Commissioning Report	L	A	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase	CxA =	Commi	ssion	L = Lead			
	RE = R	eside	ent En	gineer		P = Participate	
			Desig	n Arc	h/Engi	neer	A = Approve
Commissioning F	Roles & Responsibilities	PC = F	rime	Contr	actor		R = Review
		0&M =	Gov ' t	Faci	lity O	Ma	O = Optional
Category	Task Description	CxA	RE	A/E	PC	0&M	Notes
Meetings	Post-Occupancy User Review Meeting	L	А	0	P	Р	
Site Observations	Periodic Site Visits	L	A	0	0	Р	
Functional Test Protocols	Deferred and/or seasonal Testing	L	A	0	P	P	
lest Protocols							
Technical Activities	Issues Resolution Meetings	L	S	0	0	Ρ	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	A		R	Р	
Reports and	Final Commissioning Report Amendment	L	А		R	R	
Logs	Status Reports	L	А		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - 1. Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.
 - c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.

- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 23 and Division 26 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
- 4. Execution of Equipment Startup
 - a. Fourweeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
 - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
 - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
 - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall

correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.

C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers - Critical, Priority, and Maintenance.
 - 1. Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
 - 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.
- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more

effectively program, view, manipulate and test control devices while being in the same room as the controlled device.

- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the Resident Engineer and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the Resident Engineer. Any pretest trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the Resident Engineer, prior to the execution of Systems Functional Performance Testing.
 - 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.
 - 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct

Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.

4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

Dual-Path Air Handling Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
OA Temperature	AI	15 Min	24 hours	3 days	N/A					
RA Temperature	AI	15 Min	24 hours	3 days	N/A					
RA Humidity	AI	15 Min	24 hours	3 days	Р	>60% RH	10 min			
Mixed Air Temp	AI	None	None	None	N/A					
SA Temp	AI	15 Min	24 hours	3 days	С	±5°F from SP	10 min			
Supply Fan Speed	AI	15 Min	24 hours	3 days	N/A					
Return Fan Speed	AI	15 Min	24 hours	3 days	N/A					
RA Pre-Filter Status	AI	None	None	None	N/A					
OA Pre-Filter Status	AI	None	None	None	N/A					
After Filter Status	AI	None	None	None	N/A					
SA Flow	AI	15 Min	24 hours	3 days	С	±10% from SP	10 min			

Dual-Path Air	Dual-Path Air Handling Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
OA Supply Temp	AI	15 Min	24 hours	3 days	Р	±5°F from SP	10 min				
RA Supply Temp	AI	15 Min	24 hours	3 days	N/A						
Duct Pressure	AI	15 Min	24 hours	3 days	С	±25% from SP	6 min				
Supply Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min				
Return Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 Min				
High Static Status	DI	COV	24 hours	3 days	Р	True	1 min				
Exhaust Fan #1 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min				
OA Alarm	DI	COV	24 hours	3 days	С	True	10 min				
Power Failure	DI	COV	24 hours	3 days	P	True	1 min				
Supply Fan Speed	AO	15 Min	24 hours	3 days	N/A						
Return Fan Speed	AO	15 Min	24 hours	3 days	N/A						

- E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the Resident Engineer and Commissioning Agent.
 - 1. Point-to-Point checkout documentation;
 - 2. Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
 - 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM									
Sensor	Calibration Frequency	O&M Calibration Procedure Reference							
Discharge air temperature	Once a year	Volume I Section D.3.aa							
Discharge static pressure	Every 6 months	Volume II Section A.1.c							

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

Multi-Zone Units									
Control	Proportional	Integral	Derivative	Interval					
Reference	Constant	Constant	Constant						
Heating Valve Output	1000	20	10	2 sec.					

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.

- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.
- D. Purpose of Test Procedures: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms developed by the Commissioning Agent will include, but not be limited to, the following information:
 - 1. System and equipment or component name(s)
 - 2. Equipment location and ID number
 - 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
 - 4. Date
 - 5. Project name
 - 6. Participating parties
 - 7. A copy of the specification section describing the test requirements
 - 8. A copy of the specific sequence of operations or other specified parameters being verified
 - 9. Formulas used in any calculations
 - 10. Required pretest field measurements

- 11. Instructions for setting up the test.
- 12. Special cautions, alarm limits, etc.
- 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
- 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
- 15. A section for comments.
- 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
 - 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
 - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
 - 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
 - 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a

sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.

- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The

Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.

- J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.
- K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - 1. Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy

scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.

- 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
- 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
 - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the

test. Retesting shall be repeated until satisfactory performance is achieved.

- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - 1. Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
 - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems

Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's Resident Engineer, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 23, Division 26, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following: 1. Review the Contract Documents.

- 2. Review installed systems, subsystems, and equipment.
- 3. Review instructor qualifications.
- 4. Review instructional methods and procedures.
- 5. Review training module outlines and contents.
- 6. Review course materials (including operation and maintenance manuals).
- 7. Review and discuss locations and other facilities required for instruction.
- 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
- 9. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - 2. Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.

- c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
- d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
- e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.
- D. Quality Assurance:
 - 1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
 - 2. Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
 - 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.
- E. Training Coordination:
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
 - 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
 - 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.
- F. Instruction Program:

- 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
 - b. Electrical service and distribution, including switchgear, transformers, and panelboards.
 - c. Packaged engine generators, including paralleling switchgear.
 - d. Communication systems, including optical fiber network connections to paralleling switchgear, engine-generators, and solar photo-voltaic inverter systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - q. Limiting conditions.
 - h. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:

01 91 00 GENERAL COMMISSIONING REQUIREMENTS CONSTRUCTION DOCUMENTS

- a. Instructions on meaning of warnings, trouble indications, and error messages.
- b. Instructions on stopping.
- c. Shutdown instructions for each type of emergency.
- d. Operating instructions for conditions outside of normal operating limits.
- e. Sequences for electric or electronic systems.
- f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.

01 91 00 GENERAL COMMISSIONING REQUIREMENTS CONSTRUCTION DOCUMENTS

- g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.
- H. Training Execution:
 - 1. Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.
 - 2. Instruction:
 - a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
 - b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1) The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2) The VA will furnish an instructor to describe VA's operational philosophy.
 - 3) The VA will furnish the Contractor with names and positions of participants.
 - 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
 - 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.

- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
- I. Demonstration and Training Recording:
 - 1. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - 2. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - 3. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

----- END -----

SECTION 02 82 11 TRADITIONAL ASBESTOS ABATEMENT

TABLE OF CONTENTS

1.1 SUMMARY OF THE WORK1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS
1.1.2 EXTENT OF WORK1
1.1.3 RELATED WORK
1.1.4 TASKS1
1.1.5 CONTRACTORS USE OF PREMISES
1.2 VARIATIONS IN QUANTITY
1.3 STOP ASBESTOS REMOVAL
1.4 DEFINITIONS
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS
1.5 APPLICABLE CODES AND REGULATIONS11
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS11
1.5.2 Asbestos Abatement CONTRACTOR RESPONSIBILITY11
1.5.3 FEDERAL REQUIREMENTS11
1.5.4 STATE REQUIREMENTS12
1.5.5 STANDARDS
1.5.6 EPA GUIDANCE DOCUMENTS12
1.5.7 NOTICES
1.5.8 PERMITS/LICENSES
1.5.9 POSTING AND FILING OF REGULATIONS13
1.5.10 VA RESPONSIBILITIES
1.5.11 EMERGENCY ACTION PLAN AND ARRANGEMENTS
1.5.12 PRE-CONSTRUCTION MEETING14
1.6 PROJECT COORDINATION
1.6.1 PERSONNEL
1.7 RESPIRATORY PROTECTION
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR16
1.7.3 SELECTION AND USE OF RESPIRATORS16
1.7.4 MINIMUM RESPIRATORY PROTECTION16
1.7.5 MEDICAL WRITTEN OPINION

1.7.6 RESPIRATOR FIT TEST17
1.7.7 RESPIRATOR FIT CHECK17
1.7.8 MAINTENANCE AND CARE OF RESPIRATORS17
1.7.9 SUPPLIED AIR SYSTEMS17
1.8 WORKER PROTECTION17
1.8.1 TRAINING OF ABATEMENT PERSONNEL
1.8.2 MEDICAL EXAMINATIONS18
1.8.3 REGULATED AREA ENTRY PROCEDURE18
1.8.4 DECONTAMINATION PROCEDURE
1.8.5 REGULATED AREA REQUIREMENTS19
1.9 DECONTAMINATION FACILITIES
1.9.1 DESCRIPTION
1.9.2 GENERAL REQUIREMENTS19
1.9.3 TEMPORARY FACILITIES TO THE PDF and W/EDF19
1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)19
1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)21
1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES
PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT
2.1 MATERIALS AND EQUIPMENT
2.1.1 GENERAL REQUIREMENTS
2.2 MONITORING, INSPECTION AND TESTING
2.2.1 GENERAL
2.2.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT
2.2.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH25
2.3 ASBESTOS hAZARD aBATEMENT pLAN
2.4 SUBMITTALS
2.4.1 PRE-START MEETING SUBMITTALS
2.4.2 SUBMITTALS DURING ABATEMENT
2.4.3 SUBMITTALS AT COMPLETION OF ABATEMENT
2.5 ENCAPSULANTS
2.5.1 TYPES OF ENCAPSULANTS
2.5.2 PERFORMANCE REQUIREMENTS
2.5.3 CERTIFICATES OF COMPLIANCE
PART 3 - EXECUTION
3.1 REGULATED AREA PREPARATIONS
3.1.3.1 DESIGN AND LAYOUT
3.1.3.2 NEGATIVE AIR MACHINES (HEPA UNITS)

3.1.3.3 PRESSURE DIFFERENTIAL
3.1.3.4 MONITORING
3.1.3.5 AUXILIARY GENERATOR
3.1.3.6 SUPPLEMENTAL MAKE-UP AIR INLETS
3.1.3.7 TESTING THE SYSTEM
3.1.3.8 DEMONSTRATION OF THE NEGATIVE PRESSURE Filtration SYSTEM34
3.1.3.9 USE OF THE NEGATIVE PRESSURE FILTRATION SYSTEM DURING ABATEMENT OPERATIONS
3.1.3.10 DISMANTLING THE SYSTEM
3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA
3.1.4.1 GENERAL
3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA
3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA
3.1.4.4 CRITICAL BARRIERS
3.1.4.5 PRIMARY BARRIERS
3.1.4.6 SECONDARY BARRIERS
3.1.4.7 EXTENSION OF THE REGULATED AREA
3.1.4.8 FIRESTOPPING
3.1.5 SANITARY FACILITIES
3.1.6 PERSONAL PROTECTIVE EQUIPMENT
3.1.7 PRE-CLEANING
3.1.8 PRE-ABATEMENT ACTIVITIES
3.1.8.1 PRE-ABATEMENT Meeting
3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS
3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS
3.2 REMOVAL OF ACM
3.2.1 WETTING ACM
3.2.2 SECONDARY BARRIER AND WALKWAYS
3.2.3 WET REMOVAL OF ACM
3.2.4 REMOVAL OF CLASS II MATERIALS41
3.2.4.1 GENERAL
3.2.5.1 GENERAL
3.3 LOCKDOWN ENCAPSULATION
3.3.1 GENERAL
3.3.2 DELIVERY AND STORAGE42
3.3.3 WORKER PROTECTION
3.3.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING

3.3.5 SEALING EXPOSED EDGES
3.4 DISPOSAL OF ACM WASTE MATERIALS
3.4.1 GENERAL
3.4.2 PROCEDURES
3.5 PROJECT DECONTAMINATION
3.5.1 GENERAL
3.5.2 REGULATED AREA CLEARANCE
3.5.3 WORK DESCRIPTION
3.5.4 PRE-DECONTAMINATION CONDITIONS
3.5.5 FIRST CLEANING
3.5.6 pre-clearance inspection and testing
3.5.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES
3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING
3.6.1 GENERAL
3.6.2 FINAL VISUAL INSPECTION
3.6.3 FINAL AIR CLEARANCE TESTING
3.6.4 FINAL AIR CLEARANCE PROCEDURES
3.6.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF:46
3.6.8 LABORATORY TESTING OF TEM SAMPLES
3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE
3.7.1 COMPLETION OF ABATEMENT WORK
3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR
3.7.3 WORK SHIFTS
3.7.4 RE-INSULATION
ATTACHMENT #1
ATTACHMENT #4

PART 1 - GENERAL 1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of asbestos containing materials (ACM) and asbestos/waste contaminated elements in an appropriate regulated area for the following approximate quantities;
 - 1. (1.83) linear meters (6) linear feet of ACM White caulking around window mounted AC Unit
 - 2. (6.1) linear meters (20) linear feet of ACM Black sealant around transformer enclosure
 - 3. (7.62) linear meters (25) linear feet of ACM thermal system insulation (TSI) on small bore (outside diameter of pipe insulation less than or equal to six inches $\{OD = \leq 6"\}$ pipe
 - 4. (92.9) square meters (1,000) square feet of cement asbestos board exterior siding

1.1.3 RELATED WORK

- A. Division 09, FINISHES
- B. Section 23 21 13, HYDRONIC PIPING.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

including pre-abatement meeting(s), A. Pre-abatement activities inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and standard operating procedures for asbestos abatement work.

- B. Abatement activities including: removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including: final visual inspection, air monitoring and certification of decontamination.

1.1.5 CONTRACTORS USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. VA Design and Construction Procedures drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings: There are no restroom facilities located in Building 231. Portable facilities should be used on site.

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will

continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- Airborne PCM analysis results equal to or greater than 0.01 f/cc Α. outside a regulated area or >0.05 f/cc inside a regulated area;
- Breach or break in regulated area containment barrier(s); в.
- Less than -0.02'' WCG pressure in the regulated area; С.
- Serious injury/death at the site; D.
- Ε. Fire/safety emergency at the site;
- Respiratory protection system failure; F.
- Power failure or loss of wetting agent; or G.
- Any visible emissions observed outside the regulated area. н.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos. Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some states require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA.

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place. Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated

approved landfill. Each bag/container must the areas to be labeled/marked in accordance with EPA, OSHA and DOT requirements. Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Personal protective equipment (PPE) - equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

VA SORCC, White City, OR

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated The designation of PACM may be rebutted pursuant to 29 CFR as PACM. 1926.1101 (b).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) or Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that sprayed, troweled on or otherwise applied to surfaces for is acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) - The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300

- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400
- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900
- G. CS Commercial Standard of the National Institute of Standards and Technology (NIST) U. S. Department of Commerce Government Printing Office Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- J. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000
- K. NEC National Electrical Code (by NFPA)
- L. NEMA National Electrical Manufacturer's Association 2101 L Street, N.W. Washington, DC 20037
- M. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- N. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- O. Oregon State Department of Environmental Quality 811 SW 6th Avenue Portland, OR 97204-1390
- P. Oregon Occupational Safety and Health Division

1840 E Barnett Road, Suite D Medford, OR 97504-8293

VA SORCC, White City, OR

- Q. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- R. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal and State regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910 Subpart I Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection

- 4. Title 29 CFR 1926 Construction Industry Standards
- 5. Title 29 CFR 1910.1020 Access to Employee Exposure and Medical Records
- 6. Title 29 CFR 1910.1200 Hazard Communication
- 7. Title 29 CFR 1910 Subpart K Medical and First Aid
- B. Environmental Protection Agency (EPA):
 - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants - Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT) Title 49 CFR 100 - 185 - Transportation

1.5.4 STATE REQUIREMENTS

State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following:

- A. Oregon Department of Environmental Quality (DEQ)
- 1. OAR 340-248-0010 Asbestos Requirements
- B. Oregon Occupational Safety and Health Division
 - 1. OAR 1926.1101 Asbestos

1.5.5 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - 1. American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI Z88.2 - Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA Filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.6 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-0.24
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.7 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
 - 1. DEQ Notification in accordance with OAR 340-248-0260, at least ten (10) days prior to commencing abatement work
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

1.5.8 PERMITS/LICENSES

- A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal and State regulations.
 - 1. DEQ Asbestos Contractor License in accordance with OAR 340-248-0260

1.5.9 POSTING AND FILING OF REGULATIONS

A. Maintain two (2) copies of applicable Federal and State regulations. Post one copy of each in the clean room at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.10 VA RESPONSIBILITIES

Prior to commencement of work:

- A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
- B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.11 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.

- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the standard operating procedures during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.12 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the prestart meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor DEQ licensing.
- B. Proof the Competent Person(s) is trained and accredited and approved for working in Oregon and has a current DEQ Supervisor card. Verification of the experience of the Competent Person(s) shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and a current DEQ supervisor or worker card.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.

- G. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - 2. Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - 3. Decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Abatement methods/procedures and equipment to be used;
 - 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard and currently certified as an asbestos supervisor by DEQ; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications, including current DEQ asbestos supervisor or work certification cards. Personnel utilized onsite shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; employee number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal EPA, DEQ, Oregon OSHA and federal OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive standard operating procedures for asbestos work; has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and

refreshers; and has all required OSHA documentation related to medical and respiratory protection.

- 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete standard operating procedure for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection
- 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA/DEQ abatement supervisor/worker course; have training on the standard operating procedures of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a full face powered air purifying respirator when fiber levels are maintained consistently at

or below 0.5 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Ouantitative fit tests shall be done for PAPRs which have been put into a motor/blower failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.

1.7.9 SUPPLIED AIR SYSTEMS

If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 -Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and OAR 340-248-0130. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and

current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m)(4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.4 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
- D. Shower and wash body completely with soap and water. Rinse thoroughly.
- E. Rinse shower room walls and floor to drain prior to exiting.

F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.5 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or qum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

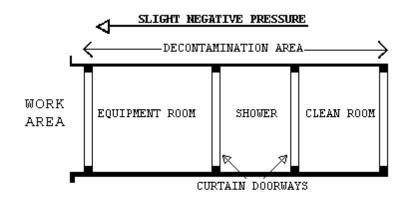
1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain $70^{\circ}F$ throughout the PDF and W/EDF.

1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

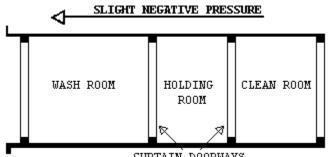

The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room which is connected to the regulated area. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be

constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.
- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change.

Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.

4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.


1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide a W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be

constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.

5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

CURTAIN DOORWAYS

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES

At the wash-down station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the wash-down station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.

- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 - Hazard Communication in the pre-start meeting submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 MONITORING, INSPECTION AND TESTING

2.2.1 GENERAL

A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the employee exposure to asbestos must not exceed 0.1 fiber per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the

Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.

- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.
- C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.

2.2.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - 1. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.

- 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
- 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.
- 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
- 6. Task 6: Issue certificate of decontamination for each regulated area and project report.
- B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.2.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor or Abatement Worker and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated

area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.3 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established an Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP shall be submitted for review and approval to the VA prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAPs are:

- A. Minimum Personnel Qualifications
- B. Emergency Action Plan/Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Negative Pressure Systems Requirements
- I. Monitoring, Inspections, and Testing
- J. Removal Procedures for ACM
- K. Removal of Contaminated Soil (if applicable)
- L. Encapsulation Procedures for ACM
- M. Disposal of ACM waste/equipment
- N. Regulated Area Decontamination/Clean-up
- O. Regulated Area Visual and Air Clearance
- P. Project Completion/Closeout

2.4 SUBMITTALS

2.4.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the

"Affidavit of Medical Surveillance and Respiratory Protection" for each person.

- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this with manufacturer names, model numbers, performance project characteristics, pictures/diagrams, and number available for the following:
 - 1. Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and other any notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. Area or clearance air monitoring shall be conducted in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - 1. Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; Completion Date
 - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above

regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.

- 1. CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAPs developed; medical opinion; and current respirator fit test.
- 2. Competent Person(s)/Supervisor(s): Number; names; employee numbers; years of abatement experience as Competent Person/Supervisor; list projects in size/complexity as Competent of similar Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- 3. Workers: Numbers; names; employee numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAPs incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and standard operating procedures; and copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS and application instructions.

2.4.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; and representative air monitoring and results/TWA's/EL's. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - 4. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.4.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.5 ENCAPSULANTS

2.5.1 TYPES OF ENCAPSULANTS

- A. The following types of encapsulants, if used, must comply with comply with performance requirements as stated in paragraph 2.6.2:
 - 1. Removal encapsulant used as a wetting agent to remove ACM.
 - 2. Bridging encapsulant provides a tough, durable coating on ACM.
 - 3. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.

2.5.2 PERFORMANCE REQUIREMENTS

Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:

- A. General Requirements for all Encapsulants:
 - 1. ASTM E84: Flame spread of 25; smoke emission of 50.
 - 2. University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4. ASTM E96: Permeability minimum of 0.4 perms.
- B. Bridging/Penetrating Encapsulants:
 - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft²).
 - 2. ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).
 - 3. ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kg-mm (43 in/lb).
 - 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- C. Lockdown Encapsulants:
 - 1. ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2. ASTM E736: Bond Strength 48 kPa (100 lbs/ft²) (test compatibility with cementitious and fibrous fireproofing).
 - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application.

2.5.3 CERTIFICATES OF COMPLIANCE

The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements

for encapsulants when applied according to manufacturer recommendations.

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

3.1.1 SITE SECURITY

- Α. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- Entry into the regulated area by unauthorized individuals shall Β. be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
- A log book shall be maintained in the clean room of the С. decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.
- The Contractor's Competent Person shall control site security Ε. during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- The Contractor will have the VA's assistance in notifying F. adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- The regulated area shall be locked during non-working hours and G. secured by VA Representative or Competent Person. The VA Police should be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.

3.1.2. SIGNAGE AND POWER MANAGEMENT

Α. Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed the PEL.

Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

- Shut down and lock out/tag out electric power to the regulated в. Provide temporary power and lighting. area. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.
- С. Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil polyethylene disposal bags for staging and eventual disposal as asbestos waste.

3.1.3 NEGATIVE PRESSURE FILTRATION SYSTEM

The Contractor shall provide enough HEPA negative air machines to effect > -0.02'' WCG pressure. The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to effect > - 0.02'' WCG pressure. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. NIOSH has done extensive studies and has determined that negative air machines typically operate at ~50% efficiency. The contractor shall consider this in their determination of number of units needed to provide > - 0.02'' WCG pressure. The contractor shall use double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

3.1.3.1 DESIGN AND LAYOUT

- A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1. Method of supplying power to the units and designation/location of the panels.
 - 2. Description of testing method(s) for correct air volume and pressure differential.
 - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.

3.1.3.2 NEGATIVE AIR MACHINES (HEPA UNITS)

- A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.
- B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
- C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97%. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.
- D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage prefilter shall be a low efficiency type for particles 10 µm or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 µm or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.
- E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's

Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.

H. It is essential that replacement HEPA filters be tested using an "in-line" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location. Contractor will provide written documentation of test results for negative air machine units with HEPA filters changed by the contractor or documentation when changed and tested by the contractor filters

3.1.3.3 PRESSURE DIFFERENTIAL

The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.

3.1.3.4 MONITORING

The pressure differential shall be continuously monitored and recorded between the regulated area and the area outside the regulated area with a monitoring device that incorporates a strip chart recorder. The strip chart recorder shall become part of the project log and shall indicate at least -0.02" water column gauge for the duration of the project.

3.1.3.5 AUXILIARY GENERATOR

If the building is occupied during abatement, provide an auxiliary gasoline/diesel generator located outside the building in an area protected from the weather. In the event of a power failure of the general power grid and the VAMC emergency power grid, the generator must automatically start and supply power to a minimum of 50% of the negative air machines in operation.

3.1.3.6 SUPPLEMENTAL MAKE-UP AIR INLETS

Provide, as needed for proper air flow in the regulated area, in a location approved by the VA, openings in the plastic sheeting to allow outside air to flow into the regulated area. Auxiliary makeup air inlets must be located as far from the negative air machines as possible, off the floor near the ceiling, and away from the barriers that separate the regulated area from the occupied clean areas. Cover the inlets with weighted flaps which will seal in the event of failure of the negative pressure system.

3.1.3.7 TESTING THE SYSTEM

The negative pressure system must be tested before any ACM is disturbed in any way. After the regulated area has been

completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative pressure system to the VA using smoke tubes and a negative pressure gauge. Verification and documentation of adequate negative pressure differential across each barrier must be done at the start of each work shift.

3.1.3.8 DEMONSTRATION OF THE NEGATIVE PRESSURE FILTRATION SYSTEM

The demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following:

- A. Plastic barriers and sheeting move lightly in toward the regulated area.
- B. Curtains of the decontamination units move in toward regulated area.
- C. There is a noticeable movement of air through the decontamination units. Use the smoke tube to demonstrate air movement from the clean room to the shower room to the equipment room to the regulated area.
- D. Use smoke tubes to demonstrate air is moving across all areas in which work is to be done. Use a differential pressure gauge to indicate a negative pressure of at least -0.02" across every barrier separating the regulated area from the rest of the building. Modify the system as necessary to meet the above requirements.

3.1.3.9 USE OF THE NEGATIVE PRESSURE FILTRATION SYSTEM DURING ABATEMENT OPERATIONS

- A. Start units before beginning any disturbance of ACM occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a negative pressure differential of -0.02" water column gauge, for the duration of the work until a final visual clearance and final air clearance has been successfully completed. No negative air units shall be shut down at any time unless authorized by the VA Contracting Officer, verbally and in writing.
- B. Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.
- C. Abatement work shall begin at a location farthest from the units and proceed towards them. If an electric failure occurs, the Competent Person shall stop all abatement work and immediately begin wetting all exposed asbestos materials for the duration of the power outage. Abatement work shall not resume until power is restored and all units are operating properly again.
- D. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air clearance has been successfully completed for that regulated area.

3.1.3.10 DISMANTLING THE SYSTEM

After completion of the final visual and final air clearance has been obtained by the VPIH/CIH, the units may be shut down. The unit exterior surfaces shall have been completely decontaminated; pre-filters are not to be removed and the units inlet/outlet sealed with 2 layers of 6 mil poly immediately after shut down. No filter removal shall occur at the VA site following successful completion of site clearance. OSHA/EPA/DOT asbestos shall be attached to the units.

3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

3.1.4.1 GENERAL

Seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, immediately stop work and clean up the contamination at no additional cost to the VA. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 3.1.4.8; FIRESTOPPING.

3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.

3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

3.1.4.4 CRITICAL BARRIERS

Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6 mil fire retardant poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly.

3.1.4.5 PRIMARY BARRIERS

- A. Cover the regulated area with two layers of 6 mil fire retardant poly on the floors and two layers of 4 mil, fire retardant poly on the walls, unless otherwise directed in writing by the VA representative. Floor layers must form a right angle with the wall and turn up the wall at least 300 mm (12"). Seams must overlap at least 1800 mm (6') and must be spray glued and taped. Install sheeting so that layers can be removed independently from each other. Carpeting shall be covered with three layers of 6 mil poly. Corrugated cardboard sheets must be placed between the bottom and middle layers of poly. Mechanically support and seal with duct tape and glue all wall layers.
- B. If stairs and ramps are covered with 6 mil plastic, two layers must be used. Provide 19 mm (3/4") exterior grade plywood treads held in place with duct tape/glue on the plastic. Do not cover rungs or rails with any isolation materials.

3.1.4.6 SECONDARY BARRIERS

A loose layer of 6 mil shall be used as a drop cloth to protect the primary layers from debris generated during the abatement. This layer shall be replaced as needed during the work and at a minimum once per work day.

3.1.4.7 EXTENSION OF THE REGULATED AREA

If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

3.1.4.8 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves, conduits, etc. must be firestopped with a firerated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination.

Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

3.1.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.1.6 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, gloves and foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

3.1.7 PRE-CLEANING

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. All workers performing pre-cleaning activities must don appropriate personal protective equipment (PPE), as specified throughout this document and as approved in the Contractor's work plan. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Prior to turn-over to the Contractor, the VA will remove all movable objects within the work area The Contractor shall pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape.

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestoscontaining materials during this pre-cleaning phase.

3.1.8 PRE-ABATEMENT ACTIVITIES

3.1.8.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation the VA's representative regarding any submittals, to documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.
- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of VA A/E Quality Alert 07/09 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM

A NESHAPS (destructive) ACM may remain undetected. inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawlspaces (previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.

- C. Ensure that the VA has removed all movable furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area prior to turn-over to the Contractor.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.2 REMOVAL OF ACM

3.2.1 WETTING ACM

- A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.
- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.
- C. Removal Encapsulant: When authorized by VA, provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during removal.

3.2.2 SECONDARY BARRIER AND WALKWAYS

- A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet (3 meters) of the area where work is to done. Secure the secondary barrier with duct tape to prevent it from moving or debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
- B. Install walkways using 6 mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.

3.2.3 WET REMOVAL OF ACM

- A. Adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time (at a minimum two hours) must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present.
- B. If ACM does not wet well with amended water due to composition, coating or jacketing, remove as follows:
 - 1. Mist work area continuously with amended water whenever necessary to reduce airborne fiber levels.
 - 2. Remove saturated ACM in small sections. Do not allow material to dry out. As material is removed, bag material, while still wet into disposal bags. Twist the bag neck tightly, bend over (gooseneck) and seal with a minimum of three tight wraps of duct tape. Clean /decontaminate the outside of the bag of any residue and move to wash-down station adjacent to W/EDF.
 - 3. Fireproofing or Architectural Finish on Scratch Coat: Spray with a fine mist of amended water or removal encapsulant. Allow time for saturation to the substrate. Do not over saturate causing excess dripping. Scrape material from substrate. Remove material in manageable quantities and control falling to staging or floor. If the falling distance is over 20 feet (6M), use a drop chute to contain material through descent. Remove residue remaining on the scratch coat after scraping is done using a stiff bristle hand brush. If a removal encapsulant is used, remove residue completely before the encapsulant dries. Periodically re-wet the substrate with amended water as needed to prevent drying of the material before the residue is removed from the substrate.
 - 4. Fireproofing or Architectural Finish on Wire Lath: Spray with a fine mist of amended water or removal encapsulant. Allow time to completely saturate the material. Do not over saturate causing excess dripping. If the surface has been painted or otherwise coated, cut small holes as needed and apply amended water or removal encapsulant from above. Cut saturated wire lath into 2' x 6' (50mm x 150mm) sections and cut hanger wires. Roll up complete with ACM, cover in burlap and hand place in disposal bag. Do not drop to floor. After removal of lath/ACM, remove any overspray on decking and structure using stiff bristle nylon brushes. Depending on hardness of overspray, scrapers may be needed for removal.
 - 5. Pipe/Tank/Vessel/Boiler Insulation: Remove the outer layer of wrap while spraying with amended water in order to saturate the ACM. Spray ACM with a fine mist of amended water or removal encapsulant.

Allow time to saturate the material to the substrate. Cut bands holding pre-formed pipe insulation sections. Slit jacketing at the seams, remove and hand place in a disposal bag. Do not allow dropping to the floor. Remove molded fitting insulation/mud in large pieces and hand place in a disposal bag. Remove any residue on pipe or fitting with a stiff bristle nylon brush. In locations where pipe fitting insulation is removed from fibrous glass or other nonasbestos insulated straight runs of pipe, remove fibrous material at least 6" from the point it contacts the ACM.

3.2.4 REMOVAL OF CLASS II MATERIALS

3.2.4.1 GENERAL

All applicable requirements of federal OSHA and EPA, DEQ, Oregon OSHA and DOT shall be followed during Class II work. Keep materials intact; do not break up materials; wet while working with it; wrap as soon as possible with 2 layers of 6 mil plastic for disposal, and maintain good housekeeping in work areas during abatement.

3.2.4.2 OUTDOOR WORK AREAS

On some projects, work must be performed on exterior areas of the building. If outdoor work is to be performed, all applicable OSHA, state and local regulations must be followed to ensure that outdoor work areas are in compliance so that workers, the general public and the environment are protected.

3.2.4.3 REMOVAL OF TRANSITE:

- A. All transite must be wetted prior to removal. Unfasten transite panels without disturbance. Keep transite intact.
- B. All waste must be wrapped in two layers of 6 mil poly and lowered carefully to the ground.
- C. Materials may not be dropped from any height. Unless the material is carried or passed to the ground by hand, it shall be lowered to the ground via covered, dust-tight chute, crane or hoist.

DISPOSAL OF CLASS II WASTE MATERIAL 3.2.5

3.2.5.1 GENERAL

The VA must be notified at least 24 hours in advance of any waste removed from the containment. Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.3 LOCKDOWN ENCAPSULATION

3.3.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, the contractor shall encapsulate all surfaces with a bridging encapsulant.

3.3.2 DELIVERY AND STORAGE

Deliver materials to the job site in original, new and unopened containers bearing the manufacturer's name and label as well as the following information: name of material, manufacturer's stock number, date of manufacture, thinning instructions, application instructions and the MSDS for the material.

3.3.3 WORKER PROTECTION

Before beginning work with any material for which an MSDS has been submitted, provide workers with any required personal protective equipment. The required personal protective equipment shall be used whenever exposure to the material might occur. In addition to OSHA/specification requirements for respiratory protection, a paint pre-filter and an organic vapor cartridge, at a minimum, shall used in addition to the HEPA filter when an organic solvent based encapsulant is used. The CPIH/CIH shall be responsible for provision of adequate respiratory protection. Note: Flammable and combustible encapsulants shall not be used, unless authorized in writing by the VA.

3.3.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING

- A. Apply two coats of lockdown encapsulant to the scratch coat plaster or piping after all ACM has been removed. Apply in strict accordance with the manufacturer's instructions. Any deviation from the instructions must be approved by the VA's representative in writing prior to commencing the work.
- B. Apply the lockdown encapsulant with an airless sprayer at a pressure and using a nozzle orifice as recommended by the manufacturer. Apply the first coat while the while the scratch coat is still damp from the asbestos removal process, after passing the visual inspection. If the surface has been allowed to dry, wet wipe or HEPA vacuum prior to spraying with encapsulant. Apply a second coat over the first coat in strict conformance with the manufacturer's instructions. Color the lockdown encapsulant and contrast the color in the second coat so that visual confirmation of completeness and uniform coverage of each coat is possible. Adhere to the manufacturer's instructions for coloring. At the completion of the encapsulation, the surface must be a uniform third color produced by the mixture.

3.3.5 SEALING EXPOSED EDGES

Seal edges of ACM exposed by removal work which is inaccessible, such as a sleeve, wall penetration, etc., with two coats of bridging encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the bridging encapsulant. Apply in accordance with 3.3.4 (B).

3.4 DISPOSAL OF ACM WASTE MATERIALS

3.4.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.4.2 PROCEDURES

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment.
- B. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures is this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.
- C. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped or HEPA vacuumed.
- D. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.5 PROJECT DECONTAMINATION

3.5.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.5.2 REGULATED AREA CLEARANCE

Clearance air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.5.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.5.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be collected and removed, and the loose 6 mil layer of poly removed while being adequately wetted with amended water and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Primary barriers consisting of 2 layers of 6 mil poly on the floor and 4 mil poly on the walls.
 - 2. Critical barriers consisting of 2 layers of 6 mil poly which is the sole barrier between the regulated area and openings to the rest of the building or outside.
 - 4. Decontamination facilities for personnel and equipment in operating condition and the negative pressure system in operation.

3.5.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.5.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

3.5.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES

With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification. Negative pressure shall be maintained in the regulated area during the lockdown application.

3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING

3.6.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH starting after the final cleaning.

3.6.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.6.3 FINAL AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a minimum of one field blank. If work is equal to or more than 260 lf/160 ${\rm sf}/{\rm 35}$ cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All additional inspection and testing costs will be borne by the Contractor.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.6.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, or 70 AHERA structures per square millimeter (s/mm²) by AHERA TEM.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8μ MCE filters for PCM analysis and 0.45μ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.

- 3. Final clearance for soil that is not encapsulated, samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Air clearance of work areas where contaminated soil has been removed is in addition to the requirement for clearance by bulk sample analysis discussed within these specifications. There will be no aggressive air sampling for the clearance of soil due to the fact that aggressive air sampling may overload the cassettes.
- 4. Random samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 SF of soil - 3 samples; >1000 to <5000 SF of soil -5 samples; and >5000 SF of soil - 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1% asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1% asbestos, the areas shall be re-cleaned until the sample results are <1%.

3.6.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF:

- A. The VPIH/CIH will perform clearance samples as indicated by the specification.
- B. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.
- C. Random samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 SF of soil - 3 samples; >1000 to <5000 SF of soil - 5 samples; and >5000 SF of soil - 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1% asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1% asbestos, the areas shall be re-cleaned until the sample results are <1%.

3.6.6 CLEARANCE SAMPLING USING TEM - EQUAL TO OR MORE THAN 260LF/160SF: TEM

- A. Clearance requires 13 samples be collected; 5 inside the regulated area; 5 outside the regulated area; and 3 field blanks.
- B. The TEM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 13 clearance samples shall be collected. All samples must be equal to or less than 70 AHERA structures per square millimeter (s/mm²) AHERA TEM.

3.6.7 LABORATORY TESTING OF PCM CLEARANCE SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be sent daily by the VPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.6.8 LABORATORY TESTING OF TEM SAMPLES

Samples shall be sent by the VPIH/CIH to a NIST accredited laboratory for analysis by TEM. The laboratory shall be successfully participating in the NIST Airborne Asbestos Analysis (TEM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor.

3.6.9 LABORATORY TESTING OF BULK SAMPLES

Samples shall be sent by the VPIH/CIH or CPIH/CIH to a NIST accredited laboratory for analysis by PLM. The laboratory shall be successfully participating in the NIST Bulk Asbestos Analysis (PLM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor.

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.7.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- A. Remove all equipment and materials from the project area.
- B. Dispose of all packaged ACM waste as required.
- C. Repair or replace all interior finishes damaged during the abatement work, as required.
- D. Fulfill other project closeout requirements as required in this specification.

3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.7.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday -Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

3.7.4 RE-INSULATION

If required as part of the contract, replace all asbestos containing insulation/fire-proofing with suitable non-asbestos material. Provide MSDS's for all replacement materials in advance of installation for VA approval. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

CERTIFICATE OF COMPLETION

חשתח	•
DAID	•

VA Project #:

to

PROJECT NAME:_____Abatement Contractor:_____

VAMC/ADDRESS:

1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):

which took place from

- 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:....

CPIH/CIH	Print	Name:	 	 •••	 	•	 											
		_																

Abatement Contractor Print Name:....

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

PROJECT NAME: DATE:

PROJECT ADDRESS:

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, DEQ accredited trainer in the requirements for an AHERA/ OR OSHA/DEQ Asbestos Abatement Worker training course, 32 hours minimum duration or Asbestos Abatement Supervisor training course, 40 hours minimum duration. I currently have a valid DEQ accreditation certificate card. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest xray evaluation. The physician issued a positive written opinion after the examination.

Signature:

Printed Name:

Employee Number:

Witness:

AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Employee Number: Name:

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH: Date:

Printed Name of CPIH/CIH:

Signature of Contractor: _____ Date:_____

Printed Name of Contractor:

ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA Project Location:

VA Project #:

VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature Date

Abatement Contractor Competent Person(s) Date

- - - -END- - - -

SECTION 02 83 33 LEAD-CONTAINING PAINT IN CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies disturbance and disposal of lead-containing paint (LCP) and controls needed to limit occupational and environmental exposure to lead hazards.

1.2 RELATED WORK

- A. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- B. Section 09 91 00, PAINTING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. Code of Federal Regulations (CFR):

	CFR	29	Part	1910Occupational Safety and Health Standards
	CFR	29	Part	1926Safety and Health Regulations for Construction
	CFR	40	Part	148Hazardous Waste Injection Restrictions
	CFR	40	Part	260Hazardous Waste Management System: General
	CFR	40	Part	261Identification and Listing of Hazardous Waste
	CFR	40	Part	262Standards Applicable to Generators of Hazardous
				Waste
	CRF	40	Part	263Standards Applicable to Transporters of
				Hazardous Waste
	CFR	40	Part	264Standards for Owners and Operations of
				Hazardous Waste Treatment, Storage, and
				Disposal Facilities
	CFR	40	Part	265Interim Status Standards for Owners and
				Operators of Hazardous Waste Treatment,
				Storage, and Disposal Facilities
	CFR	40	Part	268Land Disposal Restrictions
	CFR	49	Part	172Hazardous Material Table, Special Provisions,
				Hazardous Material Communications, Emergency
				Response Information, and Training Requirements
	CFR	49	Part	178Specifications for Packaging
C.	Nati	ona	al Fin	re Protection Association (NFPA):
	NFPA	A 70	01-200	04Methods of Fire Test for Flame-Resistant

Textiles and Films

- D. National Institute for Occupational Safety And Health (NIOSH) NIOSH OSHA Booklet 3142.Lead in Construction
- E. Underwriters Laboratories (UL)UL 586-1996 (Rev 2009)..High-Efficiency, Particulate, Air Filter Units
- F. American National Standards Institute Z9.2-2006.....Fundamentals Governing the Design and Operation of Local Exhaust Systems Z88.6-2006.....Respiratory Protection
- G. Oregon Occupational Safety and Health Division OAR 1926.62....Lead in Construction
- H. Oregon Department of Environmental Quality OAR 340-100, et. al....Hazardous Waste Management

1.4 DEFINITIONS

- A. Action Level: Employee exposure, without regard to use of respirations, to an airborne concentration of lead of 30 micrograms per cubic meter of air averaged over an 8-hour period. As used in this section, "30 micrograms per cubic meter of air" refers to the action level.
- B. Area Monitoring: Sampling of lead concentrations within the lead control area and inside the physical boundaries which is representative of the airborne lead concentrations which may reach the breathing zone of personnel potentially exposed to lead.
- C. Physical Boundary: Area physically roped or partitioned off around an enclosed lead control area to limit unauthorized entry of personnel. As used in this section, "inside boundary" shall mean the same as "outside lead control area."
- D. Certified Industrial Hygienist (CIH): As used in this section, refers to an Industrial Hygienist employed by the Contractor and is certified by the American Board of Industrial Hygiene in comprehensive practice.
- E. Change Rooms and Shower Facilities: Rooms within the designated physical boundary around the lead control area equipped with separate storage facilities for clean protective work clothing and equipment and for street clothes which prevent cross- contamination.
- F. Competent Person: A person capable of identifying lead hazards in the work area and is authorized by the contractor to take corrective action.

Project #: 692-14-101

- G. Critical Barrier The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.
- H. Decontamination Room: Room for removal of contaminated personal protective equipment (PPE).
- I. Eight-Hour Time Weighted Average (TWA): Airborne concentration of lead averaged over an 8-hour workday to which an employee is exposed.
- J. High Efficiency Particulate Air (HEPA) Filter Equipment: HEPA filtered vacuuming equipment with a UL 586 filter system capable of collecting and retaining lead-contaminated paint dust. A high efficiency particulate filter means 99.97 percent efficient against 0.3 micron size particles.
- K. Lead-Containing Paint (LCP): Paints and coatings containing measureable concentrations of lead when analyzed by a certified laboratory.
- L. Lead: Metallic lead, inorganic lead compounds, and organic lead soaps. Excluded from this definition are other organic lead compounds.
- M. Lead Control Area: An enclosed area or structure with full containment to prevent the spread of lead dust, paint chips, or debris of leadcontaining paint removal operations. The lead control area is isolated by physical boundaries to prevent unauthorized entry of personnel.
- N. Lead Permissible Exposure Limit (PEL): Fifty micrograms per cubic meter of air as an 8-hour time weighted average as determined by 29 CFR 1910.1025. If an employee is exposed for more than 8 hours in a work day, the PEL shall be determined by the following formula. PEL (micrograms/cubic meter of air) = 400/No. of hrs worked per day
- O. Personnel Monitoring: Sampling of lead concentrations within the breathing zone of an employee to determine the 8-hour time weighted average concentration in accordance with 29 CFR 1910.1025. Samples shall be representative of the employee's work tasks. Breathing zone shall be considered an area within a hemisphere, forward of the shoulders, with a radius of 150 mm to 225 mm (6 to 9 inches) and the center at the nose or mouth of an employee.

1.5 QUALITY ASSURANCE

A. Before exposure to lead-contaminated dust, provide workers with a comprehensive medical examination as required by 29 CFR 1926.62 (I) (1)(i) & (ii). The examination shall not be required if adequate records

Project #: 692-14-101

show that employees have been examined as required by 29 CFR 1926.62(I) within the last year.

- B. Medical Records: Maintain complete and accurate medical records of employees in accordance with 29 CFR 1910.20.
- C. CIH Responsibilities: The Contractor shall employ a certified Industrial Hygienist who will be responsible for the following:
 - 1. Certify Training.
 - 2. Review and approve lead-containing paint disturbance plan for conformance to the applicable referenced standards.
 - 3. Inspect lead-containing paint disturbance work for conformance with the approved plan.
 - 4. Direct monitoring.
 - 5. Ensure work is performed in strict accordance with specifications at all times.
 - 6. Ensure hazardous exposure to personnel and to the environment are adequately controlled at all times.
- D. Training: Train each employee performing paint disturbance, disposal, and air sampling operations prior to the time of initial job assignment, in accordance with 29 CFR 1926.62.
- E. Training Certification: Submit certificates signed and dated by the CIH and by each employee stating that the employee has received training.
- F. Respiratory Protection Program:
 - 1. Furnish each employee required to wear a negative pressure respirator or other appropriate type with a respirator fit test at the time of initial fitting and at least every 6 months thereafter as required by 29 CFR 1926.62.
 - 2. Establish and implement a respiratory protection program as required by 29 CFR 1910.134, 29 CFR 1910.1025, and 29 CFR 1926.62.
- G. Hazard Communication Program: Establish and implement a Hazard Communication Program as required by 29 CFR 1910.1200.
- H. Hazardous Waste Management: The Hazardous Waste Management plan shall comply with applicable requirements of Federal, State, and local hazardous waste regulations and address:
 - 1. Identification of hazardous wastes associated with the work.
 - 2. Estimated quantities of wastes to be generated and disposed of.
 - 3. Names and qualifications of each contractor that will be transporting, storing, treating, and disposing of the wastes. Include the facility location and a 24-hour point of contact.

Furnish two copies of Oregon hazardous waste permits and EPA Identification numbers.

- Names and qualifications (experience and training) of personnel who will be working on-site with hazardous wastes.
- 5. List of waste handling equipment to be used in performing the work, to include cleaning, volume reduction, and transport equipment.
- Spill prevention, containment, and cleanup contingency measures to be implemented.
- Work plan and schedule for waste containment, removal and disposal.
 Wastes shall be cleaned up and containerized daily.
- 8. Cost for hazardous waste disposal according to this plan.
- I. Safety and Health Compliance:
 - In addition to the detailed requirements of this specification, comply with laws, ordinances, rules, and regulations of federal and Oregon State authorities regarding removing, handling, storing, transporting, and disposing of lead waste materials. Comply with the applicable requirements of the current issue of 29 CFR 1910.1025 and OAR 340-100. Submit matters regarding interpretation of standards to the Contracting Officer for resolution before starting work.
 - 2. Where specification requirements and the referenced documents vary, the most stringent requirements shall apply.
- J. Pre-Construction Conference: Along with the CIH, meet with the Contracting Officer to discuss in detail the lead-containing paint disturbance work plan, including work procedures and precautions for the work plan.

1.6 SUBMITTALS

- A. Submit the following in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Catalog Data:

Vacuum filters

Respirators

- C. Instructions: Paint disturbance materials. Include applicable material safety data sheets.
- D. Statements Certifications and Statements:
 - Qualifications of CIH: Submit name, address, and telephone number of the CIH selected to perform responsibilities in paragraph entitled "CIH Responsibilities." Provide previous experience of the CIH. Submit proper documentation that the Industrial Hygienist is

certified by the American Board of Industrial Hygiene in comprehensive practice, including certification number and date of certification/recertification.

- 2. Testing Laboratory: Submit the name, address, and telephone number of the testing laboratory selected to perform the monitoring, testing, and reporting of airborne concentrations of lead. Provide proper documentation that persons performing the analysis have been judged proficient by successful participation within the last year in the National Institute for Occupational Safety and Health (NIOSH) Proficiency Analytical Testing (PAT) Program. The laboratory shall be accredited by the American Industrial Hygiene Association (AIHA). Provide AIHA documentation along with date of accreditation/reaccreditation.
- 3. Lead-Containing Paint Disturbance Plan:
 - a. Submit a detailed job-specific plan of the work procedures to be used in the disturbance of lead-containing paint. The plan shall include a sketch showing the location, size, and details of lead control areas, location and details of decontamination rooms, change rooms, shower facilities, and mechanical ventilation system.
 - b. Include in the plan, eating, drinking, smoking and restroom procedures, interface of trades, sequencing of lead related work, collected wastewater and paint debris disposal plan, air sampling plan, respirators, protective equipment, and a detailed description of the method of containment of the operation to ensure that airborne lead concentrations of 30 micrograms per cubic meter of air are not exceeded outside of the lead control area.
 - c. Include air sampling, training and strategy, sampling methodology, frequency, duration of sampling, and qualifications of air monitoring personnel in the air sampling portion on the plan.
- 4. Field Test Reports: Monitoring Results: Submit monitoring results to the Contracting Officer within 3 working days, signed by the testing laboratory employee performing the air monitoring, the employee that analyzed the sample, and the CIH.

- 5. Records:
 - a. Completed and signed hazardous waste manifest from treatment or disposal facility.
 - b. Certification of Medical Examinations.
 - c. Employee training certification.

PART 2 PRODUCTS

PAINT DISTURBANCE PRODUCTS: Submit applicable Material Safety Data Sheets for paint removal products used in paint disturbance work. Use the least toxic product, suitable for the job and acceptable to the Industrial Hygienist.

PART 3 EXECUTION

3.1 PROTECTION

- A. Notification: Notify the Contracting Officer 20 days prior to the start of any paint disturbance work.
- B. Lead Control Area Requirements.
 - Establish a lead control area by completely enclosing with containment screens the area or structure where lead-containing paint disturbance operations will be performed.
 - 2. Contain disturbance operations by the use of critical barriers.
- C. Protection of Existing Work to Remain: Perform paint disturbance work without damage or contamination of adjacent areas. Where existing work is damaged or contaminated, restore work to its original condition.
- D. Boundary Requirements: Provide physical boundaries around the lead control area by roping off the area or providing curtains, portable partitions or other enclosures to ensure that airborne concentrations of lead will not reach 30 micrograms per cubic meter of air outside of the lead control area.
- E. Heating, Ventilating and Air Conditioning (HVAC) Systems: Shut down, lock out, and isolate HVAC systems that supply, exhaust, or pass through the lead control areas. Seal intake and exhaust vents in the lead control area with 6-mil plastic sheet and tape. Seal seams in HVAC components that pass through the lead control area.
- F. Change Room and Shower Facilities: Provide clean change rooms and shower facilities within the physical boundary around the designated lead control area in accordance with requirements of 29 CFR 1926.62.
- G. Mechanical Ventilation System:
 - 1. Use adequate ventilation to control personnel exposure to lead in accordance with 29 CFR 1926.57.

- 2. To the extent feasible, use fixed local exhaust ventilation connected to HEPA filters or other collection systems, approved by the industrial hygienist. Local exhaust ventilation systems shall be designed, constructed, installed, and maintained in accordance with ANSI 29.2.
- 3. If air from exhaust ventilation is recirculated into the work place, the system shall have a high efficiency filter with reliable back-up filter and controls to monitor the concentration of lead in the return air and to bypass the recirculation system automatically if it fails. Air may be recirculated only where exhaust to the outside is not feasible.
- H. Personnel Protection: Personnel shall wear and use protective clothing and equipment as specified herein. Eating, smoking, or drinking is not permitted in the lead control area. No one will be permitted in the lead control area unless they have been given appropriate training and protective equipment.
- I. Warning Signs: Provide warning signs at approaches to lead control areas. Locate signs at such a distance that personnel may read the sign and take the necessary precautions before entering the area. Signs shall comply with the requirements of 29 CFR 1926.62.

3.2 WORK PROCEDURES

- A. Perform disturbance of lead-containing paint in accordance with approved lead-containing paint disturbance plan. Use procedures and equipment required to limit occupational and environmental exposure to lead when lead- containing paint is removed in accordance with 29 CFR 1926.62 and OAR 1926.62, except as specified herein. Dispose of removed paint chips and associated waste in compliance with Environmental Protection Agency (EPA), federal, state, and local and DEQ requirements.
- B. Personnel Exiting Procedures:
 - Whenever personnel exist the lead-controlled area, they shall perform the following procedures and shall not leave the work place wearing any clothing or equipment worn during the work day:
 - a. Vacuum themselves off.
 - b. Remove protective clothing in the decontamination room, and place them in an approved impermeable disposal bag.
 - c. Change to clean clothes prior to leaving the physical boundary designated around the lead-contaminated job site.

- d. Thoroughly wash hands and face with soap and water and dry prior to consuming any food, drink, applying make-up or leaving the job site.
- C. Monitoring: Monitoring of airborne concentrations of lead shall be in accordance with 29 CFR 1910.1025 and as specified herein. Air monitoring, testing, and reporting shall be performed by a CIH or an Industrial Hygiene (IH) Technician who is under the direction of the CIH:
 - The CIH or the IH Technician under the direction of the CIH shall be on the job site directing the monitoring, and inspecting the leadcontaining paint disturbance work to ensure that the requirements of the Contract have been satisfied during the entire lead-containing paint disturbance operation.
 - 2. Take personal air monitoring samples on employees who are anticipated to have the greatest risk of exposure as determined by the CIH. In addition, take air monitoring samples on at least 25 percent of the work crew or a minimum of two employees, whichever is greater, during each work shift.
 - 3. Submit results of air monitoring samples, signed by the CIH, within 48 hours after the air samples are taken. Notify the Contracting Officer immediately of exposure to lead at or in excess of the action level of 30 micrograms per cubic meter of air outside of the lead control area.
- D. Monitoring During Paint Disturbance Work:
 - 1. Perform personal and area monitoring during the entire paint disturbance operation. Sufficient area monitoring shall be conducted at the physical boundary to ensure unprotected personnel are not exposed above 30 micrograms per cubic meter of air at all times. If the outside boundary lead levels are at or exceed 30 micrograms per cubic meter of air, work shall be stopped and the CIH shall immediately correct the condition(s) causing the increased levels and notify the Contracting Officer immediately.
 - 2. The CIH shall review the sampling data collected on that day to determine if condition(s) requires any further change in work methods. Disturbance work shall resume when approval is given by the CIH. The Contractor shall control the lead level outside of the work boundary to less than 30 micrograms per cubic meter of air at all times. As a minimum, conduct area monitoring daily on each shift in

which lead paint disturbance operations are performed in areas immediately adjacent to the lead control area.

3. For outdoor operations, at least one sample on each shift shall be taken on the downwind side of the lead control area. If adjacent areas are contaminated, clean and visually inspect contaminated areas. The CIH shall certify that the area has been cleaned of lead contamination.

3.3 LEAD-CONTAINING PAINT DISTURBANCE

- A. Disturb paint within the areas designated on the drawings in order to support other authorized work. Take whatever precautions are necessary to minimize damage to the underlying substrate.
- B. Indoor Lead Paint Disturbance: Select paint disturbance processes to minimize contamination of work areas with lead-contaminated dust or other lead-contaminated debris/waste. This paint disturbance process should be described in the lead-containing paint disturbance plan. Perform manual sanding and scraping to the maximum extent feasible.
- C. Mechanical Paint Disturbance and Blast Cleaning: Perform mechanical paint disturbance and blast cleaning in lead control areas using negative pressure full containments with HEPA filtered exhaust. Collect paint residue and spent grit (used abrasive) from blasting operations for disposal in accordance with EPA, state and local requirements.
- D. Outside Lead Paint Disturbance: Select disturbance processes to minimize contamination of work areas with lead-contaminated dust or other lead-contaminated debris/waste. This paint disturbance process should be described in the lead-containing paint disturbance plan. Perform manual sanding and scraping to the maximum extent feasible.

3.4 CLEANUP AND DISPOSAL

- A. Cleanup: Maintain surfaces of the lead control area free of accumulations of paint chips and dust. Restrict the spread of dust and debris; keep waste from being distributed over the work area. Do not dry sweep or use compressed air to clean up the area. At the end of each shift and when the paint disturbance operation has been completed, clean the area of visible lead paint contamination by vacuuming with a HEPA filtered vacuum cleaner and wet mopping the area.
- B. Certification: The CIH shall certify in writing that the inside and outside the lead control area air monitoring samples are less than 30 micrograms per cubic meter of air, the respiratory protection for the employees was adequate, the work procedures were performed in

Project #: 692-14-101

accordance with 29 CFR 1926.62, and that there were no visible accumulations of lead-contaminated paint and dust on the worksite. Do not remove the lead control area or roped-off boundary and warning signs prior to the Contracting Officer's receipt of the CIH's certification. Reclean areas showing dust or residual paint chips.

- C. Testing of Lead-Containing Paint Residue and Used Abrasive Where indicated or when directed by the Contracting Officer, test lead containing paint residue and used abrasive in accordance with 40 CFR 261 for hazardous waste.
- D. Disposal:
 - Collect lead-contaminated waste, scrap, debris, bags, containers, equipment, and lead-contaminated clothing, which may produce airborne concentrations of lead particles.
 - 2. Store removed paint, lead-contaminated clothing and equipment, and lead-contaminated dust and cleaning debris into U.S. Department of Transportation (49 CFR 178) approved 55-gallon drums. Properly labels each drum to identify the type of waste (49 CFR 172) and the date lead-contaminated wastes were first put into the drum. Comply with land disposal restriction notification requirements as required by 40 CFR 268and OAR 340-102:
 - a. At least 14 days prior to delivery, notify the Contracting Officer who will arrange for job site inspection of the drums and manifests by White City Veterans Administration Facility (WCVAF) personnel.
 - b. As necessary, make lot deliveries of hazardous wastes to the WCVAF Hazardous Waste Storage Area to ensure that drums do not remain on the jobsite longer than 90 calendar days from the date affixed to each drum.
 - a. Collect lead-contaminated waste, scrap, debris, bags, containers, equipment, and lead-contaminated clothing which may produce airborne concentrations of lead particles. Label the containers in accordance with 29 CFR 1926.62. Dispose of lead-contaminated waste material at a EPA and DEQ approved hazardous waste treatment, storage, or disposal facility off Government property.
 - b. Store waste materials in U.S. Department of Transportation (49 CFR 178) approved 55-gallon drums. Properly label each drum to identify the type of waste (49 CFR 172) and the date the drum was filled. The Contracting Officer or an authorized representative

will assign an area for interim storage of waste-containing drums. Do not store hazardous waste drums in interim storage longer than 90 calendar days from the date affixed to each drum.

- c. Handle, store, transport, and dispose lead or lead-contaminated waste in accordance with OAR 304-102, 40 CFR 260, 40 CFR 261, 40 CFR 262, 40 CFR 263, 40 CFR 264, and 40 CFR 265. Comply with land disposal restriction notification requirements as required by 40 CFR 268.
- E. Disposal Documentation: Submit written evidence that the hazardous waste treatment, storage, or disposal facility (TSD) is approved for lead disposal by the EPA and DEQ. Submit one copy of the completed manifest, signed and dated by the initial transporter in accordance with 40 CFR 262 and OAR 340-102.

- - - E N D - - -

SECTION 02 84 16

HANDLING OF LIGHTING BALLASTS AND LAMPS CONTAINING PCBs AND MERCURY

PART 1 - GENERAL

1.1 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
 - 29 CFR 1910.1000 Air Contaminants

40 CFR 260	Hazardous Waste Management System: General		
40 CFR 261	Identification and Listing of Hazardous Waste		
40 CFR 262	Standards Applicable to Generators of Hazardous Waste		
40 CFR 263	Standards Applicable to Transporters of Hazardous Waste		
40 CFR 264	Standards for Owners and Operators of Hazardous Waste		
	Treatment, Storage, and Disposal Facilities		
40 CFR 265	Interim Status Standards for Owners and Operators of		
	Hazardous Waste Treatment, Storage, and Disposal		
	Facilities		
40 CFR 268	Land Disposal Restrictions		
40 CFR 270	EPA Administered Permit Programs: The Hazardous Waste		
	Permit Program		
40 CFR 273	Standards For Universal Waste Management		
40 CFR 761	Polychlorinated Biphenyls (PCBs) Manufacturing,		
	Processing, Distribution in Commerce, and Use		
	Prohibitions		
49 CFR 178	Specifications for Packaging		

C. OR STATE Department of Environmental Quality (DEQ)

- OAR 340-100 Hazardous Waste Management
- OAR 340-110 OAR 340-113 Universal Wasto More OAR 340-102 Standards Applicable to Hazardous Waste Generators

REQUIREMENTS 1.2

A. Remove and dispose of PCB containing lighting ballasts and recycle associated mercury-containing lamps. Contractor may encounter leaking PCB ballasts. A representative number of each type of fluorescent fixture was opened and examined, and no "magnetic" ballasts were identified; however, since not all impacted light fixtures were inspected, the Contractor is required to inspect all impacted fluorescent light ballasts prior to disposal. Assume all "magnetic" ballasts not labeled as "NO BCPs" or "PCB FREE" contain greater than fifty (50) parts per million PCBs and recycle/dispose of all "magnetic" ballasts not so labeled as "Hazardous Waste". "Electronic" fluorescent light ballasts do not contain dielectric fluid and impacted "electronic" ballasts may be disposed as non-hazardous construction debris. All impacted fluorescent light tubes contain mercury and must be recycled, without breaking on site, as universal waste in accordance with OAR 340-113 and these specifications.

B. Refer to the Hazardous Materials Summary on sheet HA001 for quantities fluorescent light tubes expected to be recycled. Report any of 4' "magnetic" light ballasts identified to the Contracting Officer as an "unexpected condition" in accordance with the Contract.

1.3 DEFINITIONS

- A. Certified Industrial Hygienist (CIH)
 - 1. An industrial hygienist hired by the contractor shall be certified by the American Board of Industrial Hygiene.
- B. Leak
 - 1. Leak or leaking means any instance in which a PCB article, PCB container, or PCB equipment has any PCBs on any portion of its external surface.
- C. Lamps
 - 1. Lamp, also referred to as "universal waste lamp", is defined as the bulb or tube portion of an electric lighting device. A lamp is specifically designed to produce radiant energy, most often in the ultraviolet, visible, and infra-red regions of the electromagnetic spectrum. Examples of common universal waste electric lamps include, but are not limited to, fluorescent, high intensity discharge, neon, mercury vapor, high pressure sodium, and metal halide lamps.
- D. Polychlorinated Biphenyls (PCBs)
 - 1. PCBs, as used in this specification, shall mean the same as PCBs, PCB containing lighting ballast and PCB container, as defined in OAR 340-110 Dangerous Wastes Sources List.
- E. Spill
 - 1. Spill means both intentional and unintentional spills, leaks and other uncontrolled discharges when the release results in any quantity of PCBs running off or about to run off the external surface of the equipment or other PCB source, as well as the contamination resulting from those releases.
- F. Universal Waste
 - 1. Universal Waste means any of the following hazardous wastes that are managed under the universal waste requirements OAR 340-1133 and 40 CFR 273:
 - a. Batteries as described in Sec. 273.2 of 40 CFR 273 and OAR 340-113;
 - b. Pesticides as described in Sec. 273.3 of 40 CFR 273 and OAR 340-113:
 - c. Thermostats as described in Sec. 273.4 of 40 CFR 273 and OAR 340-113; and
 - d. Lamps as described in Sec. 273.5 of 40 CFR 273 and OAR 340-113.

QUALITY ASSURANCE 1.4

- A. Regulatory Requirements
 - 1. Perform PCB related work in accordance with 40 CFR 761 and WAC 173-Perform mercury-containing lamps storage and transport in 303. accordance with 40 CFR 261, 40 CFR 264, 40 CFR 265, 40 CFR 273 and OAR 340-110.
- B. Training

- 1. A Certified industrial hygienist (CIH) shall instruct and certify the training of all persons involved in the removal of PCB containing lighting ballasts and mercury-containing lamps. The instruction shall include: The dangers of PCB and mercury exposure, decontamination, safe work practices, and applicable OSHA and EPA regulations. The CIH shall review and approve the PCB and Mercury-Containing Lamp Removal Work Plans.
- C. Regulation Documents
 - Maintain at all times one copy each at the office and one copy each in view at the job site of 29 CFR 1910.1000, 40 CFR 260, 40 CFR 261, 40 CFR 262, 40 CFR 263, 40 CFR 265, 40 CFR 268, 40 CFR 270, 40 CFR 273 and OAR 340-110 and OAR 340-113, the Contractor's removal work plan and disposal plan for PCB and for associated mercury-containing lamps.

1.5 SUBMITTALS

Government approval is required for all submittals.

- A. Pre-work Submittals: Submit to the VA a minimum of 14 days prior to the commencing work which will disturb fluorescent fixtures the following for review and approval. Meeting this requirement is a prerequisite for commencing fluorescent fixture disturbing work for this project:
 - 1. Certificates
 - a. Qualifications of CIH;
 - b. Training Certification;
 - c. PCB and Lamp Removal Work Plan; and
 - d. PCB and Lamp Disposal Plan.
- B. Closeout Submittals: Provide the following close-out submittals within 30 days of shipment of hazardous waste, prior to application for payment.
 - 1. Transporter certification of notification to EPA of their PCB waste activities and EPA ID numbers;
 - 2. Certification of Decontamination;
 - 3. Certificate of Disposal and/or recycling for the PCB and mercurycontaining lamp waste identified on the manifest;
 - 4. US DOT waste manifest form (EPA form 8700-22) signed by VA representative prior to shipment.

1.6 ENVIRONMENTAL REQUIREMENTS

- A. Use special clothing:
 - 1. Disposable gloves (polyethylene)
 - 2. Eye protection
 - 3. PPE as required by CIH

1.7 SCHEDULING

A. Notify the Contracting Officer 5 days prior to the start of PCB and mercury-containing lamp removal work.

1.8 QUALITY ASSURANCE

- A. Qualifications of CIH
 - 1. Submit the name, address, and telephone number of the Industrial Hygienist selected to perform the duties in paragraph entitled "Certified Industrial Hygienist." Submit training certification that the Industrial Hygienist is certified, including certification number and date of certification or re certification.
- B. PCB and Lamp Removal Work Plan

- 1. Submit a job-specific plan within 10 calendar days after award of contract of the work procedures to be used in the removal, packaging, and storage of PCB-containing lighting ballasts and associated mercury-containing lamps. Include in the plan: Requirements for Personal Protective Equipment (PPE), spill cleanup procedures and equipment, eating, smoking and restroom procedures. The plan shall be approved and signed by the Certified Industrial Hygienist. Obtain approval of the plan by the Contracting Officer prior to the start of PCB and/or lamp removal work.
- C. PCB and Lamp Disposal Plan
 - 1. Submit a PCB and Lamp Disposal Plan with 45 calendar days after award of contract. The PCB and Lamp Disposal Plan shall comply with applicable requirements of federal, state, and local PCB and Universal waste regulations and address:
 - a. Estimated quantities of wastes to be generated, disposed of, and recycled.
 - b. Names and qualifications of each Contractor that will be transporting, storing, treating, and disposing of the wastes. Include the facility location. Furnish two copies of EPA and state PCB and mercury-containing lamp waste permit applications and EPA identification numbers, as required.
 - c. Names and qualifications (experience and training) of personnel who will be working on-site with PCB and mercury-containing lamp wastes.
 - d. Spill prevention, containment, and cleanup contingency measures to be implemented.
 - e. Work plan and schedule for PCB and mercury-containing lamp waste removal, containment, storage, transportation, disposal and or recycling. Wastes shall be cleaned up and containerize daily.

PART 2 - PRODUCTS

Not used.

PART 3 - EXECUTION

3.1 WORK PROCEDURE

- A. Furnish labor, materials, services, and equipment necessary for the removal of PCB containing lighting ballasts associated mercurycontaining fluorescent lamps and high intensity discharge (HID) lamps in accordance with local, state and federal regulations. Do not expose PCBs to open flames or other high temperature sources since toxic decomposition by-products may be produced. Do not break mercury containing fluorescent lamps or high intensity discharge lamps.
- B. Work Operations
 - 1. Ensure that work operations or processes involving PCB or PCBcontaminated materials are conducted in accordance with 40 CFR 761, 40 CFR 262 40 CFR 263 and the applicable requirements of this section, including but not limited to:
 - a. Obtaining suitable PCB and mercury-containing lamp storage sites;
 - b. Notifying Contracting Officer prior to commencing the operation;
 - c. Reporting leaks and spills to the Contracting Officer.
 - d. Cleaning up spills;

- e. Inspecting PCB and PCB-contaminated items and waste containers for leaks and forwarding copies of inspection reports to the Contracting Officer; and
- f. Maintaining inspection, inventory and spill records.

3.2 PCB SPILL CLEANUP REQUIREMENTS

A. PCB Spills

1. Immediately report to the Contracting Officer any PCB spills.

- B. PCB Spill Control Area
 - 1. Rope off an area around the edges of a PCB leak or spill and post a "PCB Spill Authorized Personnel Only" caution sign. Immediately transfer leaking items to a drip pan or other container.
- C. PCB Spill Cleanup
 - 1. 40 CFR 761, subpart G. Initiate cleanup of spills as soon as possible, but no later than 24 hours of its discovery. Mop up the liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as solid PCB waste.
- D. Records and Certification
 - Document the cleanup with records of decontamination in accordance with 40 CFR 761, Section 125, Requirements for PCB Spill Cleanup. Provide test results of cleanup and certification of decontamination.

3.3 REMOVAL

- A. Ballasts
 - As ballasts are removed from the lighting fixture, inspect label on ballast. Regardless of labeling as "No PCB" or "PCB Free", ballasts not labeled as "electronic" are assumed to contain >2ppm PCBs and must be containerized and disposed of as required under paragraphs STORAGE FOR DISPOSAL and DISPOSAL. Ballasts labeled as "electronic" may disposed as non-hazardous construction debris.
- B. Lighting Lamps
 - 1. Remove lighting tubes/lamps from the lighting fixture and carefully place (unbroken) into appropriate containers (original transport boxes or equivalent). In the event of a lighting tube/lamp breaking, sweep and place waste in double plastic taped bags and dispose of as universal waste as specified herein.

3.4 STORAGE FOR DISPOSAL

- A. Storage Containers for PCBs
 - 1. 49 CFR 178. Store PCB in containers approved by DOT for PCB.
- B. Storage Containers for lamps
 - 1. Store mercury containing lamps in appropriate DOT containers. The boxes shall be stored and labeled for transport in accordance with 40 CFR 273.
- C. Labeling of Waste Containers
 - 1. Label with the following:
 - a. Date the item was placed in storage and the name of the cognizant activity/building.
 - b. "Caution Contains PCB," conforming to OAR 340-110. Affix labels to PCB waste containers.
 - c. Label mercury-containing lamp waste in accordance with 40 CFR 273. Affix labels to all lighting waste containers.

3.5 DISPOSAL

- A. Dispose of hazardous waste in accordance with EPA, DOT, DEQ regulations at a permitted site.
- B. Identification Number
 - 1. Federal regulations 40 CFR 761, and 40 CFR 263 require that generators, transporters, commercial storers and disposers of PCB waste possess U.S. EPA identification numbers. The contractor shall verify that the activity has a U.S. EPA generator identification number for use on the Uniform Hazardous Waste manifest. If not, the contractor shall advise the activity that it must file and obtain an I.D. number with EPA prior to commencement of removal work. For mercury containing lamp removal, Federal regulations 40 CFR 273 require that large quantity handlers of universal waste (LQHUW) must notification of universal waste management to provide the appropriate EPA Region (or state director in authorized states), obtain an EPA identification number and retain records of off-site shipments of universal waste for three years. The contractor shall verify that the activity has a U.S. EPA generator identification number for use on the Universal Waste manifest. If not, the contractor shall advise the activity that it must file and obtain an I.D. number with EPA prior to commencement of removal work.
- C. Transporter Certification
 - 1. Comply with disposal and transportation requirements outlined in 40 CFR 761 and 40 CFR 263. Before transporting the PCB waste, sign and date the manifest acknowledging acceptance of the PCB waste from the Government. Return a signed copy to the Government before leaving the job site. Ensure that the manifest accompanies the PCB waste at all times. Submit transporter certification of notification to EPA of their PCB waste activities (EPA Form 7710-53).
 - a. Certificate of Disposal and/or Recycling
 - 1) 40 CFR 761. Certificate for the PCBs and PCB items disposed shall include:
 - a) The identity of the disposal and or recycling facility, by name, address, and EPA identification number.
 - b) The identity of the PCB waste affected by the Certificate of Disposal including reference to the manifest number for the shipment.
 - c) A statement certifying the fact of disposal and or recycling of the identified PCB waste, including the date(s) of disposal, and identifying the disposal process used.
 - d) A certification as defined in 40 CFR 761.

END OF SECTION

SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies cast-in-place structural concrete and materials and mixes for other concrete.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Concrete roads, walks, and similar exterior site work: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.

1.3 TESTING AGENCY FOR CONCRETE MIX DESIGN:

- A. Testing agency for the trial concrete mix design retained and reimbursed by the Contractor and approved by Resident Engineer. For all other testing, refer to Section 01 45 29 Testing Laboratory Services.
- B. Testing agency maintaining active participation in Program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology.
- C. Testing agency shall furnish equipment and qualified technicians to establish proportions of ingredients for concrete mixes.

1.4 TOLERANCES:

- A. Formwork: ACI 117, except the elevation tolerance of formed surfaces before removal of shores is +0 mm (+0 inch) and -20 mm (-3/4 inch).
- B. Reinforcement Fabricating and Placing: ACI 117, except that fabrication tolerance for bar sizes Nos. 10, 13, and 16 (Nos. 3, 4, and 5) (Tolerance Symbol 1 in Fig. 2.1(a), ACI, 117) used as column ties or stirrups is +0 mm (+0 inch) and -13 mm (-1/2 inch) where gross bar length is less than 3600 mm (12 feet), or +0 mm (+0 inch) and -20 mm (-3/4 inch) where gross bar length is 3600 mm (12 feet) or more.
- C. Cross-Sectional Dimension: ACI 117, except tolerance for thickness of slabs 12 inches or less is +20 mm (+3/4 inch) and - 6 mm (-1/4 inch). Tolerance of thickness of beams more than 300 mm (12 inch) but less than 900 mm (3 feet) is +20 mm (+3/4 inch) and -10 mm (-3/8 inch).
- D. Slab Finishes: ACI 117, Section 4.5.6, F-number method in accordance with ASTM E1155, except as follows:
 - Test entire slab surface, including those areas within 600 mm (2 feet) of construction joints and vertical elements that project through slab surface.

- 2. Maximum elevation change which may occur within 600 mm (2 feet) of any column or wall element is 6 mm (0.25 inches).
- 3. Allow sample measurement lines that are perpendicular to construction joints to extend past joint into previous placement no further than 1500 mm (5 feet).

1.5 REGULATORY REQUIREMENTS:

- A. ACI SP-66 ACI Detailing Manual.
- B. ACI 318 Building Code Requirements for Reinforced Concrete.
- C. ACI 301 Standard Specifications for Structural Concrete.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings: Reinforcing steel: Complete shop drawings
- C. Mill Test Reports:
 - 1. Reinforcing Steel.
 - 2. Cement.
- D. Manufacturer's Certificates:
 - 1. Abrasive aggregate.
 - 2. Lightweight aggregate for structural concrete.
 - 3. Air-entraining admixture.
 - 4. Chemical admixtures, including chloride ion content.
 - 5. Waterproof paper for curing concrete.
 - 6. Liquid membrane-forming compounds for curing concrete.
 - 7. Non-shrinking grout.
 - 8. Liquid hardener.
 - 9. Waterstops.
 - 10. Expansion joint filler.
 - 11. Adhesive binder.
- E. Testing Agency for Concrete Mix Design: Approval request including qualifications of principals and technicians and evidence of active participation in program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology.
- F. Test Report for Concrete Mix Designs: Trial mixes including water-cement ratio curves, concrete mix ingredients, and admixtures.
- G. Shoring and Reshoring Sequence: Submit for approval a shoring and reshoring sequence for flat slab/flat plate portions, prepared by a registered Professional Engineer. As a minimum, include timing of form stripping, reshoring, number of floors to be re-shored and timing of reshore removal to serve as an initial outline of procedures subject to

modification as construction progresses. Submit revisions to sequence, whether initiated by Resident Engineer (see FORMWORK) or Contractor.

1.7 DELIVERY, STORAGE, AND HANDLING:

- A. Conform to ACI 304. Store aggregate separately for each kind or grade, to prevent segregation of sizes and avoid inclusion of dirt and other materials.
- B. Deliver cement in original sealed containers bearing name of brand and manufacturer, and marked with net weight of contents. Store in suitable watertight building in which floor is raised at least 300 mm (1 foot) above ground. Store bulk cement and fly ash in separate suitable bins.
- C. Deliver other packaged materials for use in concrete in original sealed containers, plainly marked with manufacturer's name and brand, and protect from damage until used.

1.8 PRE-CONCRETE CONFERENCE:

- A. General: At least 15 days prior to submittal of design mixes, conduct a meeting to review proposed methods of concrete construction to achieve the required results.
- B. Agenda: Includes but is not limited to:
 - 1. Submittals.
 - 2. Coordination of work.
 - 3. Availability of material.
 - 4. Concrete mix design including admixtures.
 - 5. Methods of placing, finishing, and curing.
 - 6. Finish criteria required to obtain required flatness and levelness.
 - 7. Timing of floor finish measurements.
 - 8. Material inspection and testing.
- C. Attendees: Include but not limited to representatives of Contractor; subcontractors involved in supplying, conveying, placing, finishing, and curing concrete; lightweight aggregate manufacturer; admixture manufacturers; Resident Engineer; Consulting Engineer; Department of Veterans Affairs retained testing laboratories for concrete testing and finish (F-number) verification.
- D. Minutes of the meeting: Contractor shall take minutes and type and distribute the minutes to attendees within five days of the meeting.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI):

С

D

Project #: 692-14-101

	117-10	.Specifications for Tolerances for Concrete
		Construction and Materials and Commentary
	211.1-91(R2009)	.Standard Practice for Selecting Proportions for
		Normal, Heavyweight, and Mass Concrete
	211.2-98(R2004)	.Standard Practice for Selecting Proportions for
		Structural Lightweight Concrete
	214R-11	.Guide to Evaluation of Strength Test Results of
		Concrete
	301-10	.Standard Practice for Structural Concrete
	304R-00(R2009)	.Guide for Measuring, Mixing, Transporting, and
		Placing Concrete
	305.1-06	.Specification for Hot Weather Concreting
	306.1-90(R2002)	.Standard Specification for Cold Weather
		Concreting
	308.1-11	.Specification for Curing Concrete
	309R-05	.Guide for Consolidation of Concrete
	318-11	.Building Code Requirements for Structural
		Concrete and Commentary
	347-04	.Guide to Formwork for Concrete
	SP-66-04	ACI Detailing Manual
•	American National Standa	ards Institute and American Hardboard Association
	(ANSI/AHA):	
	A135.4-2004	.Basic Hardboard
•	American Society for Tea	sting and Materials (ASTM):
	A82/A82M-07	.Standard Specification for Steel Wire, Plain,
		for Concrete Reinforcement
	A185/185M-07	.Standard Specification for Steel Welded Wire
		Reinforcement, Plain, for Concrete
	A615/A615M-09	.Standard Specification for Deformed and Plain
		Carbon Steel Bars for Concrete Reinforcement
	A653/A653M-11	.Standard Specification for Steel Sheet, Zinc
		Coated (Galvanized) or Zinc Iron Alloy Coated
		(Galvannealed) by the Hot Dip Process
	A706/A706M-09	.Standard Specification for Low Alloy Steel
		Deformed and Plain Bars for Concrete
		Reinforcement
	A767/A767M-09	.Standard Specification for Zinc Coated
		(Galvanized) Steel Bars for Concrete
		Reinforcement

Project #: 692-14-101

A775/A775M-07Standard Specification for Epoxy Coated
Reinforcing Steel Bars
A820-11fibers for
Fiber Reinforced Concrete
A996/A996M-09Standard Specification for Rail Steel and Axle
Steel Deformed Bars for Concrete Reinforcement
C31/C31M-10Standard Practice for Making and Curing Concrete
Test Specimens in the field
C33/C33M-11AStandard Specification for Concrete Aggregates
C39/C39M-12Standard Test Method for Compressive Strength of
Cylindrical Concrete Specimens
C94/C94M-12Standard Specification for Ready Mixed Concrete
C143/C143M-10Standard Test Method for Slump of Hydraulic
Cement Concrete
C150-11 Ctandard Specification for Portland Cement
C171-07Standard Specification for Sheet Materials for
Curing Concrete
C172-10 Freshly Mixed
Concrete
C173-10 Of Freshly
Mixed Concrete by the Volumetric Method
C192/C192M-07Standard Practice for Making and Curing Concrete
Test Specimens in the Laboratory
C231-10 Of Freshly
Mixed Concrete by the Pressure Method
C260-10 Standard Specification for Air Entraining
Admixtures for Concrete
C309-11 Membrane Specification for Liquid Membrane
Forming Compounds for Curing Concrete
C330-09Standard Specification for Lightweight
Aggregates for Structural Concrete
C494/C494M-11Standard Specification for Chemical Admixtures
for Concrete
C618-12 Standard Specification for Coal Fly Ash and Raw
or Calcined Natural Pozzolan for Use in Concrete
C666/C666M-03(R2008)Standard Test Method for Resistance of Concrete
to Rapid Freezing and Thawing
C881/C881M-10Standard Specification for Epoxy Resin Base
Bonding Systems for Concrete

Project #: 692-14-101

	C1107/1107M-11Standard Specification for Packaged Dry,
	Hydraulic-Cement Grout (Non-shrink)
	C1315-11 Standard Specification for Liquid Membrane
	Forming Compounds Having Special Properties for
	Curing and Sealing Concrete
	D6-95(R2011)Standard Test Method for Loss on Heating of Oil
	and Asphaltic Compounds
	D297-93(R2006)Standard Methods for Rubber Products Chemical
	Analysis
	D412-06AE2Standard Test Methods for Vulcanized Rubber and
	Thermoplastic Elastomers - Tension
	D1751-04(R2008)Standard Specification for Preformed Expansion
	Joint Filler for Concrete Paving and Structural
	Construction (Non-extruding and Resilient
	Bituminous Types)
	D4263-83(2012)Standard Test Method for Indicating Moisture in
	Concrete by the Plastic Sheet Method.
	D4397-10Standard Specification for Polyethylene Sheeting
	for Construction, Industrial and Agricultural
	Applications
	E1155-96(R2008)Standard Test Method for Determining F_F Floor
	Flatness and F_{L} Floor Levelness Numbers
	F1869-11 Moisture Test Method for Measuring Moisture
	Vapor Emission Rate of Concrete Subfloor Using
	Anhydrous Calcium Chloride.
Ε.	American Welding Society (AWS):
_	D1.4/D1.4M-11Structural Welding Code - Reinforcing Steel
F.	Concrete Reinforcing Steel Institute (CRSI):
	Handbook 2008
G.	National Cooperative Highway Research Program (NCHRP):
	Report On Oncrete Sealers for the Protection of Bridge
	Structures
н.	U. S. Department of Commerce Product Standard (PS):
	PS 1Construction and Industrial Plywood
	PS 20American Softwood Lumber
I.	U. S. Army Corps of Engineers Handbook for Concrete and Cement:
	CRD C513Rubber Waterstops
	CRD C572Polyvinyl Chloride Waterstops

PART 2 - PRODUCTS:

2.1 FORMS:

- A. Wood: PS 20 free from loose knots and suitable to facilitate finishing concrete surface specified; tongue and grooved.
- B. Plywood: PS-1 Exterior Grade B-B (concrete-form) 16 mm (5/8 inch), or 20 mm (3/4 inch) thick for unlined contact form. B-B High Density Concrete Form Overlay optional.
- C. Metal for Concrete Rib-Type Construction: Steel (removal type) of suitable weight and form to provide required rigidity.
- D. Permanent Steel Form for Concrete Slabs: Corrugated, ASTM A653, Grade E, and Galvanized, ASTM A653, G90. Provide venting where insulating concrete fill is used.
- E. Corrugated Fiberboard Void Boxes: Double faced, completely impregnated with paraffin and laminated with moisture resistant adhesive, size as shown. Design forms to support not less than 48 KPa (1000 psf) and not lose more than 15 percent of their original strength after being completely submerged in water for 24 hours and then air dried.
- F. Form Lining:
 - 1. Hardboard: ANSI/AHA A135.4, Class 2 with one (S1S) smooth side)
 - 2. Plywood: Grade B-B Exterior (concrete-form) not less than 6 mm (1/4 inch) thick.
 - 3. Plastic, fiberglass, or elastomeric capable of reproducing the desired pattern or texture.
- G. Form Ties: Develop a minimum working strength of 13.35 kN (3000 pounds) when fully assembled. Ties shall be adjustable in length to permit tightening of forms and not have any lugs, cones, washers to act as spreader within form, nor leave a hole larger than 20 mm (3/4 inch) diameter, or a depression in exposed concrete surface, or leave metal closer than 40 mm (1 1/2 inches) to concrete surface. Wire ties not permitted. Cutting ties back from concrete face not permitted.

2.2 MATERIALS:

- A. Portland Cement: ASTM C150 Type I or II.
- B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalies, and loss on ignition (LOI) not to exceed 5 percent.
- C. Coarse Aggregate: ASTM C33.
 - Size 67 or Size 467 may be used for footings and walls over 300 mm (12 inches) thick.
 - 2. Coarse aggregate for applied topping, encasement of steel columns, and metal pan stair fill shall be Size 7.

Project #: 692-14-101

- 3. Maximum size of coarse aggregates not more than one-fifth of narrowest dimension between sides of forms, one-third of depth of slabs, nor three-fourth of minimum clear spacing between reinforcing bars.
- D. Lightweight Aggregates for Structural Concrete: ASTM C330, Table 1. Maximum size of aggregate not larger than one-fifth of narrowest dimension between forms, nor three-fourth of minimum clear distance between reinforcing bars. Contractor to furnish certified report to verify that aggregate is sound and durable, and has a durability factor of not less than 80 based on 300 cycles of freezing and thawing when tested in accordance with ASTM C666.
- E. Fine Aggregate: ASTM C33. Fine aggregate for applied concrete floor topping shall pass a 4.75 mm (No. 4) sieve, 10 percent maximum shall pass a 150 μ m (No. 100) sieve.
- F. Mixing Water: Fresh, clean, and potable.
- G. Admixtures:
 - 1. Water Reducing Admixture: ASTM C494, Type A and not contain more chloride ions than are present in municipal drinking water.
 - Water Reducing, Retarding Admixture: ASTM C494, Type D and not contain more chloride ions than are present in municipal drinking water.
 - 3. High-Range Water-Reducing Admixture (Superplasticizer): ASTM C494, Type F or G, and not contain more chloride ions than are present in municipal drinking water.
 - 4. Non-Corrosive, Non-Chloride Accelerator: ASTM C494, Type C or E, and not contain more chloride ions than are present in municipal drinking water. Admixture manufacturer must have long-term non-corrosive test data from an independent testing laboratory of at least one year duration using an acceptable accelerated corrosion test method such as that using electrical potential measures.
 - 5. Air Entraining Admixture: ASTM C260.

SPEC WRITER NOTE: Microsilica is for use in very high strength concrete and/or impermeable concretes. It is more difficult to place and finish than normal concrete. Calcium nitrite is for use in high chloride susceptible areas only. Both are expensive, specialty products typically specified in parking structures and other areas of reinforced concrete subjected to dicers or water born chlorides.

Project #: 692-14-101

- Microsilica: Use only with prior review and acceptance of the Resident Engineer. Use only in conjunction with high range water reducer.
- 7. Calcium Nitrite corrosion inhibitor: ASTM C494 Type C.
- 8. Prohibited Admixtures: Calcium chloride, thiocyanate or admixtures containing more than 0.05 percent chloride ions are not permitted.
- 9. Certification: Written conformance to the requirements above and the chloride ion content of the admixture prior to mix design review.
- H. Vapor Barrier: ASTM D4397, 0.25 mm (10 mil).
- I. Reinforcing Steel: ASTM A615, or ASTM A996, deformed, grade as shown.
- J. Welded Wire Fabric: ASTM A185.
- K. Reinforcing Bars to be Welded: ASTM A706.
- L. Galvanized Reinforcing Bars: ASTM A767.
- M. Epoxy Coated Reinforcing Bars: ASTM A775.

N. Cold Drawn Steel Wire: ASTM A82.

- O. Reinforcement for Concrete Fireproofing: 100 mm x 100 mm x 3.4 mm diameter (4 x 4-W1.4 x W1.4) welded wire fabric, secured in place to hold mesh 20 mm (3/4 inch) away from steel. Mesh at steel columns shall be wired to No. 10 (No. 3) vertical corner steel bars.
- P. Reinforcement for Metal Pan Stair Fill: 50 mm (2 inch) wire mesh, either hexagonal mesh at .8Kg/m² (1.5 pounds per square yard), or square mesh at .6Kg/m² (1.17 pounds per square yard).
- Q. Supports, Spacers, and Chairs: Types which will hold reinforcement in position shown in accordance with requirements of ACI 318 except as specified.
- R. Expansion Joint Filler: ASTM D1751.
- S. Sheet Materials for Curing Concrete: ASTM C171.
- T. Liquid Membrane-forming Compounds for Curing Concrete: ASTM C309, Type I, with fugitive dye, and shall meet the requirements of ASTM C1315.Compound shall be compatible with scheduled surface treatment, such as paint and resilient tile, and shall not discolor concrete surface.
- U. Abrasive Aggregate: Aluminum oxide grains or emery grits.
- V. Liquid Hardener and Dustproofer: Fluosilicate solution of magnesium fluosilicate or zinc fluosilicate. Magnesium and zinc may be used separately or in combination as recommended by manufacturer. Use only on exposed slab. Do not use where floor is covered with resilient flooring, paint or other finish coating.

- W. Moisture Vapor Emissions & Alkalinity Control Sealer: 100% active colorless aqueous siliconate solution concrete surface.
 - 1. ASTM C1315 Type 1 Class A, and ASTM C309 Type 1 Class A, penetrating product to have no less than 34% solid content, leaving no sheen, volatile organic compound (VOC) content rating as required to suite regulatory requirements. The product shall have at least a five (5) year documented history in controlling moisture vapor emission from damaging floor covering, compatible with all finish materials.
 - 2. MVE 15-Year Warranty:
 - a. When a floor covering is installed on a below grade, on grade, or above grade concrete slab treated with Moisture Vapor Emissions & Alkalinity Control Sealer according to manufacturer's instruction, sealer manufacturer shall warrant the floor covering system against failure due to moisture vapor migration or moisture-born contaminates for a period of fifteen (15) years from the date of original installation. The warranty shall cover all labor and materials needed to replace all floor covering that fails due to moisture vapor emission & moisture born contaminates.
- X. Penetrating Sealer: For use on parking garage ramps and decks. High penetration silane sealer providing minimum 95 percent screening per National Cooperative Highway Research Program (NCHRP) No. 244 standards for chloride ion penetration resistance. Requires moist (non-membrane) curing of slab.
- Y. Non-Shrink Grout:
 - 1. ASTM C1107, pre-mixed, produce a compressive strength of at least 18 MPa at three days and 35 MPa (5000 psi) at 28 days. Furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent bearing under a 1200 mm x 1200 mm (4 foot by 4 foot) base plate.
 - 2. Where high fluidity or increased placing time is required, furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent under an 450 mm x 900 mm (18 inch by 36 inch) base plate.
- Z. Adhesive Binder: ASTM C881.
- AA. Waterstops:
 - 1. Polyvinyl Chloride Waterstop: CRD C572.
 - 2. Rubber Waterstops: CRD C513.
- BB. Porous Backfill: Crushed stone or gravel graded from 25 mm to 20 mm (1 inch to 3/4 inch).
- CC. Fibers:

- 1. Synthetic Fibers: Monofilament or fibrillated polypropylene fibers for secondary reinforcing of concrete members. Use appropriate length and 0.9 kg/m³ (1.5 lb. per cubic yard). Product shall have a UL rating.
- Steel Fibers: ASTM A820, Type I cold drawn, high tensile steel wire for use as primary reinforcing in slab-on-grade. Minimum dosage rate 18 kg/m³ (30 lb. per cubic yard).
- DD. Epoxy Joint Filler: Two component, 100 percent solids compound, with a minimum shore D hardness of 50.
- EE. Bonding Admixture: Non-rewettable, polymer modified, bonding compound.
- FF. Architectural Concrete: For areas designated as architectural concrete on the Contract Documents, use colored cements and specially selected aggregates as necessary to produce a concrete of a color and finish which exactly matches the designated sample panel.

2.3 CONCRETE MIXES:

- A. Mix Designs: Proportioned in accordance with Section 5.3, "Proportioning on the Basis of Field Experience and/or Trial Mixtures" of ACI 318.
 - If trial mixes are used, make a set of at least 6 cylinders in accordance with ASTM C192 for test purposes from each trial mix; test three for compressive strength at 7 days and three at 28 days.
 - 2. Submit a report of results of each test series, include a detailed listing of the proportions of trial mix or mixes, including cement, fly ash, admixtures, weight of fine and coarse aggregate per m³ (cubic yard) measured dry rodded and damp loose, specific gravity, fineness modulus, percentage of moisture, air content, water-cement -fly ash ratio, and consistency of each cylinder in terms of slump.
 - 3. Prepare a curve showing relationship between water-cement -fly ash ratio at 7-day and 28-day compressive strengths. Plot each curve using at least three specimens.
 - 4. If the field experience method is used, submit complete standard deviation analysis.
- B. Fly Ash Testing: Submit certificate verifying conformance with ASTM 618 initially with mix design and for each truck load of fly ash delivered from source. Submit test results performed within 6 months of submittal date. Notify Resident Engineer immediately when change in source is anticipated.
 - Testing Laboratory used for fly ash certification/testing shall participate in the Cement and Concrete Reference Laboratory (CCRL) program. Submit most recent CCRL inspection report.

- C. After approval of mixes no substitution in material or change in proportions of approval mixes may be made without additional tests and approval of Resident Engineer or as specified. Making and testing of preliminary test cylinders may be carried on pending approval of cement and fly ash, providing Contractor and manufacturer certify that ingredients used in making test cylinders are the same. Resident Engineer may allow Contractor to proceed with depositing concrete for certain portions of work, pending final approval of cement and fly ash and approval of design mix.
- D. Cement Factor: Maintain minimum cement factors in Table I regardless of compressive strength developed above minimums. Use Fly Ash as an admixture with 20% replacement by weight in all structural work. Increase this replacement to 40% for mass concrete, and reduce it to 10% for drilled piers and caissons. Fly ash shall not be used in high-early mix design.

Concrete Strength		Non-Air- Entrained	Air-Entrained	
Min. 28 Day Comp. Str. MPa (psi)	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio
35 (5000) ^{1,3}	375 (630)	0.45	385 (650)	0.40
30 (4000) ^{1,3} 25 (3000) ^{1,3}	325 (550) 280 (470)	0.55 0.65	340 (570) 290 (490)	0.50 0.55
25 (3000) ^{1,2}	300 (500)	*	310 (520)	*

TABLE I -	CEMENT	AND	WATER	FACTORS	FOR	CONCRETE
-----------	--------	-----	-------	---------	-----	----------

- If trial mixes are used, the proposed mix design shall achieve a compressive strength 8.3 MPa (1200 psi) in excess of f'c. For concrete strengths above 35 Mpa (5000 psi), the proposed mix design shall achieve a compressive strength 9.7 MPa (1400 psi) in excess of f'c.
- 2. Lightweight Structural Concrete. Pump mixes may require higher cement values.
- 3. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44.
- 4. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.
- E. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

Type of Construction	Normal Weight Concrete	Lightweight Structural Concrete
Reinforced Footings and Substructure Walls	75mm (3 inches)	75 mm (3 inches)
Slabs, Beams, Reinforced Walls, and Building Columns	100 mm (4 inches)	100 mm (4 inches)

TABLE II - MAXIMUM SLUMP, MM (INCHES)*

F. Slump may be increased by the use of the approved high-range waterreducing admixture (superplasticizer). Tolerances as established by ASTM C94. Concrete containing the high-range-water-reducing admixture may have a maximum slump of 225 mm (9 inches). The concrete shall arrive at the job site at a slump of 50 mm to 75 mm (2 inches to 3 inches), and 75 mm to 100 mm (3 inches to 4 inches) for lightweight concrete. This should be verified, and then the high-range-water-reducing admixture added to increase the slump to the approved level.

G. Air-Entrainment: Air-entrainment of normal weight concrete shall conform with Table III. Air-entrainment of lightweight structural concrete shall conform with Table IV. Determine air content by either ASTM C173 or ASTM C231.

TABLE III - TOTAL AIR CONTENT FOR VARIOUS SIZES OF COARSE AGGREGATES (NORMAL CONCRETE)

Nominal Maximum Size of Total Air Content	Coarse Aggregate, mm (Inches) Percentage by Volume	
10 mm (3/8 in).6 to 10	13 mm (1/2 in).5 to 9	
20 mm (3/4 in).4 to 8	25 mm (1 in).3-1/2 to 6-1/2	
40 mm (1 1/2 in).3 to 6		

TABLE IV AIR CONTENT OF LIGHTWEIGHT STRUCTURAL CONCRETE

Nominal Maximum size of	Coarse Aggregate, mm's (Inches)
Total Air Content	Percentage by Volume
Greater than 10 mm (3/8 in) 4 to 8	10 mm (3/8 in) or less 5 to 9

- H. High early strength concrete, made with Type III cement or Type I cement plus non-corrosive accelerator, shall have a 7-day compressive strength equal to specified minimum 28-day compressive strength for concrete type specified made with standard Portland cement.
- I. Lightweight structural concrete shall not weigh more than air-dry unit weight shown. Air-dry unit weight determined on 150 mm by 300 mm (6 inch by 12 inch) test cylinders after seven days standard moist curing followed by 21 days drying at 23 degrees C \pm 1.7 degrees C (73.4 \pm 3 degrees Fahrenheit), and 50 (plus or minus 7) percent relative humidity. Use wet unit weight of fresh concrete as basis of control in field.
- J. Concrete slabs placed at air temperatures below 10 degrees C (50 degrees Fahrenheit) use non-corrosive, non-chloride accelerator. Concrete required to be air entrained use approved air entraining admixture. Pumped concrete, synthetic fiber concrete, architectural concrete, concrete required to be watertight, and concrete with a water/cement ratio below 0.50 use high-range water-reducing admixture (superplasticizer).

- K. Durability: Use air entrainment for exterior exposed concrete subjected to freezing and thawing and other concrete shown or specified. For air content requirements see Table III or Table IV.
- L. Enforcing Strength Requirements: Test as specified in Section 01 45 29, TESTING LABORATORY SERVICES, during the progress of the work. Seven-day tests may be used as indicators of 28-day strength. Average of any three 28-day consecutive strength tests of laboratory-cured specimens representing each type of concrete shall be equal to or greater than specified strength. No single test shall be more than 3.5 MPa (500 psi) below specified strength. Interpret field test results in accordance with ACI 214. Should strengths shown by test specimens fall below required values, Resident Engineer may require any one or any combination of the following corrective actions, at no additional cost to the Government:
 - Require changes in mix proportions by selecting one of the other appropriate trial mixes or changing proportions, including cement content, of approved trial mix.
 - 2. Require additional curing and protection.
 - 3. If five consecutive tests fall below 95 percent of minimum values given in Table I or if test results are so low as to raise a question as to the safety of the structure, Resident Engineer may direct Contractor to take cores from portions of the structure. Use results from cores tested by the Contractor retained testing agency to analyze structure.
 - 4. If strength of core drilled specimens falls below 85 percent of minimum value given in Table I, Resident Engineer may order load tests, made by Contractor retained testing agency, on portions of building so affected. Load tests in accordance with ACI 318 and criteria of acceptability of concrete under test as given therein.
 - 5. Concrete work, judged inadequate by structural analysis, by results of load test, or for any reason, shall be reinforced with additional construction or replaced, if directed by the Resident Engineer.

2.4 BATCHING AND MIXING:

A. General: Concrete shall be "Ready-Mixed" and comply with ACI 318 and ASTM C94, except as specified. Batch mixing at the site is permitted. Mixing process and equipment must be approved by Resident Engineer. With each batch of concrete, furnish certified delivery tickets listing information in Paragraph 16.1 and 16.2 of ASTM C94. Maximum delivery temperature of concrete is 38°C (100 degrees Fahrenheit). Minimum delivery temperature as follows:

Atmospheric Temperature	Minimum Concrete Temperature
-1. degrees to 4.4 degrees C	15.6 degrees C (60 degrees F.)
(30 degrees to 40 degrees F)	
-17 degrees C to -1.1 degrees C (0 degrees to 30 degrees F.)	21 degrees C (70 degrees F.)

1. Services of aggregate manufacturer's representative shall be furnished during the design of trial mixes and as requested by the Resident Engineer for consultation during batching, mixing, and placing operations of lightweight structural concrete. Services will be required until field controls indicate that concrete of required quality is being furnished. Representative shall be thoroughly familiar with the structural lightweight aggregate, adjustment and control of mixes to produce concrete of required quality. Representative shall assist and advise Resident Engineer.

PART 3 - EXECUTION

3.1 FORMWORK:

- A. General: Design in accordance with ACI 347 is the responsibility of the Contractor. The Contractor shall retain a registered Professional Engineer to design the formwork, shores, and reshores.
 - Form boards and plywood forms may be reused for contact surfaces of exposed concrete only if thoroughly cleaned, patched, and repaired and Resident Engineer approves their reuse.
 - 2. Provide forms for concrete footings unless Resident Engineer determines forms are not necessary.
 - 3. Corrugated fiberboard forms: Place forms on a smooth firm bed, set tight, with no buckled cartons to prevent horizontal displacement, and in a dry condition when concrete is placed.
- B. Treating and Wetting: Treat or wet contact forms as follows:
 - Coat plywood and board forms with non-staining form sealer. In hot weather, cool forms by wetting with cool water just before concrete is placed.
 - Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
 - 3. Use sealer on reused plywood forms as specified for new material.
- C. Size and Spacing of Studs: Size and space studs, wales and other framing members for wall forms so as not to exceed safe working stress of kind

of lumber used nor to develop deflection greater than 1/270 of free span of member.

- D. Unlined Forms: Use plywood forms to obtain a smooth finish for concrete surfaces. Tightly butt edges of sheets to prevent leakage. Back up all vertical joints solidly and nail edges of adjacent sheets to same stud with 6d box nails spaced not over 150 mm (6 inches) apart.
- E. Lined Forms: May be used in lieu of unlined plywood forms. Back up form lining solidly with square edge board lumber securely nailed to studs with all edges in close contact to prevent bulging of lining. No joints in lining and backing may coincide. Nail abutted edges of sheets to same backing board. Nail lining at not over 200 mm (8 inches) on center along edges and with at least one nail to each square foot of surface area; nails to be 3d blued shingle or similar nails with thin flatheads.
- F. Architectural Liner: Attach liner as recommended by the manufacturer with tight joints to prevent leakage.
- G. Wall Form Ties: Locate wall form ties in symmetrically level horizontal rows at each line of wales and in plumb vertical tiers. Space ties to maintain true, plumb surfaces. Provide one row of ties within 150 mm (6 inches) above each construction joint. Space through-ties adjacent to horizontal and vertical construction joints not over 450 mm (18 inches) on center.
 - Tighten row of ties at bottom of form just before placing concrete and, if necessary, during placing of concrete to prevent seepage of concrete and to obtain a clean line. Ties to be entirely removed shall be loosened 24 hours after concrete is placed and shall be pulled from least important face when removed.
 - 2. Coat surfaces of all metal that is to be removed with paraffin, cup grease or a suitable compound to facilitate removal.
- H. Inserts, Sleeves, and Similar Items: Flashing reglets, steel strips, masonry ties, anchors, wood blocks, nailing strips, grounds, inserts, wire hangers, sleeves, drains, guard angles, forms for floor hinge boxes, inserts or bond blocks for elevator guide rails and supports, and other items specified as furnished under this and other sections of specifications and required to be in their final position at time concrete is placed shall be properly located, accurately positioned, and built into construction, and maintained securely in place.
 - Locate inserts or hanger wires for furred and suspended ceilings only in bottom of concrete joists, or similar concrete member of overhead concrete joist construction.

- Install sleeves, inserts and similar items for mechanical services in accordance with drawings prepared specially for mechanical services. Contractor is responsible for accuracy and completeness of drawings and shall coordinate requirements for mechanical services and equipment.
- 3. Do not install sleeves in beams, joists or columns except where shown or permitted by Resident Engineer. Install sleeves in beams, joists, or columns that are not shown, but are permitted by the Resident Engineer, and require no structural changes, at no additional cost to the Government.
- Minimum clear distance of embedded items such as conduit and pipe is at least three times diameter of conduit or pipe, except at stub-ups and other similar locations.
- 5. Provide recesses and blockouts in floor slabs for door closers and other hardware as necessary in accordance with manufacturer's instructions.
- I. Construction Tolerances:
 - Set and maintain concrete formwork to assure erection of completed work within tolerances specified and to accommodate installation of other rough and finish materials. Accomplish remedial work necessary for correcting excessive tolerances. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government.
 - Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements.

3.2 PLACING REINFORCEMENT:

- A. General: Details of concrete reinforcement in accordance with ACI 318 unless otherwise shown.
- B. Placing: Place reinforcement conforming to CRSI DA4, unless otherwise shown.
 - 1. Place reinforcing bars accurately and tie securely at intersections and splices with 1.6 mm (16 gauge) black annealed wire. Use epoxycoated tie wire with epoxy-coated reinforcing. Secure reinforcing bars against displacement during the placing of concrete by spacers, chairs, or other similar supports. Portions of supports, spacers, and chairs in contact with formwork shall be made of plastic in areas that will be exposed when building is occupied. Type, number, and

spacing of supports conform to ACI 318. Where concrete slabs are placed on ground, use concrete blocks or other non-corrodible material of proper height, for support of reinforcement. Use of brick or stone supports will not be permitted.

- 2. Lap welded wire fabric at least $1 \frac{1}{2}$ mesh panels plus end extension of wires not less than 300 mm (12 inches) in structural slabs. Lap welded wire fabric at least 1/2 mesh panels plus end extension of wires not less than 150 mm (6 inches) in slabs on grade.
- 3. Splice column steel at no points other than at footings and floor levels unless otherwise shown.
- C. Spacing: Minimum clear distances between parallel bars, except in columns and multiple layers of bars in beams shall be equal to nominal diameter of bars. Minimum clear spacing is 25 mm (1 inch) or 1-1/3 times maximum size of coarse aggregate.
- D. Splicing: Splices of reinforcement made only as required or shown or specified. Accomplish splicing as follows:
 - 1. Lap splices: Do not use lap splices for bars larger than Number 36 (Number 11). Minimum lengths of lap as shown.
 - 2. Welded splices: Splicing by butt-welding of reinforcement permitted providing the weld develops in tension at least 125 percent of the yield strength (fy) for the bars. Welding conform to the requirements of AWS D1.4. Welded reinforcing steel conform to the chemical analysis requirements of AWS D1.4.
 - a. Submit test reports indicating the chemical analysis to establish weldability of reinforcing steel.
 - b. Submit a field quality control procedure to insure proper inspection, materials and welding procedure for welded splices.
 - c. Department of Veterans Affairs retained testing agency shall test a minimum of three splices, for compliance, locations selected by Resident Engineer.
 - 3. Mechanical Splices: Develop in tension and compression at least 125 percent of the yield strength (fy) of the bars. Stresses of transition splices between two reinforcing bar sizes based on area of smaller bar. Provide mechanical splices at locations indicated. Use approved exothermic, tapered threaded coupling, or swaged and threaded sleeve. Exposed threads and swaging in the field not permitted.
 - a. Initial qualification: In the presence of Resident Engineer, make three test mechanical splices of each bar size proposed to be

spliced. Department of Veterans Affairs retained testing laboratory will perform load test.

- b. During installation: Furnish, at no additional cost to the Government, one companion (sister) splice for every 50 splices for load testing. Department of Veterans Affairs retained testing laboratory will perform the load test.
- E. Bending: Bend bars cold, unless otherwise approved. Do not field bend bars partially embedded in concrete, except when approved by Resident Engineer.
- F. Cleaning: Metal reinforcement, at time concrete is placed, shall be free from loose flaky rust, mud, oil, or similar coatings that will reduce bond.
- G. Future Bonding: Protect exposed reinforcement bars intended for bonding with future work by wrapping with felt and coating felt with a bituminous compound unless otherwise shown.

3.3 VAPOR BARRIER:

- A. Except where membrane waterproofing is required, interior concrete slab on grade shall be placed on a continuous vapor barrier.
 - 1. Place 100 mm (4 inches) of fine granular fill over the vapor barrier to act as a blotter for concrete slab.
 - 2. Vapor barrier joints lapped 150 mm (6 inches) and sealed with compatible waterproof pressure-sensitive tape.
 - 3. Patch punctures and tears.

3.4 SLABS RECEIVING RESILIENT COVERING

- A. Slab shall be allowed to cure for 6 weeks minimum prior to placing resilient covering. After curing, slab shall be tested by the Contractor for moisture in accordance with ASTM D4263 or ASTM F1869. Moisture content shall be less than 3 pounds per 1000 sf prior to placing covering.
- B. In lieu of curing for 6 weeks, Contractor has the option, at his own cost, to utilize the Moisture Vapor Emissions & Alkalinity Control Sealer as follows:
 - Sealer is applied on the day of the concrete pour or as soon as harsh weather permits, prior to any other chemical treatments for concrete slabs either on grade, below grade or above grade receiving resilient flooring, such as, sheet vinyl, vinyl composition tile, rubber, wood flooring, epoxy coatings and overlays.
 - 2. Manufacturer's representative will be on the site the day of concrete pour to install or train its application and document. He shall

return on every application thereafter to verify that proper procedures are followed.

- a. Apply Sealer to concrete slabs as soon as final finishing operations are complete and the concrete has hardened sufficiently to sustain floor traffic without damage.
- b. Spray apply Sealer at the rate of 20 m^2 (200 square feet) per gallon. Lightly broom product evenly over the substrate and product has completely penetrated the surface.
- c. If within two (2) hours after initial application areas are subjected to heavy rainfall and puddling occurs, reapply Sealer product to these areas as soon as weather condition permits.

3.5 CONSTRUCTION JOINTS:

- A. Unless otherwise shown, location of construction joints to limit individual placement shall not exceed 24,000 mm (80 feet) in any horizontal direction, except slabs on grade which shall have construction joints shown. Allow 48 hours to elapse between pouring adjacent sections unless this requirement is waived by Resident Engineer.
- B. Locate construction joints in suspended floors near the quarter-point of spans for slabs, beams or girders, unless a beam intersects a girder at center, in which case joint in girder shall be offset a distance equal to twice width of beam. Provide keys and inclined dowels as shown. Provide longitudinal keys as shown.
- C. Place concrete for columns slowly and in one operation between joints. Install joints in concrete columns at underside of deepest beam or girder framing into column.
- D. Allow 2 hours to elapse after column is cast before concrete of supported beam, girder or slab is placed. Place girders, beams, grade beams, column capitals, brackets, and haunches at the same time as slab unless otherwise shown.
- E. Install polyvinyl chloride or rubber water seals, wher shown in accordance with manufacturer's instructions, to form continuous watertight seal.

3.6 EXPANSION JOINTS AND CONTRACTION JOINTS:

- A. Clean expansion joint surfaces before installing premolded filler and placing adjacent concrete.
- B. Install polyvinyl chloride or rubber water seals, where shown in accordance with manufacturer's instructions, to form continuous watertight seal.

C. Provide contraction (control) joints in floor slabs as indicated on the contract drawings. Joints shall be either formed or saw cut, to the indicated depth after the surface has been finished. Complete saw joints within 4 to 12 hours after concrete placement. Protect joints from intrusion of foreign matter.

3.7 PLACING CONCRETE:

- A. Preparation:
 - Remove hardened concrete, wood chips, shavings and other debris from forms.
 - 2. Remove hardened concrete and foreign materials from interior surfaces of mixing and conveying equipment.
 - 3. Have forms and reinforcement inspected and approved by Resident Engineer before depositing concrete.
 - 4. Provide runways for wheeling equipment to convey concrete to point of deposit. Keep equipment on runways which are not supported by or bear on reinforcement. Provide similar runways for protection of vapor barrier on coarse fill.
- B. Bonding: Before depositing new concrete on or against concrete which has been set, thoroughly roughen and clean existing surfaces of laitance, foreign matter, and loose particles.
 - 1. Preparing surface for applied topping:
 - a. Remove laitance, mortar, oil, grease, paint, or other foreign material by sand blasting. Clean with vacuum type equipment to remove sand and other loose material.
 - b. Broom clean and keep base slab wet for at least four hours before topping is applied.
 - c. Use a thin coat of one part Portland cement, 1.5 parts fine sand, bonding admixture; and water at a 50: 50 ratio and mix to achieve the consistency of thick paint. Apply to a damp base slab by scrubbing with a stiff fiber brush. New concrete shall be placed while the bonding grout is still tacky.
- C. Conveying Concrete: Convey concrete from mixer to final place of deposit by a method which will prevent segregation. Method of conveying concrete is subject to approval of Resident Engineer.
- D. Placing: For special requirements see Paragraphs, HOT WEATHER and COLD hours.
 - Deposit concrete in forms as near as practicable in its final position. Prevent splashing of forms or reinforcement with concrete in advance of placing concrete.

2.Do not drop concrete freely more than 3000 mm (10 feet) for concrete containing the high-range water-reducing admixture (superplasticizer) WEATHER.

- 3. Do not place concrete when weather conditions prevent proper placement and consolidation, or when concrete has attained its initial set, or has contained its water or cement content more than 1 1/2 or 1500 mm (5 feet) for conventional concrete. Where greater drops are required, use a tremie or flexible spout (canvas elephant trunk), attached to a suitable hopper.
- 4. Discharge contents of tremies or flexible spouts in horizontal layers not exceeding 500 mm (20 inches) in thickness, and space tremies such as to provide a minimum of lateral movement of concrete.
- 5. Continuously place concrete until an entire unit between construction joints is placed. Rate and method of placing concrete shall be such that no concrete between construction joints will be deposited upon or against partly set concrete, after its initial set has taken place, or after 45 minutes of elapsed time during concrete placement.
- 6. On bottom of members with severe congestion of reinforcement, deposit 25 mm (1 inch) layer of flowing concrete containing the specified high-range water-reducing admixture (superplasticizer). Successive concrete lifts may be a continuation of this concrete or concrete with a conventional slump.
- 7. Concrete on metal deck:
 - a. Concrete on metal deck shall be minimum thickness shown. Allow for deflection of steel beams and metal deck under the weight of wet concrete in calculating concrete quantities for slab.
 - The Contractor shall become familiar with deflection characteristics of structural frame to include proper amount of additional concrete due to beam/deck deflection.
- E. Consolidation: Conform to ACI 309. Immediately after depositing, spade concrete next to forms, work around reinforcement and into angles of forms, tamp lightly by hand, and compact with mechanical vibrator applied directly into concrete at approximately 450 mm (18 inch) intervals. Mechanical vibrator shall be power driven, hand operated type with minimum frequency of 5000 cycles per minute having an intensity sufficient to cause flow or settlement of concrete into place. Vibrate concrete to produce thorough compaction, complete embedment of reinforcement and concrete of uniform and maximum density without segregation of mix. Do not transport concrete in forms by vibration.

Project #: 692-14-101

- 1. Use of form vibration shall be approved only when concrete sections are too thin or too inaccessible for use of internal vibration.
- 2. Carry on vibration continuously with placing of concrete. Do not insert vibrator into concrete that has begun to set.

3.8 HOT WEATHER:

Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.9 COLD WEATHER:

Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.10 PROTECTION AND CURING:

- A. Conform to ACI 308: Initial curing shall immediately follow the finishing operation. Protect exposed surfaces of concrete from premature drying, wash by rain and running water, wind, mechanical injury, and excessively hot or cold temperatures. Keep concrete not covered with membrane or other curing material continuously wet for at least 7 days after placing, except wet curing period for high-early-strength concrete shall be not less than 3 days. Keep wood forms continuously wet to prevent moisture loss until forms are removed. Cure exposed concrete surfaces as described below. Other curing methods may be used if approved by Resident Engineer.
 - Liquid curing and sealing compounds: Apply by power-driven spray or roller in accordance with the manufacturer's instructions. Apply immediately after finishing. Maximum coverage 10m²/L (400 square feet per gallon) on steel troweled surfaces and 7.5m²/L (300 square feet per gallon) on floated or broomed surfaces for the curing/sealing compound.
 - Plastic sheets: Apply as soon as concrete has hardened sufficiently to prevent surface damage. Utilize widest practical width sheet and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with tape.

Project #: 692-14-101

3. Paper: Utilize widest practical width paper and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with sand, wood planks, pressure-sensitive tape, mastic or glue.

3.11 REMOVAL OF FORMS:

- A. Remove in a manner to assure complete safety of structure after the following conditions have been met.
 - Where structure as a whole is supported on shores, forms for beams and girder sides, columns, and similar vertical structural members may be removed after 24 hours, provided concrete has hardened sufficiently to prevent surface damage and curing is continued without any lapse in time as specified for exposed surfaces.
 - 2. Take particular care in removing forms of architectural exposed concrete to insure surfaces are not marred or gouged, and that corners and arises are true, sharp and unbroken.
- B. Control Test: Use to determine if the concrete has attained sufficient strength and curing to permit removal of supporting forms. Cylinders required for control tests taken in accordance with ASTM C172, molded in accordance with ASTM C31, and tested in accordance with ASTM C39. Control cylinders cured and protected in the same manner as the structure they represent. Supporting forms or shoring not removed until strength of control test cylinders have attained at least 70 percent of minimum 28-day compressive strength specified. For post-tensioned systems supporting forms and shoring not removed until stressing is completed. Exercise care to assure that newly unsupported portions of structure are not subjected to heavy construction or material loading.
- C. Reshoring: Reshoring is required if superimposed load plus dead load of the floor exceeds the capacity of the floor at the time of loading. In addition, for flat slab/plate, reshoring is required immediately after stripping operations are complete and not later than the end of the same day. Reshoring accomplished in accordance with ACI 347 at no additional cost to the Government.

3.12 CONCRETE SURFACE PREPARATION:

- A. Metal Removal: Unnecessary metal items cut back flush with face of concrete members.
- B. Patching: Maintain curing and start patching as soon as forms are removed. Do not apply curing compounds to concrete surfaces requiring patching until patching is completed. Use cement mortar for patching of same composition as that used in concrete. Use white or gray Portland cement as necessary to obtain finish color matching surrounding concrete. Thoroughly clean areas to be patched. Cut out honeycombed or

otherwise defective areas to solid concrete to a depth of not less than 25 mm (1 inch). Cut edge perpendicular to surface of concrete. Saturate with water area to be patched, and at least 150 mm (6 inches) surrounding before placing patching mortar. Give area to be patched a brush coat of cement grout followed immediately by patching mortar. Cement grout composed of one part Portland cement, 1.5 parts fine sand, bonding admixture, and water at a 50:50 ratio, mix to achieve consistency of thick paint. Mix patching mortar approximately 1 hour before placing and remix occasionally during this period without addition of water. Compact mortar into place and screed slightly higher than surrounding surface. After initial shrinkage has occurred, finish to match color and texture of adjoining surfaces. Cure patches as specified for other concrete. Fill form tie holes which extend entirely through walls from unexposed face by means of a pressure gun or other suitable device to force mortar through wall. Wipe excess mortar off exposed face with a cloth.

C. Upon removal of forms, clean vertical concrete surface that is to receive bonded applied cementitious application with wire brushes or by sand blasting to remove unset material, laitance, and loose particles to expose aggregates to provide a clean, firm, granular surface for bond of applied finish.

3.13 CONCRETE FINISHES:

- A. Vertical and Overhead Surface Finishes:
 - Unfinished areas: Vertical and overhead concrete surfaces exposed in pipe basements, elevator and dumbwaiter shafts, pipe spaces, pipe trenches, above suspended ceilings, manholes, and other unfinished areas will not require additional finishing.
 - 2. Interior and exterior exposed areas to be painted: Remove fins, burrs and similar projections on surfaces flush, and smooth by mechanical means approved by Resident Engineer, and by rubbing lightly with a fine abrasive stone or hone. Use ample water during rubbing without working up a lather of mortar or changing texture of concrete.
 - 3. Interior and exterior exposed areas finished: Give a grout finish of uniform color and smooth finish treated as follows:
 - a. After concrete has hardened and laitance, fins and burrs removed, scrub concrete with wire brushes. Clean stained concrete surfaces by use of a hone stone.
 - b. Apply grout composed of one part of Portland cement, one part fine sand, smaller than a 600 μm (No. 30) sieve. Work grout into

surface of concrete with cork floats or fiber brushes until all pits, and honeycombs are filled.

- c. After grout has hardened slightly, but while still plastic, scrape grout off with a sponge rubber float and, about 1 hour later, rub concrete vigorously with burlap to remove any excess grout remaining on surfaces.
- d. In hot, dry weather use a fog spray to keep grout wet during setting period. Complete finish of area in same day. Make limits of finished areas at natural breaks in wall surface. Leave no grout on concrete surface overnight.
- 4. Textured: Finish as specified. Maximum quantity of patched area 0.2 $\rm m^2~(2~square~feet)$ in each 93 $\rm m^2~(1000~square~feet)$ of textured surface.
- B. Slab Finishes:
 - 1. Monitoring and Adjustment: Provide continuous cycle of placement, measurement, evaluation and adjustment of procedures to produce slabs within specified tolerances. Monitor elevations of structural steel in key locations before and after concrete placement to establish typical deflection patterns for the structural steel. Determine elevations of cast-in-place slab soffits prior to removal of shores. Provide information to Resident Engineer and floor consultant for evaluation and recommendations for subsequent placements.
 - 2. Set perimeter forms to serve as screed using either optical or laser instruments. For slabs on grade, wet screeds may be used to establish initial grade during strike-off, unless Resident Engineer determines that the method is proving insufficient to meet required finish tolerances and directs use of rigid screed guides. Where wet screeds are allowed, they shall be placed using grade stakes set by optical or laser instruments. Use rigid screed guides, as opposed to wet screeds, to control strike-off elevation for all types of elevated (non slab-on-grade) slabs. Divide bays into halves or thirds by hard screeds. Adjust as necessary where monitoring of previous placements indicates unshored structural steel deflections to other than a level profile.
 - 3. Place slabs monolithically. Once slab placement commences, complete finishing operations within same day. Slope finished slab to floor drains where they occur, whether shown or not.
 - 4. Use straightedges specifically made for screeding, such as hollow magnesium straightedges or power strike-offs. Do not use pieces of dimensioned lumber. Strike off and screed slab to a true surface at

required elevations. Use optical or laser instruments to check concrete finished surface grade after strike-off. Repeat strike-off as necessary. Complete screeding before any excess moisture or bleeding water is present on surface. Do not sprinkle dry cement on the surface.

- 5. Immediately following screeding, and before any bleed water appears, use a 3000 mm (10 foot) wide highway straightedge in a cutting and filling operation to achieve surface flatness. Do not use bull floats or darbys, except that darbying may be allowed for narrow slabs and restricted spaces.
- 6. Wait until water sheen disappears and surface stiffens before proceeding further. Do not perform subsequent operations until concrete will sustain foot pressure with maximum of 6 mm (1/4 inch) indentation.
- 7. Scratch Finish: Finish base slab to receive a bonded applied cementitious application as indicated above, except that bull floats and darbys may be used. Thoroughly coarse wire broom within two hours after placing to roughen slab surface to insure a permanent bond between base slab and applied materials.
- 8. Float Finish: Slabs to receive unbonded toppings, steel trowel finish, fill, mortar setting beds, or a built-up roof, and ramps, stair treads, platforms (interior and exterior), and equipment pads shall be floated to a smooth, dense uniform, sandy textured finish. During floating, while surface is still soft, check surface for flatness using a 3000 mm (10 foot) highway straightedge. Correct high spots by cutting down and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections and re-float to a uniform texture.
- 9. Steel Trowel Finish: Concrete surfaces to receive resilient floor covering or carpet, monolithic floor slabs to be exposed to view in finished work, future floor roof slabs, applied toppings, and other interior surfaces for which no other finish is indicated. Steel trowel immediately following floating. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure to compact cement paste and form a dense, smooth surface. Finished surface shall be smooth, free of trowel marks, and uniform in texture and appearance.
- 10. Broom Finish: Finish exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after surfaces have been

floated. Brush in a direction transverse to main traffic. Match texture approved by Resident Engineer from sample panel. 11. Finished slab flatness (FF) and levelness (FL) values comply with the following minimum requirements: a. Areas covered with carpeting, or not specified otherwise in b. below: 1) Slab on Grade: a) Specified overall value $F_{\rm F} 25/F_{\rm L} 20$ b) Minimum local value $F_F 17/F_L 15$ 2) Level suspended slabs (shored until after testing) and topping slabs: a) Specified overall value FF 25/FL 20 b) Minimum local value FF 17/FL 15 3) Unshored suspended slabs: a) Specified overall value FF 25 b) Minimum local value FF 17 4) Level tolerance such that 80 percent of all points fall within a 20 mm (3/4 inch) envelope +10 mm, -10 mm (+3/8 inch, -3/8 inch) from the design elevation. b. Areas that will be exposed, receive thin-set tile or resilient flooring, or roof areas designed as future floors: 1) Slab on grade: a) Specified overall value FF 36/FL 20 b) Minimum local value FF 24/FL 15 2) Level suspended slabs (shored until after testing) and topping slabs a) Specified overall value FF 30/FL 20 b) Minimum local value FF 24/FL 15 3) Unshored suspended slabs: a) Specified overall value FF 30 b) Minimum local value FF 24 4) Level tolerance such that 80 percent of all points fall within a 20 mm (3/4 inch) envelope +10 mm, -10 mm (+3/8 inch, -3/8 inch) from the design elevation. c. "Specified overall value" is based on the composite of all measured values in a placement derived in accordance with ASTM E1155. d. "Minimum local value" (MLV) describes the flatness or levelness below which repair or replacement is required. MLV is based on the

results of an individual placement and applies to a minimum local

area. Minimum local area boundaries may not cross a construction joint or expansion joint. A minimum local area will be bounded by construction and/or control joints, or by column lines and/or half-column lines, whichever is smaller.

- 12. Measurements
 - a. Department of Veterans Affairs retained testing laboratory will take measurements as directed by Resident Engineer, to verify compliance with FF, FL, and other finish requirements.
 Measurements will occur within 72 hours after completion of concrete placement (weekends and holidays excluded). Make measurements before shores or forms are removed to insure the "asbuilt" levelness is accurately assessed. Profile data for above characteristics may be collected using a laser level or any Type II apparatus (ASTM E1155, "profileograph" or "dipstick").
 Contractor's surveyor shall establish reference elevations to be used by Department of Veterans Affairs retained testing laboratory.
 - b. Contractor not experienced in using FF and FL criteria is encouraged to retain the services of a floor consultant to assist with recommendations concerning adjustments to slab thicknesses, finishing techniques, and procedures on measurements of the finish as it progresses in order to achieve the specific flatness and levelness numbers.
- 13. Acceptance/ Rejection:
 - a. If individual slab section measures less than either of specified minimum local F_F/F_L numbers, that section shall be rejected and remedial measures shall be required. Sectional boundaries may be set at construction and contraction (control) joints, and not smaller than one-half bay.
 - b. If composite value of entire slab installation, combination of all local results, measures less than either of specified overall F_F/F_L numbers, then whole slab shall be rejected and remedial measures shall be required.
- 14. Remedial Measures for Rejected Slabs: Correct rejected slab areas by grinding, planing, surface repair with underlayment compound or repair topping, retopping, or removal and replacement of entire rejected slab areas, as directed by Resident Engineer, until a slab finish constructed within specified tolerances is accepted.

3.14 SURFACE TREATMENTS:

A. Use on exposed concrete floors and concrete floors to receive carpeting

- B. Liquid Densifier/Sealer: Apply in accordance with manufacturer's directions just prior to completion of construction.
- C. Non-Slip Finish: Except where safety nosing and tread coverings are shown, apply non-slip abrasive aggregate to treads and platforms of concrete steps and stairs, and to surfaces of exterior concrete ramps and platforms. Broadcast aggregate uniformly over concrete surface at rate of application of 8% per 1/10th m² (7.5 percent per square foot) of area. Trowel concrete surface to smooth dense finish. After curing, rub treated surface with abrasive brick and water to slightly expose abrasive aggregate.

3.15 APPLIED TOPPING:

- A. Separate concrete topping on floor base slab of thickness and strength shown. Topping mix shall have a maximum slump of 200 mm (8 inches) for concrete containing a high-range water-reducing admixture (superplasticizer) and 100 mm (4 inches) for conventional mix. Neatly bevel or slope at door openings and at slabs adjoining spaces not receiving an applied finish.
- B. Placing: Place continuously until entire section is complete, struck off with straightedge, leveled with a highway straightedge or highway bull float, floated and troweled by machine to a hard dense finish. Slope to floor drains as required. Do not start floating until free water has disappeared and no water sheen is visible. Allow drying of surface moisture naturally. Do not hasten by "dusting" with cement or sand.

3.16 RESURFACING FLOORS:

Remove existing flooring areas to receive resurfacing to expose existing structural slab and extend not less than 25 mm (1 inch) below new finished floor level. Prepare exposed structural slab surface by roughening, broom cleaning, and dampening. Apply specified bonding grout. Place topping while the bonding grout is still tacky.

3.17 RETAINING WALLS:

- A. Use air-entrained concrete.
- B. Expansion and contraction joints, waterstops, weep holes, reinforcement and railing sleeves installed and constructed as shown.
- C. Exposed surfaces finished to match adjacent concrete surfaces, new or existing.
- D. Place porous backfill as shown.

3.18 PRECAST CONCRETE ITEMS:

Precast concrete items, not specified elsewhere. Cast using 25 MPa (3000 psi) air-entrained concrete to shapes and dimensions shown. Finish to

match corresponding adjacent concrete surfaces. Reinforce with steel for safe handling and erection.

- - - E N D - - -

SECTION 05 12 00 STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies structural steel shown and classified by Section 2, Code of Standard Practice for Steel Buildings and Bridges.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Painting: Section 09 91 00, PAINTING.

1.3 QUALITY ASSURANCE:

- A. Fabricator and erector shall maintain a program of quality assurance in conformance with Section 8, Code of Standard Practice for Steel Buildings and Bridges. Work shall be fabricated in an AISC certified Category Std fabrication plant.
- B. Before authorizing the commencement of steel erection, the controlling contractor shall ensure that the steel erector is provided with the written notification required by 29 CFR 1926.752. Provide copy of this notification to the Resident Engineer.

1.4 TOLERANCES:

Fabrication tolerances for structural steel shall be held within limits established by ASTM A6, by AISC 303, Sections 6 and 7, Code of Standard Practice for Buildings and Bridges, except as follows:

A. Elevation tolerance for closure plates at the building perimeter and at slab openings prior to concrete placement is 6 mm (1/4 inch).

1.5 DESIGN:

A. Connections: Design and detail all connections for each member size, steel grade and connection type to resist the loads and reactions indicated on the drawings or specified herein. Use details consistent with the details shown on the Drawings, supplementing where necessary. The details shown on the Drawings are conceptual and do not indicate the required weld sizes or number of bolts unless specifically noted. Use rational engineering design and standard practice in detailing, accounting for all loads and eccentricities in both the connection and the members. Promptly notify the Resident Engineer of any location where the connection design criteria is not clearly indicated. The design of all connections is subject to the review and acceptance of the Resident Engineer. Submit structural calculations prepared and sealed by a qualified engineer registered in the state where the project is located. Submit calculations for review before preparation of detail drawings.

1.6 REGULATORY REQUIREMENTS:

- A. AISC 360: Specification for Structural Steel Buildings
- B. AISC 303: Code of Standard Practice for Steel Buildings and Bridges.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop and Erection Drawings: Complete
- C. Certificates:
 - 1. Structural steel.
 - 2. Steel for all connections.
 - 3. Welding materials.
 - 4. Shop coat primer paint.
- D. Test Reports:
 - 1. Welders' qualifying tests.
- E. Design Calculations and Drawings:
 - 1. Connection calculations, if required.
- F. Record Surveys.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Institute of Steel Construction (AISC):
 - 1. AISC 360-10 Specification for Structural Steel Buildings
 - 3. AISC 303-10 Code of Standard Practice for Steel Buildings and Bridges
- C. American National Standards Institute (ANSI): B18.22.1-65(R2008).....Plain Washers
 - B18.22M-81(R2000).....Metric Plain Washers
- D. American Society for Testing and Materials (ASTM):

A6/A6M-11..... Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling

- A36/A36M-08.....Standard Specification for Carbon Structural Steel
- A53/A53M-10.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless
- A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

	A242/A242M-04(R2009)Standard Specification for High-Strength Low-
	Alloy Structural Steel
	A283/A283M-03(R2007)Standard Specification for Low and Intermediate
	Tensile Strength Carbon Steel Plates
	A307-10Standard Specification for Carbon Steel Bolts
	and Studs, 60,000 psi Tensile Strength
	A325-10Btandard Specification for Structural Bolts,
	Steel, Heat Treated, 120/105 ksi Minimum Tensile
	Strength
	A490-12for the standard Specification for Heat-Treated Steel
	Structural Bolts 150 ksi Minimum Tensile
	Strength
	A500/A500M-10aStandard Specification for Cold Formed Welded
	and Seamless Carbon Steel Structural Tubing in
	Rounds and Shapes
	A501-07 Standard Specification for Hot-Formed Welded and
	Seamless Carbon Steel Structural Tubing
	A572/A572M-07Standard Specification for High-Strength
	Low-Alloy Columbium-Vanadium Structural Steel
	A992/A992M-11Standard Specification for Structural Steel
	Shapes
E	. American Welding Society (AWS):
	D1.1/D1.1M-10Structural Welding Code-Steel
F.	. Research Council on Structural Connections (RCSC) of The Engineering
	Foundation: Specification for Structural Joints Using ASTM A325 or A490 Bolts
C	. Military Specifications (Mil. Spec.):
U	MIL-P-21035Paint, High Zinc Dust Content, Galvanizing,
	Repair
н	. Occupational Safety and Health Administration (OSHA):
	29 CFR Part 1926-2001Safety Standards for Steel Erection
PART	2 - PRODUCTS
2.1 MATERIALS:	
A	. Structural Steel: ASTM A572, Grade 50.
	. Structural Tubing: ASTM A500, Grade B.
С	. Structural Tubing: ASTM A501.
D	. Steel Pipe: ASTM A53, Grade B.
E	. Bolts, Nuts and Washers:
	1. High-strength bolts, including nuts and washers: ASTM A325
	2. Bolts and nuts, other than high-strength: ASTM A307, Grade A.

- 3. Plain washers, other than those in contact with high-strength bolt heads and nuts: ANSI Standard B18.22.1.
- F. Zinc Coating: ASTM A123.
- G. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035.

PART 3 - EXECUTION

3.1 CONNECTIONS (SHOP AND FIELD):

- A. Welding: Welding in accordance with AWS D1.1. Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.1 to perform type of work required.
- B. High-Strength Bolts: High-strength bolts tightened to a bolt tension not less than 70% of their minimum tensile strength. Tightening done with properly calibrated wrenches, by turn-of-nut method or by use of direct tension indicators (bolts or washers). Tighten bolts in connections identified as slip-critical using Direct Tension Indicators. Twist-off torque bolts are not an acceptable alternate fastener for slip critical connections.

3.2 FABRICATION:

Fabrication in accordance with Chapter M, AISC 360. .

3.3 SHOP PAINTING:

- A. General: Shop paint steel with primer in accordance with AISC 303, Section 6.
- B. Shop paint for steel surfaces is specified in Section 09 91 00, PAINTING.
- C. Do not apply paint to following:
 - 1. Surfaces within 50 mm (2 inches) of joints to be welded in field.
 - 2. Surfaces which will be encased in concrete.
 - 3. Surfaces which will receive sprayed on fireproofing.
 - 4. Top flange of members which will have shear connector studs applied.
- D. Zinc Coated (Hot Dip Galvanized) per ASTM A123 (after fabrication): Touch-up after erection: Clean and wire brush any abraded and other spots worn through zinc coating, including threaded portions of bolts and welds and touch-up with galvanizing repair paint.

3.4 ERECTION:

A. General: Erection in accordance with AISC 303, Section 7B. Temporary Supports: Temporary support of structural steel frames during erection in accordance with AISC 303, Section 7

3.5 FIELD PAINTING:

A. After erection, touch-up steel surfaces specified to be shop painted. After welding is completed, clean and prime areas not painted due to field welding. B. Finish painting of steel surfaces is specified in Section 09 91 00, PAINTING.

3.6 SURVEY:

Upon completion of finish bolting or welding on any part of the work, and prior to start of work by other trades that may be supported, attached, or applied to the structural steel work, submit a certified report of survey to Resident Engineer for approval. Reports shall be prepared by Registered Land Surveyor or Registered Civil Engineer as specified in Section 01 00 00, GENERAL REQUIREMENTS. Report shall specify that location of structural steel is acceptable for plumbness, level and alignment within specified tolerances specified in the AISC Manual.

- - - E N D - - -

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.
- B. Items specified.
 - 1. Covers and Frames for Trenches.
 - 2. Expanded Metal Panels for Walls.

1.2 RELATED WORK

- A. Colors, finishes, and textures: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Prime and finish painting: Section 09 91 00, PAINTING.
- C. Access Doors: Section 08 31 13

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Floor Plate
- C. Shop Drawings:
 - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
 - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
 - 3. Provide templates and rough-in measurements as required.
- D. Manufacturer's Certificates:
 - 1. Live load designs as specified.
- E. Design Calculations for specified live loads including dead loads.
- F. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction.

1.4 QUALITY ASSURANCE

A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.

- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.6.1-97.....Wood Screws B18.2.2-87(R2005).....Square and Hex Nuts C. American Society for Testing and Materials (ASTM): A36/A36M-12.....Structural Steel A47-99(R2009).....Malleable Iron Castings A48-03(R2012).....Gray Iron Castings A53-12.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-12.....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A240/A240M-14.....Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications. A269-10..... Seamless and Welded Austenitic Stainless Steel Tubing for General Service A307-12.....Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A391/A391M-07(R2012)....Grade 80 Alloy Steel Chain A786/A786M-09.....Rolled Steel Floor Plate B221-13.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B456-11.....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium
 - B632-08.....Aluminum-Alloy Rolled Tread Plate

```
C1107-13.....Packaged Dry, Hydraulic-Cement Grout
                          (Nonshrink)
     D3656-13.....Insect Screening and Louver Cloth Woven from
                         Vinyl-Coated Glass Yarns
     F436-11.....Hardened Steel Washers
     F468-06(R2012).....Nonferrous Bolts, Hex Cap Screws, Socket Head
                         Cap Screws and Studs for General Use
     F593-13.....Stainless Steel Bolts, Hex Cap Screws, and
                          Studs
     F1667-11.....Driven Fasteners: Nails, Spikes and Staples
  D. American Welding Society (AWS):
     D1.1-10.....Structural Welding Code Steel
     D1.2-08.....Structural Welding Code Aluminum
     D1.3-08.....Structural Welding Code Sheet Steel
  E. National Association of Architectural Metal Manufacturers (NAAMM)
     AMP 521-01.....Pipe Railing Manual
     AMP 500-06.....Metal Finishes Manual
     MBG 531-09.....Metal Bar Grating Manual
     MBG 532-09.....Heavy Duty Metal Bar Grating Manual
  F. Structural Steel Painting Council (SSPC)/Society of Protective
     Coatings:
     SP 1-04.....No. 1, Solvent Cleaning
     SP 2-04.....No. 2, Hand Tool Cleaning
     SP 3-04.....No. 3, Power Tool Cleaning
  G. Federal Specifications (Fed. Spec):
     RR-T-650E.....Treads, Metallic and Nonmetallic, Nonskid
PART 2 - PRODUCTS
2.1 DESIGN CRITERIA
```

- A. In addition to the dead loads, design fabrications to support the following live loads unless otherwise specified.
- B. Floor Plates, Gratings, Covers, Trap Doors, Catwalks, and Platforms: 500 kg/m² (100 pounds per square foot).
- C. Manhole Covers: 1200 kg/m² (250 pounds per square foot).

2.2 MATERIALS

- A. Structural Steel: ASTM A36.
- B. Stainless Steel: ASTM A240, Type 302 or 304.

- C. Aluminum, Extruded: ASTM B221, Alloy 6063-T5 unless otherwise specified. For structural shapes use alloy 6061-T6 and alloy 6061т4511.
- D. Floor Plate:
 - 1. Galvanized Steel ASTM A786.
- E. Primer Paint: As specified in Section 09 91 00, PAINTING.

2.3 HARDWARE

- A. Rough Hardware:
 - 1. Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
 - 2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.
- B. Fasteners:
 - 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.
 - 2. Screws: ASME B18.6.1.
 - 3. Washers: ASTM F436, type to suit material and anchorage.
 - 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work.

2.4 FABRICATION GENERAL

- A. Material
 - 1. Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.
 - 2. Use material free of defects which could affect the appearance or service ability of the finished product.
- B. Size:
 - 1. Size and thickness of members as shown.
 - 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.
- C. Connections

- 1. Except as otherwise specified, connections may be made by welding, riveting or bolting.
- 2. Field riveting will not be approved.
- 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
- 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed.
- 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
- 6. Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
- 7. Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors
 - 1. Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
 - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation.
 - 3. Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
 - 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid.
 - 5. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts.
- E. Workmanship
 - 1. General:
 - a. Fabricate items to design shown.

- b. Furnish members in longest lengths commercially available within the limits shown and specified.
- c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
- d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
- e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
- f. Prepare members for the installation and fitting of hardware.
- g. Cut openings in gratings and floor plates for the passage of ducts, sumps, pipes, conduits and similar items. Provide reinforcement to support cut edges.
- h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.
- 2. Welding:
 - a. Weld in accordance with AWS.
 - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.
 - c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces.
 - d. Finish welded joints to match finish of adjacent surface.
- 3. Joining:
 - a. Miter or butt members at corners.
 - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.
- 4. Anchors:
 - a. Where metal fabrications are shown to be preset in concrete, weld
 32 x 3 mm (1-1/4 by 1/8 inch) steel strap anchors, 150 mm (6
 inches) long with 25 mm (one inch) hooked end, to back of member
 at 600 mm (2 feet) on center, unless otherwise shown.
 - b. Where metal fabrications are shown to be built into masonry use $32 \times 3 \text{ mm} (1-1/4 \text{ by } 1/8 \text{ inch})$ steel strap anchors, 250 mm (10 inches) long with 50 mm (2 inch) hooked end, welded to back of member at 600 mm (2 feet) on center, unless otherwise shown.
- 5. Cutting and Fitting:

- Accurately cut, machine and fit joints, corners, copes, and miters.
- b. Fit removable members to be easily removed.
- c. Design and construct field connections in the most practical place for appearance and ease of installation.
- d. Fit pieces together as required.
- e. Fabricate connections for ease of assembly and disassembly without use of special tools.
- f. Joints firm when assembled.
- g. Conceal joining, fitting and welding on exposed work as far as practical.
- h. Do not show rivets and screws prominently on the exposed face.
- i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.
- F. Finish:
 - 1. Finish exposed surfaces in accordance with NAAMM AMP 500 Metal Finishes Manual.
 - 2. Steel and Iron: NAAMM AMP 504.
 - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise.
 - b. Surfaces exposed in the finished work:
 - 1) Finish smooth rough surfaces and remove projections.
 - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound.
 - c. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.
 - b) Galvanized surfaces specified to be left unfinished.
 - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
 - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
 - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
 - 2) Non ferrous metals: Comply with MAAMM-500 series.
 - 3. Stainless Steel: NAAMM AMP-504 Finish No. 4.

- G. Protection:
 - Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop.
 - Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

2.5 SUPPORTS

- A. General:
 - 1. Fabricate ASTM A36 structural steel shapes as shown.
 - 2. Use clip angles or make provisions for welding hangers and braces to overhead construction.
 - 3. Field connections may be welded or bolted.

2.6 SECURITY BARS FOR ATTIC LOUVER OPENINGS

- A. Fabricate covers to support 100 pounds per foot.
- B. Galvanized steel members after fabrication in accordance with ASTM A123, G-90 coating.
- C. Steel Frames:
 - 1. Form frame from structural steel angles as shown. Where not shown use 63 x 63 x 6 mm (2-1/2 x 2-1/2 x 1/4 inch) angles for frame openings over 1200 mm (4 feet) long and 50 x 50 x 6 mm (2 ix 2 x 1/4 inch) for frame openings less than 1200 mm (4 feet).
 - 2. Bars shall be 1/2" diameter at 6" on center vertically and horizontally.

2.7 EXPANDED METAL SECURITY PANELS

A. Standard expanded metal, minimum 0.45#/SF, plain steel cold rolled, 60% open. Design based upon McNichols 3/16# 22 (877) 884-4653. Other manufacturers with equivalent products shall be submitted for approval.

2.8 WINDOW GUARDS

- A. Operable security window guards mounted on the interior of all windows with key locks which allow access to open and clean interior side of windows.
- B. Frames shall be 2.7mm (12 gauge) carbon steel.
- C. Mesh shall be 12x12 per 25mml (inch) stainless steel.
- D. Finish on Frame: Factory installed baked enamel or powder coating.
- E. Design based upon Kane Security Model S-VAN-O (Level 6), (800)773-2439, or approved equivalent.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Items set into concrete or masonry.
 - 1. Provide temporary bracing for such items until concrete or masonry is set.
 - 2. Place in accordance with setting drawings and instructions.
 - 3. Build strap anchors, into masonry as work progresses.
- C. Set frames, covers and similar items flush with finish floor or wall surface and, where applicable, flush with side of opening.
- D. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.
 - 2. Use continuous weld unless specified otherwise.
- E. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified.
- F. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.
- G. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion.

3.2 SECURITY BARS FOR ATTIC LOUVER OPENING

- A. Set frame flush with inside of louver screen.
- B. Secure metal frame flush to wood structure with 1/2" galvanized lag screws at 24" on center.

3.3 EXPANDED METAL SECURITY PANELS

- A. Attach to interior face of wall studs with screws.
- B. Cut panels to provide full wall coverage from floor to ceiling on all walls with butt joints centered on vertical studs or horizontal nailer/blocking.
- C. Over all expanded metal panels with gypsum board.

3.4 WINDOWS GUARDS

A. Install per manufacturer's design. Fasteners shall be concealed and non-removable when guard is in the locked closed position.

3.5 CLEAN AND ADJUSTING

- A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components.
- B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies wood blocking, framing, sheathing, furring, nailers, sub-flooring, rough hardware, and light wood construction.

1.2 RELATED WORK:

- A. Milled woodwork: Section 06 20 00, FINISH CARPENTRY.
- B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.

1.3 SUMBITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 150 mm (6 inches) above grade and cover with well ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA): National Design Specification for Wood Construction NDS-05.....Conventional Wood Frame Construction
- C. American Institute of Timber Construction (AITC): A190.1-07.....Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME): B18.2.1-96(R2005).....Square and Hex Bolts and Screws B18.2.2-87.....Wood Screws B18.6.1-97....Wood Screws B18.6.4-98(R2005).....Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws E. American Plywood Association (APA):
 - E30-07.....Engineered Wood Construction Guide

ਸ	American Society for Testing And Materials (ASTM):	
	A47-99(R2009)Ferritic Malleable Iron Castings	
	A48-03(R2008)Gray Iron Castings	
	A653/A653M-10Steel Sheet Zinc-Coated (Galvanized) or Zinc-	
	Iron Alloy Coated (Galvannealed) by the Hot Dip	
	Process	
	C954-10Steel Drill Screws for the Application of Gypsum	
	Board or Metal Plaster Bases to Steel Studs from	
	0.033 inch (2.24 mm) to 0.112-inch (2.84 mm) in	
	thickness	
	C1002-07Steel Self-Piercing Tapping Screws for the	
	Application of Gypsum Panel Products or Metal	
	Plaster Bases to Wood Studs or Metal Studs	
	D143-09 Method of	
	Testing	
	D1760-01Pressure Treatment of Timber Products	
	D2559-10Adhesives for Structural Laminated Wood Products	
	for Use Under Exterior (Wet Use) Exposure	
	Conditions	
	D3498-11 Adhesives for Field-Gluing Plywood to Lumber	
	Framing for Floor Systems	
	F844-07Uashers, Steel, Plan (Flat) Unhardened for	
	General Use	
	F1667-08Nails, Spikes, and Staples	
G.	Federal Specifications (Fed. Spec.):	
	MM-L-736CLumber; Hardwood	
н.	Commercial Item Description (CID):	
	A-A-55615 And Lag Bolt Self	
	Threading Anchors)	
I.	Military Specification (Mil. Spec.):	
	MIL-L-19140ELumber and Plywood, Fire-Retardant Treated	
J.	Truss Plate Institute (TPI):	
	TPI-85Metal Plate Connected Wood Trusses	
К.	U.S. Department of Commerce Product Standard (PS)	
	PS 1-95Ponstruction and Industrial Plywood	
	PS 20-05American Softwood Lumber Standard	
PART 2 - PRODUCTS		
2.1 LUMBER:		

A. Unless otherwise specified, each piece of lumber bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.

- 1. Identifying marks in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
- 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Structural Members: Species and grade as listed in the AFPA, National Design Specification for Wood Construction having design stresses as shown.
- C. Lumber Other Than Structural:
 - 1. Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - 2. Framing lumber: Douglas-Fir Larch (N), Number 1 Grade
 - 3. Furring, blocking, nailers and similar items 100 mm (4 inches) and narrower Standard Grade; and, members 150 mm (6 inches) and wider, Number 2 Grade.
- D. Sizes:
 - 1. Conforming to Prod. Std., PS20.
 - 2. Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.
- E. Moisture Content:
 - 1. At time of delivery and maintained at the site.
 - 2. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - 3. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- F. Preservative Treatment:
 - 1. Do not treat Heart Redwood and Western Red Cedar.
 - 2. Treat wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 600 mm (24 inches) from ground; nailers, edge strips, blocking, crickets, curbs, cant, vent strips and other members used in connection with roofing and flashing materials.
 - 3. Treat other members specified as preservative treated (PT).
 - 4. Preservative treat by the pressure method complying with ASTM D1760, except any process involving the use of Chromated Copper arsenate (CCA) for pressure treating wood is not permitted.

2.2 PLYWOOD

A. Comply with Prod. Std., PS 1.

- B. Bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of plywood which identifies compliance by veneer grade, group number, span rating where applicable, and glue type.
- C. Sheathing:
 - 1. APA rated Exposure 1 or Exterior; panel grade CD or better.
 - 2. Wall sheathing:
 - a. Minimum 9 mm (11/32 inch) thick with supports 400 mm (16 inches) on center and 12 mm (15/32 inch) thick with supports 600 mm (24 inches) on center unless specified otherwise.
 - b. Minimum 1200 mm (48 inches) wide at corners without corner bracing of framing.
 - 3. Roof sheathing:
 - a. Minimum 9 mm (11/32 inch) thick with span rating 24/0 or 12 mm (15/32 inch) thick with span rating for supports 400 mm (16 inches) on center unless specified otherwise.
 - b. Minimum 15 mm (19/32 inch) thick or span rating of 40/20 or 18 mm (23/32 inch) thick or span rating of 48/24 for supports 600 mm (24 inches) on center.

2.3 STRUCTURAL-USE PANELS

- A. Comply with APA.
- B. Bearing the mark of a recognized association or independent agency that maintains continuing control over quality of panel which identifies compliance by end use, Span Rating, and exposure durability classification.
- C. Wall and Roof Sheathing:
 - APA Rated sheathing panels, durability classification of Exposure 1 or Exterior Span Rating of 16/0 or greater for supports 400 mm (16 inches) on center and 24/0 or greater for supports 600 mm (24 inches) on center.

2.4 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ANSI B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - Extend at least 200 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D, A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Use 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers

- 1. ASTM F844.
- 2. Use zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ANSI B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.
- E. Nails:
 - Size and type best suited for purpose unless noted otherwise. Use aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
 - 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.
 - f. Use special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.
- F. Framing and Timber Connectors:
 - Fabricate of ASTM A446, Grade A; steel sheet not less than 1.3 mm (0.052 inch) thick unless specified otherwise. Apply standard plating to steel timber connectors after punching, forming and assembly of parts.
 - 2. Framing Angles: Angle designed with bendable legs to provide three way anchors.
 - 3. Straps:
 - a. Designed to provide wind and seismic ties with sizes as shown or specified.
 - b. Strap ties not less than 32 mm (1-1/4 inches) wide.
 - c. Punched for fastener.
 - 4. Metal Bridging:
 - a. Optional to wood bridging.
 - b. V shape deformed strap with not less than 2 nail holes at ends, designed to nail to top and side of framing member and bottom and side of opposite member.
 - c. Not less than 19 mm by 125 mm (3/4 by 5 inches) bendable nailing flange on ends.
 - d. Fabricated of 1 mm (0.04 inch) minimum thick sheet.
 - 5. Joist Hangers:

- a. Fabricated of 1.6 mm (0.063 inch) minimum thick sheet, U design unless shown otherwise.
- b. Heavy duty hangers fabricated of minimum 2.7 mm (0.108 inch) thick sheet, U design with bent top flange to lap over beam.
- 6. Timber Connectors: Fabricated of steel to shapes shown.
- 7. Joist Ties: Mild steel flats, 5 by 32 mm (3/16 by 1-1/4 inch size with ends bent about 30 degrees from horizontal, and extending at least 400 mm (16 inches) onto framing. Punch each end for three spikes.
- 8. Wall Anchors for Joists and Rafters:
 - a. Mild steel strap, 5 by 32 mm (3/16 by 1-1/4 inch) with wall ends bent 50 mm (2 inches), or provide 9 by 130 mm (3/8 by 5 inch) pin through strap end built into masonry.
 - b. Strap long enough to extend onto three joists or rafters, and punched for spiking at each bearing.
 - c. Strap not less than 100 mm (4 inches) embedded end.
- 9. Joint Plates:
 - a. Steel plate punched for nails.
 - b. Steel plates formed with teeth or prongs for mechanically clamping plates to wood.
 - c. Size for axial eccentricity, and fastener loads.
- G. Adhesives:
 - 1. For field-gluing plywood to lumber framing floor or roof systems: ASTM D3498.
 - 2. For structural laminated Wood: ASTM D2559.

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA National Design Specification for Wood Construction for timber connectors.
 - 2. AITC Timber Construction Manual for heavy timber construction.
 - 3. AFPA WCD-number 1, Manual for House Framing for nailing and framing unless specified otherwise.
 - 4. APA for installation of plywood or structural use panels.
 - 5. ASTM F 499 for wood underlayment.
 - 6. TPI for metal plate connected wood trusses.
- B. Fasteners:
 - 1. Nails.
 - a. Nail in accordance with the Recommended Nailing Schedule as specified in AFPA Manual for House Framing where detailed nailing requirements are not specified in nailing schedule, or as

indicated on Drawings. Select nail size and nail spacing sufficient to develop adequate strength for the connection without splitting the members.

- b. Use special nails with framing connectors.
- c. For sheathing and subflooring, select length of nails sufficient to extend 25 mm (1 inch) into supports.
- d. Use eight penny or larger nails for nailing through 25 mm (1 inch) thick lumber and for toe nailing 50 mm (2 inch) thick lumber.
- e. Use 16 penny or larger nails for nailing through 50 mm (2 inch) thick lumber.
- f. Select the size and number of nails in accordance with the Nailing Schedule except for special nails with framing anchors.
- g. Nailing Schedule; Using Common Nails:
 - 1) Joist bearing on sill or girder, toe nail three-8d or framing anchor
 - 2) Bridging to joist, toe nail each end two-8d
 - 3) Ledger strip to beam or girder three-16d under each joint.
 - 4) Subflooring or Sheathing:
 - a) 150 mm (6 inch) wide or less to each joist face nail two-8d.
 - b) Subflooring, more than 150 mm (6 inches) wide, to each stud or joint, face nail three-8d.
 - c) Plywood or structural use panel to each stud or joist face nail 8d, at supported edges 150 mm (6 inches) on center and at intermediate supports 250 mm (10 inches) on center. When gluing plywood to joint framing increase nail spacing to 300 mm (12 inches) at supported edges and 500 mm (20 inches) o.c. at intermediate supports.
 - 5) Sole plate to joist or blocking, through sub floor face nail 20d nails, 400 mm (16 inches) on center.
 - 6) Top plate to stud, end nail two-16d.
 - 7) Stud to sole plate, toe nail or framing anchor. Four-8d
 - 8) Doubled studs, face nail 16d at 600 mm (24 inches) on center.
 - 9) Built-up corner studs 16d at 600 mm (24 inches) (24 inches) on center.
 - 10) Doubled top plates, face nails 16d at 400 mm (16 inches) on center.
 - 11) Top plates, laps, and intersections, face nail two-16d.
 - 12) Continuous header, two pieces 16d at 400 mm (16 inches) on center along each edge.
 - 13) Ceiling joists to plate, toenail three-8d or framing anchor.
 - 14) Continuous header to stud, four 16d.

- 15) Ceiling joists, laps over partitions, face nail three-16d or framing anchor.
- 16) Ceiling joists, to parallel rafters, face nail three-16d.
- 17) Rafter to plate, toe nail three-8d. or framing anchor. Brace 25 mm (1 inch) thick board to each stud and plate, face nail three-8d.
- 18) Built-up girders and beams 20d at 800 mm (32 inches) on center along each edge.
- 2. Bolts:
 - a. Fit bolt heads and nuts bearing on wood with washers.
 - b. Countersink bolt heads flush with the surface of nailers.
 - c. Embed in concrete and solid masonry or use expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
 - d. Use toggle bolts to hollow masonry or sheet metal.
 - e. Use bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 600 mm (24 inch) intervals between end bolts. Use clips to beam flanges.
- 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C 954 for steel over 0.84 mm (0.033 inch) thick.
- 4. Power actuated drive pins may be used where practical to anchor to solid masonry, concrete, or steel.
- 5. Do not anchor to wood plugs or nailing blocks in masonry or concrete. Use metal plugs, inserts or similar fastening.
- 6. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- 7. Installation of Timber Connectors:
 - a. Conform to applicable requirements of the NFPA National Design Specification for Wood Construction.
 - b. Fit wood to connectors and drill holes for fasteners so wood is not split.
- C. Set sills or plates level in full bed of mortar on masonry or concrete walls.
 - 1. Space anchor bolts 1200 mm (4 feet) on centers between ends and within 150 mm (6 inches) of end. Stagger bolts from side to side on plates over 175 mm (7 inches) in width.

- Use shims of slate, tile or similar approved material to level wood members resting on concrete or masonry. Do not use wood shims or wedges.
- 3. Closely fit, and set to required lines.
- D. Cut notch, or bore in accordance with NFPA Manual for House-Framing for passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- E. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Use longest lengths practicable.
 - 3. Use fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 600 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 125 mm (5 inches) in width.
- F. Floor and Ceiling Framing:
 - 1. Set with crown edge up.
 - 2. Keep framing at least 50 mm (2 inches) away from chimneys.
 - Bear on not less than 100 mm (4 inches) on concrete and masonry, and 38 mm (1-1/2 inches) on wood and metal unless shown otherwise.
 - Support joist, trimmer joists, headers, and beams framing into carrying members at same relative levels on joist hangers unless shown otherwise.
 - 5. Lap and spike wood joists together at bearing, or butt end-to-end with scab ties at joint and spike to plates. Scab tie lengths not less than 200 mm (8 inches) lap on joist ends. Install wood I beam joists as shown.
 - 6. Frame openings with headers and trimmer joist. Double headers carrying more than two tail joists and trimmer joists supporting headers carrying more than one tail joist unless otherwise shown.
 - 7. Drive nails through headers into joists using two nails for 50 mm by 150 mm (2 inch by 6 inch); three nails for 50 mm by 200 mm (2 inch by 8 inch) and four nails for 50 mm by 250 mm (2 inch by 10 inch) and over in size.
 - Install nearest joist to double headers and spike joist to both header members before trimmer joist is installed and secured together.
 - 9. Doubled joists under partitions parallel with floor joists.

- 10. Where joists run perpendicular to masonry or concrete, anchor every third joist to masonry or concrete with one metal wall anchor. Securely spike anchors with three nails to side of joist near its bottom.
- 11. Anchor joists running parallel with masonry or concrete walls to walls with steel flats spaced not over 1800 mm (6 feet) apart. Extend steel flats over at least three joists and into masonry 100 mm (4 inches) with ends turned 50 mm (2 inches); bolt to concrete. Set top of flats flush with top of joists, and securely nail steel flats to each joist.
- 12. Hook ties at steel framing over top flange of steel members.
- 13. Nonbearing partitions running parallel with ceiling joists, install solid 50 mm (2 inch) thick bridging same depth as ceiling joists cut to fit snug between joists for securing top plate of partitions. Securely spike bridging to joists. Space 1200 mm (4 feet) on center.
- G. Bridging:
 - Use 25 mm by 75 mm (1 inch by 3 inch) lumber with ends beveled for slope. Option: Metal bridging may be used for wood bridging.
 - Install one row of bridging for joist spans over 2400 mm (8 feet), but less than 4800 mm (16 feet) long; install two rows for spans over 4800 mm (16 feet) long.
 - 3. Install an extra row of bridging between trimmer and next two joists if header is more than 600 mm (2 feet) from end of trimmer or from regular row of bridging.
 - 4. Secure with two nails at ends.
 - 5. Leave bottom ends loose until after subflooring or roof sheathing is installed.
 - 6. Install single row of bridging at centerline of span and two rows at the third points of span unless otherwise shown.
- H. Roof Framing:
 - 1. Set rafters with crown edge up.
 - 2. Form a true plane at tops of rafters.
 - 3. Valley, Ridge, and Hip Members:
 - a. Size for depth of cut on rafters.
 - b. Straight and true intersections of roof planes.
 - c. Secure hip and valley rafters to wall plates by using framing connectors.
 - d. Double valley rafters longer than the available lumber, with pieces lapped not less than 1200 mm (4 feet) and spiked together.
 - e. Butt joint and scab hip rafters longer than the available lumber.

- 4. Spike to wall plate and to ceiling joists except when secured with framing connectors.
- 5. Frame openings in roof with headers and trimmer rafters. Double headers carrying more than one rafter unless shown otherwise.
- Install 50 mm by 100 mm (2 inch by 4 inch) strut between roof rafters and ceiling joists at 1200 mm (4 feet) on center unless shown otherwise.
- I. Framing of Dormers:
 - 1. Frame as shown, with top edge of ridge beveled to pitch of roof header.
 - 2. Set studs on doubled trimmer rafters.
 - 3. Double studs at corners of dormers.
 - Double plate on studs and notch rafters over plate and bear at least 75 mm (3 inches) on plates.
 - 5. Frame opening to receive window frame or louver frame.
- J. Partition and Wall Framing:
 - Use 50 mm by 100 mm (2 inch by 4 inch) studs spaced 400 mm (16 inches) on centers; unless shown otherwise.
 - 2. Install double studs at openings and triple studs at corners.
 - 3. Installation of sole plate:
 - a. Anchor plates of walls or partitions resting on concrete floors in place with expansion bolts, one near ends of piece and at intermediate intervals of not more than 1200 mm (4 feet) or with power actuated drive pins with threaded ends of suitable type and size, spaced 600 mm (2 feet) on center unless shown otherwise.
 - b. Nail plates to wood framing through subfloor as specified in nailing schedule.
 - 4. Headers or Lintels:
 - a. Make headers for openings of two pieces of 50 mm (2 inch) thick lumber of size shown with plywood filler to finish flush with face of studs or solid lumber of equivalent size.
 - b. Support ends of headers on top of stud cut for height of opening.Spike cut stud to adjacent stud. Spike adjacent stud to header.
 - Use double top plates, with members lapped at least 610 mm (2-feet) spiked together.
 - Install intermediate cut studs over headers and under sills to maintain uniformity of stud spacing.
 - Use single sill plates at bottom of opening unless shown otherwise.
 Toe nail to end stud, face nail to intermediate studs.

- Install 50 mm (2 inch) blocking for firestopping so that maximum dimension of any concealed space is not over 2400mm (8 feet) in accordance with NFPA Manual for House Framing.
- 9. Install corner bracing when plywood or structured use panel sheathing is not used.
 - a. Let corner bracing into exterior surfaces of studs at an angle of approximately 45 degrees, extended completely over walls plates, and secured at bearing with two nails.
 - b. Use 25 mm by 100 mm (1 inch by 4 inch) corner bracing.
- K. Rough Bucks:
 - 1. Install rough wood bucks at opening in masonry or concrete where wood frames or trim occur.
 - 2. Brace and maintain bucks plumb and true until masonry has been built around them or concrete cast in place.
 - Cut rough bucks from 50 mm (2 inch) thick stock, of same width as partitions in which they occur and of width shown in exterior walls.
 - Extend bucks full height of openings and across head of openings; fasten securely with anchors specified.
- L. Sheathing:
 - 1. Use plywood or structural-use panels for sheathing.
 - Lay panels with joints staggered, with edge and ends 3 mm (1/8 inch) apart and nailed over bearings as specified.
 - 3. Set nails not less than 9 mm (3/8 inch) from edges.
 - 4. Install 50 mm by 100 mm (2 inch by 4 inch) blocking spiked between joists, rafters and studs to support edge or end joints of panels.
 - 5. Match and align sheathing which is an extension of work in place to existing.

- - - E N D - - -

SECTION 06 20 00

FINISH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies exterior and interior millwork.
- B. Items specified:
 - 1. Moldings and Trim
 - 2. Fiber Cement Shingles

1.2 RELATED WORK

- A. Framing, furring and blocking: Section 06 10 00, ROUGH CARPENTRY.
- B. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Electrical light fixtures and duplex outlets: Division 26, ELECTRICAL.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Millwork items Half full size scale for sections and details 1:50 (1/4-inch) for elevations and plans.
 - 2. Show construction and installation.

1.4 DELIVERY, STORAGE AND HANDLING

- A. Protect lumber and millwork from dampness, maintaining moisture content specified both during and after delivery at site.
- B. Store finishing lumber and millwork in weathertight well ventilated structures or in space in existing buildings designated by Resident Engineer. Store at a minimum temperature of $21^{\circ}C$ ($70^{\circ}F$) for not less than 10 days before installation.
- C. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.):

A-A-1922A.....Shield Expansion

A-A-1936.....Contact Adhesive

FF-N-836D.....Nut, Square, Hexagon Cap, Slotted, Castle

FF-S-111D(1)....Screw, Wood
MM-L-736(C)...Lumber, Hardwood

PART 2 - PRODUCTS

2.1 BIO-BASED MATERIAL:

Bio-based Materials: For products designated by the USDA's Bio-Preferred program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specification section. For more information regarding the product categories covered by the Bio-Preferred program, visit http://www.bio-preferred.gov

2.2 LUMBER

- A. Grading and Marking:
 - 1. Lumber shall bear the grade mark, stamp, or other identifying marks indicating grades of material.
 - 2. Such identifying marks on a material shall be in accordance with the rule or standard under which the material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 3. The inspection agency for lumber shall be approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Sizes:
 - Lumber Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which product is produced.
 - 2. Millwork, standing and running trim, and rails: Actual size as shown or specified.
- C. Hardwood: MM-L-736, species as specified for each item.
- D. Softwood: PS-20, exposed to view appearance grades:
 - Use C select or D select, vertical grain for transparent finish including stain transparent finish.
 - 2. Use Prime for painted or opaque finish.
- E. Use edge grain Wood members exposed to weather.

2.3 SOLID VINYL (PVC) EXTERIOR TRIM

A. Basis of Design AZEK Solid Vinyl trim or submit equivalent product for approval.

- B. Color: White
- C. Use for exterior fascia, soffit, eave, and casing trim at windows and doors. Shape and sizes as indicated.

2.4 FIBER CEMENT SHINGLES

- A. Basis of Design is the "Purity" Shingle with a wavy edge supplied by the following manufacturer:
 - 1. GAF-Weatherside
 - 1361 Alps Road

Wayne, New Jersey 07470

- 2. Phone: (800) ROOF-411 (800 766-3411)
- 3. Website: gaf-weatherside.com
- 4. Other fiber cement shingles that are equivalent in appearance and performance shall be submitted for approval.

2.5 ADHESIVE

- A. For Interior Millwork: Unextended urea resin, unextended melamine resin, phenol resin, or resorcinol resin.
- B. For Exterior Millwork: Unextended melamine resin, phenol resin, or resorcinol resin.

2.6 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electric-galvanizing process. Galvanized where specified.
 - 2. Use galvanized coating on ferrous metal for exterior work unless nonferrous metals or stainless is used.
 - 3. Fasteners:
 - a. Bolts with Nuts: FF-N-836.
 - b. Expansion Bolts: A-A-1922A.
 - c. Screws: Fed. Spec. FF-S-111.

2.7 MOISTURE CONTENT

- A. Moisture content of lumber and millwork at time of delivery to site.
 - Interior finish lumber, trim, and millwork 32 mm (1-1/4 inches) or less in nominal thickness: 12 percent on 85 percent of the pieces and 15 percent on the remainder.

- 2. Exterior treated or untreated finish lumber and trim 100 mm (4 inches) or less in nominal thickness: 15 percent.
- 3. Moisture content of other materials shall be in accordance with the standards under which the products are produced.

2.8 FABRICATION

- A. General:
 - 1. Except as otherwise specified, use AWI Custom Grade for architectural woodwork and interior millwork.
 - 2. Finish woodwork shall be free from pitch pockets.
 - 3. Except where special profiles are shown, trim shall be standard stock molding and members of the same species.
 - 4. Fabricate members less than 4 m (14 feet) in length from one piece of lumber, back channeled and molded a shown.
 - Interior trim and items of millwork to be painted may be fabricated from jointed, built-up, or laminated members, unless otherwise shown on drawings or specified.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain work areas and storage areas to a minimum temperature of $21^{\circ}C$ (70°F) for not less than 10 days before and during installation of interior millwork.
- B. Do not install finish lumber or millwork in any room or space where wet process systems such as concrete, masonry, or plaster work is not complete and dry.

3.2 INSTALLATION

- A. General:
 - Millwork receiving transparent finish shall be primed and backpainted on concealed surfaces. Set no millwork until primed and backpainted.
 - 2. Secure trim with fine finishing nails, screws, or glue as required.
 - 3. Set nails for putty stopping. Use washers under bolt heads where no other bearing plate occurs.
 - 4. Seal cut edges of preservative and fire retardant treated wood materials with a certified acceptable sealer.
 - 5. Coordinate with plumbing and electrical work for installation of fixtures and service connections in millwork items.

- 6. Plumb and level items unless shown otherwise.
- 7. Nail finish at each blocking, lookout, or other nailer and intermediate points; toggle or expansion bolt in place where nails are not suitable.
- 8. Exterior Work: Joints shall be close fitted, metered, tongue and grooved, rebated, or lapped to exclude water.
- B. Install exterior solid vinyl trim with butt joints in straight runs and install interior trim with miter at corners.
- C. Fiber Cement Shingles
 - Apply appropriate underlayment to sheathing to prevent the infiltration of wind and moisture. Apply underlayment lapping horizontal joints 2" (51 mm) and vertical joints 6" (152 mm). Only apply enough underlayment that can be completely covered by siding. In the event this is not possible, do not permit water to drain over uncovered underlayment onto siding.
 - 2. Starting at the bottom, snap a chalk line around the building as a guide line for the top edge of the first course of siding. Snap succeeding horizontal course lines spacing the lines the necessary distance to provide the required exposure.
 - 3. Nail a 1/4" x 1 1/2" (6mm x 38mm) cant strip along the bottom edge of the sheathing with the following clearances:
 - a. 6" (152 mm) minimum between siding and adjacent finished grade
 on the exterior
 - b. 2" (51 mm) minimum between siding and paths/decking materials/roofing, steps and driveways
 - c.1" (25 mm) minimum between siding and gutter caps
 - d.1/4" (6 mm) minimum between siding and horizontal flashing (do not caulk this gap)
 - 4. Start the first and odd-numbered courses at the left corner of the wall with a full siding piece. Make sure this piece is properly placed, plumbed, leveled, and aligned with the chalk line to assure proper placement of succeeding courses. Drive nails in pre-drilled holes snug but not too tight. Before driving the last nail at the right-hand end, insert a backer strip vertically in place and secure it with the last nail. Always use a backer strip and place centered at the joint between siding pieces and with its lower end overlapping the cant strip or the head of the lower courses. Continue with full siding pieces. Install adjacent siding butting tightly together end to end. Do not leave spaces between siding pieces.
 - 5. Start the second course and all even-numbered courses with a piece of siding cut in half lengthwise. Align the head of the siding with the

Project #: 692-14-101

chalk line with the lower edge overlapping the head of the course below to provide the necessary top-lap between courses. Drive nails in pre-drilled holes snug but not too tight. Install backer strips at every vertical union as in Step 4. Continue row with full siding pieces. Repeat Steps 4 and 5. At the top of the wall, measure the height of the last course. Cut the top off pieces for the last course so they are 1" (25 mm) less than the measured height. Next install a $1" \ge 3"$ (25 mm ≥ 76 mm) or $1" \ge 4"$ (25 mm ≥ 102 mm) wood board at the top of the course to cover the cut edge. The 1" (25 mm) gap will allow the board to be nailed to the subsurface material without nailing into the siding and possibly cause splitting.

6. Apply metal flashing properly at all door and window openings. In corner treatments, carry the underlayment felt around the corner of each side wall so there is a double thickness of No.15 asphalt saturated felt over the corner. Use a non-shrinking caulking compound to weather-seal all joints where siding abuts wooden trim, masonry, or other projections.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies thermal insulation for buildings.

1.2 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES .
- B. Manufacturer's Literature and Data:
 - 1. Insulation, each type used
 - 2. Adhesive, each type used.
 - 3. Tape
- C. Certificates: Stating the type, thickness and "R" value (thermal resistance) of the insulation to be installed.

1.3 STORAGE AND HANDLING:

- A. Store insulation materials in weathertight enclosure.
- B. Protect insulation from damage from handling, weather and construction operations before, during, and after installation.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

C270-10	Mortar for Unit Masonry	
C516-08	Vermiculite Loose Fill Thermal Insulation	
C549-06	.Perlite Loose Fill Insulation	
C552-07	Cellular Glass Thermal Insulation.	
C553-08	Mineral Fiber Blanket Thermal Insulation for	
	Commercial and Industrial Applications	
C578-10	Rigid, Cellular Polystyrene Thermal Insulation	
591-09		
	Polyisocynurate Thermal Insulation	
C612-10	Mineral Fiber Block and Board Thermal.	
	Insulation	
C665-06	Mineral Fiber Blanket Thermal Insulation for	
	Light Frame Construction and Manufactured	
	Housing	

07 21 13 THERMAL INSULATION

Project #: 692-14-101

C728-05 (R2010)Perlite Thermal Insulation Board	
C954-10Steel Drill Screws for the Application of	
Gypsum Panel Products or Metal Plaster Base to	
Steel Studs From 0.033 (0.84 mm) inch to 0.112	
inch (2.84 mm) in thickness	
C1002-07Steel Self-Piercing Tapping Screws for the	
Application of Gypsum Panel Products or Metal	
Plaster Bases to Wood Studs or Steel Studs	
D312-00(R2006)Asphalt Used in Roofing	
E84-10 of Building	
Materials	
F1667-11Driven Fasteners: Nails, Spikes and Staples.	

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL:

- A. Where thermal resistance ("R" value) is specified or shown for insulation, the thickness shown on the drawings is nominal. Use only insulation with actual thickness that is not less than that required to provide the thermal resistance specified.
- B. Where "R" value is not specified for insulation, use the thickness shown on the drawings.
- C. Where more than one type of insulation is specified, the type of insulation for each use is optional, except use only one type of insulation in any particular area.
- D. Insulation Products shall comply with following minimum content standards for recovered materials:

Material Type	Percent by Weight
Perlite composite board	23 percent post consumer recovered paper
Polyisocyanurate/polyurethane	
Rigid foam	9 percent recovered material
Foam-in-place	5 percent recovered material
Glass fiber reinforced	6 percent recovered material
Phenolic rigid foam	5 percent recovered material
Rock wool material	75 percent recovered material

The minimum-content standards are based on the weight (not the volume) of the material in the insulating core only.

2.2 PERIMETER INSULATION IN CONTACT WITH SOIL:

- A. Polystyrene Board: ASTM C578, Type IV, V, VI, VII, or IX where covered by soil or concrete.
- B. Cellular Glass Block: ASTM C552, Type I or IV.

2.3 EXTERIOR FRAMING OR FURRING INSULATION:

- A. Batt or Blanket: Optional.
- B. Mineral Fiber: ASTM C665, Type II, Class C, Category I where framing is faced with gypsum board.
- C. Mineral Fiber: ASTM C665, Type III, Class A where framing is not faced with gypsum board.

2.4 RIGID INSULATION:

- A. On the inside face of exterior walls, spandrel beams, floors, bottom of slabs, and where shown.
- B. Mineral Fiber Board: ASTM C612, Type IB or 2.
- C. Perlite Board: ASTM C728.
- D. Cellular Glass Block: ASTM C552, Type I.

2.5 FASTENERS:

- A. Staples or Nails: ASTM F1667, zinc-coated, size and type best suited for purpose.
- B. Screws: ASTM C954 or C1002, size and length best suited for purpose with washer not less than 50 mm (two inches) in diameter.
- C. Impaling Pins: Steel pins with head not less than 50 mm (two inches) in diameter with adhesive for anchorage to substrate. Provide impaling pins of length to extend beyond insulation and retain cap washer when washer is placed on the pin.

2.6 ADHESIVE:

- A. As recommended by the manufacturer of the insulation.
- B. Asphalt: ASTM D312, Type III or IV.

2.7 TAPE:

- A. Pressure sensitive adhesive on one face.
- B. Perm rating of not more than 0.50.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

A. Install insulation with the vapor barrier facing the heated side, unless specified otherwise.

- B. Install rigid insulating units with joints close and flush, in regular courses and with cross joints broken.
- C. Install batt or blanket insulation with tight joints and filling framing void completely. Seal cuts, tears, and unlapped joints with tape.
- D. Fit insulation tight against adjoining construction and penetrations, unless specified otherwise.

3.2 PERIMETER INSULATION:

- A. Vertical insulation:
 - 1. Fill joints of insulation with same material used for bonding.
 - 2. Bond polystyrene board to surfaces with adhesive or Portland cement mortar mixed and applied in accordance with recommendations of insulation manufacturer.
 - 3. Bond cellular glass insulation to surfaces with hot asphalt or adhesive cement.
- B. Horizontal insulation under concrete floor slab:
 - Lay insulation boards and blocks horizontally on level, compacted and drained fill.
 - 2. Extend insulation from foundation walls towards center of building not less than 600 mm (24 inches) or as shown.

3.3 EXTERIOR FRAMING OR FURRING BLANKET INSULATION:

- A. Pack insulation around door frames and windows and in building expansion joints, door soffits and other voids. Pack behind outlets around pipes, ducts, and services encased in walls. Open voids are not permitted. Hold insulation in place with pressure sensitive tape.
- B. Lap vapor retarder flanges together over face of framing for continuous surface. Seal all penetrations through the insulation.
- C. Fasten blanket insulation between metal studs or framing and exterior wall furring by continuous pressure sensitive tape along flanged edges.
- D. Fasten blanket insulation between wood studs or framing with nails or staples through flanged edges on face of stud. Space fastenings not more than 150 mm (six inches) apart.
- E. Roof Rafter Insulation or Floor Joist Insulation: Place mineral fiber blankets between framing to provide not less than a 50 mm (two inch) air space between insulation and roof sheathing or subfloor.
- F. Ceiling Insulation and Soffit Insulation:
 - 1. Fasten blanket insulation between wood framing or joist with nails or staples through flanged edges of insulation.

3.4 RIGID INSULATION ON SURFACE OF EXTERIOR WALLS, FLOORS, AND UNDERSIDE OF FLOORS:

A. Fasten board insulation to face of studs with screws, nails or staples. Space fastenings not more than 300 mm (12 inches) apart. Stagger fasteners at joints of boards. Install at each corner.

- - - E N D - - -

SECTION 07 31 13 ASPHALT SHINGLES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies organic felt and fiberglass asphalt shingles.

1.2 RELATED WORK

- A. Color of shingles: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Counterflashing and flashing of roof projections: Section 07 60 00, FLASHING AND SHEET METAL.

1.3 SUMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples: Shingles, each type, color and texture.
- C. Manufacturer's Literature and Data:
 - 1. Shingles, each type
 - 2. Installation instructions

1.4 DELIVERY AND STORAGE

- A. Deliver materials in manufacturer's unopened bundles or containers with the manufacturer's brand and name clearly marked thereon.
- B. Shingle bundle wrapping shall bear the label of Underwriters Laboratories, Inc.
- C. Store shingles in accordance with manufacturer's printed instructions. Store roll goods on end in an upright position.
- D. Keep materials dry, covered completely and protected from the weather.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part o this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

D226-09.....Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing

- D1970-11.....Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection
- D2178-04.....Asphalt Glass Felt used in Roofing and Waterproofing

Project #: 692-14-101

D3018-11.....Class A Asphalt Shingles Surfaced with Mineral Granules

D3462-10.....Asphalt, Shingles Made from Glass Felt and Surfaced with Mineral Granules

- F1667-11.....Driven Fasteners: Nails, Spikes, and Staples
- C. Underwriter's Laboratories Inc. (UL):

UL790-08.....Fire Tests of Roof Covering

PART 2 - PRODUCTS

2.1 SHINGLES

A. Class A: (Fire resistive), per UL790. ASTM D3018, Type I and ASTM 3462, square butt for a maximum exposure of 125 mm (5 inches), headlap minimum 50 mm (2 inches), wind resistant, self sealing. Minimum weight: 10.3 Kg/sqm (210 lbs/100sft).

2.2 ROOFING NAILS

- A. ASTM F1667; Type I, Style 20, galvanized steel, deformed shanks, with heads 9.5 mm to 11 mm (3/8-inch to 7/16-inch) diameter.
- B. Use nails 32 mm (1-1/4 inches) long for shingles and 19 mm (3/4-inch)long) for felt.

2.3 ROOFING FELT

- Α. Fiberglass Felt: ASTM D2178.
- Organic Felt: ASTM D226, TYPE 1. в.
- C. Modified bitumen; ASTM D 1970.

PART 3 EXECUTION

3.1 PREPARATION

- A. Roof surfaces shall be sound, reasonably smooth and free from defects which would interfere with roofing installation.
- B. Roof accessories, vent pipes and other projections through the roof must be in place and roof flashing installed or ready for installation before laying shingles.

3.2 LAYING

- A. Lay felt under shingles over entire roof.
- B. Install asphalt felt underlayment, lapping a minimum of 100 mm (four inches) at ends, 50 mm (2 inches) at head and 300 mm (12 inches) over ridge. Extend felt 13 mm (1/2-inch) beyond edges of roof. Nail felt 125 mm (five inches) on centers along laps.
- C. At eaves, install strip of 41 Kg (90 pound) mineral surface roll roofing not less than 460 mm (18 inches) wide and starter course of

Project #: 692-14-101

roof shingles with tabs reversed. Both shall overhang lower edge of roof 13 mm (1/2-inch).

D. Lay shingles with maximum exposure of 125 mm (5 inches). Nail shingles in accordance with manufacturer's published directions.

3.3 METAL DRIP EDGES

- A. At rakes, install metal drip edges made of stainless steel specified under Section 07 60 00, FLASHING AND SHEET METAL. Apply the metal drip edge directly over the underlayment along the rakes.
- B. Secure metal drip edges with compatible nails spaced not more than 250 mm (10 inches) on center along the inner edges.

3.4 FLASHINGS

Provide metal flashings specified under Section 07 60 00, FLASHING AND SHEET METAL at the intersections of roofs, adjoining walls, or projections through the deck such as chimneys and vent stacks. Give careful attention to the installation of all flashings.

3.5 RIDGE

- A. Bend each shingle lengthwise down center to provide equal exposure on each side of ridge. Beginning at one end of ridge, apply shingles with maximum 125 mm (5 inches) exposure.
- B. Secure each shingle with one nail on each side, 210 mm (8-1/2 inches) back from exposed end and one inch up from edge.

3.6 VALLEY FLASHING

- A. Install metal valley flashing shown and as specified under Section 07 60 00, FLASHING AND SHEET METAL.
- B. Secure valley flashing in accordance with shingle manufacturer's printed instructions.
- C. Expose flashing in open portion of valley a minimum of 125 mm (5 inches) and lap the shingles over the flashing a minimum of 125 mm (5 inches).

- - - E N D - - -

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

Formed sheet metal work for wall and roof flashing, copings, roof edge metal, fasciae and drainage specialties.

1.2 RELATED WORK

- A. Flashing components of factory finished roofing and wall systems: Division 07 roofing and wall system sections.
- B. Joint Sealants: Section 07 92 00, JOINT SEALANTS.
- C. Color of factory coated exterior architectural metal and anodized aluminum items: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

C. ASTM International (ASTM):

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. American Architectural Manufacturers Association (AAMA): AAMA 620.....Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural
 - Aluminum
 - AAMA 621.....Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Hot Dipped Galvanized (HDG) and Zinc-Aluminum Coated Steel Substrates
 - A240/A240M-14.....Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications.
 - A653/A653M-11.....Steel Sheet Zinc-Coated (Galvanized) or Zinc Alloy Coated (Galvanized) by the Hot- Dip Process
 - B32-08.....Solder Metal B209-10.....Aluminum and Aluminum-Alloy Sheet and Plate

D412-06(R2013).....Vulcanized Rubber and Thermoplastic Elastomers-Tension D1187-97(R2011).....Asphalt Base Emulsions for Use as Protective Coatings for Metal D1784-11......Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds D4586-07.....Asphalt Roof Cement, Asbestos Free D. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual.

- E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- F. Federal Specification (Fed. Spec): A-A-1925A..... Shield, Expansion; (Nail Anchors) UU-B-790A.....Building Paper, Vegetable Fiber
- G. International Code Commission (ICC): International Building Code, Current Edition

1.4 PERFORMANCE REQUIREMENTS

A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:

- 1. Wind Zone 1: 0.48 to 0.96 kPa (10 to 20 lbf/sq. ft.): 1.92-kPa (40-lbf/sq. ft.) perimeter uplift force, 2.87-kPa (60-lbf/sq. ft.) corner uplift force, and 0.96-kPa (20-lbf/sq. ft.) outward force.
- 2. Wind Zone 1: 1.00 to 1.44 kPa (21 to 30 lbf/sq. ft.): 2.87-kPa (60-lbf/sq. ft.) perimeter uplift force, 4.31-kPa (90-lbf/sq. ft.) corner uplift force, and 1.44-kPa (30-lbf/sq. ft.) outward force.
- 3. Wind Zone 2: 1.48 to 2.15 kPa (31 to 45 lbf/sq. ft.): 4.31-kPa (90-lbf/sq. ft.) perimeter uplift force, 5.74-kPa (120-lbf/sq. ft.) corner uplift force, and 2.15-kPa (45-lbf/sq. ft.) outward force.
- 4. Wind Zone 3: 2.20 to 4.98 kPa (46 to 104 lbf/sq. ft.): 9.96-kPa (208-lbf/sq. ft.) perimeter uplift force, 14.94-kPa (312-lbf/sq. ft.) corner uplift force, and 4.98-kPa (104-lbf/sq. ft.) outward force.
- B. Wind Design Standard: Fabricate and install roof-edge flashings tested per ANSI/SPRI ES-1 to resist design pressure indicated on Drawings.

1.5 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Shop Drawings: For all specified items, including:
 - 1. Flashings
 - 4. Gutter and Conductors
- C. Manufacturer's Literature and Data: For all specified items, including: 1. Two-piece counterflashing
- D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

- A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
- B. Aluminum Sheet: ASTM B209, alloy 3003-H14.
- C. Galvanized Sheet: ASTM, A653.
- D. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056 inch) thick. Sheeting shall have not less than 7 MPa (1,000 psi) tensile strength and not more than seven percent tension-set at 50 percent elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1 mm (1/32 inch) diameter mandrel and then bent at same point over same size mandrel in opposite direction through 360 degrees at temperature of -30°C (-20 °F).

2.2 FLASHING ACCESSORIES

- A. Fasteners:
 - 1. Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.
 - 2. Nails:
 - a. Minimum diameter for aluminum nails 3 mm (0.105 inch).
 - b. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
 - c. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
 - 3. Rivets: Not less than 3 mm (1/8 inch) diameter.

- B. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- C. Insect Screening: ASTM D3656, 18 by 18 regular mesh.
- D. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Concealed Locations (Built into Construction):
 - 2. Stainless steel: 0.25 mm (0.010 inch) thick.
 - 4. Galvanized steel: 0.5 mm (0.021 inch) thick.
- C. Exposed Locations:
 - 2. Stainless steel: 0.4 mm (0.015 inch).
- D. Thickness of aluminum or galvanized steel is specified with each item.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - 1. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 - 2. Flat and lap joints shall be made in direction of flow.
 - 3. Edges of nonreinforced elastomeric sheeting shall be jointed by lapping not less than 100 mm (4 inches) in the direction of flow and cementing with asphalt roof cement or sealant as required by the manufacturer's printed instructions.
- B. Cleats:
 - Fabricate cleats to secure flashings and sheet metal work over 300 mm (12 inches) wide and where specified.
 - 2. Provide cleats for maximum spacing of 300 mm (12 inch) centers unless specified otherwise.
 - 3. Form cleats of same metal and weights or thickness as the sheet metal being installed unless specified otherwise.
 - Fabricate cleats from 50 mm (2 inch) wide strip. Form end with not less than 19 mm (3/4 inch) wide loose lock to item for anchorage.

Form other end of length to receive nails free of item to be anchored and end edge to be folded over and cover nail heads.

- C. Edge Strips or Continuous Cleats:
 - 1. Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
 - 2. Use material compatible with sheet metal to be secured by the edge strip.
 - 3. Fabricate in 3000 mm (10 feet) maximum lengths with not less than 19 mm (3/4 inch) loose lock into metal secured by edge strip.
 - 4. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the flashing to be hooked over the lower edge at least 19 mm (3/4-inch).
- D. Drips:
 - Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascias, by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.
 - Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.
- E. Edges:
 - Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.
 - 2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.
 - 3. All metal roof edges shall meet requirements of IBC, current edition.
- F. Metal Options:
 - 1. Where options are permitted for different metals use only one metal throughout.
 - 2. Stainless steel may be used in concealed locations for fasteners of other metals exposed to view.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 1. Stainless Steel: Finish No. 2B or 2D.
 - 2. Aluminum:
 - a. Clear Finish: AA-C22A41 medium matte, clear anodic coating, Class1 Architectural, 18 mm (0.7 mils) thick.
 - b. Mill finish.
 - 3. Steel and Galvanized Steel:
 - a. Manufacturer's finish:
 - 1) Baked-on prime and finish coat over a phosphate coating.
 - 2) Fluorocarbon Finish: AAMA 621, high performance organic coating.

2.6 BASE FLASHING

- A. Use metal base flashing at vertical surfaces intersecting roofing where shown.
 - 1. Use stainless steel, thickness specified unless specified otherwise.
 - 2. When flashing is over 250 mm (10 inches) in vertical height or horizontal width use 0.5 mm (0.018 inch) stainless steel.
 - 3. Use stainless steel at aluminum roof curbs where flashing contacts the aluminum.
 - 4. Use stainless steel at pipe flashings.
- B. Fabricate metal base flashing up vertical surfaces not less than 200 mm (8 inch) nor more than 400 mm (16 inch).
- C. Fabricate roof flange not less than 100 mm (4 inches) wide unless shown otherwise. When base flashing length exceeds 2400 mm (8 feet) form flange edge with 13 mm (1/2 inch) hem to receive cleats.
- D. Form base flashing bent from strip except pipe flashing. Fabricate ends for riveted soldered lap seam joints. Fabricate expansion joint ends as specified.
- E. Pipe Flashing: (Other than engine exhaust or flue stack)
 - 1. Fabricate roof flange not less than 100 mm (4 inches) beyond sleeve on all sides.

- 2. Extend sleeve up and around pipe and flange out at bottom not less than 13 mm (1/2 inch) and solder to flange and sleeve seam to make watertight.
- 3. At low pipes 200 mm (8 inch) to 450 mm (18 inch) above roof:
 - a. Form top of sleeve to turn down into the pipe at least 25 mm (one inch).
 - b. Allow for loose fit around and into the pipe.
- 4. At high pipes and pipes with goosenecks or other obstructions which would prevent turning the flashing down into the pipe:
 - a. Extend sleeve up not less than 300 mm (12 inch) above roofing.
 - b. Allow for loose fit around pipe.

2.7 COUNTERFLASHING (CAP FLASHING OR HOODS)

- A. Stainless steel, unless specified otherwise.
- B. Fabricate to lap base flashing a minimum of 100 mm (4 inches) with drip:
 - 1. Form lock seams for outside corners. Allow for lap joints at ends and inside corners.
 - 2. In general, form flashing in lengths not less than 2400 mm (8 feet) and not more than 3000 mm (10 feet).
 - 3. Two-piece, lock in type flashing may be used in-lieu-of one piece counter-flashing.
 - 4. Manufactured assemblies may be used.
- B. Surface Mounted Counterflashing; one or two piece:
 - Use at existing or new surfaces where flashing can not be inserted in vertical surface.
 - 2. One piece fabricate upper edge folded double for 65 mm (2 1/2 inches) with top 19 mm (3/4 inch) bent out to form "V" joint sealant pocket with vertical surface. Perforate flat double area against vertical surface with horizontally slotted fastener holes at 400 mm (16 inch) centers between end holes. Option: One piece surface mounted counter-flashing (cap flashing) may be used. Fabricate as detailed on Plate 51 of SMACNA Architectural Sheet Metal Manual.
 - 3. Two pieces: Fabricate upper edge to lock into surface mounted receiver. Fabricate receiver joint sealant pocket on upper edge and lower edge to receive counterflashing, with slotted fastener holes at 400 mm (16 inch) centers between upper and lower edge.
- C. Pipe Counterflashing:

- Form flashing for water-tight umbrella with upper portion against pipe to receive a draw band and upper edge to form a "V" joint sealant receiver approximately 19 mm (3/4 inch) deep.
- 2. Fabricate 100 mm (4 inch) over lap at end.
- 3. Fabricate draw band of same metal as counter flashing. Use 0.6 Kg (24 oz) copper or 0.33 mm (0.013 inch) thick stainless steel or copper coated stainless steel.
- 4. Use stainless steel bolt on draw band tightening assembly.
- 5. Vent pipe counter flashing may be fabricated to omit draw band and turn down 25 mm (one inch) inside vent pipe.
- D. Where vented edge decks intersect vertical surfaces, form in one piece, shape to slope down to a point level with and in front of edge-set notched plank; then, down vertically, overlapping base flashing.

2.8 HANGING GUTTERS

A. Fabricate gutters of not less than the following:

1. 1.3mm (0.032 inch) thick aluminum with factory backed enamel finish.

- B. Fabricate hanging gutters in sections not less than 2400 mm (8 feet) long, except at ends of runs where shorter lengths are required.
- C. Building side of gutter shall be not less than 38 mm (1 1/2 inches) higher than exterior side.
- D. Gutter Bead: Stiffen outer edge of gutter by folding edge over approximately 19 mm (3/4 inch) toward roof and down approximately 19 mm (3/4 inch) unless shown otherwise.
- E. Gutter Spacers:
 - 1. Fabricate of same material and thickness as gutter.
 - Fabricate 25 mm (one inch) wide strap and fasten to gutters not over 900 mm (36 inches) on center.
 - 3. Turn back edge up 25 mm (one inch) and lap front edge over gutter bead.
 - 4. Rivet and seal to aluminum.
- F. Outlet Tubes:
 - Form outlet tubes to connect gutters to conductors of same metal and thickness as gutters extend into the conductor 75 mm (3 inch).
 Flange upper end of outlet tube 13 mm (1/2 inch).
 - 2. Lock and use sealant.
 - 3. Seal aluminum tube to gutter and rivet to gutter.
 - 4. Fabricate basket strainers of same material as gutters.

- G. Gutter Brackets:
 - 1. Fabricate of same metal as gutter. Use the following:
 - b. 3 by 25 mm (1/8 by 1 inch))// stainless steel.
 - c. 6 by 25 mm (1/4 by 1 inch) aluminum.
 - 2. Fabricate to gutter profile.
 - Drill two 5 mm (3/16 inch) diameter holes in anchor leg for countersunk flat head screws.

2.9 CONDUCTORS (DOWNSPOUTS)

- A. Fabricate conductors of same metal and thickness as gutters in sections approximately 3000 mm (10 feet) long.
- B. Fabricate elbows by mitering, riveting, and seal. Lap upper section to the inside of the lower piece.
- C. Fabricate conductor brackets or hangers of same material as conductor, 2 mm (1/16 inch) thick by 25 mm (one inch) minimum width. Form to support conductors 25 mm (one inch) from wall surface in accordance with Architectural Sheet Metal Manual Plate 34, Design C for rectangular shapes and E for round shapes.
- D. Conductor Heads:
 - 1. Fabricate of same material as conductor.
 - Fabricate conductor heads to not less than 250 mm (10 inch) wide by
 200 mm (8 inch) deep by 200 mm (8 inches) from front to back.
 - 3. Form front and side edges channel shape not less than 13 mm (1/2 inch) wide flanges with edge hemmed.
 - 4. Slope bottom to sleeve to conductor or downspout at not less than 60 degree angle.
 - 5. Extend wall edge not less than 25 mm (one inch) above front edge.
 - 6. Solder joints for water tight assembly.
 - Fabricate outlet tube or sleeve at bottom not less than 50 mm (2 inches) long to insert into conductor.

2.10 ROOF VENTILATORS

- A. Form of 1.3 mm (0.0508 inch) thick sheet aluminum, reinforce as necessary for rigidity, stiffness, and connection to curb, and to be watertight.
 - 1. Form lower-edge to sleeve to curb.

- 2. Curb:
 - a. Form for 100 mm (4 inch) minimum high sleeve to ventilator or as indicated on drawings.
 - b. Form for concealed anchorage to structural curb and to bear on structural curb.
 - c. Form bottom edge of curb as counterflashing to lap base flashing.
- B. Provide open end with 1.6 mm (16 gage), stainless steel wire guard of
 - 13 mm (1/2 inch) square mesh.
 - 1. Construct suitable aluminum angle frame to retain wire guard.
 - 2. Rivet angle frame to end of gooseneck.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
- 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
- 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
- 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
- Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.
- 6. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
- 7. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.

- Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.
- Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.
- 10. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.
- 11. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
- 12. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.
- 13. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.
- 14. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.

3.2 BASE FLASHING

- A. Install where roof membrane type base flashing is not used and where shown.
 - 1. Install flashing at intersections of roofs with vertical surfaces or at penetrations through roofs, to provide watertight construction.
 - 2. Secure flange by nailing through roofing into wood blocking with nails spaced 75 mm (3 inch) on centers or, when flange over 100 mm (4 inch) wide terminate in a 13 mm (1/2 inch) folded edge anchored with cleats spaced 200 mm (8 inch) on center. Secure one end of cleat over nail heads. Lock other end into the seam.
- B. Extend base flashing up under counter flashing of roof specialties and accessories or equipment not less than 75 mm (3 inch).

3.3 COUNTERFLASHING (CAP FLASHING OR HOODS)

A. General:

- 1. Install counterflashing over and in conjunction with installation of base flashings, except as otherwise specified or shown.
- Install counterflashing to lap base flashings not less than 100 mm (4 inch).
- Install upper edge or top of counterflashing not less than 225 mm (9 inch) above top of the roofing.
- 4. Lap joints not less than 100 mm (4 inch). Stagger joints with relation to metal base flashing joints.

3.4 HANGING GUTTERS

- A. Hang gutters with high points equidistant from downspouts. Slope at not less than 1:200 (1/16 inch per foot).
- B. Lap joints, except for expansion joints, at least 25 mm (one inch) in the direction of flow. Rivet and seal or solder lapped joints.
- C. Support gutters in brackets spaced not more than 600 mm (24 inch) on centers, brackets attached to facial or wood nailer by at least two screws or nails.
 - For aluminum gutters use aluminum brackets or stainless steel brackets.
 - 2. Use brass or stainless steel screws.
- D. Secure brackets to gutters in such a manner as to allow free movement of gutter due to expansion and contraction.
- E. Outlet Tubes: Set bracket strainers loosely into gutter outlet tubes.

3.5 CONDUCTORS (DOWNSPOUTS)

- A. Fasten and seal joint. Sleeve conductors to gutter outlet tubes and fasten joint and joints between sections.
- B. Set conductors plumb and clear of wall, and anchor to wall with two anchor straps, located near top and bottom of each section of conductor. Strap at top shall be fixed to downspout, intermediate straps and strap at bottom shall be slotted to allow not less than 13 mm (1/2 inch) movement for each 3000 mm (10 feet) of downspout.
- C. Install elbows, offsets and shoes where shown and required. Slope not less than 45 degrees.

3.6 ROOF VENTILATORS

A. Install on structural curb not less than 200 mm (8 inch) high above roof surface.

- B. Securely anchor ventilator curb to structural curb with fasteners spaced not over 300 mm (12 inch) on center.
- C. Anchor duct to curb with screws having nonprene washers at 150 mm (6 inch) on center.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK:

A. Glazing: Section 08 80 00, GLAZING.

1.3 QUALITY CONTROL:

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in jointsealant installations with a record of successful in-service performance.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
- C. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color where required to match adjacent material.
- D. Manufacturer's Literature and Data:
 - 1. Caulking compound
 - 2. Primers
 - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other.

1.5 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 $^{\circ}\text{C}$ (40 $^{\circ}\text{F}).$

- b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - 1. Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - 1. Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.6 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F).

1.7 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Back-up Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.8 WARRANTY:

- A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years.
- B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): C509-06.....Elastomeric Cellular Preformed Gasket and Sealing Material.

Project #: 692-14-101

```
C612-10..... Mineral Fiber Block and Board Thermal
                       Insulation.
  C717-10.....Standard Terminology of Building Seals and
                       Sealants.
  C834-10....Latex Sealants.
  C919-08.....Use of Sealants in Acoustical Applications.
  C920-10.....Elastomeric Joint Sealants.
  C1021-08.....Laboratories Engaged in Testing of Building
                       Sealants.
  C1193-09.....Standard Guide for Use of Joint Sealants.
  C1330-02 (R2007).....Cylindrical Sealant Backing for Use with Cold
                       Liquid Applied Sealants.
  D1056-07.....Specification for Flexible Cellular Materials-
                       Sponge or Expanded Rubber.
  E84-09.....Surface Burning Characteristics of Building
                       Materials.
C. Sealant, Waterproofing and Restoration Institute (SWRI).
```

```
The Professionals' Guide
```

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. S-1:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 20-40
- B. S-2:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade P.
 - 5. Shore A hardness of 25-40.
- C. S-3:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type S.
 - 3. Class 25, joint movement range of plus or minus 50 percent.
 - 4. Grade NS.

- 5. Shore A hardness of 15-25.
- 6. Minimum elongation of 700 percent.
- D. S-4:
 - 1. ASTM C920 polyurethane or polysulfide.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-40.
- E. S-5:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade P.
 - 5. Shore hardness of 15-45.

F. S-6:

- 1. ASTM C920, silicone, neutral cure.
- 2. Type S.
- 3. Class: Joint movement range of plus 100 percent to minus 50 percent.
- 4. Grade NS.
- 5. Shore A hardness of 15-20.
- 6. Minimum elongation of 1200 percent.
- G. S-9:
 - 1. ASTM C920 silicone.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-30.
 - 6. Non-yellowing, mildew resistant.

2.2 CAULKING COMPOUND:

- A. C-1: ASTM C834, acrylic latex.
- B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber.

2.3 COLOR:

A. Color of sealants shall match adjacent surfaces and be selected from manufacturer's standard colors.D. Caulking shall be light gray or white, unless specified otherwise.

4

Project #: 692-14-101

2.4 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiber board: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POUROUS SURFACES:

A. Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.

C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI.
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - Apply primer prior to installation of back-up rod or bond breaker tape.

- 2. Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).
 - Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
 - Do not use sealant type listed by manufacture as not suitable for use in locations specified.
 - 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 5. Avoid dropping or smearing compound on adjacent surfaces.
 - 6. Fill joints solidly with compound and finish compound smooth.
 - 7. Tool joints to concave surface unless shown or specified otherwise.
 - Finish paving or floor joints flush unless joint is otherwise detailed.

- 9. Apply compounds with nozzle size to fit joint width.
- 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.
- C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.
- C. Leave adjacent surfaces in a clean and unstained condition.

3.7 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Threshold Setting Bed: Type S-1, S-3, S-4
 - 3. Wood to Masonry: Type S-1
- B. Metal Reglets and Flashings:
 - 1. Flashings to Wall: Type S-6
 - 2. Metal to Metal: Type S-6

- C. Sanitary Joints:
 - 1. Pipe Penetrations: Type S-9
- D. Horizontal Traffic Joints:
 - 1. Concrete Paving, Unit Pavers: Type S-11 or S-12
- F. Interior Caulking:
 - Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1 and C-2.
 - Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1 and C-2.
 - 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1 and C-2.

- - - E N D - - -

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies steel doors, steel frames and related components.
- B. Terms relating to steel doors and frames as defined in ANSI A123.1 and as specified.

1.2 RELATED WORK

A. Door Hardware: Section 08 71 00, DOOR HARDWARE.

1.3 TESTING

A. An independent testing laboratory shall perform testing.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers Literature and Data

1.5 SHIPMENT

- A. Prior to shipment label each door and frame to show location, size, door swing and other pertinent information.
- B. Fasten temporary steel spreaders across the bottom of each door frame.

1.6 STORAGE AND HANDLING

- A. Store doors and frames at the site under cover.
- B. Protect from rust and damage during storage and erection until completion.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Door and Hardware Institute (DHI): A115 Series.....Steel Door and Frame Preparation for Hardware, Series A115.1 through A115.17 (Dates Vary)
- C. Steel Door Institute (SDI):
- D. American National Standard Institute: A250.8-2003 (R2008).....Specifications for Standard Steel Doors and

Frames

E. American Society for Testing and Materials (ASTM):

A568/568-M-11.....Steel, Sheet, Carbon, and High-Strength, Lowalloy, Hot-Rolled and Cold-Rolled

A1008-10.....Steel, sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy and High Strength Low Alloy with Improved Formability

- F. The National Association Architectural Metal Manufactures (NAAMM): Metal Finishes Manual (AMP 500-06)
- G. National Fire Protection Association (NFPA): 80-13.....Fire Doors and Fire Windows
- H. Underwriters Laboratories, Inc. (UL):
 Fire Resistance Directory
- I. Intertek Testing Services (ITS): Certifications Listings...Latest Edition
- J. Factory Mutual System (FM): Approval Guide

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Sheet Steel: ASTM A1008, cold-rolled for panels (face sheets) of doors.
- B. Anchors, Fastenings and Accessories: Fastenings anchors, clips connecting members and sleeves from zinc coated steel.
- C. Prime Paint: Paint that meets or exceeds the requirements of A250.8.

2.2 FABRICATION GENERAL

- A. GENERAL:
 - Follow ANSI A250.8 for fabrication of standard steel doors, except as specified otherwise. Doors to receive hardware specified in Section 08 71 00, DOOR HARDWARE. Tolerances as per ANSI A250.8. Thickness, 44 mm (1-3/4 inches), unless otherwise shown.
 - Close top edge of exterior doors flush and seal to prevent water intrusion.
 - 3. When vertical steel stiffeners are used for core construction, fill spaces between stiffeners with mineral fiber insulation.
- B. Extra Heavy Duty Doors: ANSI A250.8, Level 3, Full flush seamless design of size and design shown. Core construction Types b or c for exterior doors.

Core Construction Type	Door Core Description
а	Kraft honeycomb
b	Polyurethane
С	Polystyrene
d	Unitized steel grid
е	Mineral fiberboard
	Vertical steel
f	stiffeners

- C. Custom Metal Hollow Doors:
 - Provide custom hollow metal doors where nonstandard steel doors are indicated. At the Contractor's option, custom hollow metal doors may be provided in lieu of standard steel doors. Door size(s), design, materials, construction, gages and finish shall be as specified for of standard steel doors.

2.3 METAL FRAMES

- A. General:
 - 1. ANSI A250.8, 1.3 mm (0.053 inch) thick sheet steel, types and styles as shown or scheduled.
 - 2. Frames for exterior doors: Fabricate from 1.7 mm (0.067 inch) thick galvanized steel conforming to ASTM A525.
 - 3. Knocked-down frames are not acceptable.
- B. Frame Anchors:
 - 1. Floor anchors:
 - a. Where floor fills occur, provide extension type floor anchors to compensate for depth of fill.
 - b. At bottom of jamb use 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive two 6 mm (1/4 inch) floor bolts. Use 50 mm x 50 mm (2 inch by 2 inch) 9 mm by (3/8 inch) clip angle for lead lined frames, drilled for 9 mm (3/8 inch) floor bolts.
 - 2. Jamb anchors:
 - a. Locate anchors on jambs near top and bottom of each frame, and at intermediate points not over 600 mm (24 inches) apart.
 - b. Form jamb anchors of not less than 1 mm (0.042 inch) thick steel unless otherwise specified.

Project #: 692-14-101

- c. Anchors for stud partitions: Either weld to frame or use lock-in snap-in type. Provide tabs for securing anchor to the sides of the studs.
- d. Modify frame anchors to fit special frame and wall construction and provide special anchors where shown or required.

2.4 SHOP PAINTING

A. ANSI A250.8.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Plumb, align and brace frames securely until permanent anchors are set.
 - 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - 2. Use wood spreaders at bottom of frame if the shipping spreader is removed.
 - 3. Protect frame from accidental abuse.
 - 4. Where construction will permit concealment, leave the shipping spreaders in place after installation, otherwise remove the spreaders after the frames are set and anchored.
 - 5. Remove wood spreaders and braces only after the walls are built and jamb anchors are secured.
- B. Floor Anchors:
 - Anchor the bottom of door frames to floor with two 6 mm (1/4 inch) diameter expansion bolts. Use 9 mm (3/8 inch) bolts on lead lined frames.
 - 2. Power actuated drive pins may be used to secure frame anchors to concrete floors.
- C. Jamb Anchors:
 - Secure anchors to sides of studs with two fasteners through anchor tabs. Use steel drill screws to steel studs.

3.2 INSTALLATION OF DOORS AND APPLICATION OF HARDWARE

A. Install doors and hardware as specified in Sections Section 08 11 13, HOLLOW METAL DOORS AND FRAMES and Section 08 71 00, DOOR HARDWARE.

- - - E N D - - -

SECTION 08 31 13 ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 DESCRIPTION:

1.2 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Access doors, each type, showing construction, location and installation details.
- C. Manufacturer's Literature and Data: Access doors, each type.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A1008-10.....Steel Sheet, Cold-Rolled, Carbon, Structural, High Strength Low-Alloy
- C. American Welding Society (AWS): D1.3-08.....Structural Welding Code Sheet Steel 80-10.....Fire Doors and Windows
- D. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual

PART 2 - PRODUCTS

2.1 FABRICATION, GENERAL

- A. Fabricate components to be straight, square, flat and in same plane where required.
 - Slightly round exposed edges and without burrs, snags and sharp edges.
 - 2. Exposed welds continuous and ground smooth.
 - 3. Weld in accordance with AWS D1.3.
- B. Number of locks and non-continuous hinges as required to maintain alignment of panel with frame.
- C. Provide anchors or make provisions in frame for anchoring to adjacent construction. Provide size, number and location of anchors on four sides to secure access door in opening.

2.2 ACCESS DOORS, FLUSH PANEL:

A. Door Panel:

- 1. Form of 1.9 mm (0.0747 inch) thick steel sheet.
- 2. Reinforce to maintain flat surface.
- B. Frame:
 - 1. Form of 1.5 mm (0.0598 inch) thick steel sheet of depth and configuration to suit material and type of construction where installed.
 - 2. Provide surface mounted units having frame flange at perimeter where installed in gypsum board construction.
 - 3. Weld exposed joints in flange and grind smooth.
- C. Hinge:
 - 2. Provide removable hinge pin to allow removal of panel from frame.
- D. Lock:

1. Flush, screwdriver operated cam lock.

2.3 FINISH:

- A. Provide in accordance with NAAMM AMP 500 series on exposed surfaces.
- B. Steel Surfaces: Baked-on prime coat over a protective phosphate coating.

2.4 SIZE:

Minimum 600 mm (24 inches) square door unless otherwise shown or required to suit opening between existing framing.

PART 3 - EXECUTION

3.1 LOCATION:

A. Use flush panels in partitions and gypsum board ceilings.

3.2 INSTALLATION, GENERAL:

A. Set frames with flanges to overlap opening and so that face will be uniformly spaced from the finish surface.

3.3 ANCHORAGE:

- A. Secure frames to adjacent construction using anchors attached to frames or by use of bolts or screws through the frame members.
- B. Type, size and number of anchoring device suitable for the material surrounding the opening, maintain alignment, and resist displacement during normal use of access door.

3.4 ADJUSTMENT:

- A. Adjust hardware so that door panel will open freely.
- B. Adjust door when closed so door panel is centered in the frame.

- - - E N D - - -

08 31 13 ACCESS DOORS AND FRAMES

SECTION 08 56 00 VINYL WINDOWS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Section includes: Tubular extruded poly vinyl chloride (PVC) windows
 of the following type(s):
- B. Related Sections:
 - 1. 07 92 00 JOINT SEALANTS
 - 2. 08 80 00 GLAZING

1.2 RELATED WORK

- A. Reference Section 01 33 23 Submittal Procedures: submit following items:
 - 1. Product Data.
 - Shop Drawings: Include window schedule, window elevations, sections and details, and multiple window assembly details.
 - 3. Samples:
 - a. Color samples: Minimum 1x4 inch (25x100 mm) samples of PVC with integral color.
 - b. Glass, showing specified tint color.
 - 4. Quality Assurance/Control Submittals:
 - a. Qualifications: Proof of manufacturer's qualifications.
 - b. U-Factor and structural rating charts required for AAMA and NFRC labeling requirements.
 - c. Installation Instructions- AAMA 2400 ("Mounting Flange Installation").
- B. Closeout Submittals: Submit the following items:
 - Temporary window labels marked to identify windows that labels were applied to.
 - 2. Maintenance instructions.
 - 3. Special Warranties

1.3 QUALITY ASSURANCE

- A. Overall Standards: Comply with ANSI/AAMA 101.I.S.2, except as otherwise noted herein.
- B.Qualifications:
 - 1. Manufacturer Qualifications:
 - a. Minimum five years experience in producing vinyl windows of the type(s) specified.

08 56 00 VINYL WINDOWS b. Member AAMA, NFRC

C. Certifications for insulated glass windows:

- 1. AAMA: Windows shall be Gold Label certified with label attached to frame per AAMA requirements.
- NFRC: Windows shall be NFRC certified with temporary U-factor label applied to glass and an NFRC tab added to permanent AAMA frame label.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Follow manufacturer's instructions on label applied to windows.

1.05 WARRANTY

- A. Commercial Special Warranty:
 - 1. 10-year Warranty.

2. Warranty windows against defects in materials and workmanship including costs for parts and labor.

PART 2 - PRODUCTS

2.01 MANUFACTURER

- A. Basis of Design is the "Montecito" Model Vinyl window supplied by the following manufacturer:
 - Milgard Manufacturing, Inc.
 1010 54th Ave. East
 Tacoma, WA 98424
 - b. Phone: (800)-MILGARD (645-4273)
 - c. Website: http://www.milgard.com
 - d. Manufacturer's Representative:
- B. Other windows that are equivalent in appearance and performance shall be submitted for approval.

2.02 MATERIALS

- A. Vinyl: Integral color PVC compound containing impact-resistant solid plasticizer, titanium dioxide UV inhibitor, and surface and color stabilizers.
 - 1. Comply with ASTM D 4216 and ANSI/AAMA 101/I.S.2.

2.03 GENERAL PERFORMANCE REQUIREMENTS

- A. Thermal Performance: Comply with NFRC 100.
- B. Air Leakage, Water Resistance, Structural Test: Comply with ANSI/AAMA 101/I.S.2.
- C. Forced-Entry Resistance: Comply with ASTM E 588.

2.04 WINDOW TYPES

- A. Single Hung 8220M Series, 1-3/8 inch (35 mm) nail fin setback
 - Frame: Minimum 3-1/4 inch (83 mm) deep, multi-chambered vinyl profile.
 - Sash: Minimum 1 1/4 inch (32 mm) deep, multi-chambered vinyl profile.
 - 3. Sightlines: Equal for operating and fixed sash.
 - 4. Performance Class:
 - a. 44" x 75" test size: H-LC40 (LC30 with screen track weeps)
 - 5. Hardware:
 - a. Concealed block and tackle balancer.
 - b. Dual pull rails (sash lifts).
 - c. Locking mechanism.
 - 6. Weatherstripping: Fin seal polypropylene pile.

2.05 GLAZING

A. See Section 08 80 00 GLAZING.

2.06 DIVIDED LITE GRIDS

- A. Internal Grids (Metal bars color matched to frame and sash): a. 5/8" (16 mm) wide flat
- B. Grids shall be contained within the airspace of insulated glass units.
- C. Vinyl Simulated Divided Lite (SDL) grids:
 - 7/8" wide applied to interior and exterior of insulated glass unit with flat grids within the airspace of the insulated glass unit.

2.07 INSECT SCREENS

- A. Provide tight-fitting screen for operating sash with hardware to allow easy removal.
 - 1. Screen Cloth: Charcoal colored fiberglass mesh.
 - 2. Frame:
 - a. Cambered formed aluminum with rigid plastic corner keys.
 - b. Provide roll formed integral pull rail.

2.08 FABRICATION

- A. Fabricate frames and sash with mitered and fusion welded corners and joints. Trim and finish corners and welds to match adjacent surfaces.
- B. Provide concealed metal reinforcements in sash frame for attaching lock mechanism.

C. Factory inside glaze with snap-on PVC mitred glazing stops matching bevels on the sash and frame. Insulating glass units shall be reglazable without dismantling sash framing.

2.09 FINISHES

- A. Frame and Sash Color: White.
- B. Color match screen frame to window frame and sash color.

2.10 SOURCE QUALITY CONTROL

A. Windows inspected in accordance with manufacturer's Quality Control Program as required by AAMA Gold Label certification.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine openings in which windows will be installed. Field verify existing rough opening dimensions prior to fabrication. Custom build units to match existing units.

- Verify that framing complies with AAMA 2400 ("Mounting Flange Installation").
- 2. Verify that fasteners in framed walls are fully driven and will not interfere with window installation.
- B. Correct unsatisfactory conditions.
- C. Commencement of work by installer is acceptance of substrate conditions.

3.2 INSTALLATION

- A. Install windows in framed walls in accordance with AAMA 2400 ("Mounting Flange Installation").
- B. Do not remove temporary labels.
- C. Install insect screens on operable sash.

3.3 CLEANING

- A. Reference Section 01 74 00 Cleaning and Waste Management.
- B. Remove temporary labels and retain for Closeout Submittals.
- C. Clean soiled surfaces and glass using a mild detergent and warm water solution with soft, clean cloths.

END OF SECTION

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES; Section 32 31 33, CHAIN LINK FENCES AND GATES
- C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Painting: Section 09 91 00, PAINTING.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for application on metal wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- D. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal doors.

1.4 WARRANTY

- A. All hardware shall be minimum of one year for all items except as noted below:
 - 1. Locks: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware	Quantity	Size	Reference	Finish	Mfr.	Кеу	UL Mark	ANSI/BHMA
Item			Publication		Name	Control	(if	Finish
			Type No.		and	Symbols	fire	Designation
					Catalog		rated	
					No.		and	
							listed)	

C. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Project Engineer and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

- A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type. All locksets shall be grade 1.
- B. Keying: All cylinders shall be keyed. Provide interchangeable (IC) core cylinders that are removable only with a special key without disassembly of knob or lockset. The key system shall be a large format (full size) interchangeable (IC) core type. Cylinders shall be 6 pin type. Exiting keying system will meet or exceed Schlage G keyway design system.

1.10 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the

basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.

B. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-06.....Butts and Hinges

- A156.13-05......Mortise Locks and Latches Series 1000
- A156.18-06.....Materials and Finishes
- A156.21-09.....Thresholds
- A156.22-05......Door Gasketing and Edge Seal Systems
- A156.26-06.....Continuous Hinges

A156.28-07Master Keying Systems

A156.30-03High Security Cylinders

A250.8-03.....Standard Steel Doors and Frames

C. National Fire Protection Association (NFPA):

80-10.....Fire Doors and Fire Windows

- 101-09....Life Safety Code
- D. Underwriters Laboratories, Inc. (UL): Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - Exterior Doors: Type A2112/A5112 for doors 900 mm (3 feet) wide or less and Type A2111/A5111 for doors over 900 mm (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 3. Provide heavy-weight hinges where specified.

Project #: 692-14-101

- a. At doors weighing 330 kg (150 lbs.) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

A. ANSI/BHMA A156.26, Grade 1-600.

1. Listed under Category N in BHMA's "Certified Product Directory."

- B. General: Minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete
- C. Continuous, Barrel-Type Hinges: Hinge with knuckles formed around a Teflon-coated 6.35mm (0.25-inch) minimum diameter pin that extends entire length of hinge.
 - 1. Base Metal for Exterior Hinges: Stainless steel.
 - 2. Provide with non-removable pin (hospital tip option) at lockable outswing doors.
 - 3. Where required to clear adjacent casing, trim, and wall conditions and allow full door swing, provide wide throw hinges of minimum width required.

2.3 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.
- C. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement.

2.4 FLOOR DOOR HOLDERS

A. Conform to ANSI Standard A156.16. Provide extension strikes for Types L01301 and L01311 holders where necessary.

2.5 LOCKS

- A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall have not less than seven pins. Cylinders for all locksets shall be removable core type. Cylinders shall be furnished with construction removable cores and construction master keys. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. Provide temporary keying device or construction core of allow opening and closing during construction and prior to the installation of final cores.
- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching existing standard at the SORCC. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension.

2.6 KEYS

A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows:

Locks/Keys	Quantity
Master-keyed sets	6 keys each
Grand Master sets	6 keys each
Great Grand Master set	5 keys
Control key	2 keys

2.7 FLUSH BOLTS (LEVER EXTENSION)

- A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
- B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
- C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
- D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.

2.8 THRESHOLDS

- A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be installed in a bed of sealant with ¼-20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.
- B. At exterior doors provide threshold with non-slip abrasive finish.

2.9 WEATHERSTRIPS (FOR EXTERIOR DOORS)

A. Conform to ANSI A156.22. Air leakage shall not to exceed 0.50 CFM per foot of crack length (0.000774m³/s/m).

2.10 MISCELLANEOUS HARDWARE

- A. Access Doors (including Sheet Metal, Screen and Woven Wire Mesh Types): Except for fire-rated doors and doors to Temperature Control Cabinets, equip each single or double metal access door with Lock Type E76213, conforming to ANSI A156.5. Key locks as directed. Ship lock prepaid to the door manufacturer. Hinges shall be provided by door manufacturer.
- B. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door.

Provide 2 mutes for each edge of sliding door which would contact door frame.

2.11 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626 or 630.
 - 2. Thresholds: Mill finish aluminum.
 - 3. Other primed steel hardware: 600.

2.12 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish Base Metal		
626	Brass or bronze	
630	Stainless steel	

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. Locate hardware on doors at heights specified below, with all handoperated hardware centered within 864 mm (34 inches) to 1200 mm (48 inches), unless otherwise noted:
- B. Hardware Heights from Finished Floor:
 - Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
 - 2. Deadlocks centerline of strike 1219 mm (48 inches).
 - 3. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

A. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)

- B. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- C. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm	3 butts
(7 ft 6 in) high	
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- D. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- E. After locks have been installed; show in presence of Resident Engineer that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting

list. Also a copy of the invoice shall be sent to the Resident Engineer for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA Resident/Project Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

HW-E8

Each Pair to Have:

NON-RATED

- 2 Continuous Hinge
- 1 Set Manual Recessed Edge L04251/L04261 (VERIFY) Flush Bolts

1	Dust Proof Strike	L04021
1	Storeroom Lock	F13-MOD x RIGID OUTSIDE LEVER x KEY
		RETRACTS DEADBOLT AND LATCHBOLT
1	Overlapping Astragal with	R0Y634 x R0Y154 x THRU-BOLTS
	Self-Adhesive Seal	
2	Floor Stop	L02121 x 3 FASTNERS
1	Threshold (outswing door)	J32120 x SILICONE GASKET
2	Door Sweep	R0Y416
1	Set Frame Seals	R0Y164
1	Drip	R0Y976

- - - E N D - - -

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies glass related glazing materials and accessories. Glazing products specified apply to factory or field glazed items.

1.2 RELATED WORK

- A. Factory glazed by manufacturer in following units: vinyl windows
- B. Factory glazing systems must meet this specification section.

1.3 LABELS

- A. Temporary labels:
 - 1. Provide temporary label on each light of glass identifying manufacturer or brand and glass type, quality and nominal thickness.
 - 2. Label in accordance with NFRC (National Fenestration Rating Council) label requirements.
 - 3. Temporary labels shall remain intact until glass is approved by Resident Engineer.

1.4 PERFORMANCE REQUIREMENTS

- A. Building Enclosure Vapor Retarder and Air Barrier:
 - 1. Utilize the inner pane of multiple pane sealed units for the continuity of the air barrier and vapor retarder seal.
 - 2. Maintain a continuous air barrier and vapor retarder throughout the glazed assembly from glass pane to heel bead of glazing sealant.
- B. Glass Thickness:
 - 1. Select thickness of exterior glass to withstand dead loads and wind loads acting normal to plane of glass at design pressures calculated in accordance with ASCE 7 or applicable code if more stringent.
 - 2. Test in accordance with ASTM E 1300.
 - 3. Thicknesses listed are minimum. Coordinate thicknesses with framing system manufacturers.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Certificates:
 - 1. Certificate on shading coefficient.
 - 2. Certificate on "R" value.

Project #: 692-14-101

- 3. Certificate that blast resistant glass meets the requirements of VA Security Manual.
- C. Warranty: Submit written guaranty, conforming to General Condition requirements, and to "Warranty of Construction" Article in this Section.
- D. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
 - 2. Insulating glass units.
 - 3. Glazing cushion.
 - 4. Sealing compound.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.
- C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.
- D. Protect laminated security glazing units against face and edge damage during entire sequence of fabrication, handling, and delivery to installation location.
 - 1. Treat security glazing as fragile merchandise, and packaged and shipped in export wood cases with width end in upright position and blocked together in a mass. Storage and handling shall comply with Manufacturer's directions and as required to prevent edge damage or other damage to glazing resulting from effects of moisture, condensation, temperature changes, direct exposure to sun, other environmental conditions, and contact with chemical solvents.
 - 2. Protect sealed-air-space insulating glazing units from exposure to abnormal pressure changes, as could result from substantial changes in altitude during delivery by air freight. Provide temporary breather tubes which do not nullify applicable warranties on hermetic seals.
 - 5. Protect "Constant Temperature" units including every unit where glass sheet is directly laminated to or directly sealed with metaltube type spacer bar to polycarbonate sheet, from exposures to

ambient temperatures outside the range of 16 to 24 C, during the fabricating, handling, shipping, storing, installation, and subsequent protection of glazing.

1.7 PROJECT CONDITIONS

Field Measurements: Field measure openings before ordering tempered glass products. Be responsible for proper fit of field measured products.

1.8 WARRANTY

- A. Warranty: Conform to terms of "Warranty of Construction", FAR clause 52.246-21, except extend warranty period for the following:
 - 1. Insulating glass units to remain sealed for 10 years.
 - 2. Laminated glass units to remain laminated for 5 years.

1.9 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI): Z97.1-09.....Safety Glazing Material Used in Building -Safety Performance Specifications and Methods
 - of Test.
- C. American Society for Testing and Materials (ASTM):

C542-05.....Lock-Strip Gaskets

C716-06.....Installing Lock-Strip Gaskets and Infill

Glazing Materials.

C794-10......Adhesion-in-Peel of Elastomeric Joint Sealants C864-05..... Dense Elastomeric Compression Seal Gaskets,

Setting Blocks, and Spacers

C920-11.....Elastomeric Joint Sealants

C964-07.....Standard Guide for Lock-Strip Gasket Glazing C1036-06.....Flat Glass

C1048-12..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass.

C1376-10..... Pyrolytic and Vacuum Deposition Coatings on Flat Glass

E84-10.....Surface Burning Characteristics of Building Materials

E119-10.....Standard Test Methods for Fire Test of Building Construction and Material

E2190-10.....Insulating Glass Unit

- D. Code of Federal Regulations (CFR):
 - 16 CFR 1201 Safety Standard for Architectural Glazing Materials; 2010
- E. National Fenestration Rating Council (NFRC)
- F. Safety Glazing Certification Council (SGCC) 2012: Certified Products Directory (Issued Semi-Annually).
- G. Department of Veterans Affairs Criteria (VA): VA 0730/4....Security Manual
- H. Glass Association of North America (GANA): Glazing Manual (Latest Edition) Sealant Manual (2009)
- I. American Society of Civil Engineers (ASCE):
 ASCE 7-10.....Wind Load Provisions

PART 2 - PRODUCT

2.1 COATED GLASS

- A. Low-E Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition C, Type I, Class 1, Quality q3 with low emissivity pyrolytic coating having an E of 0.15.
 - 2. Apply coating to second surface of insulating glass units.
 - 3. Thickness, 4.8 mm (3/16 inch).

2.2 LAMINATED GLASS

- A. Two lites of glass bonded with an interlayer material for use in building glazing
- B. Colored Interlayer:
 - 1. Use color interlayer ultraviolet light color stabilization.
 - 2. Option: Use colored interlayer with clear glass in lieu of tinted glass and clear interlayer.
 - 3. Option: Use translucent white interlayer with clear glass in lieu of translucent glass and clear interlayer.
 - 4. The interlayer assembly shall have uniform color presenting same appearance as tinted glass assembly.
- C. Use min. 0.75 mm (0.030 inch) thick interlayer for vertical glazing where 1.5 mm (0.060 inch) interlayer is not otherwise shown or required.

2.3 INSULATING GLASS UNITS

- A. Provide factory fabricated, hermetically sealed glass unit consisting of two panes of glass separated by a dehydrated air space and comply with ASTM E2190.
- B. Assemble units using glass types specified:
- C. Sealed Edge Units (SEU):
 - 1. Insulating Glass Unit Makeup
 - a. Outboard Lite
 - 1. Glass type: Tempered Low E
 - 2. Glass Tint: Clear
 - 3. Nominal Thickness: 6mm (1/4 inch)
 - 4. Glass Strength: 5. Coating Orientation: (Surface #_2_)
 - b. Spacer
 - 1. Nominal Thickness:
 - 2. Gas Fill: Air or 90% Argon
 - c. Inboard Lite
 - 1. Glass Type: Laminated
 - 2. Glass Tint: Translucent White
 - 3. Nominal Thickness: 6mm (1/4 inch)
 - 4. Glass Strength: Annealed
 - 5. Coating Orientation: N/A
 - 2. Performance Characteristics (Center of Glass)
 - a. Visible Transmittance: 75%
 - b. Winter U-factor (U-value): 0.33
 - 3. Glass shall be annealed, heat strengthened or tempered as required by codes, or as required to meet thermal stress and wind loads.
 - 4. Glass heat-treated by horizontal (roller hearth) process with inherent roller wave distortion parallel to the bottom edge of the glass as installed when specified.

2.4 GLAZING ACCESSORIES

- A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work shall have a finish that will not corrode or stain while in service.
- B. Setting Blocks: ASTM C864:
 - 1. Channel shape; having 6 mm (1/4 inch) internal depth.
 - 2. Shore a hardness of 80 to 90 Durometer.

- 3. Block lengths: 50 mm (two inches) except 100 to 150 mm (four to six inches) for insulating glass.
- Block width: Approximately 1.6 mm (1/16 inch) less than the full width of the rabbet.
- 5. Block thickness: Minimum 4.8 mm (3/16 inch). Thickness sized for rabbet depth as required.
- C. Spacers: ASTM C864:
 - 1. Channel shape having a 6 mm (1/4 inch) internal depth.
 - 2. Flanges not less 2.4 mm (3/32 inch) thick and web 3 mm (1/8 inch) thick.
 - 3. Lengths: One to 25 to 76 mm (one to three inches).
 - 4. Shore a hardness of 40 to 50 Durometer.
- D. Sealing Tapes:
 - Semi-solid polymeric based material exhibiting pressure-sensitive adhesion and withstanding exposure to sunlight, moisture, heat, cold, and aging.
 - 2. Shape, size and degree of softness and strength suitable for use in glazing application to prevent water infiltration.
- E. Glazing Gaskets: ASTM C864:
 - 1. Firm dense wedge shape for locking in sash.
 - 2. Soft, closed cell with locking key for sash key.
 - 3. Flanges may terminate above the glazing-beads or terminate flush with top of beads.
- F. Lock-Strip Glazing Gaskets: ASTM C542, shape, size, and mounting as indicated.
- G. Glazing Sealants: ASTM C920, silicone neutral cure:
 - 1. Type S.
 - 2. Class 25
 - 3. Grade NS.
 - 4. Shore A hardness of 25 to 30 Durometer.
- H. Neoprene, EPDM, or Vinyl Glazing Gasket: ASTM C864.
 - 1. Channel shape; flanges may terminate above the glazing channel or flush with the top of the channel.
 - 2. Designed for dry glazing.
- I. Color:
 - Color of other glazing compounds, gaskets, and sealants which will be exposed in the finished work and unpainted shall be black, gray, or neutral color.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
 - 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer's approved shop drawings.
- B. Advise Contractor of conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation: Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. For sealant glazing, prepare glazing surfaces in accordance with GANA-02 Sealant Manual.
- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.
- F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

- A. Install in accordance with GANA-01 Glazing Manual and GANA-02 Sealant Manual unless specified otherwise.
- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.
- D. Do not allow glass to rest on or contact any framing member.
- E. Glaze operable sash, in a securely fixed or closed and locked position, until sealant, glazing compound, or putty has thoroughly set.
- F. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.
- G. Laminated Glass:
 - 1. Tape edges to seal interlayer and protect from glazing sealants.
 - 2. Do not use putty or glazing compounds.

- H. Insulating Glass Units:
 - 1. Glaze in compliance with glass manufacturer's written instructions.
 - 2. When glazing gaskets are used, they shall be of sufficient size and depth to cover glass seal or metal channel frame completely.
 - 3. Do not use putty or glazing compounds.
 - 4. Do not grind, nip, cut, or otherwise alter edges and corners of fused glass units after shipping from factory.

3.4 INSTALLATION - DRY METHOD (TAPE AND GASKET SPLINE GLAZING)

- A. Use this method except as modified by VA security manual to meet blast resistant glazing requirements.
- B. Cut glazing tape or spline to length; install on glazing pane. Seal corners by butting and sealing junctions with butyl sealant.
- C. Place setting blocks at 1/4 or 1/3 points with edge block no more than 150 mm (6 inches) from corners.
- D. Rest glazing on setting blocks and push against fixed stop with sufficient pressure to attain full contact.
- E. Install removable stops without displacing glazing spline. Exert pressure for full continuous contact.
- F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- G. Trim protruding tape edge.

3.5 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by Resident Engineer.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.
- C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

3.6 PROTECTION

Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

- - - E N D - - -

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART I - GENERAL

1.1 DESCRIPTION

This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITALS

Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES-provide quadruplicate samples for color approval of materials and finishes specified in this section.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI) 2001.....Architectural Painting Specification Manual

PART 2- PRODUCTS

2.1 DIVISION 05 - METALS

A. SECTION 05 50 00, METAL FABRICATION

Item	Finish
Edge Guards Angles for Opening in Slabs	GALVANIZED STEEL - UNPAINTED
Steel Covers and Frames for Manholes	GALVANIZED STEEL - UNPAINTED
Window Guards and Frames	BLACK

2.2 DIVISION 06 WOOD, PLASTICS, AND COMPOSITES

A. SECTION 06 20 00, FINISH CARPENTRY

20.	WOOD	TRIM	AT	DOORS	&	WINDOWS	
-----	------	------	----	-------	---	---------	--

LOCATION	Finish
INTERIOR CASING AT WINDOWS & DOORS	SEMI-GLOSS PAINT - WHITE
EXTERIOR CASING AT WINDOWS & DOORS	AZEK SOLID VINYL - WHITE

2.3 DIVISION 07 - THERMAL AND MOISTURE PROTECTION

A. SECTION 07 31 13, ASPHALT SHINGLES

Size	Shape	Manufacturer	Mfg. Color Name/No.
39 ⅔″ x 13 ¼″	Rectangle	IKO Marathon Ultra AR	"Vintage Green"

B. SECTION 07 60 00, FLASHING AND SHEET METAL

Item	Material	Finish
		PREFINISHED - WHITE
FLASHINGS & ROOF EDGE METAL		
	Aluminum or GALVANIZED STEEL	
Hanging Gutters and Downspouts		PREFINISHED - WHITE
	Aluminum	

C. SECTION 07 92 00, JOINT SEALANTS

Location	Color	Manufacturer	Manufacturer Color
Window/Doors to Walls	WHITE		

2.4 DIVISION 08 - OPENINGS

A. SECTION 08 11 13, HOLLOW METAL DOORS AND FRAMES

Paint both sides of door and frames same color.			
Component	Color of Paint Type and Gloss		
Door	SEMI-GLOSS WHITE		
Frame	SEMI-GLOSS WHITE		

B. SECTION 08 31 13, ACCESS DOORS AND FRAMES

Material	Finish/Color
Steel	SEMI-GLOSS PAINT/ WHITE

C. SECTION 08 56 00, VINYL WINDOWS

Туре	Finish	Glazing	Manufacturer	Mfg. Color Name/No.
Single hung	VINYL	CLEAR/TRANSLUCENT	MILGARD	FACTORY WHITE

D. SECTION 08 71 00, BUILDERS HARDWARE

Item	Material	Finish
Hinges	STAINLESS STEEL	626 OR 630 SATIN
Floor Stops	STAINLESS STEEL	626 OR 630 SATIN
Lock	STAINLESS STEEL	626 OR 630 SATIN
Flush Bolts	STAINLESS STEEL	626 OR 630 SATIN
Weather Strip	ALUMINUM	MILL OR CLEAR ANODIZE
Threshold	ALUMINUM	MILL OR CLEAR ANODIZE

E. SECTION 08 80 00, GLAZING

Glazing Type	Manufacturer	Mfg. Color Name/No.	
ALL		INSULATED UNITS	
		OUTER LITE: CLEAR	
		- INNER LITE: TRANSLUCENT WHITE	

2.5 DIVISION 09 - FINISHES

A. SECTION 09 65 13, RESILIENT BASE STAIR TREADS AND ACCESSORIES

Finish Code	Item	Height	Manufacturer	Mfg Name/No.
RB	Rubber Base	4	JOHNSONITE	CHARCOAL / #20
RB	Vinyl Base	4	JOHNSONITE	CHARCOAL / #20

B. SECTION 09 67 23, EPOXY RESINOUS FLOORING (ERF)

Finish code	Manufacturer	Mfg. Color Name/No.
ERF	DEX-O-TEX	SPEEDWAY GRAY/ #413

C. SECTION 09 91 00, PAINT AND COATINGS

^{1.} MPI Gloss and Sheen Standards

		Gloss @60	Sheen @85
Gloss Level 1	a traditional matte finish-flat	max 5 units, and	max 10 units
Gloss Level 2	a high side sheen flat-"a velvet-like"	max 10 units, and	
	finish		10-35 units
Gloss Level 3	a traditional "egg-shell like" finish	10-25 units, and	10-35 units
Gloss Level 4	a "satin-like" finish	20-35 units, and	min. 35 units
Gloss Level 5	a traditional semi-gloss	35-70 units	
Gloss Level 6	a traditional gloss	70-85 units	
Gloss level 7	a high gloss	more than 85 units	

2. Paint code	Gloss	Manufacturer	Mfg. Color Name/No.
1 (WALLS)	4	MILLER PAINT	LUNA MOON/ #0017
2 (TRIM)	5	MILLER PAINT	LUNA MOON/ #0017
3 (CEILING)	2	MILLER PAINT	LUNA MOON/ #0017
4 (EXTERIOR SHINGLES)	2	MILLER PAINT	LUNA MOON/ #0017

2.6 DIVISION 10 - SPECIALTIES

A. SECTION 10 44 13, FIRE EXTNGUISHER CABINETS

Component	Material	Finish
DOOR FRAME & CABINET	METAL	FACTORY PAINT/ SEMIGLOSS WHITE
GLAZING	PLASTIC	CLEAR

2.7 DIVISION 32 - SITE IMPROVEMENTS

A. SECTION 32 31 13, CHAIN LINK FENCES AND GATES

Finish Chain Link Fabric	Finish Posts and Rails	Manufacturer	Mfg. Color Name/No.
All parts galvanized or as indicated in Section 32 31 13 Chain-Link Fences and Gates	All parts galvanized or as indicated in Section 32 31 13 Chain-Link Fences and Gates		

PART III EXECUTION

Г

3.1 FINISH SCHEDULES & MISCELLANEOUS ABBREVIATIONS

FINISH SCHEDULE & MISCELLANEOUS ABBREVIATIONS							
Term	Abbreviation						
Anodized Aluminum	AAC						
Colored							
Anodized Aluminum	AA						
Natural Finish							
Baked On Enamel	BE						
Concrete	С						
Concrete Masonry Unit	CMU						

Epoxy Resin Flooring	ERF				
Existing	E				
Exterior	EXT				
Exterior Paint	EXT-P				
Gypsum Wallboard	GWB				
Material	MAT				
Mortar	М				
Paint	P				
Resilient Base (Vinyl or	RB				
Rubber)					
Wood	WD				

3.2 FINSIH SCHEDULE SYMBOLS

Symbol Definition

** Same finish as adjoining walls

- No color required

E Existing

XX To match existing

3.3 ROOM FINISH SCHEDULE

A. ROOM FINISH SCHEDULE

Room No. and Name		FLC)OR		BASE WALL		WAINSCOT		CEILING		REMARKS		
	E	MAT	FC		MAT	FCC	MAT	FCC	MAT	FC	MAT	FCC	
ELEC	Х			Ν	RB	FF	GWB	P-1	N/A	N/A	GWB	P-3	
	I S	ERF	FF	Е	RB	FF	GWB	P-1	N/A	N/A			
RM	Т			S	RB	FF	GWB	P-1	N/A	N/A			
				W	RB	FF	GWB	P-1	N/A	N/A			

--- E N D---

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

A. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Gypsum board, each type.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM):

C11-08..... Terminology Relating to Gypsum and Related Building Materials and Systems

C475-02.....Joint Compound and Joint Tape for Finishing Gypsum Board

C840-08..... of Gypsum Board

C1002-07.....Steel Self-Piercing Tapping Screws for the

Application of Gypsum Panel Products or Metal

Plaster Bases to Wood Studs or Steel Studs

C1047-05.....Accessories for Gypsum Wallboard and Gypsum Veneer Base

C1396-06.....Gypsum Board

E84-08.....Surface Burning Characteristics of Building Materials

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise. Shall contain a minimum of 20 percent recycled gypsum.
- B. Gypsum cores shall contain maximum percentage of post industrial recycled gypsum content available in the area (a minimum of 95 percent post industrial recycled gypsum content). Paper facings shall contain 100 percent post-consumer recycled paper content.
- C. Core and paper shall be mold resistant, typ.

2.2 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.3 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. Select screws of size and type recommended by the manufacturer of the material being fastened.

2.4 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- D. Bring gypsum board into contact, but do not force into place.

E. Ceilings:

1. For single-ply construction, use perpendicular application.

- F. Walls:
 - When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
 - When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints.
 - 5. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- G. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- H. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.
 - b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
 - c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
 - d. Where shown.

3.3 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations.

3.4 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces.

- - - E N D - - -

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the installation of vinyl or rubber base.

1.2 RELATED WORK

A. Color and texture: Section 09 06 00, SCHEDULE FOR FINISHESS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Base material manufacturer's recommendations for adhesives.
 - 3. Application and installation instructions.
- C. Samples:
 - 1. Base: 150 mm (6 inches) long, each type and color.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weather tight and dry storage facility.
- B. Protect material from damage by handling and construction operations before, during, and after installation.

1.6 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): F1861-08.....Resilient Wall Base

PART 2 - PRODUCTS

2.1 GENERAL

Use only products by the same manufacturer and from the same production run.

2.2 RESILIENT BASE

- A. ASTM F1861, 3 mm (1/8 inch) thick, 100 mm (4 inches) high, Thermoplastics, Group 2-layered. Style B-cove.
- B. Use only one type of base throughout.

2.3 ADHESIVES

- A. Use products recommended by the material manufacturer for the conditions of use.
- B. Use low-VOC adhesive during installation. Water based adhesive with low VOC is preferred over solvent based adhesive.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials above 21° C (70 $^\circ F),$ for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs, between 21° C and 27° C (70°F and 80°F) for at least 48 hours, before, during, and after installation.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.

3.2 INSTALLATION REQUIREMENTS

- A. The respective manufacturer's instructions for application and installation will be considered for use when approved by the Resident Engineer.
- B. Submit proposed installation deviation from this specification to the Resident Engineer indicating the differences in the method of installation.
- C. The Resident Engineer reserves the right to have test portions of material installation removed to check for non-uniform adhesion and spotty adhesive coverage.

3.3 PREPARATION

- A. Examine surfaces on which material is to be installed.
- B. Fill cracks, pits, and dents with leveling compound.
- C. Level to 3 mm (1/8 inch) maximum variations.
- D. Do not use adhesive for leveling or filling.
- E. Grind, sand, or cut away protrusions; grind high spots.
- F. Clean substrate area of oil, grease, dust, paint, and deleterious substances.
- G. Substrate area dry and cured. Perform manufacturer's recommended bond and moisture test.
- H. Preparation of existing installation:

09 65 13 RESILIENT BASE AND ACCESSSORIES

- 1. Remove existing base including adhesive.
- 2. Do not use solvents to remove adhesives.
- 3. Prepare substrate as specified.

3.4 BASE INSTALLATION

- A. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - 2. Set base with joints aligned and butted to touch for entire height.
 - Before starting installation, layout base material to provide the minimum number of joints with no strip less than 600 mm (24 inches) length.
 - a. Short pieces to save material will not be permitted.
 - b. Locate joints as remote from corners as the material lengths or the wall configuration will permit.
- B. Form corners and end stops as follows:
 - 1. Score back of outside corner.
 - 2. Score face of inside corner and notch cove.
- C. Roll base for complete adhesion.

3.5 CLEANING AND PROTECTION

- A. Clean all exposed surfaces of base and adjoining areas of adhesive spatter before it sets.
- B. Clean and polish materials in the following order:
 - After two weeks, scrub resilient base, with a minimum amount of water and a mild detergent. Leave surfaces clean and free of detergent residue. Polish resilient base to a gloss finish.
- C. Replace damaged materials and re-clean resilient materials. Damaged materials are defined as having cuts, gouges, scrapes or tears and not fully adhered.

- - - E N D - - -

SECTION 09 67 23.40

RESINOUS POURED IN PLACE RESILIENT FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies resinous, poured in place resilient urethane flooring.

1.2 RELATED WORK

- A. Concrete and Moisture Vapor Barrier: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Color and location of each type of resinous flooring: As indicated in Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product to be provided.
 - 2. Application and installation instructions.
 - 3. Maintenance Instructions: Submit manufacturer's written instructions for recommended maintenance practices.
- C. Qualification Data: For Installer.
- D. Sustainable Submittal:
 - Product data for products having recycled content, submit documentation indicating percentages by weight of post-consumer and pre-consumer recycled content.
 - a. Include statements indicating costs for each product having recycled content.
 - Product data for field applied, interior, paints, coatings, and primers, include printed statement of VOC content indicating compliance with environmental requirements.
- E. Samples:
 - Each color and texture specified in Section 09 06 00, SCHEDULE FOR FINISHES.

- Samples for verification: For each (color and texture) resinous flooring system required, 6 inches (152 mm) square, applied to a rigid backing by installer for this project.
- Sample showing construction from substrate to finish surface in thickness specified and color and texture of finished surfaces. Finished flooring must match the approved samples in color and texture.
- F. Shop Drawings: Include plans, sections, component details, and attachment to other trades.
- G. Certifications and Approvals:
 - Manufacturer's certification of material and substrate compliance with specification.
 - 2. Manufacturer's approval of installer.
 - 3. Contractor's certificate of compliance with Quality Assurance requirements.
- H. Warranty: As specified in this section.

1.4 QUALITY ASSURANCE

- A. Manufacture Certificate: Manufacture shall certify that a particular resinous flooring system has been manufactured and in use for a minimum of five (5) years.
- B. Installer Qualifications: Engage an experienced installer (applicator) who is experienced in applying resinous flooring systems similar in material, design, and extent to those indicated for this project for a minimum period of five (5) years, whose work has resulted in applications with a record of successful in-service performance, and who is acceptable to resinous flooring manufacturer.
 - Engage an installer who is certified in writing by resinous flooring manufacturer as qualified to apply resinous flooring systems indicated.
 - 2. Contractor shall have completed at least ten (10) projects of similar size and complexity. Include list of at least five (5) projects. List must include owner (purchaser); address of installation, contact information at installation project site; and date of installation.
 - Installer's Personnel: Employ persons trained for application of specified product.
- C. Source Limitations:

- Obtain primary resinous flooring materials including primers, resins, hardening agents, grouting coats and finish or sealing coats from a single manufacturer.
- Provide secondary materials, including patching and fill material, joint sealant, and repair material of type and from source recommended by manufacturer of primary materials.
- D. Pre-Installation Conference:
 - 1. Convene a meeting not less than thirty days prior to starting work.
 - 2. Attendance:
 - a. Contractor
 - b. VA Resident Engineer
 - c. Manufacturer and Installer's Representative
 - 3. Review the following:
 - a. Environmental requirements
 - 1) Air and surface temperature
 - 2) Relative humidity
 - 3) Ventilation
 - 4) Dust and contaminates
 - b. Protection of surfaces not scheduled to be coated
 - c. Inspect and discus condition of substrate and other preparatory work performed
 - d. Review and verify availability of material; installer's personnel, equipment needed
 - e. Design and edge conditions.
 - f. Performance of the coating with chemicals anticipated in the area receiving the resinous (urethane and epoxy mortar/cement) flooring system
 - g. Application and repair
 - h. Field quality control
 - i. Cleaning
 - j. Protection of coating systems
 - k. One-year inspection and maintenance
 - 1. Coordination with other work
- E. Manufacturer's Field Services: Manufacturer's representative shall provide technical assistance and guidance for surface preparation and application of resinous flooring systems.
- F. Contractor Job Site Log: Contractor shall document daily; the work accomplished environmental conditions and any other condition event

significant to the long term performance of the urethane and epoxy mortar/cement flooring materials installation. The Contractor shall maintain these records for one year after Substantial Completion.

1.5 MATERIAL PACKAGING DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Protect materials from damage and contamination in storage or delivery, including moisture, heat, cold, direct sunlight, etc.
- C. Maintain temperature of storage area between 60 and 80 degrees F (15 and 26 degrees C).
- D. Keep containers sealed until ready for use.
- E. Do not use materials beyond manufacturer's shelf life limits.
- F. Package materials in factory pre-weighed and in single, easy to manage batches sized for ease of handling and mixing proportions from entire package or packages. No On site weighing or volumetric measurements are allowed.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with resinous flooring manufacturer's written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting resinous flooring application.
 - Maintain material and substrate temperature between 65 and 85 deg F (18 and 30 deg C) during resinous flooring application and for not less than 24 hours after application.
 - Concrete substrate shall be properly cured per referenced section 03 30 00, CAST-IN-PLACE CONCRETE. Standard cure time a minimum of 30 days. A vapor barrier must be present for concrete subfloors on or below grade.
 - a. Resinous flooring applications where moisture testing resulting in readings exceeding limits as defined in this specification under part 3, section 3.4, paragraph B, shall employ an multiple component 15 mil thick system designed to suppress excess moisture in concrete.

- b. Application at a minimum thickness of 15 mils, over properly prepared concrete substrate as defined in section 3.4.
- c. Moisture suppression system must meet the design standards as follows:

Property	Test	Value	
Tensile Strength	ASTM D638	4,400 psi	
Volatile Organic Compound	EPA & LEED	25 grams per liter	
Limits (V.O.C.)			
Permeance	ASTM E96 @ 16mils/	0.1 perms	
	0.4mm on concrete		
Tensile Modulus	ASTM D638	1.9X10 ⁵ psi	
Percent Elongation	ASTM D638	12%	
Cure Rate	Per manufactures	4 hours Tack free	
	Data	with 24hr recoat	
		window	
Bond Strength	ASTM D7234	100% bond to	
		concrete failure	

- B. Lighting: Provide permanent lighting or, if permanent lighting is not in place, simulate permanent lighting conditions during resinous flooring application.
- C. Close spaces to traffic during resinous flooring application and for not less than 24 hours after application, unless manufacturer recommends a longer period.

1.7 WARRANTY

- A. Work subject to the terms of the Article "Warranty of Construction" FAR clause 52.246-21.
- B. Warranty: Manufacture shall furnish a single, written warranty covering the full assembly (including substrata) for both material and workmanship for a extended period of three (3) full years from date of installation, or provide a joint and several warranty signed on a single document by manufacturer and applicator jointly and severally warranting the materials and workmanship for a period of three (3) full

years from date of installation. A sample warranty letter must be included with bid package or bid may be disqualified.

1.8 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM Standard C722-04 (2012), "Standard Specification for Chemical-Resistant Monolithic Floor Surfacings," ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/C0722-04R12, www.astm.org.
 - 1. Specification covers the requirements for aggregate-filled, resinbased, monolithic surfacings for use over concrete.
- C. American Society for Testing and Materials (ASTM): D638 (2010).....Tensile Properties of Plastics D1308 (2007).....Effect of Household Chemicals on Clear and Pigmented Organic Finishes D2240 (2010).....Rubber Property-Durometer Hardness D2794 (2010).....Resistance of Organic Coatings to the Effects of Rapid Deformation Impact D4060(2010).....Abrasion Resistance of Organic Coatings by the Taber Abraser D4259 (2012).....Abrading Concrete to alter the surface profile of the concrete and to remove foreign materials and weak surface laitance D7234 (2012).....Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers E96/E96M (2012).....Water Vapor Transmission of Materials F970 (2011).....determining the recovery properties of resilient floor covering after long-term indentation test F1679.....Variable Incidence Tribometer for determining the slip resistance F1869 (2011).....Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride

F2170 (2011).....Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION FOR RES-4 (POURED IN PLACE RESILIENT)

- A. System Descriptions:
 - Monolithic, multi-component urethane chemistry resinous flooring system. Multi step concrete sealing primer with resilient poured in place urethane resin base, optional decorative aggregates, High performance polyaspartic undercoats (pigment and clear options), and High performance polyurethane low VOC sealers.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up.
- C. System Components: Verify specific requirements as systems vary by manufacturer. Verify build up layers and installation method. Verify compatibility with substrate. Use manufacturer's standard components, compatible with each other and as follows:
 - 1. Primers:
 - a. Resin: epoxy.
 - b. Formulation Description: Multiple component high solids.
 - c. Application Method: squeegee, backroll, double step second coat with squeegee application.
 - d. Thickness of coat(s): 4-6mil.
 - e. Number of Coats: Two wet on wet.
 - 2. Mortar (Base):
 - a. Resin: Urethane.
 - b. Formulation Description: Multiple component resilient mortar.
 - c. Application Method: Rake and spike roll.
 - Thickness of coat: Verify thickness as systems vary by manufacturer; approximately from 1/8 to 3/16 inch (3 to 5 mm).
 - d. Aggregate: Optional aggregates to achieve aesthetics, and design requirements.
 - 1) Requires additional sanding steps.
 - 3. Undercoat:
 - a. Resin: Poly-aspartic Urethane.

Project #: 692-14-101

- b. Formulation Description: Pigmented, or clear options, multicomponent, high solids.
- c. Application Method: Notched squeegee and Back roll
- d. Number of Coats: One or two per requirements.
- e. Number of Coats: One.
- 4. Sealer coat:
 - a. Resin: Urethane.
 - b. Formulation Description: High performance polyurethane low VOC sealer.
 - c. Type/Finish: Clear flat.
 - d. Thickness of coat(s): 2-3mil.
 - e. Number of Coats: (2) two.
 - f. Application: Squeegee and finish roll.
- D. System Characteristics:
 - Color and Pattern: As selected by Resident Engineer from manufacturer's standard colors.
 - 2. Integral cove base: 1 inch (25.4 mm) radius epoxy mortar cove keyed into concrete substrate and or resinous flooring mortar system. No fillers integral cove base must be troweled in place with specified resinous mortar base. (Use integral cove base at housekeeping raised concrete base under electrical switch-gear. Elsewhere a separate resilient base shall be used).
 - 3. Overall System Thickness: Nominal 1/8 to 3/16 inches (3 to 5 mm).
 - 4. Temperature Range: Systems vary by manufacturer; approximate range from a minimum of 45 to 150 degrees F.
- E. Physical Properties:
 - 1. Physical Properties of flooring system when tested as follows:

Property	Test	Value
Hardness (Shore A)	ASTM D2240	85-80
Percent Elongation	ASTM D638	150%-200%
Impact Resistance (ft lbs)	ASTM D2794	60-140 in/lbs.
		<1% thickness
		(140lb./64kg.load)
Residual indentation	ASTM F 1914	Or equal to
		0.14 % thickness
		(140 lb./64kg.load)

		0.0001 /0.05	
		0.002in./0.05mm	
Static Load Limit	ASTM F970	(125lb./57kg. load)	
		Or equal to	
		0.001in./0.025mm	
		(250lb./113kg.load)	
Abrasion Resistance (gm	ASTM D4060	0.03	
loss)	ADIM D1000		
Noise Reduction Coefficient	ASTM C 423	0.05	
		1000 1 1	
Bond Strength	ASTM D7234	100% bond to	
	ASIM D/231	concrete failure	

- F. Chemical Resistance in accordance ASTM D1308 02(2007) "Standard Test Method for Effect of Household Chemicals on Clear and Pigmented Organic Finishes". ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/D1308-02R07, www.astm.org. No effect to the following exposures:
 - 1. Acetic acid (5%)
 - 2. Ammonium hydroxide (10%)
 - 3. Citric Acid (50%)
 - 4. Fatty Acid
 - 5. Motor Oil, 20W
 - 6. Hydrochloric acid (20%)
 - 7. Sodium Chloride
 - 8. Sodium Hypochlorite (10%)
 - 9. Sodium Hydroxide (30%)
 - 10. Sulfuric acid (25%)
 - 11. Urine, Feces
 - 12. Hydrogen peroxide (10%)

2.2 SUPPLEMENTAL MATERIALS

- A. Textured Top Coat: Type recommended or produced by manufacturer of seamless resinous flooring system, slip resistance type and profile of for desired final finish.
- B. Joint Sealant: Type recommended or produced by resinous flooring manufacturer for type of service or joint conditioned indicated.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Examine the areas and conditions where monolithic resinous system with integral base is to be installed with the VA Resident Engineer.
- B. Moisture Vapor Emission Testing: Perform moisture vapor transmission testing in accordance with ASTM F1869 to determine the MVER of the substrate prior to commencement of the work. See section 3.4, 3.

3.2 PROJECT CONDITIONS

- A. Maintain temperature of rooms (air and surface) where work occurs, between 70 and 90 degrees F (21 and 32 degrees C) for at least 48 hours, before, during, and 24 hours after installation. Maintain temperature at least 70 degrees F (21 degrees C) during cure period.
- B. Maintain relative humidity less than 75 percent.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.
- D. Maintain proper ventilation of the area during application and curing time period.
 - 1. Comply with infection control measures of the VA Medical Center.

3.3 INSTALLATION REQUIREMENTS

- A. The manufacturer's instructions for application and installation shall be reviewed with the VA Resident Engineer for the seamless resinous flooring system.
- B. Substrate shall be approved by manufacture technical representative.

3.4 PREPARATION

- A. General: Prepare and clean substrates according to resinous flooring manufacturer's written instructions for substrate indicated. Provide clean, dry, and neutral Ph substrate for resinous flooring application.
- B. Concrete Substrates: Provide sound concrete surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants incompatible with resinous flooring.
 - 1. Prepare concrete substrates as follows:

Project #: 692-14-101

- a. Shot-blast surfaces with an apparatus that abrades the concrete surface, contains the dispensed shot within the apparatus, and re circulates the shot by vacuum pickup.
- b. Comply with manufacturer's written instructions.
- 2. Verify that concrete substrates are dry.
 - a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisturevapor-emission rate of 3 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours.
 - b. MVT threshold for monolithic resinous flooring shall not exceed 3 lbs/1000 square feet (0.0001437 kPa) in a 24 hour period.
 - c. When MVT emission exceeds this limit, apply manufacturer's recommended vapor control primer or other corrective measures as recommended by manufacturer prior to application of flooring or membrane systems.
 - d. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity of 85 percent.
 - e. Provide a written report showing test placement and results.
- 3. Verify that concrete substrates have neutral Ph and that resinous flooring will adhere to them. Perform tests recommended by manufacturer. Proceed with application only after substrates pass testing.
- C. Resinous Materials: Mix components and prepare materials according to resinous flooring manufacturer's written instructions.
- D. Use patching and fill material to fill holes and depressions in substrates according to manufacturer's written instructions.
- E. Treat control joints and other nonmoving substrate cracks to prevent cracks from reflecting through resinous flooring according to manufacturer's written recommendations. Allowances should be included for flooring manufacturer recommended joint fill material, and concrete crack treatment.

3.5 APPLICATION

A. General: Apply components of resinous flooring system according to manufacturer's written instructions to produce a uniform, monolithic wearing surface of thickness indicated.

- Coordinate application of components to provide optimum adhesion of resinous flooring system to substrate, and optimum intercoat adhesion.
- Cure resinous flooring components according to manufacturer's written instructions. Prevent contamination during application and curing processes.
- At substrate expansion and isolation joints, provide joint in resinous flooring to comply with resinous flooring manufacturer's written recommendations.
 - a. Apply joint sealant to comply with manufacturer's written recommendations.
- B. Apply Primer: over prepared substrate at manufacturer's recommended spreading rate.
- C. Aggregates: For applications with aggregate follow manufactures installation procedures, that includes sanding steps to expose aggregates pre-mixed into mortar base.
- D. Under-Coat: Mix and apply sealer with strict adherence to manufacturer's installation procedures. Options for pigmented or clear undercoats depending on design type choice.
- E. First Sealer: Mix and apply sealer with strict adherence to manufacturer's installation procedures.
- F. Second Sealer: Mix and apply second sealer coat with strict adherence to manufacturer's installation procedures.

3.6 TOLERANCE

- A. From line of plane: Maximum 1/8 inch (3.18 mm) in total distance of flooring and base. Broadcast resinous flooring system will contour substrate. Deviation and tolerance are subject to concrete tolerance.
- B. From radius of cove: Maximum of 1/8 inch (3.18 mm) plus or 1/16-inch (1.59 mm) minus.

3.7 ENGINEERING DETAILS

- A. Chase edges to "lock" the flooring system into the concrete substrate along lines of termination.
- B. Penetration Treatment: Lap and seal resinous system onto the perimeter of the penetrating item by bridging over compatible elastomer at the interface to compensate for possible movement.

- C. Treat floor drains by chasing the flooring system to lock in place at point of termination.
- D. Treat control joints to bridge potential cracks and to maintain monolithic protection. Treat cold joints and construction joints to bridge potential cracks and to maintain monolithic protection on horizontal and vertical surfaces as well as horizontal and vertical interfaces.
- E. Discontinue Resinous floor system at vertical and horizontal contraction and expansion joints by installing backer rod and compatible sealant after coating installation is completed. Provide sealant type recommended by manufacturer for traffic conditions and chemical exposures to be encountered.

3.8 CURING, PROTECTION AND CLEANING

- A. Cure resinous flooring materials in compliance with manufacturer's directions, taking care to prevent contamination during stages of application and prior to completion of curing process.
- B. Close area of application for a minimum of 24 hours.
- C. Protect resinous flooring materials from damage and wear during construction operation.
 - 1. Cover flooring with kraft type paper.
 - Optional 6 mm (1/4 inch) thick hardboard, plywood, or particle board where area is in foot or vehicle traffic pattern, rolling or fixed scaffolding and overhead work occurs.
- D. Remove temporary covering and clean resinous flooring just prior to final inspection. Use cleaning materials and procedures recommended by resinous flooring manufacturer.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

- A. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 - OPENINGS, Division 10 - SPECIALTIES, Division 13 - SPECIAL CONSTRUCTION, Division 23 - HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL.
- B. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- C. Sample Panels:
 - 1. After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.
 - 2. Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
 - 3. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.

09 91 00 PAINTING

- b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- c. Product type and color.
- d. Name of project.
- 4. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- D. Sample of identity markers if used.
- E. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical

Substances and Physical Agents and Biological Exposure Indices (BEIs)

ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and

Biological Exposure Indices, (Seventh Edition)

09 91 00 PAINTING

C. American National Standards Institute (ANSI): A13.1-07.....of Piping Systems D. Master Painters Institute (MPI): No. 1-12..... (AP) No. 4-12.....Interior/ Exterior Latex Block Filler No. 5-12..... Exterior Alkyd Wood Primer No. 7-12..... Exterior Oil Wood Primer No. 8-12.....Exterior Alkyd, Flat MPI Gloss Level 1 (EO) No. 9-12..... Exterior Alkyd Enamel MPI Gloss Level 6 (EO) No. 10-12..... Exterior Latex, Flat (AE) No. 11-12..... Exterior Latex, Semi-Gloss (AE) No. 18-12.....Organic Zinc Rich Primer No. 22-12......Aluminum Paint, High Heat (up to 590% - 1100F) (HR) No. 26-12..... Cementitious Galvanized Metal Primer No. 27-12.....Exterior / Interior Alkyd Floor Enamel, Gloss (FE) No. 31-12......Polyurethane, Moisture Cured, Clear Gloss (PV) No. 36-12.....Knot Sealer No. 43-12.....Interior Satin Latex, MPI Gloss Level 4 No. 44-12.....Interior Low Sheen Latex, MPI Gloss Level 2 No. 45-12..... Interior Primer Sealer No. 46-12.....Interior Enamel Undercoat No. 47-12.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK) No. 48-12.....Interior Alkyd, Gloss, MPI Gloss Level 6 (AK) No. 49-12.....Interior Alkyd, Flat, MPI Gloss Level 1 (AK) No. 50-12..... Interior Latex Primer Sealer No. 51-12.....Interior Alkyd, Eggshell, MPI Gloss Level 3 No. 52-12.....Interior Latex, MPI Gloss Level 3 (LE) No. 53-12.....Interior Latex, Flat, MPI Gloss Level 1 (LE) No. 54-12.....Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE) No. 59-12..... Interior/Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE) No. 60-12..... Interior/Exterior Latex Porch & Floor Paint, Low Gloss No. 66-12.....Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC) No. 67-12......Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) No. 68-12......Interior/ Exterior Latex Porch & Floor Paint, Gloss No. 71-12.....Polyurethane, Moisture Cured, Clear, Flat (PV) 09 91 00 30 JANUARY 2015 PAINTING CONSTRUCTION DOCUMENTS

3

```
No. 74-12..... Interior Alkyd Varnish, Semi-Gloss
  No. 77-12..... Epoxy Cold Cured, Gloss (EC)
  No. 79-12..... Marine Alkyd Metal Primer
  No. 90-12.....Interior Wood Stain, Semi-Transparent (WS)
  No. 91-12.....Wood Filler Paste
  No. 94-12..... Exterior Alkyd, Semi-Gloss (EO)
  No. 95-12..... Fast Drying Metal Primer
  No. 98-12......High Build Epoxy Coating
  No. 101-12..... Epoxy Anti-Corrosive Metal Primer
  No. 114-12.....Interior Latex, Gloss (LE) and (LG)
  No. 119-12..... Exterior Latex, High Gloss (acrylic) (AE)
  No. 135-12.....Non-Cementitious Galvanized Primer
  No. 138-12.....Interior High Performance Latex, MPI Gloss Level 2
                      (LF)
  No. 139-12.....Interior High Performance Latex, MPI Gloss Level 3
                      (LL)
  No. 140-12.....Interior High Performance Latex, MPI Gloss Level 4
  No. 141-12.....Interior High Performance Latex (SG) MPI Gloss
                      Level 5
E. Steel Structures Painting Council (SSPC):
  SSPC SP 1-04 (R2004)....Solvent Cleaning
```

```
SSPC SP 1-04 (R2004)....Solvent Cleaning
SSPC SP 2-04 (R2004)....Hand Tool Cleaning
SSPC SP 3-04 (R2004)....Power Tool Cleaning
```

PART 2 - PRODUCTS

2.1 MATERIALS

```
A. Identity markers options:
```

1. Pressure sensitive vinyl markers.

```
2. Snap-on coil plastic markers.
```

- B. Exterior Alkyd Wood Primer: MPI 5.
- C. Exterior Oil Wood Primer: MPI 7.
- D. Exterior Alkyd Enamel (EO): MPI 9.
- E. Exterior Latex, Flat (AE): MPI 10.
- F. Exterior Latex, Semi-Gloss (AE): MPI 11.
- G. Knot Sealer: MPI 36.
- H. Interior Satin Latex: MPI 43.
- I. Interior Low Sheen Latex: MPI 44.
- J. Interior Primer Sealer: MPI 45.
- K. Interior Enamel Undercoat: MPI 47.
- L. Interior Alkyd, Semi-Gloss (AK): MPI 47.

09 91 00 PAINTING

- M. Interior Latex Primer Sealer: MPI 50.
- N. Interior Latex, MPI Gloss Level 3 (LE): MPI 52.
- O. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.
- P. Wood Filler Paste: MPI 91.
- Q. Exterior Alkyd, Semi-Gloss (EO): MPI 94.
- R. Waterborne Galvanized Primer: MPI 134.
- S. Non-Cementitious Galvanized Primer: MPI 135.
- T. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138.
- U. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139.
- V. Interior High Performance Latex, MPI Gloss Level 4: MPI 140.
- W. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
 - c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
 - 3. Asbestos: Materials shall not contain asbestos.
 - Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.

- 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints, where possible.
- VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
 - 5. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.

3.2 SURFACE PREPARATION

A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.

- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - 3. See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.
- C. Wood:
 - 1. Sand to a smooth even surface and then dust off.
 - 2. Sand surfaces showing raised grain smooth between each coat.
 - 3. Wipe surface with a tack rag prior to applying finish.
 - 4. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.
 - 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.
 - Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish

with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.

- a. This includes flat head countersunk screws used for permanent anchors.
- b. Do not fill screws of item intended for removal such as glazing beads.
- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Zinc-Coated (Galvanized) Metal Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.
- F. Gypsum Plaster and Gypsum Board:
 - Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.

E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Resident Engineer.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by Resident Engineer, except in spaces sealed from existing occupied spaces.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.
- H. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.

Project #: 692-14-101

- E. Wood and Wood Particleboard:
 - 1. Use same kind of primer specified for exposed face surface.
 - a. Exterior wood: MPI 7 (Exterior Oil Wood Primer) for new construction and MPI 5(Exterior Alkyd Wood Primer) for repainting bare wood primer except where MPI 90 (Interior Wood Stain, Semi-Transparent (WS)) is scheduled.
 - b. Interior wood except for transparent finish: MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), thinned if recommended by manufacturer.
 - 2. Apply one coat of primer MPI 7 (Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) as soon as delivered to site to surfaces of unfinished woodwork, except concealed surfaces of shop fabricated or assembled millwork and surfaces specified to have varnish, stain or natural finish.
 - 3. Back prime and seal ends of exterior woodwork, and edges of exterior plywood specified to be finished.
- F. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Steel and iron: MPI 95 (Fast Drying Metal Primer).2. Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer) .
 - 2. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer).
 - 3. Machinery not factory finished: MPI 9 (Exterior Alkyd Enamel (EO)).
 - 4. Primer: MPI 50(Interior Latex Primer Sealer).

3.6 EXTERIOR FINISHES

- A. Apply following finish coats where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Wood:
 - Two coats of MPI 11 (Exterior Latex, Semi-Gloss (AE)) on exposed surfaces.
- C. Cement Fiber Wall Shingles
 - 1. Factory Primed.
 - 2. Two Coats of MPI 10 (Exterior Latex) MPI Gloss Level 2.
- D. Steel and Ferrous Metal:
 - Two coats of MPI 94 (Exterior Alkyd, Semi-Gloss (EO)) on exposed surfaces, except on surfaces over 94 degrees C (200 degrees F).
- E. Machinery without factory finish except for primer: One coat MPI 94 (Exterior Alkyd, Semi-Gloss (EO)).

3.7 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) on exposed interior surfaces of alkyd-amine enamel prime finished windows.
 - b. Machinery: One coat MPI 9 (Exterior Alkyd Enamel (EO)).
- C. Gypsum Board:
 - WALLS One coat of MPI 50 (Interior Primer Sealer) plus one coat of MPI 140 (Interior High Performance Latex, MPI Gloss level 4).
 - CEILINGS Two coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)).
- D. Wood:
 - 1. Sanding:
 - a. Use 220-grit sandpaper.
 - b. Sand sealers and varnish between coats.
 - c. Sand enough to scarify surface to assure good adhesion of subsequent coats, to level roughly applied sealer and varnish, and to knock off "whiskers" of any raised grain as well as dust particles.
 - 2. Sealers:
 - a. Apply sealers specified except sealer may be omitted where pigmented, penetrating, or wiping stains containing resins are used.
 - b. Allow manufacturer's recommended drying time before sanding, but not less than 24 hours or 36 hours in damp or muggy weather.
 - c. Sand as specified.
 - 3. Paint Finish:
 - a. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI
 - 47 (Interior Alkyd, Semi-Gloss (AK)) (SG).
- E. Miscellaneous:
 - 1. Apply where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. MPI 1 (Aluminum Paint): Two coats of aluminum paint.

3.8 REFINISHING EXISTING PAINTED SURFACES

A. Clean, patch and repair existing surfaces as specified under surface preparation.

- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- H. Sand or dull glossy surfaces prior to painting.
- I. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.9 PAINT COLOR

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.

3.10 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified under paragraph H, colors.
- C. Paint various systems specified in Division 23 HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 ELECTRICAL.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located above ceilings, in concealed areas such as pipe and electric

09 91 00 PAINTING

Project #: 692-14-101

closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.

- G. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED.
- H. Color:
 - Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces.
 - 2. Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following:
 - a. WhiteExterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.

 - c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).
 - d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
 - e. Federal Safety Orange: .Entire lengths of electrical conduits containing feeders 600 volts or more.
 - f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Exterior Locations:
 - a. Apply two coats of MPI 94 (Exterior Alkyd, Semi-gloss (EO)) to the following ferrous metal items:
 Vent and exhaust pipes with temperatures under 94 degrees C (200 degrees F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping and similar items.
 - b. Apply two coats of MPI 11 (Exterior Latex, Semi Gloss (AE)) to the following metal items: Galvanized and zinc-copper alloy metal.

- c. Apply one coat of MPI 22 (High Heat Resistant Coating (HR)), 650 degrees C (1200 degrees F) to incinerator stacks, boiler stacks, and engine generator exhaust.
- 2. Interior Locations:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) to following items:
 - Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports.
 - Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards that are not factory finished.
 - 3) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.
- 3. Other exposed locations:
 - a. Cloth jackets of insulation of ducts and pipes in connection with plumbing, air conditioning, ventilating refrigeration and heating systems: One coat of MPI 50 (Interior Latex Primer Sealer) and one coat of MPI 11 (Exterior Latex Semi-Gloss (AE).

3.11 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B.
 - Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 3. Painting of ferrous metal and galvanized metal.
 - Painting of wood with fire retardant paint exposed in attics, when used as mechanical equipment space // except shingles.
 - 5. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and components such as solid vinyl trim.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.

```
09 91 00
PAINTING
```

Project #: 692-14-101

- 3. Concealed surfaces:
 - a. Inside crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
- 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
- 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
- 6. Galvanized metal:
 - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Gas Storage Racks.
 - c. Except where specifically specified to be painted.
- 7. Gaskets.
- 8. Concrete curbs, gutters, pavements, retaining walls, exterior exposed foundations walls and interior walls in pipe basements.
- 9. Face brick.
- 10. Structural steel encased in concrete, masonry, or other enclosure.
- 11. Structural steel to receive sprayed-on fire proofing.
- 12. Ceilings, walls, columns in interstitial spaces.
- 13. Ceilings, walls, and columns in pipe basements.

3.12 IDENTITY PAINTING SCHEDULE

- A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.
 - 1. Legend may be identified using 2.1 G options or by stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.

- 3. Locate Legends clearly visible from operating position.
- 4. Use arrow to indicate direction of flow.
- 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
- 6. Legend name in full or in abbreviated form as follows:

	COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	BBREVIATIONS
Blow-off		Yellow	Black	Blow-off
Boiler Feedwater		Yellow	Black	Blr Feed
A/C Condenser Water	Supply	Green	White	A/C Cond Wtr Sup
A/C Condenser Water	Return	Green	White	A/C Cond Wtr Ret
Chilled Water Suppl	-У	Green	White	Ch. Wtr Sup
Chilled Water Retur	m	Green	White	Ch. Wtr Ret
Shop Compressed Air		Yellow	Black	Shop Air
Air-Instrument Cont	rols	Green	White	Air-Inst Cont
Drain Line		Green	White	Drain
Emergency Shower		Green	White	Emg Shower
High Pressure Steam	1	Yellow	Black	H.P*
High Pressure Conde	ensate Return	Yellow	Black	H.P. Ret*
Medium Pressure Ste	am	Yellow	Black	M. P. Stm*
Medium Pressure Con	densate Return	Yellow	Black	M.P. Ret*
Low Pressure Steam		Yellow	Black	L.P. Stm*
Low Pressure Conden	sate Return	Yellow	Black	L.P. Ret*
High Temperature Wa	ter Supply	Yellow	Black	H. Temp Wtr Sup
High Temperature Wa	ter Return	Yellow	Black	H. Temp Wtr Ret
Hot Water Heating S	Supply	Yellow	Black	H. W. Htg Sup
Hot Water Heating R	leturn	Yellow	Black	H. W. Htg Ret
Gravity Condensate	Return	Yellow	Black	Gravity Cond Ret
Pumped Condensate R	leturn	Yellow	Black	Pumped Cond Ret
Vacuum Condensate R	leturn	Yellow	Black	Vac Cond Ret
Fuel Oil - Grade		Brown	White	Fuel Oil-Grade*
(Diesel Fuel includ	led under Fuel Oil	1)		

(Diesel Fuel included under Fuel Oil)

09 91 00 PAINTING 30 JANUARY 2015 CONSTRUCTION DOCUMENTS

Boiler Water Sampling		Yellow	Black	Sample
Chemical Feed		Yellow	Black	Chem Feed
Continuous Blow-Down		Yellow	Black	Cont. B D
Pumped Condensate		Black		Pump Cond
Pump Recirculating		Yellow	Black	Pump-Recirc.
Vent Line		Yellow	Black	Vent
Alkali		Yellow	Black	Alk
Bleach		Yellow	Black	Bleach
Detergent		Yellow	Black	Det
Liquid Supply		Yellow	Black	Liq Sup
Reuse Water		Yellow	Black	Reuse Wtr
Cold Water (Domestic)	White	Green	White	C.W. Dom
Hot Water (Domestic)				
Supply	White	Yellow	Black	H.W. Dom
Return	White	Yellow	Black	H.W. Dom Ret
Tempered Water	White	Yellow	Black	Temp. Wtr
Ice Water				
Supply	White	Green	White	Ice Wtr
Return	White	Green	White	Ice Wtr Ret
Reagent Grade Water		Green	White	RG
Reverse Osmosis		Green	White	RO
Sanitary Waste		Green	White	San Waste
Sanitary Vent		Green	White	San Vent
Storm Drainage		Green	White	St Drain
Pump Drainage		Green	White	Pump Disch
Chemical Resistant Pipe				
Waste		Yellow	Black	Acid Waste
Vent		Yellow	Black	Acid Vent
Atmospheric Vent		Green	White	ATV
Silver Recovery		Green	White	Silver Rec
Oral Evacuation		Green	White	Oral Evac
Fuel Gas		Yellow	Black	Gas
Fire Protection Water				
Sprinkler		Red	White	Auto Spr
Standpipe		Red	White	Stand
Sprinkler		Red	White	Drain

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50 mm (2 inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6100 mm (20 foot) intervals in between. Use labels with yellow background with black border and words Danger High Voltage Class, 5000 or 15000 or 25000.
- 8. See Sections for methods of identification, legends, and abbreviations of the following:
 - a. Conduits containing high voltage feeders over 600 volts: Section 2605 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.

3.13 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 10 44 13 FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 DESCRIPTION

This section covers recessed fire extinguisher cabinets.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Fire extinguisher cabinet including installation instruction and rough opening required.

1.3 APPLICATION PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): D4802-10.....Poly (Methyl Methacrylate) Acrylic Plastic

Sheet

PART 2 - PRODUCTS

2.1 FIRE EXTINGUISHER CABINET

Semi-recessed type with flat trim of size and design shown.

2.2 FABRICATION

- A. Form body of cabinet from 0.9 mm (0.0359 inch) thick sheet steel.
- B. Fabricate door and trim from 1.2 mm (0.0478 inch) thick sheet steel with all face joints fully welded and ground smooth.
 - Glaze doors with 6 mm (1/4 inch) thick ASTM D4802, clear acrylic sheet, Category B-1, Finish 1.
 - 2. Design doors to open 180 degrees.
 - 3. Provide continuous hinge, pull handle, and adjustable roller catch.

2.3 FINISH

- A. Finish interior of cabinet body with baked-on semigloss white enamel.
- B. Finish door, frame with manufacturer's standard baked-on prime and finish coats.

PART 3 - EXECUTION

- A. Install fire extinguisher cabinets in prepared openings and secure in accordance with manufacturer's instructions.
- B. Install cabinet so that bottom of cabinet is 610 mm (24 inches) above finished floor.

- - - E N D - - -

10 44 13 FIRE EXTINGUISHER CABINETS

SECTION 13 05 41

SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide seismic restraint in accordance with the requirements of this section in order to maintain the integrity of nonstructural components of the building so that they remain safe and functional in case of seismic event.
- B. The design to resist seismic load shall be based on Seismic Design Categories per section 4.0 of the VA Seismic Design Requirements (H-18-8) dated August 2013,http://www.cfm.va.gov/til/etc/seismic.pdf.
- C. Definitions: Non-structural building components are components or systems that are not part of the building's structural system whether inside or outside, above or below grade. Non-structural components of buildings include:
 - 1. Architectural Elements: Facades that are not part of the structural system and its shear resistant elements; cornices and other architectural projections and parapets that do not function structurally; glazing; nonbearing partitions; suspended ceilings; stairs isolated from the basic structure; cabinets; bookshelves; medical equipment; and storage racks.
 - 2. Electrical Elements: Power and lighting systems; substations; switchgear and switchboards; auxiliary engine-generator sets; transfer switches; motor control centers; motor generators; selector and controller panels; fire protection and alarm systems; special life support systems; and telephone and communication systems.
 - 3. Mechanical Elements: Heating, ventilating, and air-conditioning systems; medical gas systems; plumbing systems; sprinkler systems; pneumatic systems; boiler equipment and components.
 - 4. Transportation Elements: Mechanical, electrical and structural elements for transport systems, i.e., elevators and dumbwaiters, including hoisting equipment and counterweights.

1.2 QUALITY CONTROL:

- A. Shop-Drawing Preparation:
 - 1. Have seismic-force-restraint shop drawings and calculations prepared by a professional structural engineer experienced in the area of

seismic force restraints. The professional structural engineer shall be registered in the state where the project is located.

- 2. Submit design tables and information used for the design-force levels, stamped and signed by a professional structural engineer registered in the State where project is located.
- B. Coordination:
 - 1. Do not install seismic restraints until seismic restraint submittals are approved by the Resident Engineer.
 - 2. Coordinate and install trapezes or other multi-pipe hanger systems prior to pipe installation.
- C. Seismic Certification:

In structures assigned to IBC Seismic Design Category C, D, E, or F, permanent equipments and components are to have Special Seismic Certification in accordance with requirements of section 13.2.2 of ASCE 7 except for equipment that are considered rugged as listed in section 2.2 OSHPD code application notice CAN No. 2-1708A.5, and shall comply with section 13.2.6 of ASCE 7.

1.3 SUBMITTALS:

- A. Submit a coordinated set of equipment anchorage drawings prior to installation including:
 - 1. Description, layout, and location of items to be anchored or braced with anchorage or brace points noted and dimensioned.
 - 2. Details of anchorage or bracing at large scale with all members, parts brackets shown, together with all connections, bolts, welds etc. clearly identified and specified.
 - 3. Numerical value of design seismic brace loads.
 - 4. For expansion bolts, include design load and capacity if different from those specified.
- B. Submit prior to installation, a coordinated set of bracing drawings for seismic protection of piping, with data identifying the various supportto-structure connections and seismic bracing structural connections, include:
 - 1. Single-line piping diagrams on a floor-by-floor basis. Show all suspended piping for a given floor on the same plain.
 - 2. Type of pipe (Copper, steel, cast iron, insulated, non-insulated, etc.).
 - 3. Pipe contents.
 - 4. Structural framing.
 - 5. Location of all gravity load pipe supports and spacing requirements.

13 05 41

30 JANUARY 2015 SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS CONSTRUCTION DOCUMENTS

- 6. Numerical value of gravity load reactions.
- 7. Location of all seismic bracing.
- 8. Numerical value of applied seismic brace loads.
- 9. Type of connection (Vertical support, vertical support with seismic brace etc.).
- 10. Seismic brace reaction type (tension or compression): Details illustrating all support and bracing components, methods of connections, and specific anchors to be used.
- C. Submit prior to installation, bracing drawings for seismic protection of suspended ductwork and suspended electrical and communication cables, include:
 - 1. Details illustrating all support and bracing components, methods of connection, and specific anchors to be used.
 - Numerical value of applied gravity and seismic loads and seismic loads acting on support and bracing components.
 - 3. Maximum spacing of hangers and bracing.
 - 4. Seal of registered structural engineer responsible for design.
- D. Submit design calculations prepared and sealed by the registered structural engineer specified above in paragraph 1.3A.
- E. Submit for concrete anchors, the appropriate ICBC evaluation reports, OSHPD pre-approvals, or lab test reports verifying compliance with OSHPD Interpretation of Regulations 28-6.

1.4 APPLICABLE PUBLICATIONS:

- A. The Publications listed below (including amendments, addenda revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI): 355.2-07.....Qualification for Post-Installed Mechanical Anchors in Concrete and Commentary
 C. American Institute of Steel Construction (AISC): Load and Resistance Factor Design, Volume 1, Second Edition
 D. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel
 A53/A53M-10....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A307-10....Standard Specification for Carbon Steel Bolts and Studs; 60,000 PSI Tensile Strength.

	A325-10 Standard Specification for Structural Bolts,
	Steel, Heat Treated, 120/105 ksi Minimum Tensile
	Strength
	A325M-09Standard Specification for High-Strength Bolts
	for Structural Steel Joints [Metric]
	A490-10for Heat-Treated Steel
	Structural Bolts, 150 ksi Minimum Tensile
	Strength
	A490M-10for High-Strength Steel
	Bolts, Classes 10.9 and 10.9.3, for Structural
	Steel Joints [Metric]
	A500/A500M-10Standard Specification for Cold-Formed Welded
	and Seamless Carbon Steel Structural Tubing in
	Rounds and Shapes
	A501-07 Specification for Hot-Formed Welded and Seamless
	Carbon Steel Structural Tubing
	A615/A615M-09Standard Specification for Deformed and Plain
	Billet-Steel Bars for Concrete Reinforcement
	A992/A992M-06Standard Specification for Steel for Structural
	Shapes for Use in Building Framing
	A996/A996M-09Standard Specification for Rail-Steel and Axel-
	Steel Deformed Bars for Concrete
	Reinforcement
	E488-96(R2003)Standard Test Method for Strength of Anchors in
	Concrete and Masonry Element
Е.	American Society of Civil Engineers (ASCE 7) Latest Edition.
F.	International Building Code (IBC) Latest Edition
G.	VA Seismic Design Requirements, H-18-8, August 2013

- H. National Uniform Seismic Installation Guidelines (NUSIG)
- I. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Seismic Restraint Manual - Guidelines for Mechanical Systems, 1998 Edition and Addendum

1.5 REGULATORY REQUIREMENT:

A. IBC Latest Edition.

- B. Exceptions: The seismic restraint of the following items may be omitted:
 - 1. Equipment weighing less than 400 pounds, which is supported directly on the floor or roof.
 - 2. Equipment weighing less than 20 pounds, which is suspended from the roof or floor or hung from a wall.

- 3. All piping suspended by individual hangers, 12 inches or less in length from the top of pipe to the bottom of the support for the hanger.
- 4. All electrical conduits, less than 2 ½ inches inside diameter.
- 5. All rectangular air handling ducts less than six square feet in cross sectional area.
- 6. All round air handling ducts less than 28 inches in diameter.
- 7. All ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of support for the hanger.

PART 2 - PRODUCTS

2.1 STEEL:

- A. Structural Steel: ASTM A36, A36M, or A992.
- B. Structural Tubing: ASTM A500, Grade B.
- C. Structural Tubing: ASTM A501.
- D. Steel Pipe: ASTM A53/A53M, Grade B.
- E. Bolts & Nuts: ASTM, A307, A325, A325M, A490, A490M.

PART 3 - EXECUTION

3.1 CONSTRUCTION, GENERAL:

- A. Provide equipment supports and anchoring devices to withstand the seismic design forces, so that when seismic design forces are applied, the equipment cannot displace, overturn, or become inoperable.
- B. Provide anchorages in conformance with recommendations of the equipment manufacturer and as shown on approved shop drawings and calculations.
- C. Construct seismic restraints and anchorage to allow for thermal expansion.
- D. Testing Before Final Inspection:
 - Test 10-percent of anchors in masonry and concrete per ASTM E488, and ACI 355.2 to determine that they meet the required load capacity. If any anchor fails to meet the required load, test the next 20 consecutive anchors, which are required to have zero failure, before resuming the 10-percent testing frequency.
 - Before scheduling Final Inspection, submit a report on this testing indicating the number and location of testing, and what anchor-loads were obtained.

3.2 EQUIPMENT RESTRAINT AND BRACING:

A. Brace switchgear per manufacturer's instructions using design provided by licensed structural engineer.

3.3 MECHANICAL DUCTWORK AND PIPING; ELECTRICAL BUSWAYS, CONDUITS, AND CABLE TRAYS; AND TELECOMMUNICATION WIRES AND CABLE TRAYS

- A. Support and brace mechanical ductwork and piping; electrical busways, conduits and cable trays; and telecommunication wires and cable trays including boiler plant stacks and breeching to resist directional forces (lateral, longitudinal and vertical).
- B. Brace duct and breeching branches with a minimum of 1 brace per branch.
- C. Provide supports and anchoring so that, upon application of seismic forces, piping remains fully connected as operable systems which will not displace sufficiently to damage adjacent or connecting equipment, or building members.
- D. Seismic Restraint of Piping:
 - 1. Design criteria:
 - a. Piping resiliently supported: Restrain to support 120-percent of the weight of the systems and components and contents.
 - b. Piping not resiliently supported: Restrain to support 60-percent of the weight of the system components and contents.
- E. Piping Connections: Provide flexible connections where pipes connect to equipment. Make the connections capable of accommodating relative differential movements between the pipe and equipment under conditions of earthquake shaking.

- - - E N D - - -

б

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- J. Section 23 23 00, REFRIGERANT PIPING
- K. Section 23 31 00, HVAC DUCTS and CASINGS
- L. Section 23 34 00, HVAC FANS
- M. Section 23 37 00, AIR OUTLETS and INLETS
- N. Section 23 81 23, COMPUTER-ROOM AIR-CONDITIONERS
- O. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 OUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC

- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.
 - 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
 - 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
 - 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
 - 7. Asbestos products or equipment or materials containing asbestos shall not be used.

Project #: 692-14-101

- E. Equipment Service Organizations:
 - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. Execution (Installation, Construction) Ouality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
- G. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and

equipment in each group to provide a completely compatible and efficient.

- F. Layout Drawings:
 - 1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- H. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009..... Air-Handling Units C. American National Standard Institute (ANSI): B31.1-2007.....Power Piping D. Rubber Manufacturers Association (ANSI/RMA): IP-20-2007.....Specifications for Drives Using Classical V-Belts and Sheaves IP-21-2009.....Specifications for Drives Using Double-V (Hexagonal) Belts IP-22-2007.....Specifications for Drives Using Narrow V-Belts and Sheaves E. Air Movement and Control Association (AMCA): 410-96..... Recommended Safety Practices for Air Moving Devices F. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials G. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application H. National Electrical Manufacturers Association (NEMA):

MG-1-2009.....Motors and Generators

23 05 11 COMMON WORK RESULTS FOR HVAC CONSTRUCTION DOCUMENTS

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
 - 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the Resident Engineer during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm

and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the Resident Engineer.

- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.

D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce quard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.4 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; and, Section

26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.6 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for specifications.
- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 30,000 AIC. Provide AC input line reactors (3% impedance) filters on incoming power line. Provide output line reactors on line between drive and motor

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.

Project #: 692-14-101

- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. HVAC and Boiler Plant: Provide for all valves.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.8 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.9 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.

23.05.11 COMMON WORK RESULTS FOR HVAC CONSTRUCTION DOCUMENTS

- 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- F. Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- I. Supports for Piping Systems:
 - 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- J. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.10 PIPE PENETRATIONS

A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.

- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.11 DUCT PENETRATIONS

A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.

2.12 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.13 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.14 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - 1. Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

- I. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
- N. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance,

equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.

2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a

minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.

- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3. Tubing and capillary systems shall be supported in channel troughs.

- G. Floor Supports:
 - 1. Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.
 - 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

Project #: 692-14-101

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
 - 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
 - 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

23 05 11 COMMON WORK RESULTS FOR HVAC CONSTRUCTION DOCUMENTS

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.11 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EOUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.13 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- C. Section 23 23 00, REFRIGERANT PIPING.
- D. Section 23 34 00, HVAC FANS.
- E. Section 23 81 23, COMPUTER-ROOM AIR-CONDITIONERS.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
- G. Section 26 24 19, MOTOR-CONTROL CENTERS: Multiple motor control assemblies, which include motor starters.
- H. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection for motors.

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - 1. Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer:
 - 1. Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.

E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 .. Motors and Generators MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

Motors and Generators

- C. National Fire Protection Association (NFPA):
- D. Institute of Electrical and Electronics Engineers (IEEE): 112-04.....Standard Test Procedure for Polyphase Induction Motors and Generators
- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

90.1-2007......Energy Standard for Buildings Except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - 1. Contractor's Option Electrically Commutated motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic 23 05 12 30 JANUARY 2015 GENERAL MOTOR REQUIREMENTS FOR HVAC CONSTRUCTION DOCUMENTS AND STEAM GENERATION EQUIPMENT

commutation. The motor shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.

- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - 1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 40°C (104°F) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed $40^{\circ}C$ ($104^{\circ}F$), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.

23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

- 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.

23 05 12

L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open₇ drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	a Efficie	ncies	Minimum Premium Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, seismic restraints for equipment, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete inertia bases.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- F. Section 23 31 00, HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- G. SECTION 23 34 00, HVAC FANS: sound and vibration isolation requirements for fans.
- H. SECTION 23 37 00, AIR OUTLETS and INLETS: noise requirements for Ggrilles.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Audio Speech Pathology	25
Audio Suites	25
Auditoriums, Theaters	35-40
Bathrooms and Toilet Rooms	40
Chapels	35
Conference Rooms	35

Corridors (Nurse Stations)	40	
Corridors(Public)	40	
Dining Rooms, Food Services/ Serving	40	
Examination Rooms	35	
Gymnasiums	50	
Kitchens	50	
Laboratories (With Fume Hoods)	45 to 55	
Laundries	50	
Lobbies, Waiting Areas	40	
Locker Rooms	45	
Offices, Large Open	40	
Offices, Small Private	35	
Operating Rooms	40	
Patient Rooms	35	
Phono/Cardiology	25	
Recreation Rooms	40-45	
Shops	50	
SPD (Decontamination and Clean Preparation)	45	
Therapeutic Pools	45	
Treatment Rooms	35	
Warehouse	50	
X-Ray and General Work Rooms	40	

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Seismic Restraint Requirements:
 - 1. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
 - b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of 100 percent of the weight of the equipment furnished.
 - 2. Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
 - 3. Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Seismic restraint provisions and bolting.
 - 4. Acoustical enclosures.

- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- D. Seismic Requirements: Submittals are required for all equipment anchors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

Vibration

- C. American Society for Testing and Materials (ASTM): A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength D2240-05(2010)....Standard Test Method for Rubber Property -Durometer Hardness
- D. Manufacturers Standardization (MSS): SP-58-2009.....Pipe Hangers and Supports-Materials, Design and
- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-10Minimum Design Loads for Buildings and Other Structures.

Manufacture

- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC): 2009 IBC.....International Building Code.

I. Department of Veterans Affairs (VA): H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Captive Spring Mount for Seismic Restraint (Type SS):

- a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
- b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
- 3. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.5.
- 4. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.

- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height

of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).

- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peakto-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - 1. No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.

- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPM	EQUIPMENT ON GRADE		20FT	FLOOR	SPAN	30FT FLOOR SPAN		40FT FLOOR SPAN			50FT FLOOR SPAN					
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
			1													

EQUIPMENT	c	N GRAD	Е	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
	BASE TYPE	ISOL TYPE	MIN DEFL												
ROOF FANS															
ABOVE OCCUPIED AREA	s:														
5 HP & OVER				CB	S	1.0	CB	S	1.0	СВ	S	1.0	CB	S	1.0
1															

EQUIPMENT	c	N GRAD	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
	BASE TYPE	ISOL TYPE	MIN DEFL												
	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	1	1			1	1		1	1		1	[1	1
	1														
HEAT PUMPS					<u> </u>			<u> </u>			<u> </u>	<u>I</u>		<u> </u>	
ALL		S	0.75		S	0.75		S	0.75	СВ	S	1.5			NA
CONDENSING UNITS	-			-			-			-			-		
ALL		SS	0.25		SS	0.75		SS	1.5	СВ	SS	1.5			NA

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - 6. Balancing air; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - 1. Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - 6. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- B. Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- D. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training

23 05 93

- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- G. Section 23 34 00, HVAC FANS
- H. Section 23 37 00, AIR OUTLETS AND INLETS

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by

the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
- b. Exhaust: 0 percent to plus 10 percent.
- c. Minimum outside air: 0 percent to plus 10 percent.
- d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.

- 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

2007HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter 47, Sound and Vibration Control

C. Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

- 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in

standard format and forms prepared and or approved by the Commissioning Agent.

C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 100 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project.
- D. Allow 14 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.

- Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
- 4. Record final measurements for air handling equipment performance data sheets.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.10 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.11 PHASING

A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents. B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping and ductwork.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Ductwork and piping above ceilings and in chases, interstitial space.
 - 5. Exposed: Piping, to view in finished areas including mechanical, and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - 8. Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

1

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. RS: Refrigerant suction.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.
- D. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant piping and fittings.
- E. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2., shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings

23 07 11	30 JANUARY 2015
HVAC AND BOILER PLANT INSULATION	CONSTRUCTION DOCUMENTS

where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

3

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.

- e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - 1. Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - 2. Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives cement

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM): A167-99(2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

	C534-08	Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-07	Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	Standard Specification for Cellular Glass
		Thermal Insulation
	C585-09	Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-04	Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-10	Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-09c	Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-09b	Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
Ε.	National Fire Protection	n Association (NFPA):
	90A-09	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-08	Standard s for Ventilation Control and Fire
		Protection of Commercial Cooking Operations
	101-09	Life Safety Code
	251-06	Standard methods of Tests of Fire Endurance of
		Building Construction Materials
	255-06	Standard Method of tests of Surface Burning
		Characteristics of Building Materials
F.	Underwriters Laboratorie	es, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.3 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance of 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. Vapor Retarder, medium strength with low water vapor permeance of 0.02 or less perm rating, Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

2.4 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)									
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)								
Up through 125 (5)	150 (6) long								
150 (6)	150 (6) long								
200 (8), 250 (10), 300 (12)	225 (9) long								
350 (14), 400 (16)	300 (12) long								
450 through 600 (18 through 24)	350 (14) long								

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.5 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.6 MECHANICAL FASTENERS

A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.

> 23 07 11 HVAC AND BOILER PLANT INSULATION CONSTRUCTION DOCUMENTS

- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.7 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.8 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.

23 07 11 HVAC AND BOILER PLANT INSULATION CONSTRUCTION DOCUMENTS

- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degree C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. HVAC work to be insulated:
 - 1. Internally insulated ductwork.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature

3.2 INSULATION INSTALLATION

A. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and

two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.

1. Supply air duct: 25 mm (one inch) thick insulation faced with ASJ.

- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
 - 4. Concealed return air duct:
 - a. In attics (where not subject to damage) and where exposed to outdoor weather: 50mmm (2 inch)thick insulation faced with FSK,
 - b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 - 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Flexible Elastomeric Cellular Thermal Insulation:
 - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.

- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
- 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 - c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
 - d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)											
		Nominal	Pipe Size	Millimeters	(Inches)						
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above						
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)						
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)						
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)						
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)						
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)						
38-99 degrees C (100-211 degrees F)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)						

		1	1	Γ	
(LPR, PC, HWH, HWHR, GH and GHR)					
39-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16 degrees C	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	PHENOIIC FOam	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Cellular	50	50 (2.0)	75 (3.0)	75 (3.0)
(40-60 degrees F)	Glass Closed- Cell	(2.0)			
(CH and CHR within chiller room and pipe chase and underground)					
4-16 degrees C	Cellular	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Glass Closed- Cell	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Polyiso-	38	38 (1.5)	50 (2.0)	50 (2.0)
(40-60 degrees F)	cyanurate Closed-Cell	(1.5)			
(CH, CHR, GC and GCR (where underground)	Rigid				
4-16 degrees C	Polyiso-	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	cyanurate Closed-Cell	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)	Rigid (Exterior Locations only)				
(40-60 degrees F)	Flexible	38	38 (1.5)	38 (1.5)	38 (1.5)
(CH, CHR, GC, GCR	Elastomeric Cellular	(1.5)			

and RS for DX	Thermal (Above		
refrigeration)	ground piping		
	only)		

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent. B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning

Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be

scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance,

Warranty, specified services and items required for complete and fully functional Controls Systems.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall accommodate 2 Engineering Control Center(s) and the control system shall accommodate 20 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Refrigerant leak detection system.
 - 2. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in

writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:

- 1. Unitary HVAC equipment (split systems, packaged pumping stations controls). These include:
 - a. Discharge temperature control.
 - b. Economizer control.
 - c. Setpoint reset.
 - d. Time of day indexing.
 - e. Status alarm.
- 2. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
VFDs	23 09 23	26	23 09 23	26
Refrigerant monitors	23	23 09 23	23 09 23	26
Computer Room A/C Unit field-mounted controls	23	23	16	26
Control system interface with CRU A/C controls	23 09 23	23 09 23	23 09 23	26
CRU A/C unit controls interface with control system	23	23 09 23	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Starters, HOA switches	23	23	N/A	26

3

- F. This facility's existing direct-digital control system is manufactured by Automated Logic. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
- G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
 - 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.

4. Responsibility Table:

Item/Task	Section 23 09 23	Control system	VA
	contactor		
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	X		
and equipment			
Point addressing: all hardware and	X		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	X		
Integrity of LAN communications	X		
Electrical wiring	X		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

H. Unitary standalone systems including Unit Heaters, Cabinet Unit Heaters, Fan Coil Units, Base Board Heaters, thermal comfort ventilation fans, and similar units for control of room environment conditions may be equipped with integral controls furnished and installed by the equipment manufacturer or field mounted. Refer to equipment specifications and as indicated in project documents. Application of standalone unitary controls is limited to at least those systems wherein remote monitoring, alarm and start-up are not necessary. Examples of such systems include:

1. Mechanical or electrical room heating and ventilation.

I. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 23 31 00, HVAC Ducts and Casings.
- B. Section 23 81 23, Computer-Room Air-Conditioners.
- C. Section 26 27 26, Wiring Devices.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.

б

- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap.
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are

provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.

- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input

30 JANUARY 2015 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC CONSTRUCTION DOCUMENTS

8

(AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.

- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a
- NN. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- 00. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- PP. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- QQ. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- RR. Operating system (OS): Software, which controls the execution of computer application programs.

- SS. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- TT. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- UU. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- VV. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- WW. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- XX. Repeater: A network component that connects two or more physical segments at the physical layer.
- YY. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- ZZ. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- AAA. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.

- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.

- Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
- Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two (2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading

Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Carbon Dioxide (CO ₂)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after

business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.

D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly

reference the specification and/or drawings that it supposed to represent.

- Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 11. Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.

- 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 48 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 48 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
 - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.B. American Society of Heating, Refrigerating, and Air-Conditioning
- Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):

B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-08 Standard Specification for Solde	er Metal
B88-09 for Sear	nless Copper
Water Tube	
B88M-09 Standard Specification for Seam	less Copper
Water Tube (Metric)	
B280-08 for Seam	less Copper Tube
for Air-Conditioning and Refrige	eration Field
Service	
D2737-03 Standard Specification for Polye	ethylene (PE)
Plastic Tubing	

E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11	.National E	Electric Code		
90A-09	.Standard f	for Installation	of Air-Conditioning	
and Ventilation Systems				

H. Underwriter Laboratories Inc (UL):

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10.....Access Control System Units 486A/486B-10.....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10.....Energy Management Equipment 1076-10.....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.

- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - 2.
 - 3. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow

communication with each controller on the internetwork as specified in Paragraph D.

- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 PORTABLE OPERATOR'S TERMINAL (POT)

- A. Provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required.
- B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.

- 1. POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive.
- C. Software: POT shall include software equal to the software on the ECC.

2.5 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.6 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where

a. FFF and N are as above and

b. DD = 00-99, this allows up to 100 devices per network.

- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.7 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - 1. BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed

as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.

- BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
- BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.8 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and

- b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.

- a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
- b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or,

if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall

automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality.

- b. Economizer: An economizer program shall be provided for Exhaust and Supply Fan systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature falls below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
- c. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
- d. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points.

When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- h. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.9 SENSORS (AIR)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - b. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - c. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
 - d. Wire: Twisted, shielded-pair cable.
 - e. Output Signal: 4-20 ma.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.

2.10 CONTROL CABLES

A. General:

- Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.

- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

31

2.11 THERMOSTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.

2.12 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.

2.13 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.

- B. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- C. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.

2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
 - 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 19.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.

- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - Calibrate sensors to accuracy specified, if not factory calibrated.

- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.

- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days

prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
 - Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.

- k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
- 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

----- END -----

SECTION 23 09 23.10 STATUS MONITORING VIA CAMPUS AUTOMATION NETWORK

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide network interface components for enabling card access, video surveillance, intrusion detection, and generator alarms to be remotely monitored via the campus network infrastructure. System events shall be monitored at the Police Dispatch Center located in Building 202, Room 104. The additional interface points shall be added to the VA's existing Andover building automation system.
- B. The campus network shall be leveraged to the highest degree possible for transporting status information from the remote monitoring points to the dispatch center, and shall display on designated operator station monitors.
- C. The work administered by this Section of the specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries; interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Systems.
- D. Products that are integrated with the work executed by the contractor administered by this Section of the specifications shall be provided either directly or under subcontract by certified technicians authorized to service the systems affected by work of this contract. Formally coordinate in writing and receive from subcontractors formal acknowledgements in writing prior to submission the particulars of the products proposed. These products include the Interface devices, relays, etc., to be installed by manufacturer certified technicians for the following:
 - 1. Emergency generator status alarms 2. Building 231 Card Access 3. Building 231 Intrusion Detection alarms 4. Building 231 Surveillance Camera monitoring 5. Building 231 125 VDC Battery Charger status alarms 6. Photovoltaic System, Inverter Control and Monitoring 7. Advanced Utility Metering Components

1.2 RELATED WORK

- A. Section 25 10 10, ADVANCED UTILITY METERING SYSTEM
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- C. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR
- D. SECTION 26 23 13, GENERATOR PARALLELING CONTROLS
- E. Section 26 32 13, ENGINE GENERATORS.
- F. SECTION 48 14 00, SOLAR ENERGY ELECTRICAL POWER GENERATION SYSTEM

1.3 DEFINITIONS

- A. BacNet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- B. BacNet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BacNet messages over IP networks. A BacNet/IP network is a collection of one or more IP sub-networks that share the same BacNet network number.
- C. BacNet Internetwork: Two or more BacNet networks connected with routers. The two networks may sue different LAN technologies.
- D. BacNet Network: One or more BacNet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- E. BacNet Segment: One or more physical segments of BacNet devices on a BacNet network, connected at the physical layer by repeaters.
- F. BacNet Broadcast Management Device (BBMD): A communications device which broadcasts BacNet messages to all BacNet/IP devices and other BBMDs connected to the same BacNet/IP network.
- G. BacNet Interoperability Building Blocks (BIBBs): BacNet Interoperability Building Blocks (BIBBs) are collections of one or more BacNet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BacNet internetwork.
- H. BacNet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BacNet standard, operated under the direction of BacNet International.
- I. Controller: Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- J. Device: a control system component that contains a BacNet Device Object and uses BacNet to communicate with other devices.
- K. Device Object: Every BacNet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BacNet internetwork. This number is often referred to as the device instance.
- L. Device Profile: A specific group of services describing BacNet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BacNet Operator Workstations (B-OWS), BacNet Building Controllers (B-BC), BacNet Advanced Application Controllers (B-AAC), BacNet Application Specific Controllers (B-ASC), BacNet Smart Actuator (B-SA), and BacNet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- M. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.

- N. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- 0. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BacNet applications, a gateway has BacNet on one side and non-BacNet (usually proprietary) protocols on the other side.
- P. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- Q. IP: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- R. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- S. Native BacNet Device: A device that uses BacNet as its primary method of communication with other BacNet devices without intermediary gateways. A system that uses native BacNet devices at all levels is a native BacNet system.
- T. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- U. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- V. PICS: Protocol Implementation Conformance Statement, describing the BacNet capabilities of a device. All BacNet devices have published PICS.
- W. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BacNet Ethernet LAN to a BacNet MS/TP LAN.

1.4 QUALITY ASSURANCE

A. Criteria:

- 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
- 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of automation control systems. Products shall be

manufacturer's latest standard design and have been tested and proven in actual use.

- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disgualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, and auxiliary devices such as sensors. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - 8. Furnish a BacNet Protocol Implementation Conformance Statement (PICS) for each BacNet-compliant device.
 - 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
 - 11. Riser diagrams of wiring between central control unit and all control panels.
 - 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
 - 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.

- E. As Built Control Drawings:
 - 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and quidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COTR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - 1. Formal instructions to the VA facilities personnel for a total of four hours conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.

- 2. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 3. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- B. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

Standard 135-08.....BACNET Building Automation and Control Networks

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-05.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-2014..... National Electric Code

H. Underwriter Laboratories Inc (UL):

294-05..... System Units

486A/486B-04-....Wire Connectors

916-07..... Energy Management Equipment

1076-05..... Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Provide new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 SCOPE OF WORK

A. Provide controllers, routers, gateways, materials, labor, installation, programming, and testing required to enable the existing Andover

23 09 23.10
STATUS MONITORING VIA CAMPUS
AUTOMATION NETWORK

Continuum system to monitor the systems described hereafter at the Building 202 Dispatch Center. This work supplements, but does not modify or relocate existing equipment or local alarms which shall remain operational at all times.

- 1. Card Access, Intrusion Detection, and Surveillance Cameras
- 2. Emergency Generator alarm events. Individual alarm indication is required to annunciate any of the following conditions:
 - a. Overcrank shutdown indication
 - b. Coolant low-temperature alarm
 - c. High engine temperature pre-alarm
 - d. High engine temperature indication
 - e. Low lube oil pressure pre-alarm
 - f. Low lube oil pressure
 - g. Overspeed
 - h. Low fuel main tank
 - i. Low coolant level
 - j. Control switch not in automatic position.
 - k. Low cranking voltage
 - 1. Battery low-voltage alarm
 - m. Air shutdown damper
 - n. Remote emergency stop
- B. Third Party Interfaces:
 - 1. The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and existing building systems.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BacNet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BacNet.
 - 1. The Data link/physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BacNet/IP.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.

2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized user shall be able to edit cross-controller links by typing a standard object address.

2.4 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BacNet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BacNet allows 65535 network numbers per BacNet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - = 00-99 b. NN This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BacNet allows 4194305 unique devices instances per BacNet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Facility code assignments:
 - a. 000-400 Building/facility number
 - b. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiquous, name.

2.5 BACNET DEVICES

- A. All BacNet Devices controllers, gateways, routers, actuators and sensors shall conform to BacNet Device Profiles and shall be BacNet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BacNet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - 1. BacNet Building Controllers, historically referred to as NACs, shall conform to the BacNet B-BC Device Profile, and shall be BTL-Listed

as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.

- 2. BacNet Advanced Application Controllers shall conform to the BacNet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
- 3. BacNet Application Specific Controllers shall conform to the BacNet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- 4. BacNet Smart Actuators shall conform to the BacNet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BacNet Smart Sensors shall conform to the BacNet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- 6. BacNet routers and gateways shall conform to the BacNet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.6 CONTROL CABLES

A. General:

- 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket.

D. Optical digital communication fiber shall be Multimode fiber, 62.5/125 micron with ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Electrical Wiring Installation:
 - All wiring and cabling shall be installed in conduits. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install all electrical work required for a fully functional system. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 3. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
 - 4. Conceal cables, except in rooms and areas where other conduits and piping are exposed.
 - 5. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
 - 6. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- B. Install Monitoring Controls:
 - Install all devices according to manufacturer's written instructions. Device locations shall be readily accessible, permitting quick servicing of them without special skills and tools.
- C. Installation of network:
 - 1. Ethernet:

- a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
- 2. Third party interfaces: Contractor shall integrate real-time data originating from systems and equipment of other manufacturers as specified and required to make the system work as one system.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that the system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - 1. System operation and calibration to be demonstrated by the installer in the presence of the COTR on random samples of equipment as dictated by the COTR. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no additional cost to the VA.
 - 2. Demonstrate to authorities that all required system operations are fully functional and complete.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Condenser water drain piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- F. Section 23 23 00, REFRIGERANT PIPING: Refrigerant piping and refrigerants.
- G. Section 31 20 00, EARTH MOVING: Excavation and backfill.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.

- 4. Flanges, gaskets and bolting.
- 5. Grooved joint couplings and fittings.
- 6. Valves of all types.
- 7. All specified hydronic system components.
- 8. Seismic bracing details for piping.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels.
- D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.
- B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-06.....Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings

B40.100-05.....Pressure Gauges and Gauge Attachments

C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI):

70-2-2006.....Control Valve Seat Leakage

D. American Society of Mechanical Engineers (ASME): B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-2006.....Malleable Iron Threaded Fittings: Class 150 and

	B16.4-2006	.Gray Iron Threaded Fittings: (Class 125 and 250)
	B16.5-2003	.Pipe Flanges and Flanged Fittings: NPS ½
	22010 2000111111111111	through NPS 24 Metric/Inch Standard
	B16.9-07	.Factory Made Wrought Butt Welding Fittings
		.Forged Fittings, Socket Welding and Threaded
		.Cast Copper Alloy Solder Joint Pressure
		Fittings
	B16.22-01	.Wrought Copper and Bronze Solder Joint Pressure
		Fittings.
	B16.24-06	.Cast Copper Alloy Pipe Flanges and Flanged
	510.21 00	Fittings
	B16.39-06	.Malleable Iron Threaded Pipe Unions
		.Ductile Iron Pipe Flanges and Flanged Fittings
	B31.1-08	
Е.		sting and Materials (ASTM):
		.Ferritic Malleable Iron Castings
		.Standard Specification for Pipe, Steel, Black
		and Hot-Dipped, Zinc-Coated, Welded and
		Seamless
	A106/A106M-08	Standard Specification for Seamless Carbon
		Steel Pipe for High-Temperature Service
	A126-04	.Standard Specification for Gray Iron Castings
		for Valves, Flanges, and Pipe Fittings
	A183-03	Standard Specification for Carbon Steel Track
		Bolts and Nuts
	A216/A216M-08	Standard Specification for Steel Castings,
		Carbon, Suitable for Fusion Welding, for High
		Temperature Service
	A234/A234M-07	Piping Fittings of Wrought Carbon Steel and
		Alloy Steel for Moderate and High Temperature
		Service
	A307-07	Standard Specification for Carbon Steel Bolts
		and Studs, 60,000 PSI Tensile Strength
	A536-84 (2004)	Standard Specification for Ductile Iron Castings
	A615/A615M-08	Deformed and Plain Carbon Steel Bars for
		Concrete Reinforcement

```
A653/A 653M-08 ..... Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
                        Iron Alloy Coated (Galvannealed) By the Hot-Dip
                        Process
  B32-08 ..... Standard Specification for Solder Metal
  B62-02 ..... Standard Specification for Composition Bronze or
                        Ounce Metal Castings
  B88-03 ..... Standard Specification for Seamless Copper Water
                        Tube
  B209-07 ..... Aluminum and Aluminum Alloy Sheet and Plate
  C177-04 ..... Standard Test Method for Steady State Heat Flux
                        Measurements and Thermal Transmission Properties
                        by Means of the Guarded Hot Plate Apparatus
  C478-09 ..... Precast Reinforced Concrete Manhole Sections
  C533-07 ..... Calcium Silicate Block and Pipe Thermal
                        Insulation
  C552-07 ..... Cellular Glass Thermal Insulation
  D3350-08 ..... Polyethylene Plastics Pipe and Fittings
                        Materials
  C591-08 ..... Unfaced Preformed Rigid Cellular
                        Polyisocyanurate Thermal Insulation
  D1784-08 ..... Rigid Poly (Vinyl Chloride) (PVC) Compounds and
                        Chlorinated Poly (Vinyl Chloride) (CPVC)
                        Compound
  D1785-06 ..... Poly (Vinyl Chloride0 (PVC) Plastic Pipe,
                        Schedules 40, 80 and 120
  D2241-05 ..... Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe
                        (SDR Series)
  F439-06 ..... Standard Specification for Chlorinated Poly
                        (Vinyl Chloride) (CPVC) Plastic Pipe Fittings,
                        Schedule 80
  F441/F441M-02 ..... Standard Specification for Chlorinated Poly
                        (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules
                        40 and 80
  F477-08 ..... Elastomeric Seals Gaskets) for Joining Plastic
                        Pipe
F. American Water Works Association (AWWA):
  C110-08..... Fittings for Water
```

	C203-02 Coal Tar Protective Coatings and Linings for
	Steel Water Pipe Lines Enamel and Tape Hot
	Applied
G.	American Welding Society (AWS):
	B2.1-02 Standard Welding Procedure Specification
н.	Copper Development Association, Inc. (CDA):
	CDA A4015-06Copper Tube Handbook
I.	Expansion Joint Manufacturer's Association, Inc. (EJMA):
	EMJA-2003 Association Joint Manufacturer's Association
	Standards, Ninth Edition
J.	Manufacturers Standardization Society (MSS) of the Valve and Fitting
	Industry, Inc.:
	SP-67-02aButterfly Valves
	SP-70-06Gray Iron Gate Valves, Flanged and Threaded
	Ends
	SP-71-05 Gray Iron Swing Check Valves, Flanged and
	Threaded Ends
	SP-80-08Bronze Gate, Globe, Angle and Check Valves
	SP-85-02Cast Iron Globe and Angle Valves, Flanged and
	Threaded Ends
	SP-110-96Ball Valves Threaded, Socket-Welding, Solder
	Joint, Grooved and Flared Ends
	SP-125-00Gray Iron and Ductile Iron In-line, Spring
	Loaded, Center-Guided Check Valves
K. National Sanitation Foundation/American National Standards Institu	
	Inc. (NSF/ANSI):
	14-06 And Related Piping System Components and Related
	Materials
	50-2009a
	and other Recreational Water Facilities -
	Evaluation criteria for materials, components,
	products, equipment and systems for use at
	recreational water facilities
	61-2008 Health
	Effects

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

- 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES
 - A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Cooling Coil Condensate Drain Piping:
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.

2.3 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.4 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets

and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.

- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- E. Solvent Welded Joints: As recommended by the manufacturer.

3.3 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.

C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.4 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals:
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer.
 - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.

3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.5 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.
- B. Definitions:
 - Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
 - Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.
- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Flexible metal hose
 - g. Liquid-suction interchanges
 - h. Oil separators (when specified)
 - i. Gages
 - j. Pipe and equipment supports
 - k. Refrigerant and oil
 - 1. Pipe/conduit roof penetration cover
 - m. Soldering and brazing materials
 - Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002).....Standard for Refrigerant Liquid Receivers 730-2005.....Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers 750-2007.....Thermostatic Refrigerant Expansion Valves 760-2007.....Performance Rating of Solenoid Valves for Use with Volatile Refrigerants
- C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE):

ANSI/ASHRAE 15-2007.....Safety Standard for Refrigeration Systems (ANSI) ANSI/ASHRAE 17-2008.....Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI) 63.1-95 (RA 01).....Method of Testing Liquid Line Refrigerant Driers (ANSI) D. American National Standards Institute (ANSI): ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems Z535.1-2006.....Safety Color Code E. American Society of Mechanical Engineers (ASME): ANSI/ASME B16.22-2001 (R2005) Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI) ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer Components (ANSI) ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments ANSI/ASME B40.200-2008.. Thermometers, Direct Reading and Remote Reading F. American Society for Testing and Materials (ASTM) A126-04..... Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe FittingsB32-08 Standard Specification for Solder Metal B88-03.....Standard Specification for Seamless Copper Water Tube B88M-05.....Standard Specification for Seamless Copper Water Tube (Metric) B280-08..... Standard Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field Service G. American Welding Society, Inc. (AWS): Brazing Handbook A5.8/A5.8M-04.....Standard Specification for Filler Metals for Brazing and Braze Welding H. Federal Specifications (Fed. Spec.) Fed. Spec. GG I. Underwriters Laboratories (U.L.): U.L.207-2009.....Standard for Refrigerant-Containing Components and Accessories, Nonelectrical U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
 - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5.
 - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
 - 2. Steel fittings: ASTM wrought steel fittings.
 - a. Refrigerant piping Welded Joints.
 - 3. Flanges and flanged fittings: ASME B16.24.
 - 4. Refrigeration Valves:
 - a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
 - b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
 - c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, twoposition, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location.
 - d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
 - e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for

low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.

- 5. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- Water Piping Valves and Accessories: Refer to specification Section
 23 21 13, HYDRONIC PIPING.

2.4 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.5 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.6 PIPE INSULATION FOR DX HVAC SYSTEMS

A. Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
 - 3. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally locate value stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end values. Control values usually require reducers to connect to pipe sizes shown on the drawing.
 - 4. Use copper tubing in protective conduit when installed below ground.
 - 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.

- B. Joint Construction:
 - 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
 - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
 - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
 - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
 - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Pipe relief valve discharge to outdoors for systems containing more than 45 kg (100 lbs) of refrigerant.
- E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- F. Seismic Bracing: Refer to specification Section 13 05 41, SEISMIC RESTRAINTS REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS, for bracing of piping in seismic areas.

3.2 PIPE AND TUBING INSULATION

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

- A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:

- Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
- 2. Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.

- A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of Resident Engineer. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
 - Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
 - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group Al refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.
- B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

A. System Test and Charging: As recommended by the equipment manufacturer or as follows:

- Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
- 2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
- 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Seismic Reinforcing: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- B. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Duct Insulation: Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
- D. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- E. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same

material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Sealants and gaskets.
 - c. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Sealants and gaskets.
 - c. Access sections.
 - d. Installation instructions.
 - 3. Upper hanger attachments.
 - 4. Instrument test fittings.
 - 5. Details and design analysis of alternate or optional duct systems.
 - 6. COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 - Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- C. American Society for Testing and Materials (ASTM):

A167-99(2009).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate,

Sheet, and Strip

A653-09.....for Steel Sheet,

Zinc-Coated (Galvanized) or Zinc-Iron Alloy

coated (Galvannealed) by the Hot-Dip process

A1011-09a.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-

Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength

23 31 00 HVAC DUCTS AND CASINGS

30 JANUARY 2015 CONSTRUCTION DOCUMENTS 2

	B209-07for Aluminum and
	Aluminum-Alloy Sheet and Plate
	C1071-05e1 Standard Specification for Fibrous Glass Duct
	Lining Insulation (Thermal and Sound Absorbing
	Material)
	E84-09aStandard Test Method for Surface Burning
	Characteristics of Building Materials
D.	National Fire Protection Association (NFPA):
	90A-09of Air
	Conditioning and Ventilating Systems
	96-08 Control and Fire
	Protection of Commercial Cooking Operations
Е.	Sheet Metal and Air Conditioning Contractors National Association
	(SMACNA):
	2nd Edition - 2005HVAC Duct Construction Standards, Metal and
	Flexible
	1st Edition - 1985HVAC Air Duct Leakage Test Manual
	6th Edition - 2003Fibrous Glass Duct Construction Standards
F.	Underwriters Laboratories, Inc. (UL):
	181-08 Factory-Made Air Ducts and Air Connectors
	555-06Standard for Fire Dampers
	555S-06Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Optional Duct Materials:
 - Grease Duct: Double wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust duct. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown on the drawings will have to be converted to equivalent round size.

- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 1. 0 to 50 mm (2 inch)
 - 2. Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal.
- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.

Project #: 692-14-101

- b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- H. Ductwork in excess of 620 cm² (96 square inches) shall be protected unless the duct has one dimension less than 150 mm (6 inches)if it passes through the areas listed below. Refer to the Mission Critical Physical Design Manual for VA Facilities. This applies to the following:
 - 1. Agent cashier spaces
 - 2. Perimeter partitions of caches
 - 3. Perimeter partitions of computer rooms
 - 4. Perimeter of a COOP sites
 - 5. Perimeter partitions of Entrances
 - 6. Security control centers (SCC)

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - 2. Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.

- 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.9 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 300 mm (12 inches) above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.10 SEISMIC RESTRAINT FOR DUCTWORK

Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.11 DUCT MOUNTEDTHERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.12 DUCT MOUNTEDTEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.13 INSTRUMENT TEST FITTINGS

A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.

- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.
- C. Metallic duct portion inside shielded room shall be electrically bonded to shielding.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and

23 31 00 HVAC DUCTS AND CASINGS

Project #: 692-14-101

where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.

- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - 2. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts

are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of__145__km/h (_90_mph).

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- B. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- C. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- D. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

E. Performance Criteria:

- The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
- 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- F. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- G. Corrosion Protection:
 - Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and

G153 for carbon arc light apparatus for exposure of non-metallic material.

- 2. Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- H. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. Up-blast exhaust fans.
 - b. Utility fans and vent sets.
 - 3. Prefabricated roof curbs.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-86.....Standards Handbook 210-06....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-09....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-08....Reverberant Room Method for Sound Testing of Fans
- C. American Society for Testing and Materials (ASTM):

23 34 00 HVAC FANS

	B117-07aStandard Practice for Operating Salt Spray (Fog)
	Apparatus
	D1735-08 Water Resistance
	of Coatings Using Water Fog Apparatus
	D3359-08 Adhesion by
	Tape Test
	G152-06 Open Flame
	Carbon Arc Light Apparatus for Exposure of Non-
	Metallic Materials
	G153-04 Standard Practice for Operating Enclosed Carbon
	Arc Light Apparatus for Exposure of Non-Metallic
	Materials
D.	National Fire Protection Association (NFPA):
	NFPA 96-08 Standard for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
Ε.	National Sanitation Foundation (NSF):
	37-07Air Curtains for Entrance Ways in Food and Food
	Service Establishments
F.	Underwriters Laboratories, Inc. (UL):
	181-2005

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWSl fans: Arrangement 1, 9 or 10, exhaust fans Arrangement 3 shall not be acceptable.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.

- 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
- 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
- 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
- 5. Belts: Oil resistant, non-sparking and non-static.
- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for controller/motor combination requirements.

2.2 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper. Provide electric motor operated damper where indicated.
- D. Motor and Drive: Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream. For kitchen hood exhaust applications, provide grease trough on base and threaded drain. The mounting height of the kitchen up-blast exhaust fan

shall be in compliance with NFPA 96. (Provide vented curb extension if required to maintain required clearances.)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th

Edition

C. American Society of Civil Engineers (ASCE):

ASCE7-05......Minimum Design Loads for Buildings and Other Structures

D. American Society for Testing and Materials (ASTM):

A167-99 (2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA):

90A-09.....of Air

Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL): 181-08......UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 AIR OUTLETS AND INLETS

- A. Materials:
 - 1. Steel or aluminum Provide manufacturer's standard gasket.
 - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - 1. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
 - 2. Supply Grilles: Same as registers but without the opposed blade damper.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry

of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION

- - - E N D - - -

SECTION 23 81 23 COMPUTER-ROOM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies process cooling split systems air conditioning unit.
- B. Definitions:
 - Energy Efficiency Ratio (EER): A ratio calculated by dividing the cooling capacity in Btuh by the power input in watts at any given set of rating conditions, expressed in Watts (Btu/h) per watt.
 - Coefficient of Performance (COP): A ratio calculated by dividing the change in heating or cooling capacity (Btu/h) to the energy consumed by the system (kW), expressed in Btu/kWh.
 - 3. Unitary (AHRI): Consists of one or more factory-made assemblies, which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function.
 - 4. CRAC Units: Computer Room Air Conditioning Units.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Requirements for vibration isolators and room noise level.
- D. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Requirements and for ducts and piping insulation.
- E. Section 23 23 00, REFRIGERANT PIPING: Requirements for field refrigerant piping.
- F. Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for sheet metal ducts and fittings.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
- H. Section 23 05 93: TESTING, ADJUSTING, and BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.
- I. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data, rated capacities (at design indoor and outdoor conditions), EER/COP, operating characteristics, required specialties and accessories. Submit published catalog selection data showing equipment ratings and compliance with required sensible ratio.
 - 1. Indoor Air Conditioning Unit
 - 2. Air Cooled Condensing Unit
- C. Submit detailed equipment assemblies with dimensions, operating weights, required clearances.
- D. Submit wiring diagrams for power, alarm and controls.
- E. Certification: Submit, simultaneously with shop drawings, a proof of certification:
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 GUARANTEE

The unit shall be guaranteed against all mechanical defects in material, parts or workmanship and shall be repaired or replaced at the Contractor's expense within the period of one year from final acceptance. Contractor shall adhere to a four hour service response time to troubles during the guarantee period.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed Spec): 00-A-374C-95.....Air-Conditioners with Remote Condensing Units or Remote Air-cooled and Water-Cooled Condenser Units, Unitary TT-C-490D-93.....Cleaning Methods for Ferrous Surfaces and

Pretreatments for Organic Coatings

- C. Air-Conditioning, Heating and Refrigeration Institute (AHRI) Standards: 210/240-08.....Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment 340/360-07....Performance Rating of Commercial and Industrial Unitary Air Conditioning and Heat Pump Equipment
 - 410-01.....Forced-Circulation Air-Cooling and Air-Heating Coils

23 81 23 COMPUTER-ROOM AIR-CONDITIONERS

	460-2005 Merformance Rating of Remote Mechanical-Draft					
	Air-Cooled Refrigerant Condensers					
	520-04 Derformance Rating of Positive Displacement					
	Condensing Units					
	AHRI-DCPP Pirectory of Certified Product Performance -					
	Applied Directory of Certified Products					
D. Air Movement and Control Association (AMCA):						
	210-07Laboratory Methods of Testing Fans for Certified					
	Aerodynamic Performance Rating (ANSI)					
	410-96 for Users and					
	Installers of Industrial and Commercial Fans					
Ε.	. American Society of Heating, Refrigerating, and Air-Conditioning					
Engineers Inc. (ASHRAE):						
	15-10Safety Standard for Refrigeration Systems (ANSI)					
	90.1-10Energy Standard for Buildings except Low-Rise					
	Residential Buildings (ANSI Approved; IESNA Co-					
	sponsored)					
	2008 HandbookHVAC Systems and Equipment					
	2010 HandbookRefrigeration					
	52.1-92Gravimetric and Dust-Spot Procedures for Testing					
	Air-Cleaning Devices used in General Ventilation					
	for Removing Particulate Matter					
F.	American Society of Testing and Materials (ASTM):					
	B117-09Standard Practice for Operating Salt Spray (Fog)					
	Apparatus					
G.	. National Electrical Manufacturer's Association (NEMA):					
	MG 1-09 (R2010)Motors and Generators (ANSI)					
н.	National Fire Protection Association (NFPA) Publications:					
	70-11National Electrical Code					
	90A-09of Air-					
	Conditioning and Ventilating Systems					

PART 2 - PRODUCTS

2.3 WALL-MOUNTED UNITS

- A. Description: Self-contained, factory assembled, prewired, and prepiped; consisting of cabinet, fan, filters, and controls; for horizontal mounting.
- B. Cabinet: Galvanized steel with baked-enamel finish, insulated with 13mm (1/2-inch) thick duct liner.
- C. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2010.
- D. Supply-Air Fan:

- Forward-Curved, Centrifugal Fan: Provide with directly-driven fan 1. with two-speed motor.
- E. Compressor: Hermetic scroll, (VA: Type) with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
- F. Refrigeration Circuit: Low-pressure switch, manual-reset high-pressure switch, thermal-expansion valve with external equalizer, sight glass with moisture indicator, service shutoff valves, charging valves, and charge of refrigerant.
- G. Refrigerant: R-410A unless otherwise indicated.
- H. Refrigerant Evaporator Coil: Direct-expansion coil of seamless copper tubes expanded into aluminum fins.
 - 1. Mount coil assembly over stainless-steel drain pan complying with ASHRAE 62.1-2007 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
- I. Remote Air-Cooled Refrigerant Condenser: Integral, copper-tube or aluminum-fin coil with propeller fan, direct driven.
- J. Split system shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.
- K. Filter: 25-mm (1 inch) thick, disposable, glass-fiber media. 3. Arrestance: 90 percent according to ASHRAE 52.1. 4. MERV Rating: 7 according to ASHRAE 52.2.
- L. Plumbing Components and Valve Bodies: Plastic, linked by flexible rubber hosing, with water fill with air gap and solenoid valve incorporating built-in strainer, pressure-reducing and flow-regulating orifice, and drain with integral air gap.
- M. Control: Fully modulating to provide gradual 0 to 100 percent capacity with field-adjustable maximum capacity; with high-water probe.
- N. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- O. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature- control modules, time-delay relay, heating contactor, and high-temperature thermostat. Wall-mounted control panel shall be solid-state, with start-stop switch and adjustable temperature set point.
- P. DDC Interface: Provide connection to DDC system.

2.4 FAN MOTORS

A. Default motor characteristics are specified in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.

- B. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EOUIPMENT.
- C. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- D. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

2.5 SPECIAL TOOLS

If any part of equipment furnished under these specifications requires a special tool for assembly, adjustment, setting, or maintenance and the tool is not readily available from the commercial tool market, furnish the necessary tools with equipment as a standard accessory

2.6 CORROSION CONTROL

- A. Remote Outdoor Condenser Coils:
 - 1. Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The coating process shall be such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - a. Salt Spray Resistance (Minimum 6,000 Hours)
 - b. Humidity Resistance (Minimum 1,000 Hours)
 - c. Water Immersion (Minimum 260 Hours)
 - d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 - e. Impact Resistance (Up to 160 Inch/Pound)
- B. Exposed Outdoor Cabinet
 - 1. Casing Surfaces (Exterior and Interior): All exposed and accessible metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and

23 81 23

30 JANUARY 2015 COMPUTER-ROOM AIR-CONDITIONERS CONSTRUCTION DOCUMENTS provide minimum salt-spray resistance of 1,000 hours (ASTM B117) AND 500 hours UV resistance (ASTM D4587).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Handle and install refrigeration units and accessories in accordance with the instructions and recommendations of the manufacturer.
- B. Coordinate installation of Computer room Air Conditioning Units with Computer room access flooring installer.
- C. Field Refrigerant Piping: As specified in specification Section 23 23 00, REFRIGERANT PIPING.
- D. Field Piping: Glycol Piping, Hot water Piping, Steam and Condensate Piping, as specified in specification Section 23 21 13, HYDRONIC PIPING Section 23 21 13, STEAM and CONDENSATE HEATING PIPING.
- E. Fill glycol system with 40 percent glycol mixture and perform start-up procedures as recommended by the manufacturer.
- F. Electrical System Connections and Equipment Ground: As specified in Division 26 Sections.

3.2 CONNECTIONS

- A. Coordinate piping installations and specialty arrangements with schematics on Drawings and with requirements specified in piping systems. If Drawings are explicit enough, these requirements may be reduced or omitted.
- B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- C. Install piping adjacent to machine to allow service and maintenance.
- D. Provide adequate connections for water-cooled units, condensate drain, and humidifier flushing system.
- E. Retain first paragraph below for units with hot-water coils.
- F. Hot-Water Heating Piping: Comply with applicable requirements in Section 23 21 13, HYDRONIC PIPING. Provide shutoff valves in inlet and outlet piping to heating coils.
- G. Steam and Condensate Piping: Comply with applicable requirements in Section 23 22 13, STEAM and CONDENSATE HEATING PIPING. Provide shutoff valves in steam inlet and steam trap in condensate outlet piping to heating coils.
- H. Condenser-Water Piping: Comply with applicable requirements in Section 23 21 13, HYDRONIC PIPING. Provide shutoff valves in water inlet and outlet piping on water-cooled units.
- I. Refrigerant Piping: Comply with applicable requirements in Section 23 23 00, REFRIGERANT PIPING. Provide shutoff valves and piping.

23 81 23 COMPUTER-ROOM AIR-CONDITIONERS CONSTRUCTION DOCUMENTS

3.3 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. After startup service and performance test, change filters and flush humidifier.

3.4 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

3.5 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 25 10 10 ADVANCED UTILITY METERING SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Existing System Overview: The metered systems objective is to include the electrical power, natural gas distribution, fuel gas and fuel oil, steam, steam condensate, chilled water, heating water, domestic water, recovered water and makeup water systems. The metering systems in each facility are part of a Corporate-Wide utility metering system, rendering the VA accurate and automated metering of its facilities' energy and water flows. Metering systems comprise:
 - 1. PC-based workstation(s) or server(s) and software.
 - 2. Communication network and interface modules for RS-232, RS-485, Modbus TCP/IP, IEEE 802.3 data transmission protocols.
 - 3. Systems meters.
- B. This Section includes removal of existing 15kV advanced metering components for integration into the new 15kV electrical service switchgear, including additional electrical wiring and components as required for the specified metering functions. Provide necessary modifications to the existing metering system by adding or supplementing computer hardware, software, licenses, programming, etc., as necessary to enable the functionality specified hereinafter. Coordinate with the VA COTR to schedule a survey of the existing AUMS hardware, software, and communications network configurations to determine exact requirements for implementation.

RELATED WORK 1.2

- A. Section 23 09 23.10, STATUS MONITORING VIA CAMPUS AUTOMATION NETWORK: Monitoring of SPS equipment status via existing campus automation system.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage cable.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

F. Section 26 13 13, MEDIUM-VOLTAGE SWITCHGEAR: High voltage switchgear.

1.3 DEFINITIONS

- A. AMR: Automatic meter reading is the technology of automatically collecting consumption, diagnostic, and status data from water and energy metering devices (water, gas, electric, steam) and transferring that data to a central database for billing, troubleshooting, and analyzing.
- B. AUMS: Advanced Utility Metering System: the system described by this Section.
- C BACnet: BACnet is a Data Communications Protocol for Building Automation and Control Networks. It is defined by ASHRAE/ANSI Standard 135 (ISO 16484-5) standard protocol.
- D. Data Over Cable Service Interface Specification (DOCSIS): an international standard defining communications and operation support interface requirements for a data over cable system, by the Cable Television Laboratories, Inc. consortium
- E. Data Head (on meters): converts analog and pulse signals to digital signals for transmission to the Site Data Aggregation Device. Also provides for limited storage of the digital signals.
- F. Device Accuracy: accuracy in this section is based on actual flow, not full scale or full range. Device accuracy measures the conversion of flow information to analog or pulse signals.
- G. Ethernet: Local area network, based on IEEE 802.3 standards.
- H. Firmware: Software (programs or data) that has been written onto readonly memory (ROM). Firmware is a combination of software and hardware. Storage media with ROMs that have data or programs recorded on them are firmware.
- I. Gateway: Bi-directional protocol translator connecting control systems that use different communication protocols.
- J. GB: gigabyte. When used to describe data storage, "GB" represents 1024 megabytes.
- K. HTML: Hypertext markup language.
- L. I/O: Input/output.
- M. KB: Short for kilobyte. When used to describe data storage, "KB" represents 1024 bytes.
- N. KY Pulse: A term used by the metering industry to describe a method of measuring consumption of electricity that is based on a relay changing status in response to the rotation of the disk in the meter.

- O. LAN: Local area network. Sometimes plural as "LANs."
- P. LCD: Liquid crystal display.
- Q. LonMark: An association comprising of suppliers and installers of LonTalk products. The Association provides guidelines for the implementation of the LonTalk protocol to ensure interoperability through Standard implementation.
- R. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication.
- S. LonWorks: Network technology developed by the Echelon Corporation.
- T. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less that 50 V or remote-control, signaling and powerlimited circuits.
- U. MB: megabyte. When used to describe data storage, "MB" represents 1024 kilobytes.
- V. Mbps: Megabytes per second, equal to 8 megabits per second
- W. Modbus TCP/IP: An open protocol for exchange of process data.
- X. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.
- Y. OTDR: Optical Time Domain Reflectometer. A test instrument that analyzes the light loss in an optical fiber. Used to find faults, splices and bends in the line, it works by sending out a light pulse and measuring its reflection. Such devices can measure fiber lines that are longer than 150 miles
- Z. PC: Personal computer
- AA.PICS, Protocol Implementation Conformance Statement: A written document that identifies the particular options specified by BACnet that are implemented in a device.
- BB.REO: Resident Engineer Office: the VA office administering the construction contract.
- CC.Reporting Accuracy: this is the root-mean-square sum of all of the metering devices' inaccuracies: measurement inaccuracy, mechanical inaccuracy, analog-to-digital or pulse integration inaccuracy, etc., up to the meter's data head.
- DD.rms: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

Project #: 692-14-101

- EE.Router: A device that connects two or more networks at the network layer.
- FF.RS-232: A Telecommunications Industry Association standard for asynchronous serial data communications between terminal devices.
- GG.RS-485: A Telecommunications Industry Association standard for multipoint communications using two twisted-pairs.
- HH.TB: terrabyte. When used to describe data storage, "TB" represents 1024 gigabytes.
- II.TCP/IP: Transport control protocol/internet protocol.
- JJ.Turn-down: the maximum flow divided by the minimum flow through a meter; used along with accuracy requirements. For example, a meter shall be accurate to within 2% of actual flow with throughout a 20:1 turndown
- KK.THD: Total harmonic distortion.
- LL.UPS: Uninterruptible power supply; used both in singular and plural context.
- MM.UTP: Unshielded twisted pair cabling, used to limit crosstalk and electromagnetic interference from the environment
- NN.WAN: Wide area network.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Manufacturer Qualifications: A firm experienced at least three years in manufacturing and installing power monitoring and control equipment similar to that indicated for this Project and with a record of successful in-service performance.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency, and marked for intended use.
- D. System Modifications: Make recommendations for system modification in writing to the VA. No system modifications shall be made without prior written approval of the VA. Any modifications made to the system shall be incorporated into the Operations and Maintenance Instructions, and other documentation affected. Provide to the VA software updates for all software furnished under this specification during this contract's construction and verification periods and for the first two years after

government acceptance. All updated software shall be verified as part of this contract.

1.5 PERFORMANCE

- A. The advanced utility metering system shall conform to the following:
 - 1. Site Data Aggregation Device Graphic Display: The system shall display up to 4 graphics on a single screen with a minimum of (20) dynamic points per graphic. All current data shall be displayed within (10) seconds of the request.
 - 2. Site Data Aggregation Device Graphic Refresh: The system shall update all dynamic points with current data within ten seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Meter Scan: All changes of metered values shall be transmitted over the high-speed network such that any data used or displayed at a controller or Site Data Aggregation Device will be current, within the prior ten seconds.
 - 4. Alarm Response Time: The maximum time from when meter goes into alarm to when it is annunciated at the workstation shall not exceed ten seconds.
 - 5. Reporting Accuracy: Listed below are minimum acceptable reporting accuracies for all values within the below minimum turn-down envelope reported by the meters:

Measured Variable	Units Measured	Minimum Turn-Down of Meter	Reporting Accuracy (Note 1)
Electricity	V, A, W, etc.	n/a	±0.5% of measured value

Table 1.5: Meter Performance Criteria

Table Notes:

- 1. This table shows reporting accuracy, not merely the meter's accuracy. Reporting accuracy includes meter accuracy and data conversion accuracy. See Article 1.3 in this Section for definition. Accuracy is shown against the measured value, not against the full range of the meter.
- 2. kW: kilowatt

1.6 WARRANTY

- A. Labor and materials for advanced utility metering systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Advance utility metering system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in

service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and metering devices.

1.7 SUBMITTALS

- A. Product Data: for each type of product indicated, Attach copies of approved Product Data submittals for products (such as flowmeters, temperature sensors and pressure transmitters, switchboards and switchgear) that describe advance utility metering features to illustrate coordination among related equipment and utility metering and control.
- B. Shop Drawings: include plans, elevations, sections, details, and attachments to other work.
 - Outline Drawings: Indicate arrangement of meters, components and clearance and access requirements. Clearly identify system components, internal connections, and all field connections.
 - 2. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.
 - 3. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 4. Wiring Diagrams: Power, signal, and communications wiring. Coordinate nomenclature and presentation with a block diagram. Show all communications network components and include a communications single-line diagram indicating device interconnection and addressing information for all system devices. Identify terminal blocks used for interconnections and wire type to be used.
 - 5. UPS sizing calculations for workstation.
- C. Software and Firmware Operational Documentation:
 - Self-study guide describing the process for setting equipment's network address; setting Owner's options; procedures to ensure data access from any PC on the network, using a standard Web browser; and recommended firewall setup.
 - 2. Software operating and upgrade manuals.
 - 3. Software Backup: On a compact disc, complete with Owner-selected options.

- 4. Device address list and the set point of each device and operator option, as set in applications software.
- 5. Graphic file and printout of graphic screens and related icons, with legend.
- 6. "Quick-Start" guide to describe a simple, three-step commissioning process for setting the equipment's Ethernet address, and ensuring trouble-free data access from any PC on the network, using a standard web browser.
- D. Software Upgrade Kit: For Owner to use in modifying software to suit future utility metering system revisions.
- E. Firmware Upgrade Kit: For Owner to use in modifying firmware to suit future power system revisions or advanced utility metering system revisions. Firmware updates, and necessary software tools for firmware updates, shall be downloadable from the internet. VA shall be able to update firmware, in equipment, without removing device from the equipment. VA shall be capable of updating firmware over the utility metering communication network or through local communication ports on the device.
- F. Software licenses and upgrades required by and installed for operating and programming digital and analog devices.
- G. Qualification Data: For installer and manufacturer
- H. Other Informational Submittals:
 - 1. System installation and setup guides, with data forms to plan and record options and setup decisions.
- I. Revise and update the Contract Drawings to include details of the system design. Drawings shall be on 17 by 11 inches sheets. Details to be shown on the Design Drawing include:
 - 1. Details on logical structure of the network. This includes logical location of all network hardware.
 - 2. Manufacturer and model number for each piece of computer and network hardware.
 - 3. Physical location for each piece of network or computer hardware.
 - 4. Physical routing of LAN cabling.
 - 5. Physical and qualitative descriptions of connectivities.

1.8 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For advanced utility metering system components and meters, to include in emergency, operation, and maintenance manuals. Include the following:

- 1. Operating and applications software documentation.
- 2. Software licenses.
- 3. Software service agreement.
- 4. PC installation and operating documentation, manuals, and software for the PC and all installed peripherals. Software shall include system restore, emergency boot compact disks, and drivers for all installed hardware. Provide separately for each PC.
- 5. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files on CD-ROM of the hard-copy submittal.
- 6. In addition to the copies required by 01 00 00, provide 5 bound paper copies of the Operation and Maintenance Data and two compact disks (CD), with all Instructions as Acrobat PDF files. The pdf files shall identical to the paper copies and shall Acrobat navigation tools including Bookmarks for each Chapter.
- 7. The advanced utility metering system Operation and Maintenance Instructions shall include:
 - a. Procedures for the AUMS system start-up, operation and shut-down.
 - b. Final As-Built drawings, including actual LAN cabling routing shown on architectural backgrounds.
 - IP address(es) as applicable for each piece of network hardware.
 - 2) IP address for each computer server, workstation and networked printer.
 - Network identifier (name) for each printer, computer server and computer workstation.
 - 4) CEA-709.1B address (domain, subnet, node address) for each CEA-709.1B TP/FT-10 to IP Router.
 - c. Routine maintenance checklist, rendered in a Microsoft Excel format. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all installed devices, the second column shall list each device's node identifier/address, the third column shall describe each device's physical location, the fourth column shall state the maintenance activity or state no maintenance required, the fifth column shall state the frequency of the maintenance activity, frequency of calibration and the sixth column for additional comments or reference.

- d. Qualified service organization list.
- e. In addition to the requirements in Section 01 33 23, the submittal shall include manufacturer Installation Requirements.
- f. Include complete instructions for calibration of each meter type and model.
- g. Start-Up and Start-Up Testing Report.
- h. Performance verification test procedures and reports.
- i. Preventive Maintenance Work Plan.
- j. In addition to factory-trained manufacturers' representatives requirements in 01 00 00, provide signed letter by factory-trained manufacturers' representatives stating that the system and components are installed in strict accordance with the manufacturers' recommendations.
- B. Field quality-control test reports.

1.9 LICENSING AGREEMENT

- A. Licenses procured as part of this work become the property of the government upon acceptance of the work. Licenses shall have no expiration.
- B. Technical Support: Beginning with Government Acceptance, provide software support for two years.
- C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Government Acceptance. Upgrading software shall include the operating systems. Upgrade shall include new or revised licenses for use of software.
 - Provide 30-day notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.10 MAINTENANCE AND SERVICE

A. Preventive Maintenance Requirements: provide a preventative maintenance plan with attached procedures indicated by meter and component manufacturers. Perform maintenance procedures for a period of 1 year after government acceptance, at frequencies and using procedures required by the meter and component manufacturers. At a minimum and if the manufacturer is silent on its preventative maintenance requirements, frequencies, deliverables and activities shall comply with the following:

- 1. Preventive Maintenance Work Plan: prepare a Preventive Maintenance Work Plan to schedule all required preventive maintenance. VA approval of the Work Plan shall be obtained. Adhere to the approved work plan to facilitate VA verification of work. If the Contractor finds it necessary to reschedule maintenance, a written request shall be made to the VA detailing the reasons for the proposed change at least five days prior to the originally scheduled date. Scheduled dates shall be changed only with the prior written approval of the REO.
- 2. Semiannual Maintenance: perform the following Semiannual Maintenance as specified:
 - a. Perform data backups on all Server Hardware.
 - b. Run system diagnostics and correct diagnosed problems.
 - c. Perform fan checks and filter changes for AUMS hardware.
 - d. Perform all necessary adjustments on printers.
 - e. Resolve all outstanding problems.
 - f. Install new ribbons, ink cartridges and toner cartridges into printers, and ensure that there is at least one spare ribbon or cartridge located at each printer.
- 3. Maintenance Procedures
 - a. Maintenance Coordination: Any scheduled maintenance event by Contractor that will result in component downtime shall be coordinated with the VA as follows. Time periods shall be measured as actual elapsed time from beginning of equipment offline period, including working and non-working hours.
 - For non-redundant computer server hardware, provide 14 days notice, components shall be off-line for no more than 8 hours.
 - 2) For redundant computer server hardware, provide 7 days notice, components shall be off-line for no more than 36 hours.
 - 3) For active (powered) network hardware, provide 14 days notice, components shall be off-line for no more than 6 hours.
 - For cabling and other passive network hardware, provide 21 days notice, components shall be off-line for no more than 12 hours.
 - b. Software/Firmware: Software/firmware maintenance shall include operating systems, application programs, and files required for the proper operation of the advanced utility metering system regardless of storage medium. User- (project site-) developed

Project #: 692-14-101

software is not covered by this contract, except that the advanced utility metering system software/firmware shall be maintained to allow user creation, modification, deletion, and proper execution of such user-developed software as specified. Perform diagnostics and corrective reprogramming as required to maintain total advanced utility metering system operations as specified. Back up software before performing any computer hardware and software maintenance. Do not modify any parameters without approval from the VA. Any approved changes and additions shall be properly documented, and the appropriate manuals shall be updated.

- c. Network: Network maintenance shall include testing transmission media and equipment to verify signal levels, system data rates, errors and overall system performance.
- B. Service Call Reception
 - 1. A VA representative will advise the Contractor by phone or in person of all maintenance and service requests, as well as the classification of each based on the definitions specified. A description of the problem or requested work, date and time notified, location, classification, and other appropriate information will be placed on a Service Call Work Authorization Form by the VA.
 - 2. The Contractor shall have procedures for receiving and responding to service calls during regular working hours. A single telephone number shall be provided for receipt of service calls during regular working hours. Service calls shall be considered received by the Contractor at the time and date the telephone call is placed by the VA.
 - 3. Separately record each service call request, as received on the Service Call Work Authorization form. Complete the Service Call Work Authorization form for each service call. The completed form shall include the serial number identifying the component involved, its location, date and time the call was received, nature of trouble, names of the service personnel assigned to the task, instructions describing what has to be done, the amount and nature of the materials to be used, the time and date work started, and the time and date of completion.

4. Respond to each service call request within two working hours. The status of any item of work must be provided within four hours of the inquiry during regular working hours, and within sixteen hours after regular working hours or as needed to repair equipment.

1.11 SPARE PARTS

- A. Furnish spare parts described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Addressable Relays: One for every ten installed. Furnish at least one of each type.
 - Data Line Surge Suppressors: One for every ten of each type installed. Furnish at least one of each type.
- B. Furnish spare parts shall not be used for any warranty-required remediation.

1.12 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced, unless otherwise noted. Publications are referenced in the text by the basic designation only.
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers

ASHRAE 135-2008.....A Data Communication Protocol for Building Automation and Control Networks (ANSI)

D. Consumer Electronics Association (CEA) 709.1B-2002.....Control Network Protocol Specification 709.3-1999....Free-Topology Twisted-Pair Channel Specification 852-A-2004....Tunneling Component Network Protocols Over

Internet Protocol Channels

- E. Federal Communications Commission (FCC) EMC-2002......FCC Electromagnetic Compliance Requirements
- F. Institute of Electrical and Electronics Engineers, Inc. (IEEE)
 - 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System
 - 100-2000..... of IEEE Standards Terms
 - 802.1D-2004.....Media Access Control Bridges

802.2-2003Standards for Local Area Networks: Logical Li	.nk
Control	
802.3-2005Information Technology - Telecommunications a	and
Information Exchange between Systems. Local a	ind
Metropolitan Area Networks - Specific	
Requirements - Part 3: Carrier Sense Multiple	3
Access with Collision Detection (CSMA/CD)	
Access Method and Physical Layer Specification	ons
(ANSI)	
1100-2005 and Groundi	ng
Electronic Equipment (ANSI)	
C37.90.1-2002Surge Withstand Capability (SWC) Tests for	
Relays and Relay Systems Associated with	
Electric Power Apparatus	
C57.13-2008Standard Requirements for Instrument	
Transformers	
C62.41.1-2002Guide on the Surges Environment in Low-	
Voltage(1000 V and Less) AC Power Circuits	
C62.41.2-2002Recommended Practice on Characterization of	
Surges in Low-Voltage (1000 V and Less) AC	
Power Circuits	
G. International Electrotechnical Commission (IEC)	
IEC 61000-2005Electromagnetic Compatibility (EMC)- Part 4-5	5:
Testing and Measurement Techniques; Surge	
Immunity Test	
H. National Electrical Contractors Association	
NECA 1-2006Good Workmanship in Electrical Construction	
I. National Electrical Manufacturers Association (NEMA)	
250-2008 Enclosures for Electrical Equipment (1000 Vol	ts
Maximum)	
C12.1-2008Electric Meters; Code for Electricity Meterir	nd
C12.20-2002Electricity Meter - 0.2 and 0.5 Accuracy	5
Classes	
C62.61-1993Gas Tube Surge Arresters on Wire Line Telepho	one
Circuits	
ICS 1-2008Standard for Industrial Control and Systems	
General Requirements	
J. National Institute of Standards and Technology (NIST)	

25 10 10 ADVANCED UTILITY METERING SYSTEM

	800, Part 39-2008[DRAFT] Managing Risk from Information Systems:
	An Organizational Perspective
	800, Part 46-2009Guide to Enterprise Telework and Remote Access
	Security
	800, Part 52-2009Recommended Security Controls for Federal
	Information Systems and Organizations
	(FIPS) 200-2006Minimum Security Requirements for Federal
	Information and Information Systems
К.	National Fire Protection Association (NFPA)
	30-08
	70-2008National Electrical Code (NEC)
	54-06National Fuel Gas Code
	85-07Boiler and Combustion Systems Hazard Code
	101-06Life Safety Code
	262-2007
	Cables for Use in Air-Handling Spaces
L.	Telecommunications Industry Association, (TIA/EIA)
	H-088C3Pathway Design Handbook
	232-F-2002 Equipment and
	Data Circuit-Terminating Equipment Employing
	Serial Binary Data Interchange
	485-A-2003Electrical Characteristics of Generators and
	Receivers for Use in Balanced Digital
	Multipoint System
	568-C.1-2009Commercial Building Telecommunications Cabling
	Standard
	606-A-2002Administration Standard for the
	Telecommunications Infrastructure
	607-A-2002Commercial Building Grounding (Earthing) and
	Bonding Requirements for Telecommunications
Μ.	Underwriters Laboratories, Inc. (UL):
	916-2007Energy Management Equipment
	5085-3-2007UL Standard for Safety Standard Low Voltage
	1244-2000Electrical and Electronic Measuring and Testing
	Equipment
	1581-2006Electrical Wires, Cables, and Flexible Cords

PART 2 - PRODUCTS

2.1 ADVANCED UTILITY METERING SYSTEM

- A. Functional Description: Provide products that are compatible with the existing campus AUMS as needed for integration of the existing system metering functionality into the new electrical distribution switchgear. AUMS functionality includes the following:
 - 1. Meter and record load profiles. Chart energy consumption patterns.
 - a. Calculate and record the following:
 - 1) Load factor.
 - 2) Peak demand periods.
 - 3) Consumption correlated with facility activities.
 - b. Measure and record metering data for the following:1) Electricity.
 - c. Software: calculate allocation of utility costs.

1) Verify utility bills and analyze alternate energy rates.

- d. Electric Power Quality Monitoring: Identify power system anomalies and measure, display, capture waveforms, and record trends and alarms of the following power quality parameters:
 - 1) Voltage regulation and unbalance.
 - 2) Continuous three-phase rms voltage.
 - 3) Periodic max/min/avg samples.
 - 4) Harmonics.
 - 5) Voltage excursions.
- e. System: Report equipment status and power system control.
- B. Communications Components and Networks
 - Site Data Aggregation Device and its networked meters shall communicate using BACNet protocol. Backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
 - a. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork.
 Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - Each controller shall have a communication port for connection to an operator interface.

- Network Configuration: High-speed, multi-access, open nonproprietary, industry standard LAN and WAN and Internetworked LAN.
- 3. Communication protocol; LANs complying with RS-485 or RS-485 accessed through Ethernet, 100 Base-TX Ethernet, and Modbus TCP/IP.
- 4. Network Hardware
 - a. Building Point of Connection Hardware
 - 1) Active equipment and communication interfaces.
 - 2) Switches, hubs, bridges, routers and servers.
 - b. IP Network Hardware
 - 1) Wire and Cables, copper connectivity devices.
 - 2) Fiber Optic Patch Panel.
 - 3) Fiber Optic Media Converter
 - 4) Ethernet Switch
 - 5) IP Router
- 5. Communication Security
 - a. Remote teleworking and remote access of the network shall be through a firewall, at the Site Data Aggregation Device, complying with the requirements associated with Level 1 security in the Federal Information Processing Standard 140-2 (2002), Security Requirements for Cryptographic Modules.
 - b. Direct access to network shall be restricted as described in

2.2 SITE DATA AGGREGATION DEVICE - PERSONAL COMPUTER WORKSTATION

- A. Existing Hardware. Integrate into existing system or expand system as required to provide the specified electrical metering functions described. Coordinate exact requirements with COTR.
 - 1. Metering Software
 - a. Basic Requirements:
 - 1) Fully compatible with and based on the existing hardware operating system.
 - Password-protected operator login and access; three levels, minimum.
 - 3) Password-protected setup functions.
 - 4) Context sensitive on-line help.
 - 5) Capability of creating, deleting, and copying files; and automatically maintaining a directory of all files, including size and location of each sequential and random-ordered record.

- Capability for importing custom icons into graphic views to represent alarms and I/O devices.
- 7) Automatic and encrypted backups for database and history; automatically stored at the Site Data Aggregation Device and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
- Operator audit trail for recording and reporting all changes made to user-defined system options.
- b. Workstation and Server Functions:
 - 1) Support other client PCs on the LAN and WAN.
 - 2) Maintain recorded data in databases accessible from other PCs on the LAN and WAN.
- c. Data Formats:
 - User-programmable export and import of data to and from commonly used Microsoft Windows spreadsheet, database, billing, and other applications; using dynamic data exchange technology.
 - 2) Option to convert reports and graphics to HTML format.
 - 3) Interactive graphics.
 - Option to send preprogrammed or operator designed e-mail reports.
 - Option to serve information to third-party applications via Object Linking and Embedding for Process Control using open standards.
- d. Metered data: Display metered values in real time with a rigid time-stamp.
- e. Metered Data alarms: Provide generic alarm modules to notify Users and highlight metered data gaps, data spikes outside of range, and data timestamp errors.
 - 1) Customize the generic alarm modules to the application.
 - 2) Modules shall allow for user adjustment of alarm criteria.
 - 3) Alarm notices shall be shown via hyperlinks on the graphical User interface, and shall also be shown by flags within the data set.
- f. Automatic Data Scrubbing: Provide tools for User-programming of rules to scrub the data of the followings errors: data gaps, data spikes outside of range, and data timestamp errors. Use these

rules to scrub the raw metered data. Flag all data which has been so scrubbed.

g. Remote control:

1) Display circuit-breaker status and allow breaker control.

- h. Equipment Documentation: Database for recording of equipment ratings and characteristics; with capability for graphic display on monitors.
- i. User-Defined Events: Display and record with date and time stamps accurate to 0.1 second, and including the following:1) Operator log on/off.
 - 2) Attempted operator log on/off.
 - 3) All alarms.
 - 4) Equipment operation counters.
 - 5) Out-of-limit, pickup, trip, and no-response events.
- j. Waveform Data: Display and record waveforms on demand or automatically on an alarm or programmed event; include the graphic displays of the following, based on user-specified criteria:
 - 1) Phase voltages, phase currents, and residual current.
 - 2) Overlay of three-phase currents, and overlay each phase voltage and current.
 - 3) Waveforms ranging in length from 2 cycles to 5 minutes.
 - Disturbance and steady-state waveforms up to 512 points per cycle.
 - 5) Transient waveforms up to 83,333 points per cycle on 60-Hz base.
 - 6) Calculated waveform on a minimum of four cycles of data of the following:
 - a) THD.
 - b) rms magnitudes.
 - c) Peak values.
 - d) Crest factors.
 - e) Magnitude of individual harmonics.
- k. Data Sharing: Allow export of recorded displays and tabular data to third-party applications software on the local server.
- 1. Activity Tracking Software:

- 1) Automatically compute and prepare activity demand and energyuse statements based on metering of energy use and peak demand integrated over user-defined interval.
- Intervals shall be same as used by electric utilities, including current vendor.
- Import metered data from saved records that were generated by metering and monitoring software.
- Maintain separate directory for each activity's historical billing information.
- 5) Prepare summary reports in user-defined formats and time intervals.
- m. Passwords
- n. Protocol Drivers
- o. System Graphic Displays: provide interactive color-graphics platform with pull-down menus and mouse-driven generation of power system graphics, in formats widely used for such drafting; to include the following:
 - 1) Site plan.
 - 2) Floor plans.
 - 3) Equipment elevations.
 - 4) Single-line diagrams.
 - 5) Custom graphic screens configured, not programmed, using dragand-drop tools available within the software.
- p. Alarms: display and record alarm messages from discrete input and controls outputs, according to user programmable protocol.
 - Functions requiring user acknowledgment shall run in background during computer use for other applications and override other presentations when they occur.
- q. Trending: display and record data acquired in real-time from different meters or devices, in historical format over userdefined time; unlimited as to interval, duration, or quantity of trends.
 - Spreadsheet functions of sum, delta, percent, average, mean, standard deviation, and related functions applied to recorded data.
 - Charting, statistical, and display functions of standard Windows-based spreadsheet.

- r. Report Generation: User commands initiate the reporting of a list of current alarm, supervisory, and trouble conditions in system or a log of past events.
 - Print a record of user-defined alarm, supervisory, and trouble events on workstation printer.
 - a) Sort and report by device name and by function.
 - b) Report type of signal (alarm, supervisory, or trouble), description, date, and time of occurrence.
 - c) Differentiate alarm signals from other indications.
 - d) When system is reset, report reset event with same information concerning device, location, date, and time.
- 7. BACnet: Site Data Aggregation Device shall have demonstrated interoperability during at least one BMA Interoperability Workshop and shall substantially conform to BACnet Operator Workstation (B-OWS) device profile as specified in ASHRAE/ANSI 135-2001, BACnet Annex L
- 8. Site Data Aggregation Device shall periodically upload metered data to the VA Corporate-wide server:
 - a. The metering software shall provide periodic upload (adjustable interval, initially set on 15-minute intervals) of the scrubbed and collected data.
 - b. The VA's Corporate wide server accepts the following data
 structures:
 - 1) Information structured using the 2005 and 2008 SQL server database engine.
 - 2) The following data stores are acceptable:
 - a) Databases: SQL Server, DB2, Oracle, Access, Sybase, MySQL.
 - b) Flat files: .CSV, .XLS, .TXT, .XML, .PQDIF
 - c. The minimum data to be uploaded (per meter) includes:
 - 1) A time stamp
 - 2) A device identifier
 - 3) A flow (power) value
 - 4) A flow order of magnitude
 - 5) Description of the flow's units
 - 8) A "scrubbed data" flag
 - 9) An irregular data alarm stamp
- C. Self-contained uninterruptible power supply (UPS):

25 10 10 ADVANCED UTILITY METERING SYSTEM

- 1. Size: Provide a minimum of six hours of operation of workstation station equipment, including two hours of alarm printer operation.
- 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
- 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. First six subparagraphs below are optional accessories.
 - g. Internal maintenance bypass/isolation switch.
 - h. External maintenance bypass/isolation switch.
 - i. Output isolation transformer.
 - j. Remote UPS monitoring.
 - k. Battery monitoring.
 - 1. Remote battery monitoring.

2.3 CABLE SYSTEMS - TWISTED PAIR AND FIBER OPTIC

- A. General:
 - All metallic cable sheaths, etc. (i.e.: risers, underground, station wiring, etc.) shall be grounded.
 - 2. Install temporary cable and wire pairs so as to not present a pedestrian safety hazard. Provide for all associated work for any temporary installation and for removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the VA prior to installation.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 4. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - 5. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing.

Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The cable tests shall demonstrate the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. Make available all cable installation and test records at acceptance testing by the VA and shall thereafter be maintained in the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- Coordinate with the VA and the Electrical Contractor to provide all optical fiber and cable pairs/circuits as required for connection to telephone trunk or broadband communications link for remote system access.
- 8. Coordinate with the VA and the Electrical Contractor to provide optical fiber and cable pairs/circuits as required from the Server Room and establish communications circuits at Building 231 for all cabling as described herein.
- 9. Provide proper test equipment to demonstrate that cable pairs meet each OEM's standard transmission requirements, and guarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
- B. LAN COPPER CABLES
 - 1. Unshielded Twisted Pair Cables: Category 6
 - 2. RS-485 Cable:
 - a. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted,
 No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
 - 3. Cabling products shall be tested and certified for use at data speeds up to at least 100 Mbps. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media. Short lengths of media and transceivers may be used in these applications. Provide separately orderable media, taps and connectors.
 - 4. Ethernet Switch shall be IEEE Std 802.3 bridges which shall function as the center of a distributed-star architecture and shall be "learning" bridges with spanning tree algorithms in accordance with

IEEE Std 802.1D. The switch shall support the connected media types and shall have a minimum of 150% the required ports and no fewer than 4 ports. One port shall be switch selectable as an uplink port.

- Provide IP router network equipment. The routers shall be fully configurable for protocol types, security, and routing selection of sub-networks. The router shall meet all requirements of RFC 1812.
- C. LAN FIBER OPTICAL CABLES
 - 1. Fiber Optic Cable: Fiber Optic Cable shall be indoor/outdoor rated, all-dielectric, gel-free, stranded loose tube type, Multimode, 62.5/125 micron with ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall match existing equipment. The data communications equipment shall use the 850-nm range of multimode fiber-optic cable. Fiber-optic cable shall be suitable for use with the 100Base-FX standard as defined in IEEE Std 802.3.
 - 2. Fiber Optic Patch Panels shall be wall or rack mountable and designed to provide termination facilities for the number of fiber strands indicated on the drawings. Unit shall also have capability to be equipped with spliced trays, six packs (for adapters), and blank panels for easy termination of the fiber bundles and tube cables. Fiber-optic terminating equipment shall provide for mounting of ST connectors on an optical patch panel. Provide fibercable management and cable-routing hardware to assure conformance to minimum fiber and cable bend radii. Connectors on the patch panel shall be ST feed through. Provide access to both sides of the panel. The patch panel for the connectors shall be mounted to facilitate rearrangement and identification. Each apparatus shall have cabling and connection instructions associated with it.
 - 3. Fiber Optic media converter shall provide media conversion between layer 1 copper and fiber media to support data rates equal to the greater of the physical layer or 100 Mbps as specified in IEEE Std 802.3.
- D. LOW-VOLTAGE WIRING
 - Low-Voltage Control Cable: Multiple conductor, color-coded, No. 20 AWG copper, minimum.
 - a. Sheath: PVC; except in plenum-type spaces, use sheath listed for plenums.

- b. Ordinary Switching Circuits: Three conductors, unless otherwise indicated.
- c. Switching Circuits with Pilot Lights or Locator Feature: Five conductors, unless otherwise indicated.

2.4 GROUNDING

A. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with VA 27 05 26 Grounding and Bonding for Communications Systems and with VA 26 05 26 Grounding and Bonding for Electrical Systems.

2.5 METER COMMUNICATION

- A. Provide a BACNet network allowing communication from the meters' data heads to the Site Data Aggregation Device.
- B. Provide data heads at each meter, converting analog and pulsed information to digital information. Data heads shall allow for up to 24 hours of data storage (including time stamp, measured value, and scaling factor).
 - Each data head shall reside on a BACnet network using the MS/TP Data Link/Physical layer protocol. Each data head shall have a communication port for connection to an operator interface.
 - 2. Environment: Data Head hardware shall be suitable for the conditions ranging from -29°C to 60°C (-20°F to 140°F). Data Heads used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at conditions ranging from -29°C to 60°C (-20°F to 140°F).
 - 3. Provide a local keypad and display for interrogating and editing data. An optional system security password shall be available to prevent unauthorized use of the keypad and display.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The building controller shall maintain all BIOS and data in the event of a power loss for at least 72 hours.
 - 6. Immunity to power and noise. Controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Operation shall be protected

against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

2.6 ELECTRICAL POWER METERS AND SUB-METERS

- A. ELECTRICAL METER APPLICATIONS
 - 1. The advanced utility metering system components installed at the existing campus 15kv service entrance switchgear shall be removed and integrated into the new campus 15kv service entrance switchgear. Coordinate installation requirements with the switchgear manufacturer and the COTR.
 - 2. Power meters shall be installed as part of the advanced utility metering system.
 - a. All setup parameters required by the power meter shall be stored in nonvolatile memory and retained in the event of a control power interruption.
 - b. The power meter may be applied in three-phase, three- or fourwire systems.
 - c. The power meter shall be capable of being applied without modification at nominal frequencies of 50, 60, or 400 Hz.
 - d. The power meter shall provide for onboard data logging, able to log data, alarms, waveforms and events.
- B. Physical and Common Requirements
 - 1. Electrical power meters shall be separately mounted, and enclosed in a NEMA 250, Type 1 enclosure. Environmental Conditions: System components shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - a. Ambient conditions of 0 to 140 deg F dry bulb and 20 to 95 percent relative humidity, noncondensing.
- C. Current and voltage ratings:
 - 1. Designed for use with current inputs from standard instrument current transformers with 5-A secondary and shall have a metering range of 0-10 A.
 - 2. Withstand ratings shall be not less than 15 A, continuous; 50 A, lasting over 10 seconds, no more frequently than once per hour; 500 A, lasting 1 second, no more frequently than once per hour.
 - 3. Voltage inputs from standard instrument potential transformers with 120 volt secondary output. The power meter shall support PT primaries through 3.2 MV.

- 4. The power meter shall operate properly over a wide range of control power including 90-457 VAC or 100-300 VDC.
- D. Electrical measurements and calculated values
 - Power meters shall include the following rms Real-Time Measurements:

 a. Current: Each phase, neutral, average of three phases, percent unbalance.
 - b. Voltage: Line-to-line each phase, line-to-line average of three phases, line-to-neutral each phase, line-to-neutral average of three phases, line-to-neutral percent unbalance.
 - c. Power: Per phase and three-phase total.
 - d. Reactive Power: Per phase and three-phase total.
 - e. Apparent Power: Per phase and three-phase total.
 - f. True Power Factor: Per phase and three-phase total.
 - g. Displacement Power Factor: Per phase and three-phase total.
 - h. Frequency.
 - i. THD: Current and voltage.
 - j. Accumulated Energy: Real kWh, reactive kVARh, apparent kVAh
 (signed/absolute).
 - k. Incremental Energy: Real kWh, reactive kVARh, apparent kVAh
 (signed/absolute).
 - l. Conditional Energy: Real kWh, reactive kVARh, apparent kVAh
 (signed/absolute).
 - 2. Power meters shall perform the following demand current
 - calculations, per phase, three-phase average and neutral:
 - a. Present.
 - b. Running average.
 - c. Last completed interval.
 - d. Peak.
 - 3. Power meters shall perform the following demand real power calculations, three-phase total:
 - a. Present.
 - b. Running average.
 - c. Last completed interval.
 - d. Predicted.
 - e. Peak.
 - f. Coincident with peak kVA demand.
 - g. Coincident with kVAR demand.

- 4. Power meters shall perform the following demand reactive power calculations, three-phase total:
 - a. Present.
 - b. Running average.
 - c. Last completed interval.
 - d. Predicted.
 - e. Peak.
 - f. Coincident with peak kVA demand.
 - g. Coincident with kVAR demand.
- 5. Power meters shall perform the following demand apparent power calculations, three-phase total:
 - a. Present.
 - b. Running average.
 - c. Last completed interval.
 - d. Predicted.
 - e. Peak.
 - f. Coincident with peak kVA demand.
 - g. Coincident with kVAR demand.
- 6. Power meters shall perform the following average true power factor calculations, demand coincident, three-phase total:
 - a. Last completed interval.
 - b. Coincident with kW peak.
 - c. Coincident with kVAR peak.
 - d. Coincident with kVA peak.
- 7. Power Analysis Values:
 - a. THD, Voltage and Current: Per phase, three phase, and neutral.
 - b. Displacement Power Factor: Per phase, three phase.
 - c. Fundamental Voltage, Magnitude and Angle: Per phase.
 - d. Fundamental Currents, Magnitude and Angle: Per phase.
 - e. Fundamental Real Power: Per phase, three phase.
 - f. Fundamental Reactive Power: Per phase.
 - g. Harmonic Power: Per phase, three phase.
 - h. Phase rotation.
 - i Unbalance: Current and voltage.
 - j. Harmonic Magnitudes and Angles for Current and Voltages: Per phase, up to 31st harmonic.

- 8. Power meters shall perform one of the following demand calculations, selectable by the User; meters shall be capable of performance of all of the following demand calculations.
 - a. Block interval with optional subintervals: Adjustable for 1minute intervals, from 1 to 60 minutes. User-defined parameters for the following block intervals:
 - Sliding block that calculates demand every second, with intervals less than 15 minutes, and every 15 seconds with an interval between 15 and 60 minutes.
 - 2) Fixed block that calculates demand at end of the interval.
 - Rolling block subinterval that calculates demand at end of each subinterval and displays it at end of the interval.
 - b. Demand calculations initiated by a Utility-furnished synchronization signal:
 - Signal is a pulse from an external source. Demand period begins with every pulse. Calculation shall be configurable as either a block or rolling block calculation.
 - Signal is a communication signal. Calculation shall be configurable as either a block or rolling block calculation.
 - 3) Demand can be synchronized with clock in the power meter.
 - c. Minimum and maximum values: Record monthly minimum and maximum values, including date and time of record. For three-phase measurements, identify phase of recorded value. Record the following parameters:
 - 1) Line-to-line voltage.
 - 2) Line-to-neutral voltage.
 - 3) Current per phase.
 - 4) Line-to-line voltage unbalance.
 - 5) Line-to-neutral voltage unbalance.
 - 6) Power factor.
 - 7) Displacement power factor.
 - 8) Total power.
 - 9) Total reactive power.
 - 10)Total apparent power.
 - 11)THD voltage L-L.
 - 12)THD voltage L-N.
 - 13)THD current.
 - 14)Frequency.

- d. Harmonic calculation: display and record the following:
 - Harmonic magnitudes and angles for each phase voltage and current through 31st harmonic. Calculate for all three phases, current and voltage, and residual current. Current and voltage information for all phases shall be obtained simultaneously from same cycle.
 - 2) Harmonic magnitude reported as a percentage of the fundamental or as a percentage of rms values, as selected by the VA.
- E. Waveform Capture:
 - Capture and store steady-state waveforms of voltage and current channels; initiated manually. Each capture shall be for 3 cycles, 128 data points for each cycle, allowing resolution of harmonics to 31st harmonic of basic 60 Hz.
 - 2. Capture and store disturbance waveform captures of voltage and current channels, initiated automatically based on an alarm event. Each capture shall be fully configurable for duration with resolution of at least 128 data points per cycle, for all channels simultaneously. Waveform shall be configurable to capture pre-event cycles for analysis.
 - 3. Store captured waveforms in internal nonvolatile memory; available for PC display, archiving, and analysis.
- F. Meter accuracy:
 - 1. Comply with ANSI C12.20, Class 0.5; and IEC 60687, Class 0.5 for revenue meters.
 - 2. Accuracy from Light to Full Rating:
 - a. Power: Accurate to 0.5 percent of reading.
 - b. Voltage and Current: Accurate to 0.5 percent of reading.
 - c. Power Factor: Plus or minus 0.005, from 0.5 leading to 0.5 lagging.
 - d. Frequency: Plus or minus 0.01 Hz at 45 to 67 Hz.
- G. Meter input, sampling, display, output, recording and reading Capabilities
 - 1. Input: One digital input signal.
 - a. Normal mode for on/off signal.
 - b. Demand interval synchronization pulse, accepting a demand synchronization pulse from a utility demand meter.
 - c. Conditional energy signal to control conditional energy accumulation.

- d. GPS time synchronization.
- 2. Sampling:
 - a. Current and voltage shall be digitally sampled at a rate high enough to provide accuracy to 63rd harmonic of 60-Hz fundamental.
 - b. Power monitor shall provide continuous sampling at a rate of 128 samples per cycle on all voltage and current channels in the meter.
- 3. Display Monitor:
 - a. Backlighted LCD to display metered data with touch-screen or touch-pad selecting device.
 - b. Touch-screen display shall be a minimum 12-inch diagonal, resolution of 800 by 600 RGB pixels, 256 colors; NEMA 250, Type 1 display enclosure.
 - c. Display four values on one screen at same time.
 - Coordinate list below with meter capabilities specified in subparagraphs above.
 - 2) Current, per phase rms, three-phase average.
 - 3) Voltage, phase to phase, phase to neutral, and three-phase averages of phase to phase and phase to neutral.
 - 4) Real power, per phase and three-phase total.
 - 5) Reactive power, per phase and three-phase total.
 - 6) Apparent power, per phase and three-phase total.
 - 7) Power factor, per phase and three-phase total.
 - 8) Frequency.
 - 9) Demand current, per phase and three-phase average.
 - 10)Demand real power, three-phase total.
 - 11)Demand apparent power, three-phase total.
 - 12)Accumulated energy (MWh and MVARh).
 - 13)THD, current and voltage, per phase.
 - d. Reset: Allow reset of the following parameters at the display:1) Peak demand current.
 - 2) Peak demand power (kW) and peak demand apparent power (kVA).
 - 3) Energy (MWh) and reactive energy (MVARh).
- 4. Outputs:
 - a. Operated either by user command sent via communication link, or set to operate in response to user-defined alarm or event.
 - b. Closed in either a momentary or latched mode as defined by user.

- c. Each output relay used in a momentary contact mode shall have an independent timer that can be set by user.
- d. One digital KY pulse to a user-definable increment of energy measurement. Output ratings shall be up to 120-V ac, 300-V dc, 50 mA, and provide 3500-V rms isolation.
- e. One relay output module, providing a load voltage range from 20to 240-V ac or from 20- to 30-V dc, supporting a load current of 2 A.
- f. Output Relay Control:
 - Relay outputs shall operate either by user command sent via communication link or in response to user-defined alarm or event.
 - 2) Normally open and normally closed contacts, field configured to operate as follows:
 - a) Normal contact closure where contacts change state for as long as signal exists.
 - b) Latched mode when contacts change state on receipts of a pickup signal; changed state is held until a dropout signal is received.
 - c) Timed mode when contacts change state on receipt of a pickup signal; changed state is held for a preprogrammed duration.
 - d) End of power demand interval when relay operates as synchronization pulse for other devices.
 - e) Energy Pulse Output: Relay pulses quantities used for absolute kWh, absolute kVARh, kVAh, kWh In, kVARh In, kWh Out, and kVARh Out.
 - f) Output controlled by multiple alarms using Boolean-type logic.
- 5. Onboard Data Logging:
 - a. Store logged data, alarms, events, and waveforms in 2 MB of onboard nonvolatile memory.
 - b. Stored Data:
 - Billing Log: User configurable; data shall be recorded every 15 minutes, identified by month, day, and 15-minute interval. Accumulate 24 months of monthly data, 32 days of daily data, and between 2 to 52 days of 15-minute interval data, depending on number of quantities selected.

- 2) Custom Data Logs: three user-defined log(s) holding up to 96 parameters. Date and time stamp each entry to the second and include the following user definitions:
 - a) Schedule interval.
 - b) Event definition.
 - c) Configured as "fill-and-hold" or "circular, first-in firstout."
- 3) Alarm Log: Include time, date, event information, and coincident information for each defined alarm or event.
- 4) Waveform Log: Store captured waveforms configured as "filland-hold" or "circular, first-in first-out."
- c. Default values for all logs shall be initially set at factory, with logging to begin on device power up.
- 6. Alarms.
 - a. User Options:
 - 1) Define pickup, dropout, and delay.
 - Assign one of four severity levels to make it easier for user to respond to the most important events first.
 - Allow for combining up to four alarms using Boolean-type logic statements for outputting a single alarm.
 - b. Alarm Events:
 - 1) Over/undercurrent.
 - 2) Over/undervoltage.
 - 3) Current imbalance.
 - 4) Phase loss, current.
 - 5) Phase loss, voltage.
 - 6) Voltage imbalance.
 - 7) Over kW demand.
 - 8) Phase reversal.
 - 9) Digital input off/on.
 - 10)End of incremental energy interval.
 - 11)End of demand interval.

PART 3 - EXECUTION

3.1 INSTALLATION REQUIREMENTS

- A. Cabling
 - 1. Install Category Category 6 UTP, and optical fiber cabling system as detailed in TIA-568-C.1, TIA/EIA-568-B.2, or TIA-568-C.3.

- Screw terminals shall not be used except where specifically indicated on plans.
- 3. Use an approved insulation displacement connection (IDC) tool kit for copper cable terminations.
- 4. Do not untwist Category 6 UTP cables more than 12 mm (1/2 inch) from the point of termination to maintain cable geometry.
- 5. Provide service loop on each end of the cable, 3 m (10 feet) at the server rack and 304 mm (12 inches) at the meter.
- Do not exceed manufacturers' cable pull tensions for copper and optical fiber cables.
- Provide a device to monitor cable pull tensions. Do not exceed 110
 N (25 pounds) pull tension for four pair copper cables.
- 8. Do not chafe or damage outer jacket materials.
- 9. Use only lubricants approved by cable manufacturer.
- 10.Do not over cinch cables, or crush cables with staples.
- 11.For UTP cable, bend radii shall not be less than four times the cable diameter.
- 12.Cables shall be terminated; no cable shall contain unterminated elements.
- 13.Cables shall not be spliced.
- 14.Label cabling in accordance with paragraph Labeling in this section.
- B. Labeling
 - Labels: Provide labeling in accordance with TIA/EIA-606-A.
 Handwritten labeling is unacceptable. Stenciled lettering for all circuits shall be provided using laser printer.
 - 2. Cables: Cables shall be labeled using color labels on both ends with identifiers in accordance with TIA/EIA-606-A.
- C. Grounding: ground exposed, non-current-carrying metallic parts of electrical equipment, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, telecommunications system grounds, and grounding conductor of nonmetallic sheathed cables, as well as equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- D. Surge Protection
 - 1. Provide surge protective devices on all metallic cables entering and leaving an interior environment to an exterior environment or vice

versa, i.e. surge protective device at each interior location of a penetration to the exterior environment.

- E. Network Hardware
 - 1. System components and appurtenances shall be installed in accordance with the manufacturer's instructions and as shown. Necessary interconnections, services, and adjustments required for a complete and operable wired or wireless data transmission system shall be provided and shall be fully integrated with the configured network chosen for the project.
- F. Electrical Meters
 - Power monitoring and control components shall all be factory installed, wired and tested prior to shipment to the job site.
 - 2. All control power, CT, PT and data communications wire shall be factory wired and harnessed within the equipment enclosure.
 - 3. Where external circuit connections are required, terminal blocks shall be provided and the manufacturer's drawings must clearly identify the interconnection requirements including wire type to be used.
 - All wiring required to externally connect separate equipment lineups shall be furnished and installed at the site as part of the contractor's responsibility.
 - Contractor interconnection wiring requirements shall be clearly identified on the power monitoring and control system shop drawings.

3.2 ADJUSTING AND IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.3 FIELD QUALITY CONTROL

- A. The power monitoring and control system vendor must be able to provide development, integration and installation services required to complete and turn over a fully functional system including:
 - Project management to coordinate personnel, information and on-site supervision for the various levels and functions of suppliers required for completion of the project.
 - All technical coordination, installation, integration, and testing of all components.
 - 3. Detailed system design and system drawings.

- B. Cabling, equipment and hardware manufacturers shall have a minimum of 5 years experience in the manufacturing, assembly, and factory testing of components which comply with EIA TIA/EIA-568-B.1, EIA TIA/EIA-568-B.2 and EIA TIA/EIA-568-B.3.
- C. The network cabling contractor shall be a firm which is regularly and professionally engaged in the business of the applications, installation, and testing of the specified network cabling systems and equipment. The contractor shall demonstrate experience in providing successful systems within the past 3 years. Submit documentation for a minimum of three and a maximum of five successful network cabling system installations.
 - Supervisors and installers assigned to the installation of this system or any of its components shall be Building Industry Consulting Services International (BICSI) Registered Cabling Installers, Technician Level. Submit documentation of current BICSI certification for each of the key personnel.

3.4 ACCEPTANCE TESTING

- A. Develop testing procedures to address all specified functions and components of the Advanced Utility Metering System (AUMS). Testing shall demonstrate proper and anticipated responses to normal and abnormal operating conditions.
 - 1. Provide skilled technicians to start and operate equipment.
 - 2. Coordinate with equipment manufacturers to determine specific requirements to maintain the validity of the warranty.
 - Correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for issues identified in testing.
 - 4. Provide all tools to start, check-out and functionally test equipment and systems.
 - 5. Correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for issues identified in any testing
 - 6. Review test procedures, testing and results with Government.
- B. Testing checklists: Develop project-specific checklists to document the systems and all components are installed in accordance with the manufacturers recommendation and the Contract Documents.
- C. Before testing, the following prerequisite items must be completed.
 - All related equipment has been started and start-up reports and checklists submitted and approved as ready for testing:

- 2. All associated system functions for all interlocking systems are programmed and operable per contract documents.
- 3. All punchlist items for the AUMS and equipment are corrected.
- 4. The test procedures reviewed and approved.
- 5. Safeties and operating ranges reviewed.
- D. The following testing shall be included:
 - 1. Demonstrate reporting of data and alarm conditions for each point and ensure that alarms are received at the assigned location, including Site Data Collection Device.
 - 2. Demonstrate ability of software program to function for the intended application.
 - 3. Demonstrate via graphed trends to show the reports are executed in correct manner.
 - 4. Demonstrate that the meter readings are accurate using portable NIST traceable portable devices and calibrated valves in the piping system
 - 5. Demonstrate that the systems perform during power loss and resumption of power.
- E. Copper cables: Contractor shall provide all necessary testing equipment to test all copper network circuit cables. Tests shall conform to EIA/TIA 568B Permanent Link testing criteria. All testers are to be EIA/TIA 568B, Level IIe compliant. The primary field test parameters are:
 - 1. Wire map: The wire map test is intended to verify pair to pin termination at each end and check for installation connectivity errors. For each of the conductors in the cable, the wire map indicates:
 - a. Continuity to the remote end
 - b. Shorts between any two or more conductors
 - c. Crossed pairs
 - d. Reversed pairs
 - e. Split pairs
 - f. Any other mis-wiring
 - 2. Length requirements: The maximum physical length of the basic link shall be 94 meters (including test equipment cords).
 - 3. Insertion Loss: Worst case insertion loss relative to the maximum insertion loss allowed shall be reported.

- 4. Near-end crosstalk (NEXT) loss: Field tests of NEXT shall be performed at both ends of the test configuration.
- 5. Power sum near-end crosstalk (PSNEXT) loss
- 6. Equal-level far-end crosstalk (ELFEXT: Field tests of ELFEXT shall be performed at both ends of the test configuration
- 7. Power sum equal-level far-end crosstalk (PSELFEXT): Must be determined from both ends of the cable. Power sum Near End Crosstalk is not a category 3 parameter. For all frequencies from 1 to 100 MHz, the category 5e PSELFEXT of the cabling shall be measured in accordance with annex E of ANSI/TIA/EIA-568-B.2 and shall meet the values determined using equations (12) and (13) for the permanent link. PSELFEXT is not a required category 3 measurement parameter.
- 8. Return loss: Includes all the components of the link. The limits are based on the category of components and cable lengths. Return loss must be tested at both ends of the cable. Cabling return loss is not a required measurement for category 3 cabling.
- 9. Propagation delay and delay skew: Propagation delay is the time it takes for a signal to propagate from one end to the other. Propagation delay shall be measured in accordance with annex D of ANSI/TIA/EIA-568 B.2. The maximum propagation delay for all category permanent link configurations shall not exceed 498 ns measured at 10 MHz. Delay skew is a measurement of the signaling delay difference from the fastest pair to the slowest. Delay skew shall be measured in accordance with annex D of ANSI/TIA/EIA-568-B.2. The maximum delay skew for all category permanent link configurations shall not exceed 44 ns.
- 10.Administration: In addition to Pass/Fail indications, measured values of test parameters should be recorded in the administration system. Any reconfiguration of link components after testing may change the performance of the link and thus invalidates previous test results. Such links shall require retesting to regain conformance.
- 11.Test equipment connectors and cords: Adapter cords that are qualified and determined by the test equipment manufacturer to be suitable for permanent link measurements shall be used to attach the field tester to the permanent link under consideration.
- 12. Test setup: The permanent link test configuration is to be used by installers and users of data telecommunications systems to verify

the performance of permanently installed cabling. A schematic representation of the permanent link is illustrated in figure 1. The permanent link consists of up to 90 m (295 ft) of horizontal cabling and one connection at each end and may also include an optional transition/consolidation point connection. The permanent link excludes both the cable portion of the field test instrument cord and the connection to the field test instrument.

- 13.Replace or repair and cables, connectors, and/or terminations found to be defective.
- 14.Repair, replace, and/or re-work any or all defective components to achieve cabling tests which meet or exceed 568B permanent link requirements prior to acceptance of the installation or payment for services.
- F. Optical Fiber cables: Contractor shall provide all necessary testing equipment to test all optical fiber cables.
 - 1. Attenuation Testing:
 - a. Multimode testing shall conform to TIA/EIA 526-14-A Method B single jumper reference and TIA/EIA 568-B-1 requirements for link segment testing.
 - b. Attenuation testing shall be performed in one direction at each operating wavelength.
 - c. Testing of backbone fiber optic cabling shall be performed from main telecommunications room to each telecommunications room.
 - d. Testing of horizontal fiber optic cabling shall be performed from telecommunications room to station outlet location.
 - e. Tester shall be capable of recording and reporting test reading in an electronic format.
 - 2. OTDR Testing:
 - a. OTDR testing is required on all backbone fiber optic cables
 - b. The test shall be preformed as per the EIA/TIA 455-61.
 - c. Multimode testing shall be performed with a minimum 80 meter launch cable.
 - d. Tests shall be performed on each fiber in each direction at both operating wavelengths.
 - 3. Test report data shall reference cables by cable labeling standards. Tests shall be submitted in electronic form, stored on a 4GB USB Flash Drive. Contractor shall provide tests in the native file

format of the tester. Contractor shall provide all software needed to view, print, and edit tests.

- 4. Replace or repair any defective cables, connectors, terminations, etc.
- 5. Mated connector pairs shall have no more than 0.5dB loss. Fusion splices shall have no more than .15dB loss per splice. Cable attenuation shall be no more than 2% more than the attenuation of the cable on the reel as certified at the factory. Repair, replace, and/or rework any or all defective components to achieve specified test results prior to acceptance of the installation or payment for services.
- G. Wireless Modems: Test system by sending 100,000 commands. Frame error rate shall not be greater than 5 out 100,000 commands.

3.5 DEMONSTRATION AND INSTRUCTION

- A. Furnish the services of a factory-trained engineer or technician for a total of two four-hour classes to instruct designated Facility Information Technologies personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the wired network system and connectivity equipment.
- B. Before the System can be accepted by the VA, this training must be provided and executed. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.
- C. On-site start-up and training of the advanced utility metering system shall include a complete working demonstration of the system with simulation of possible operating conditions that may be encountered.
 - Include any documentation and hands-on exercises necessary to enable electrical and mechanical operations personnel to assume full operating responsibility for the advanced utility monitoring system after completion of the training period.
- D. Include 6 days on-site start-up assistance and 3 days on-site training in two sessions separated by minimum 1 month.
- E. Regularly schedule and make available factory training for VA staff training on all aspects of advanced utility metering system including:
 - Comprehensive software and hardware setup, configuration, and operation.
 - 2. Advanced monitoring and data reporting.
 - 3. Advanced power quality and disturbance monitoring.

- F. Before the system is accepted by the VA, the contractor shall walkthrough the installation with the VA's representative and the design engineer to verify proper installation. The contractor may be requested to open enclosures and terminal compartments to verify cable labeling and/or installation compliance.
- G. As-built drawings shall be provided noting the exact cable path and cable labeling information. Drawings in .DWG format will be available to the contractor. As-builts shall be submitted to the VA on disk saved as .DXF or .DWG files. Redline hardcopies shall be provided as well. CAD generated as-built information shall be shown on a new layer named AS_BUILT.

----- END -----

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchgear, panelboards, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

- B. Definitions:
 - 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
 - Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COTR a minimum of 15 working days prior to the manufacturer's performing the factory tests.
 - Four copies of certified test reports shall be furnished to the COTR two weeks prior to final inspection and not more than 90 days after completion of the tests.

3. When materials and equipment fail factory tests, and re-testing and re-inspection is required, the Contractor shall be liable for all additional expenses for the Government to witness re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COTR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be

accomplished in this manner for the required work, the following requirements are mandatory:

- Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
- 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the COTR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COTR.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchgear and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the COTR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.

- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.

- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COTR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.

- 2. Each type of conduit coupling, bushing, and termination fitting.
- 3. Conduit hangers, clamps, and supports.
- 4. Duct sealing compound.
- 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the

installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.

- C. A training schedule shall be developed and submitted by the Contractor and approved by the COTR at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: Medium-voltage cable terminations for use in pad-mounted, liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Medium-voltage cables shall be thoroughly tested at the factory per NEMA WC 74 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Installation instructions.
 - 2. Samples:

- a. After approval and prior to installation, furnish the COTR with a sample of each type and size of cable per the requirements of Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 3. Certifications:
 - a. Factory Test Reports: Submit certified factory production test reports for approval.
 - b. Field Test Reports: Submit field test reports for approval.
 - c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
 - d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install and test cables, splices, and terminations shall have not fewer than five years of experience splicing and terminating cables equivalent to those being spliced and terminated, including experience with the materials in the approved splices and terminations.
 - b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.
- 5. Electric Utility Company Approval:
 - a. Prior to construction, obtain written approval from the electric utility company for the following items:
 - Service disconnect switch: pad mounted 15 kV interrupter switch provided by contractor within 100 feet of service pole.
 - Service entrance cables installed from the service disconnect to the top of the existing pole riser and slack conductors coiled for termination by the utility company.

2) Utility company shall terminate the service entrance cables at pole mounted CTs.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B3-01 (2007).....Standard Specification for Soft or Annealed

Copper Wire

- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 48-09..... Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5 kV through 765 kV or Extruded Insulation Rated 2.5 kV through 500 kV 386-95.....Separable Insulated Connector Systems for Power Distribution Systems above 600 V 400-01.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems 400.2-04.....Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) 400.3-06.....Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment 404-00.....Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V to 500,000 V D. National Electrical Manufacturers Association (NEMA): WC 71-99.....Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electric Energy Transmission and Distribution of Electric Energy E. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- F. Underwriters Laboratories (UL):
 - 1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

- A. Cable shall be shipped on reels such that it is protected from mechanical injury. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with the NEC and NEMA WC 71, WC 74, and UL 1072.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
 - 5,000 V shielded power cable shall be used to replace existing ball field series lighting cables where existing cables are tested and determined to be unsuitable for reuse. Refer to Part 3 for testing requirements. Reuse existing cables that pass cable tests.
 - 2. 15,000 V cable shall be used on all distribution systems with voltages ranging from 7,000 V to 15,000 V.
- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, XLP or XLPE: cross-linked polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically cross-linked.
- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helicallyapplied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.

H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. Materials shall be compatible with the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pullboxes, the splices shall be submersible.
- C. Splices:
 - 1. Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - Class 1 terminations for indoor use: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, compression-type connector, and end seal.
 - 3. Load-break terminations for indoor and outdoor use: 200 A loadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
 - Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
 - 5. Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arc-proof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and per manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- I. Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 150 mm (6 inches) above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the

opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.

- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be accomplished by qualified workers trained to perform medium-voltage equipment installations. Use tools as recommended or provided by the manufacturer. All manufacturer's instructions shall be followed.
- C. Splices in manholes shall be located midway between cable racks on walls of manholes, and supported with cable arms at approximately the same elevation as the enclosing duct.

D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. Include the following visual and electrical inspections.
- B. Test equipment, labor, and technical personnel shall be provided as necessary to perform the acceptance tests. Arrangements shall be made to have tests witnessed by the COTR.
- C. Visual Inspection:
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.
 - 3. Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
 - 4. Verify installation of fireproofing tape and identification tags.
- D. Electrical Tests:
 - 1. Acceptance tests shall be performed on new and service-aged cables as specified herein.
 - 2. Test new cable after installation, splices, and terminations have been made, but before connection to equipment and existing cable.
- E. Service-Aged Cable Tests:

- Maintenance tests shall be performed on service-aged cable interconnected to new cable.
- After new cable test and connection to an existing cable, test the interconnected cable. Disconnect cable from all equipment that could be damaged by the test.
- F. Insulation-Resistance Test: Test all new and service-aged cables with respect to ground and adjacent conductors.
 - Test data shall include megohm readings and leakage current readings. Cables shall not be energized until insulation-resistance test results have been approved by the COTR. Test voltages and minimum acceptable resistance values shall be:

Voltage Class	Test Voltage	Min. Insulation Resistance
5kV	2,500 VDC	1,000 megohms
15kV	2,500 VDC	5,000 megohms

- 2. Submit a field test report to the COTR that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and identifies the insulation resistance and leakage current results for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- G. Online Partial Discharge Test: Comply with IEEE 400 and 400.3. Test all new and service-aged cables. Perform tests after cables have passed the insulation-resistance test, and after successful energization.
 - Testing shall use a time or frequency domain detection process, incorporating radio frequency current transformer sensors with a partial discharge detection range of 10 kHz to 300 MHz.
 - 2. Submit a field test report to the COTR that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and numerically and graphically identifies the magnitude of partial discharge detected for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- H. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the COTR.

I. Baseball Field Outdoor Lighting Cables: Test the series outdoor lighting system cables by insulation-resistance test method. ---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):
 - D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
 - D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials
 - D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

- E. Underwriters Laboratories, Inc. (UL):
 - 44-10..... Thermoset-Insulated Wires and Cables
 - 83-08..... Wires and Cables
 - 467-07.....Grounding and Bonding Equipment
 - 486A-486B-03.....Wire Connectors
 - 486C-04.....Splicing Wire Connectors
 - 486D-05.....Sealed Wire Connector Systems
 - 486E-09......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
 - 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables
 - 514B-04.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for wet locations.
- E. Color Code:
 - No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	A	Brown
Red	В	Orange
Blue	C	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COTR.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - 1. Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Underground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation. Listed for wet locations, and approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.

- F. Underground Splices for No. 8 AWG and Larger:
 - Mechanical type, of high conductivity and corrosion-resistant material. Listed for wet locations, and approved for copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.

- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

- A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.
- B. Fireproofing:
 - Install fireproofing on low-voltage conductors where the low-voltage conductors are installed in the same manholes with medium-voltage conductors.
 - 2. Use fireproofing tape as specified in Section 26 05 13, MEDIUM-VOLTAGE CABLES, and apply the tape in a single layer, half-lapped, or as recommended by the manufacturer. Install the tape with the

coated side towards the cable and extend it not less than 25 mm (1 inch) into each duct.

3. Secure the fireproofing tape in place by a random wrap of glass cloth tape.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: pad-mounted, liquid-filled, medium-voltage transformers.
- E. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Medium-voltage circuit breaker switchgear.
- F. Section 26 23 13, GENERATOR PARALLELING CONTROLS: Generator paralleling controls.
- G. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- H. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- I. Section 48 14 00, SOLAR ENERGY ELECTRICAL POWER GENERATION SYSTEM.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

- b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
- 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COTR.
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07.....for Hard-Drawn Copper Wire

- B3-07..... Standard Specification for Soft or Annealed Copper Wire
- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-83..... IEEE Guide for Measuring Earth Resistivity,
 - Ground Impedance, and Earth Surface Potentials
 - of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
 - 70-11.....National Electrical Code (NEC)

70E-12.....National Electrical Safety Code

99-12.....Health Care Facilities

- E. Underwriters Laboratories, Inc. (UL):
 - 44-10 Thermoset-Insulated Wires and Cables
 - 83-08 Thermoplastic-Insulated Wires and Cables
 - 467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 1/0 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use two-hole compression-type lugs, with zincplated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

3

2.5 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, and other conductive items in proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- C. Pad-Mounted Transformers:
 - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

4

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchgear, Panelboards, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:
 - Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary.
 Provide a grounding electrode at the transformer.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.

- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes.
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT

- A. Fences shall be grounded with a ground rod at each fixed gate post and at each corner post.
- B. Drive ground rods until the top is 300 mm (12 inches) below grade. Attach a No. 4 AWG copper conductor by exothermic weld to the ground rods, and extend underground to the immediate vicinity of fence post. Lace the conductor vertically into 300 mm (12 inches) of fence mesh and fasten by two approved bronze compression fittings, one to bond the

6

wire to post and the other to bond the wire to fence. Each gate section shall be bonded to its gatepost by a 3 mm x 25 mm (0.375 inch x 1 inch) flexible, braided copper strap and ground post clamps. Clamps shall be of the anti-electrolysis type.

3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.8 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.9 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.10 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.11 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with two-hole mechanical compression-type ground connectors.
- C. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.14 ACCEPTANCE CHECKS AND TESTS

A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical

distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.

- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the COTR prior to backfilling. The Contractor shall notify the COTR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each conduit type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certifications:
 - Two weeks prior to the final inspection, submit four copies of the following certifications to the COTR:
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

1

в.	American National Standards Institute (ANSI):
	C80.1-05Electrical Rigid Steel Conduit
	C80.3-05Steel Electrical Metal Tubing
	C80.6-05Celectrical Intermediate Metal Conduit
C.	National Fire Protection Association (NFPA):
	70-08National Electrical Code (NEC)
D.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04 Surface Metal Raceway and Fittings
	6-07Electrical Rigid Metal Conduit - Steel
	50-95 Enclosures for Electrical Equipment
	360-093Ciquid-Tight Flexible Steel Conduit
	467-07 Grounding and Bonding Equipment
	514A-04Metallic Outlet Boxes
	514B-04Conduit, Tubing, and Cable Fittings
	514C-96Nonmetallic Outlet Boxes, Flush-Device Boxes and
	Covers
	651-05Schedule 40 and 80 Rigid PVC Conduit and
	Fittings
	651A-00Type EB and A Rigid PVC Conduit and HDPE Conduit
	797-07Electrical Metallic Tubing
	1242-06Electrical Intermediate Metal Conduit - Steel
Ε.	National Electrical Manufacturers Association (NEMA):
	TC-2-03Electrical Polyvinyl Chloride (PVC) Tubing and
	Conduit
	TC-3-04PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
	FB1-07Fittings, Cast Metal Boxes and Conduit Bodies
	for Conduit, Electrical Metallic Tubing and
	Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.

- Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
- 3. Flexible galvanized steel conduit: Shall conform to UL 1.
- 4. Liquid-tight flexible metal conduit: Shall conform to UL 360.
- 5. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- C. Conduit Fittings:
 - 1. Rigid steel conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew couplings and connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.

- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct burial plastic conduit fittings:

Fittings shall meet the requirements of UL 514C and NEMA TC3.

- 6. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.

- 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.

PART 3 - EXECUTION

3.1 PENETRATIONS

A. Cutting or Holes:

Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the COTR as required by limited working space.

B. Firestop: Where conduits and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
 - Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.

- 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 9. Conduit installations under vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COTR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred Ceilings and in Walls:

- 1. Conduit for conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the same system is prohibited.
- 2. Conduit for conductors 600 V and below: Rigid steel or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
- 3. Align and run conduit parallel or perpendicular to the building lines.
- Connect recessed lighting fixtures to conduit runs with maximum 6 ft
 [1.8 M] of flexible metal conduit extending from a junction box to
 the fixture.
- 5. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the feeder I.D. and cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

3.5 UNDERGROUND INSTALLATION

Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only, notwithstanding requirements otherwise specified in this or other sections of these specifications.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., air-conditioned spaces, building exterior walls, or similar spaces.
- C. Unless otherwise shown, use rigid steel conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 15 in [375 mm] of slack flexible conduit. Flexible conduit shall have a copper green ground bonding jumper installed.

3.10 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.

- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- G. On all branch circuit junction box covers, identify the circuits with permanent black marker.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 31 20 00, EARTH MOVING: Trenching, backfill, and compaction.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.
 - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the COTR for approval prior to construction.

2. Certifications: Two weeks prior to the final inspection, submit the following. a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications. b. Certification by the Contractor that the materials have been properly installed, connected, and tested. **1.5 APPLICABLE PUBLICATIONS** A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-11/318M-11.....Building Code Requirements for Structural Concrete & Commentary SP-66-04.....ACI Detailing Manual C. American National Standards Institute (ANSI): 77-10..... Underground Enclosure Integrity D. American Society for Testing and Materials (ASTM): C478-12..... Standard Specification for Precast Reinforced Concrete Manhole Sections C858-10e1.....Underground Precast Concrete Utility Structures C990-09.....Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants. E. National Electrical Manufacturers Association (NEMA): TC 2-03.....Electrical Polyvinyl Chloride (PVC) Conduit TC 3-04.....Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing TC 6 & 8-03.....Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations TC 9-04..... Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation F. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 70E-12.....National Electrical Safety Code G. Underwriters Laboratories, Inc. (UL): 6-07.....Electrical Rigid Metal Conduit-Steel

> 26 05 41 30 JANUARY 2015 UNDERGROUND ELECTRICAL CONSTRUCTION CONSTRUCTION DOCUMENTS 2

467-07..... Equipment

651-11.....Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

651B-07.....Continuous Length HDPE Conduit

PART 2 - PRODUCTS

2.1 PRE-CAST CONCRETE MANHOLES AND HARDWARE

- A. Structure: Factory-fabricated, reinforced-concrete, monolithicallypoured walls and bottom. Frame and cover shall form top of manhole.
- B. Cable Supports:
 - 1. Cable stanchions shall be hot-rolled, heavy duty, hot-dipped galvanized "T" section steel, 56 mm (2.25 inches) x 6 mm (0.25 inch) in size, and punched with 14 holes on 38 mm (1.5 inches) centers for attaching cable arms.
 - Cable arms shall be 5 mm (0.1875 inch) gauge, hot-rolled, hot-dipped galvanized sheet steel, pressed to channel shape. Arms shall be approximately 63 mm (2.5 inches) wide x 350 mm (14 inches) long.
 - 3. Insulators for cable supports shall be porcelain, and shall be saddle type or type that completely encircles the cable.
 - 4. Equip each cable stanchion with one spare cable arm, with three spare insulators for future use.
- C. Ladder: Fiberglass with 400 mm (16 inches) rung spacing. Provide securely-mounted ladder for every manhole over 1.2 M (4 feet) deep.
- D. Ground Rod Sleeve: Provide a 75 mm (3 inches) PVC sleeve in manhole floors so that a driven ground rod may be installed.
- E. Sump: Provide 305 mm x 305 mm (12 inches x 12 inches) covered sump frame and grated cover.

2.2 PULLBOXES

- A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 22 loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangularshaped opening.
- B. Concrete Pullboxes: Shall be monolithically-poured reinforced concrete.

3

2.3 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. UL 651 and 651A Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 90° C (194° F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.

2.4 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.5 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.6 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 MANHOLE AND PULLBOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install manholes and pullboxes level and plumb.
 - 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inches) sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
- B. Access: Ensure the top of frames and covers are flush with finished grade.
- C. Grounding in Manholes:
 - Ground Rods in Manholes: Drive a ground rod into the earth, through the floor sleeve, after the manhole is set in place. Fill the sleeve with sealant to make a watertight seal. Rods shall protrude approximately 100 mm (4 inches) above the manhole floor.
 - 2. Install a No. 3/0 AWG bare copper ring grounding conductor around the inside perimeter of the manhole and anchor to the walls with metallic cable clips.
 - Connect the ring grounding conductor to the ground rod by an exothermic welding process.

- 4. Bond the ring grounding conductor to the duct bank equipment grounding conductors, the exposed non-current carrying metal parts of racks, sump covers, and like items in the manholes with a minimum No. 6 AWG bare copper jumper using an exothermic welding process.
- D. Sump Pump: Provide 120V cord and plug connected sump pump complete with float switch, thermal overload protection, and GFCI receptacle mounted in NEMA 3R box in manhole. Provide dedicated 20 mm (0.75 inch) direct-buried conduit and conductors to nearest electrical panelboard.

3.2 TRENCHING

- A. Refer to Section 31 20 00, EARTH MOVING for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 foot) intervals to establish the grade and route of the duct bank.
 - 2. Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the COTR.

3.3 DUCT INSTALLATION

A. General Requirements:

- Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
- 2. Join and terminate ducts with fittings recommended by the manufacturer.
- 3. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inch) in 30 M (100 feet).
- 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
- 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
- 6. Install insulated grounding bushings on the conduit terminations.
- 7. Radius for sweeps shall be sufficient to accomplish pulls without damaging cables. Minimum radius shall be six times conduit diameter.
- 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer installation intervals shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
- 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems such as water, sewer, chilled water.
- 10. Clearances between individual ducts:
 - a. For similar services, not less than 75 mm (3 inches).
 - b. For power and signal services, not less than 150 mm (6 inches).
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.

- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.
 - Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
 - 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
 - Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.

1

- 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
- Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- 10. Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by COTR.
- C. Connections to Manholes: Ducts connecting to manholes shall be flared to have an enlarged cross-section to provide additional shear strength. Dimensions of the flared cross-section shall be larger than the corresponding manhole opening dimensions by no less than 300 mm (12 inches) in each direction. Perimeter of the duct bank opening in the manhole shall be flared toward the inside or keyed to provide a positive interlock between the duct and the wall of the manhole. Use vibrators when this portion of the encasement is poured to ensure a seal between the envelope and the wall of the structure.
- D. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.
- E. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- F. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600

mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - 1. Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
 - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the COTR at no cost to the Government.
 - 4. Mandrel pulls shall be witnessed by the COTR.

---END---

9

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA)appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent. B. The Facility electrical systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed

> 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS CONSTRUCTION DOCUMENTS

checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COTR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COTR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and

> 26 08 00 30 JANUARY 2015 COMMISSIONING OF ELECTRICAL SYSTEMS CONSTRUCTION DOCUMENTS

maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA COTR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

----- END -----

4

SECTION 26 12 19

PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the pad-mounted, liquid-filled, medium-voltage transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 00, REINFORCED CONCRETE: Requirements for concrete equipment pads.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for electrical equipment.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- E. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground currents.
- G. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pullboxes, and ducts for underground raceway systems.

1.3 OUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per IEEE Standards. Factory tests shall be certified. The following tests shall be performed:
 - 1. Perform insulation-resistance tests, winding-to-winding and each winding-to-ground.
 - 2. Perform turns-ratio tests at all tap positions.
- B. Furnish four (4) copies of certified manufacturer's factory test reports to the COTR prior to shipment of the transformers to ensure that the transformers have been successfully tested as specified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
 - c. Complete nameplate data, including manufacturer's name and catalog number.
 - d. Certification from the manufacturer that representative transformers have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
 - 2. Manuals:
 - a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
 - Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
 - Approvals will be based on complete submissions of manuals, together with shop drawings.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Update the manual to include any information necessitated by shop drawing approval.
 - 2) Show all terminal identification.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and recommended maintenance intervals.

261219 PAD-MOUNTED, LIQUID FILLED, MEDIUM-VOLTAGE TRANSFORMERS

- Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- B. Certifications:
 - 1. Two weeks prior to the final inspection, submit the following certifications.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):
 - C37.47-00.....High Voltage Current-Limiting Type Distribution Class Fuses and Fuse Disconnecting Switches C57.12.00-00.....Liquid-Immersed Distribution, Power and Regulating Transformers

C57.12.28-05.....Pad-Mounted Equipment - Enclosure Integrity

C. American Society for Testing and Materials (ASTM):

D3487-08.....Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus

- D. Institute of Electrical and Electronic Engineers (IEEE): C2-07.....National Electrical Safety Code
 - C57.12.10-11.....Liquid-Immersed Power Transformers

C57.12.90-10.....Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers

- C62.11-06..... Metal-Oxide Surge Arresters for AC Power Circuits
 - 48-09.....Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5kV Through 765kV or Extruded Insulation Rated 2.5kV Through 500kV 386-06.....Separable Insulated Connector Systems for Power

Distribution Systems Above 600 V

261219 PAD-MOUNTED, LIQUID FILLED, MEDIUM-VOLTAGE TRANSFORMERS 592-07..... Exposed Semiconducting Shields on High-Voltage

Cable Joints and Separable Connectors

E. International Code Council (ICC):

IBC-12..... International Building Code

F. National Electrical Manufacturers Association (NEMA):

LA 1-09.....Surge Arresters

TP 1-02.....Guide for Determining Energy Efficiency for Distribution Transformers

TR 1-00..... Transformers, Regulators, and Reactors

G. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

H. Underwriters Laboratories Inc. (UL): 467-07.....Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Transformers shall be in accordance with ANSI, ASTM, IEEE, NEMA, NFPA, UL, as shown on the drawings, and as specified herein. Each transformer shall be assembled as an integral unit by a single manufacturer.
- B. Transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and with liquid-immersed windings.
- C. Ratings shall not be less than shown on the drawings.
- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the project site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat. All surfaces of the transformer that will be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.

2.2 COMPARTMENTS

- A. Construction:
 - 1. Enclosures shall be weatherproof and in accordance with ANSI C57.12.28.
 - 2. The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.

- 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing and with reinforcing gussets using jig welds to assure rectangular rigidity.
- 4. All bolts, nuts, and washers shall be zinc-plated steel.
- 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
- 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration, impedance, date of manufacture, and serial number shall be shown on the nameplate.
- B. Doors:
 - Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
 - 2. The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.
 - 3. Provide a 50 mm (2 inches) size padlock for each assembly, as approved by the COTR. Padlocks shall be keyed to the COTR's established key set. Firmly attach the padlock to the door assembly by a chain.

2.3 BIL RATING

A.15 kV class equipment shall have a minimum 95 kV BIL rating.

2.4 TRANSFORMER FUSE ASSEMBLY

A. The primary fuse assembly shall be a combination of externally replaceable Bay-O-Net liquid-immersed fuses in series with liquidimmersed current-limiting fuses.

2.5 PRIMARY CONNECTIONS

- A.Primary connections shall be 200 A dead-front load-break wells and inserts for cable sizes shown on the drawings.
- B. Surge Arresters: Distribution class, one for each primary phase, complying with IEEE C62.11 and NEMA LA 1, supported from tank wall.

2.6 MEDIUM-VOLTAGE SWITCH

A. The transformer primary disconnect switch shall be an oil-immersed, internal, gang-operated, load-interrupter type, rated at ampacity and

Project #: 692-14-101

system voltage as shown on the drawings, with a minimum momentary withstand rating of not less than the calculated available fault current shown on the drawings.

B. For loop feeds, switch shall be a four-position, T-blade manual switch located in the medium-voltage compartment and hot-stick-operated.

2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium-voltage cables in the primary compartment with 200 A loadbreak premolded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a semi-conductive shield material covering the housing. The separable connector system shall include the loadbreak elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
- B. Ground metallic cable shield with a cable shield grounding adapter, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly, bleeder wire, and ground braid.

2.8 LOW-VOLTAGE EQUIPMENT

- A. Mount the low-voltage bushings and hot stick in the low-voltage compartment.
- B. The low-voltage leads shall be brought out of the tank by epoxy pressure tight bushings, and shall be standard arrangement.
- C. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the secondary neutral and ground pad.

2.9 TRANSFORMERS

- A. Transformer ratings shall be as shown on drawings. The kVA ratings shown on the drawings are for continuous duty without the use of cooling fans.
- B. Temperature rises shall not exceed the NEMA TR 1 standards of 65° C (149° F) by resistance.
- C. Transformer insulating material shall be less flammable, edible-seedoil based, and UL listed as complying with NFPA 70 requirements for fire point of not less than 300° C (600° F) when tested according to ASTM D 92. Liquid shall be biodegradable and nontoxic.

- D. Transformer impedance shall be not less than 4-1/2% for sizes 112.5 kVA and larger.
- E. Sound levels shall conform to NEMA TR 1 standards.
- F. Primary and Secondary Windings for Three-Phase Transformers:
 - 1. Primary windings shall be delta-connected.
 - 2. Secondary windings shall be wye-connected. Provide isolated neutral bushings for secondary wye-connected transformers.
 - 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- G. Primary windings shall have four 2-1/2% full-capacity voltage taps; two taps above and two taps below rated voltage.
- H. Core and Coil Assemblies:
 - 1. Cores shall be grain-oriented, non-aging, silicon steel to minimize losses.
 - 2. Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
 - 3. Coils shall be continuous-winding type without splices except for taps. Material shall be copper.
 - 4. Coil and core losses shall be optimum for efficient operation.
 - 5. Primary, secondary, and tap connections shall be brazed or pressure type.
 - 6. Provide end fillers or tie-downs for coil windings.
- I. The transformer tank, cover, and radiator gauge thickness shall not be less than that required by ANSI.
- J. Accessories:
 - 1. Provide standard NEMA features, accessories, and the following:
 - a. No-load tap changer. Provide warning sign.
 - b. Lifting, pulling, and jacking facilities.
 - c. Globe-type valve for oil filtering and draining, including sampling device.
 - d. Pressure relief valve.
 - e. Liquid level gauge and filling plug.
 - f. A grounding pad in the medium- and low-voltage compartments.
 - g. A diagrammatic nameplate.
 - h. Dial-type liquid thermometer with a maximum reading pointer and an external reset.

Project #: 692-14-101

- i. Hot stick. Securely fasten hot stick within low-voltage compartment.
- 2. The accessories shall be made accessible within the compartments without disassembling trims and covers.
- K. Transformers shall meet the minimum energy efficiency values per 10 CFR Part 431 [Docket No. EERE-2010-BT-STD-0048]:

KVA	(왕)
75	99.17
112.5	99.01
150	99.08
225	99.17
300	99.23
500	99.25
750	99.32
1000	99.36
1500	99.42
2000	99.46
2500	99.49

2.10 CABLE FAULT INDICATORS (LOOP SYSTEM ONLY):

- A. Provide each incoming and outgoing cable within the medium-voltage compartment with a single-phase cable fault indicator with in-rush restraint. Mount the indicator on the cable support member.
 - The sensor assembly shall have a split-core for easy installation over the incoming and outgoing cable. The core shall be laminated, grain-oriented silicon steel, and encapsulated. Provide a clamp to secure the two coil halves around the cable.
 - 2. Select the coil to the pick-up at the current setting shown on the drawings.
 - a. The coil setting shall be accurate to within 10% of the pick-up.
 - b. The coil current-time curve shall coordinate with the primary current-limiting fuse.
- B. Upon restoration of the system to normal operating conditions, the cable fault indicator shall automatically reset to normal and be ready to operate.

Project #: 692-14-101

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install transformers outdoors, as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.
- B. Anchor transformers with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. In seismic areas, transformers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Mount transformers on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 12-1/2 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- E. Grounding:
 - 1. Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.
 - 2. Connect the ground rod to the ground pads in the medium- and lowvoltage compartments.
 - 3. Install and connect the cable shield grounding adapter per the manufacturer's instructions. Connect the bleeder wire of the cable shield grounding adapter to the load-break elbow grounding point with minimum No. 14 AWG wire, and connect the ground braid to the grounding system with minimum No. 6 AWG bare copper wire. Use soldered or mechanical grounding connectors listed for this purpose.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.
 - c. Verify that control and alarm settings on temperature indicators are as specified.
 - d. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections, and perform thermographic survey after energization under load.
 - e. Vacuum-clean transformer interior. Clean transformer enclosure exterior.
 - f. Verify correct liquid level in transformer tank.
 - g. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - h. Verify the presence and connection of transformer surge arresters, if provided.
 - i. Verify that the tap-changer is set at rated system voltage.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 SPARE PARTS

- A. Deliver the following spare parts for the project to the COTR two weeks prior to final inspection:
 - 1. Six insulated protective caps.
 - 2. One spare set of medium-voltage fuses for each size and type of fuse used in the project.
 - 3. One spare set of three cable fault indicators.

3.5 INSTRUCTION

A. The Contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the COTR.

---END---

SECTION 26 13 13 MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of medium-voltage circuit breaker switchgear as part of an overall Standby Power System (SPS).
- B. Source Limitations: Obtain medium-voltage switchgear and auxiliary components through one source from a single manufacturer. Products provided under this Section shall be by the same manufacturer as the Paralleling Controls provided under Section 26 23 13, and the Engine Generators provided under Section 26 32 13. The SPS shall be a fully integrated, factory-assembled and -tested system.
- C. Maintenance Service: To assure maximum equipment uptime and timely service responses, the SPS Supplier shall be factory-authorized to provide parts and supplies same as those used in the manufacture and installation of original equipment, and have factory-trained technicians available for servicing the SPS on a 24 hour emergency basis within a 25 mile radius of the project site.
- D. A single point of contact on behalf of multiple manufacturers does not meet the requirements of this Section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint for nonstructural components.
- C. Section 23 09 23.10, STATUS MONITORING VIA CAMPUS AUTOMATION NETWORK: Monitoring of SPS equipment status via existing campus automation system.
- D. Section 25 10 10, ADVANCED UTILITY METERING SYSTEMS: Requirements for switchgear digital multi-meters.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- F. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables and terminations.
- G. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.

- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- H. Section 26 23 13, GENERATOR PARALLELING CONTROLS: For switchgear used as part of a generator paralleling system.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Switchgear shall be thoroughly tested at the factory, with the circuit breakers in the connected position in their cubicles. Tests shall be in accordance with ANSI C37.54 and C37.55, and IEEE C37.09. Factory tests shall be certified, and shall include the following tests:
 - 1. Design tests.
 - 2. Production tests.
 - 3. Conformance tests.
- B. The following additional tests shall be performed:
 - Verify that circuit breaker sizes and types correspond to drawings, and the Overcurrent Protective Device Coordination Study.
 - 2. Verify that current and voltage transformer ratios correspond to drawings.
 - Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - 4. Verify correct barrier and shutter installation and operation.
 - 5. Exercise all active components.
 - 6. Inspect indicating devices for correct operation.
 - Perform an insulation-resistance test, phase to ground, on each bus section, with phases not under test grounded, in accordance with manufacturer's published data.
 - 8. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 V DC for 300-volt rated cable and 1000 V DC for 600-volt rated cable, or as required if solid-state components or control devices cannot tolerate the applied voltage.
 - 9. If applicable, verify correct function of control transfer relays located in the switchgear with multiple control power sources.

- C. Furnish four (4) copies of certified manufacturer's factory test reports to the COTR prior to shipment of the switchgear to ensure that the switchgear has been successfully tested as specified.
- D. The Government shall have an option to witness the factory tests. All expenses of the Government Representative's trips to witness the testing will be paid by the Government. Notify the COTR not less than 30 days prior to making tests at the factory.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Switchgear shop drawings shall be submitted simultaneously with or after the Overcurrent Protective Device Coordination Study.
 - b. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - c. Prior to fabrication of switchgear, submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Circuit breaker sizes.
 - 3) Interrupting ratings.
 - 4) Safety features.
 - 5) Accessories and nameplate data.
 - 6) Switchgear one line diagram, showing ampere rating, number of bars per phase and neutral in each bus run (horizontal and vertical), bus spacing, equipment ground bus, and bus material.
 - 7) Elementary and interconnection wiring diagrams.
 - 8) Technical data for each component.
 - 9) Dimensioned exterior views of the switchgear.
 - 10) Dimensioned section views of the switchgear.
 - 11) Floor plan of the switchgear.
 - 12) Foundation plan for the switchgear.
 - Provisions and required locations for external conduit and wiring entrances.
 - 14) Approximate design weights.
 - d. Certification from the manufacturer that representative switchgear has been seismically tested to International Building Code requirements. Certification shall be based upon simulated

seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

- e. Obtain and submit written approval from the electric utility company, that the equipment and material interface with the customer meets with their requirements and approval.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Three-line diagrams showing device terminal numbers.
 - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the switchgear.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - 4) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Test Reports:
 - a. Submit certified factory design and production test reports for approval.
 - b. Two weeks prior to the final inspection, submit certified field test reports and data sheets.
- Certifications: Two weeks prior to final inspection, submit four copies of the following.
 - a. Certification by the manufacturer that switchgear conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that switchgear has been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

В.	B. American National Standards Institute (ANSI):	
	C37.54-10Indoor Alternating Current High-Voltage Circuit	
	Breakers Applied as Removable Elements in	
	Metal-Enclosed Switchgear - Conformance Test	
	Procedures	
	C37.55-10	
	Conformance Test Procedures	
С.	Institute of Electrical and Electronics Engineers (IEEE):	
	C37.04-09for AC	
	High-Voltage Circuit Breakers	
	C37.09-11 Standard Test Procedure for AC High-Voltage	
	Circuit Breakers Rated on a Symmetrical Current	
	Basis	
	C37.20.2-99Standard for Metal-Clad Switchgear	
	C37.90-06Standard for Relays and Relay Systems	
	Associated with Electric Power Apparatus	
	C57.13-93Standard Requirements for Instrument	
	Transformers	
D.	International Code Council (ICC):	
	IBC-12International Building Code	
E.	E. National Electrical Manufacturers Association (NEMA):	
	C37.06.1-00Guide for AC High-Voltage Circuit Breakers	
	Rated on a Symmetrical Current Basis	
	C37.57-10Switchgear-Metal-Enclosed Interrupter	
	Switchgear Assemblies - Conformance Testing	
	LA 1-09Surge Arrestors	
	SG 4-09Alternating-Current High-Voltage Circuit	
	Breakers	
F.	National Fire Protection Association (NFPA):	
	70-14National Electrical Code (NEC)	
G.	Bonneville Power Administration:	
	STD-DC-000005-00-03Metering Application Guide	
PART 2	2 - PRODUCTS	
2.1 GI	ENERAL REQUIREMENTS	
Α.	A. Switchgear shall be in accordance with ANSI, IEEE, NEMA, NFPA, as shown	
	on the drawings, and have the following features:	
	1. Switchgear shall be a complete, grounded, continuous-duty, integral	

assembly, metal clad, dead-front, dead-rear, self-supporting, indoor

type switchgear assembly. Incorporate devices shown on the drawings and all related components required to fulfill operational and functional requirements.

- 2. Ratings shall not be less than shown on the drawings. Short circuit ratings shall not be less than 500 MVA.
- 3. Switchgear shall conform to the arrangements and details shown on the drawings.
- 4. Switchgear shall be assembled, connected, and wired at the factory so that only external circuit connections are required at the construction site. Split the structure only as required for shipping and installation. Circuit breakers and accessories shall be packaged and shipped separately. Packaging shall provide adequate protection against rough handling during shipment.
- All non-current-carrying parts shall be grounded per NEC. See Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS for additional requirements.

2.2 HOUSING

- A. Shall have the following features:
 - 1. Frames and enclosures:
 - a. The assembly shall be braced with reinforcing gussets using bolted connections to assure rectangular rigidity.
 - b. The enclosure shall be steel, leveled, and not less than the gauge required by applicable publications.
 - c. Die-pierce the holes for connecting adjacent structures to insure proper alignment, and to allow for future additions.
 - d. All bolts, nuts, and washers shall be cadmium-plated steel.
 - 2. Cubicles:
 - An individual cubicle shall be supplied for each circuit breaker and each future circuit breaker as shown on the drawings.
 Cubicles shall be provided with isolated wireways for control wiring between devices.
 - Compartment each cubicle so that the circuit breaker, buses, and cable terminations are in separate compartments with steel partitions or barriers of approved and properly installed insulation.
 - Each cubicle furnished with a circuit breaker (active or spare) shall be fully equipped as noted on drawings and specified below.

- 3) Each cubicle noted as space for future circuit breaker shall be fully equipped for positioning and connecting the breakers. Provide all equipment required to implement the future breaker installation, except the relays and meters on the cubicle doors and the associated current transformers.
- b. Conveniently locate test blocks within each cubicle for circuit breaker wiring connections.
- 3. Auxiliary compartments:
 - a. Cubicles shall be provided for auxiliaries, metering, and transition or termination sections as required by the manufacturer, and as shown on drawings. Cubicles shall be provided with isolated wireways for control wiring between devices.
- 4. Cubicle doors:
 - a. The doors shall permit convenient removal and interchanging of the circuit breakers between cubicles. The doors shall be capable of a swing approaching 180 degrees and shall be provided with intermediate doorstops.
 - b. Each door shall include suitable handles and padlocking provisions. Concealed or semi-concealed hinges shall be provided to attach the doors. Weld the hinges to the equipment structure and to the cubicle doors.
 - c. The following equipment shall be mounted on the door of circuit breaker cubicles:
 - 1) A breaker control switch.
 - 2) Breaker-position-indicator lamps.
 - Protective relays and/or metering as indicated on the drawings or other sections of the specifications.
 - 4) Any additional components indicated on the drawings.
- C. Finish:
 - 1. All metal surfaces shall be thoroughly cleaned, phosphatized and factory primed prior to applying baked enamel or lacquer finish.
 - 2. Provide a light gray finish for indoor switchgear.

2.3 BUS

- A. Bus Bars and Interconnections:
 - Provide copper buses, fully rated for the amperage shown on the drawings for entire length of the switchgear.

- 2. Fully insulate and totally enclose the buses within the bus compartment of switchgear cubicles.
- 3. Mount the buses on appropriately spaced insulators and brace to withstand the available short circuit currents.
- 4. The bus and bus compartment shall be designed so that the acceptable NEMA standard temperature rises are not exceeded.
- 5. Install a copper ground bus the full length of the switchgear assembly.
- All bolts, nuts, and washers shall be cadmium-plated steel. Bolts shall be torqued to the values recommended by the manufacturer.
- Make provisions for future bus extensions by means of bolt holes or other approved method.
- B. Insulation: The insulation shall be a high flame-retardant, self extinguishing, high track-resistant material that complies with the ANSI/IEEE C37.23-87 65 degree C (149 F) temperature rise.
- C. Control Bus: Extend the control buses to all of the circuit breaker cubicles including spare and spaces for future circuit breakers.

2.4 CIRCUIT BREAKERS

- A. Breakers that have the same ratings shall be interchangeable with other breakers in that line-up.
- B. Circuit breakers shall have the following features:
 - 1. Drawout, vacuum interrupter type.
 - b. Vacuum:
 - 1) Three independent sealed high-vacuum interrupters.
 - 2) Protect the interrupter contacts from moisture and contaminated atmospheres.
 - Readily accessible contact wear indicator for each interrupter.
 - 4) Breaker total interrupting time of 3 cycles.
 - 5) Maintenance free interrupter.
 - Contact surfaces to be of special alloys (such as copper chrome) to reduce effect of chopping.
 - 2. Operating mechanism:
 - a. The mechanism shall operate in a quick-make, quick-break manner and shall be charged by a small universal motor to provide stored-energy for breaker operation. Breaker tripping, closing, and indicating lamps shall be DC operated.

- b. The speed of the contacts during the operation shall be independent of the control voltage and the operator's movements.
- c. Equip the mechanism for manual opening and closing of the contacts during loss of normal control power.
- 3. Relays: Comply with IEEE C37.90, integrated digital type with test blocks and plugs.
 - a. Individual breakers shall be equipped with relays supplying the ANSI protection functions as identified on the drawings.
 - b. Switchgear shall be equipped with a bus differential relay for each bus section. Each relay shall be configured to activate on any fault within its protection zone, initiate a lockout relay and check for breaker mis-operation.
- 4. Drawout rails:
 - a. Design the rails to guide the breakers to their disconnected, test, and connected positions. Provide a positive stop at each of the positions by a levering mechanism.
 - b. The breaker shall maintain contact with ground in all positions through flexible connections and ground shoes.
 - c. Make provisions for padlocking the breaker in the test and disconnected position.
- 5. Power line and load disconnecting contact fingers and springs:
 - a. The contact fingers shall be silver-plated, full-floating, self-aligning, self-coupling, and designed for cleaning action during engaging and disengaging movements.
 - b. Provide adequate flexibility between stationary and movable components to assure proper meeting of the contact fingers, while also providing adequate pressure on the contact surfaces.
- 6. The stationary contacts for the line and load breaker contact fingers shall be isolated from the breaker compartment by shutters when the breaker is removed from the connected position.
- 7. The control and auxiliary contacts of the breaker shall be silver plated, multi-contact, self-coupling, plug and socket type. The contacts shall connect the circuits through terminal blocks that shall be conveniently mounted on the breaker for visual inspection.
- 8. Mechanical interlocks:
 - a. Shall prevent the breaker from movement, except when the breaker contacts are in the open position.

- b. Shall prevent the breaker from closing the contacts while in the connected position, except when the power line and load disconnecting contacts are completely connected.
- C. The interrupting ratings of the breakers shall be not less than 500 MVA.

2.5 CURRENT TRANSFORMERS

- A. Provide encapsulated type current transformers or approved equal. The transformers shall have a mechanical and one-second thermal rating in RMS amperes of not less than the momentary and interrupting rating of the breaker at rated voltage.
- B. Provide transformer ratios as shown on the drawings. Accuracies shall be coordinated with the associated relays by the switchgear manufacturer to assure proper operation at the selected pick-up and operating current ratings.
- C. All current transformers used for bus differential relaying shall be the same make and model and dedicated for this application. Secondary connections to the differential relay inputs shall be of identical wire size, type and length. Excess lengths shall be coiled and neatly organized in a low voltage compartment.
- D. Current transformers shall be provided with shorting strips across all secondary terminals for any circuit, or approved alternate method. Shorting strips shall be provided outside of any medium voltage compartment and accessible without arc flash risk exceeding 1.2cal/cm².

2.6 POTENTIAL TRANSFORMERS

- A. The potential transformers shall be encapsulated, drawout, disconnecting type, and shall be properly protected by primary currentlimiting fuses on the same drawout assembly.
- B. When the transformers are withdrawn from the compartment the primary terminals shall be grounded.
- C. The transformer ratios and accuracies shall be coordinated, with the associated relays by the switchgear manufacturer.
- D. Potential transformers for three-phase applications shall be connected in wye-wye configuration unless individually approved for alternate configuration.
- E. Where secondary protection is required (e.g. metering applications), secondary protective devices shall be provided outside of any medium

voltage compartment and accessible without arc flash risk exceeding $1.2cal/cm^2$.

2.7 CONTROL POWER TRANSFORMERS

- A. The control power transformers shall be encapsulated, drawout, disconnecting type and shall be properly protected by primary currentlimiting fuses.
- B. The ratings of the transformer shall be as indicated on the drawings.
- C. Equip the control power transformer compartment door with indicating lights and nameplates to indicate when the control power is energized.

2.8 BATTERY SYSTEM

- A. Batteries:
 - 1. Provide high discharge rate type maintenance-free nickel-cadmium batteries. Battery voltage shall be 125 volts nominal. Calculate the battery capacity based on the lowest ambient temperature in the room where it is to be installed. Include a safety margin of 50 percent for reserve capacity.
 - a. Provide sufficient battery capacity to carry all continuous loads (lamps, relays, etc.) for 8 hours and then perform the greater of the following duties, with the charger de-energized.
 - 1) Trip all circuit breakers simultaneously or,
 - 2) Close the two largest breakers simultaneously. Breaker closing current shall include both the spring release coil current and the starting current of the spring charging motor.
 - 2. Provide battery connector covers for protection against external short circuits.
 - 3. Provide corrosion-resistant steel battery racks.
 - 4. In seismic areas, batteries shall be secured to the battery rack to prevent overturning during a seismic event. Battery rack shall also be secured to the floor.
- B. Battery Charger:
 - 1. Provide a charger of the full-wave rectifier type utilizing silicon controlled rectifiers as the power-control elements. Construction shall be modular with plug-in control units for easy replacement.
 - 2. The charger shall maintain 1/2 of one percent voltage regulation from no load to full load for line voltage variation of 10 percent, and frequency variation of 3 Hz from 60 Hz.
 - 3. The charger shall maintain a nominal float voltage of 1.4 vpc, and a nominal equalizing voltage of 1.5 vpc.

- 4. The charger shall be capable of continuous operation in an ambient temperature of 40 degrees C (104 degrees F) without derating. The charger shall be installed in a convection cooled NEMA Type 1 ventilated enclosure. The housing is to have a hinged front door with all equipment accessible from the front.
- 5. Provide both AC and DC transient protection. Charger shall be able to recharge a fully discharged battery without tripping AC protective devices. AC circuit breaker shall not trip under any DC load condition, including short circuit on output terminals.
- 6. The charger shall be capable of supplying the following demand simultaneously:
 - a. Recharging a fully discharged battery in 12 hours.
 - b. Supervisory panel and control panel.
 - c. Steady loads (indicating lamps, relays, etc.).
- 7. The charger shall have fused AC input and DC output protection.
- 8. The charger shall not discharge the batteries when AC power fails.
- 9. The charger shall have the following accessories:
 - a. On-off control switch with pilot light.
 - b. AC power failure alarm light.
 - c. High DC voltage alarm light.
 - d. Low DC voltage alarm light.
 - e. Ground detection switch and alarm light.
 - f. DC ammeter 2 percent accuracy.
 - g. DC voltmeter 2 percent accuracy: Float/equalize voltage marked in red on voltmeter.
 - h. Provisions for activation of remote annunciation of trouble for the above conditions.

2.9 METERING

- Refer to Specification 25 10 10, Section 2.6, for digital multi-meter requirements. The aggregate of meter accuracy, current transformer accuracy and voltage transformer accuracy shall be 0.5% or better per Specification 25 10 10 Section 1.3 and Table 1.5. Refer to drawings for meter locations.
- B. As necessary, provide vertical structure with a front hinged door to provide safe isolated access to meters and all associated terminal and fuse blocks for maintenance, calibration or testing.
- C. Provide dedicated current transformers for each meter, in accordance with Section 2.5 herein. Current transformers shall be accuracy class

0.3% or better at burden class B1.8. Multi-ratio current transformers are not acceptable unless connected at the full secondary ratio.

- D. Provide dedicated voltage transformers for metering in accordance with Section 2.6 herein. Voltage transformers shall be accuracy class 0.3% or better at burden class W or higher. The rated primary voltage shall be consistent with the phase-to-ground voltage to be monitored; rated secondary voltage shall be nominally 120 volts phase-to-ground.
- E. Provide a test block and plug at each meter location to access all voltage and current measurements.

2.10 OTHER EQUIPMENT

- A. Furnish tools and accessories required for circuit breaker and switchgear test, inspection, maintenance, and proper operation.
- B. Cable terminations:
 - Cable terminations shall conform to the requirements in Section 26 05 13, MEDIUM-VOLTAGE CABLES.
 - 2. Coordinate cable terminations with the switchgear being furnished.

C. Medium-voltage surge arresters:

- 1. Distribution class, metal-oxide-varistor type. Comply with NEMA LA 1.
- 2. Provide each ungrounded conductor of each incoming circuit with an appropriate arrester for the application voltage.
- D. Circuit breaker removal equipment: Furnish a portable circuit breaker removal lift and carriage for installation and removal of circuit breakers.

2.10 CONTROL WIRING

Switchgear control wiring shall not be less than No. 14 AWG copper 600 volt rated. Install wiring complete at the factory, adequately bundled and protected. Provide separate control circuit fuses in each breaker compartment and locate for ease of access and maintenance.

2.12 NAMEPLATES AND MIMIC BUS

A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. For Essential Electrical System, provide laminated red phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. Nameplates shall indicate equipment served, spaces, or spares in

accordance with one line diagram shown on drawings. Nameplates shall be mounted with plated screws on front of breakers or on equipment enclosure next to breakers. Mounting nameplates only with adhesive is not acceptable.

B. Mimic Bus: Provide an approved mimic bus on front of each switchgear assembly, either factory-painted plastic or metal strips. Plastic tape shall not be used. Use symbols similar to one line diagram shown on drawings. Plastic or metal strips shall be mounted with plated screws.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install switchgear in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. In seismic areas, switchgear shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Interior Location. Mount switchgear on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (4 inches) beyond the equipment. Provide cable trench corresponding to switchgear bottom cable entries as shown on the drawings to facilitate routing of MV cables into rear termination compartments. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the switchgear manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the COTR. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted and tested in accordance with the manufacturer's recommendations.
- B. Prior to the final inspection for acceptance, a technical representative from the electric utility company shall witness the testing of the equipment to assure the proper operation of the individual components, and to confirm proper operation/coordination with electric utility company's equipment.
- C. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:

- 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Confirm correct application of manufacturer's recommended lubricants.
 - d. Verify appropriate anchorage, required area clearances, and correct alignment.
 - e. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - f. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
 - g. Verify appropriate equipment grounding.
 - h. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - i. Inspect insulators for evidence of physical damage or contaminated surfaces.
 - j. Verify correct shutter installation and operation.
 - k. Exercise all active components.
 - 1. m. Verify that vents are clear.
 - n. Inspect control power transformers, potential transformers and current transformers.
- 2. Electrical tests:
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform overpotential tests.
 - c. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.
 - d. Perform phasing check on double-ended switchgear to ensure correct bus phasing from each source.
 - e. With control power available, configure all programmable devices with field-entered settings. Verify all field and factory configurations match the design specifications. See Section 3.7 herein for additional requirements of protective relays.
 - e. Circuit breakers shall be tripped by operation of each protective device.
 - f. Verify the correct operation of all digital multi-meters, sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the medium-voltage circuit breaker switchgear is in good operating condition and properly performing the intended function.

3.4 TEMPORARY HEATING

A. Apply temporary heat to switchgear, according to manufacturer's written instructions, throughout periods when switchgear environment is not controlled for temperature and humidity within manufacturer's stipulated service conditions.

3.5 WARNING SIGN

A. Mount on each entrance door of Building 231, approximately 1.5 M (5 feet) above grade, a clearly lettered warning sign for warning personnel. The sign shall be attached with rustproof metal screws.

3.6 ONE LINE DIAGRAM AND SEQUENCE OF OPERATION

- A. At final inspection, an as-built one line diagram shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
- B. Furnish a written sequence of operation for the switchgear and connected line side/load side electrical distribution equipment. The sequence of operation shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
- C. Deliver an additional four copies of the as-built one line diagram and sequence of operation to the COTR.

3.7 AS-LEFT RELAY SETTINGS, AND FUSE RATINGS FOR CONTROL EQUIPMENT

- A. The relay settings shall be set in the field by an authorized representative of the switchgear manufacturer per the approved Overcurrent Protective Device Coordination Study.
- B. The relay settings of the main breaker(s) shall be reviewed by the electric utility company to assure coordination with the electric utility company primary fusing. Prior to switchgear activation, provide written verification of this review to the COTR.
- C. Post a durable copy of the "as-left" relay settings, and fuse ratings for control equipment in a convenient location in the switchgear room. Deliver four additional copies of the settings and fuse ratings to the COTR. Furnish this information prior to the activation of the switchgear.

3.8 INSTRUCTION

A. Furnish comprehensive training for VA personnel as specified in section 26 32 13 Engine Generators, Article 3.5.

---END---

SECTION 26 23 13 GENERATOR PARALLELING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of indoor medium-voltage paralleling controls as part of an overall Standby Power System (SPS).
- B. The generator paralleling controls shall be compatible and functional with the switchgear, engine generators, the campus direct-digital control system, remote annunciators, and all related components.
- C. Source Limitations: Obtain generator paralleling controls and auxiliary components through one source from a single manufacturer. Products provided under this Section shall be by the same manufacturer as the Medium-Voltage Switchgear provided under Section 26 13 13, and the Engine Generators provided under Section 26 32 13. The SPS shall be a fully integrated, factory-assembled and -tested system.
- D. Maintenance Service: To assure maximum equipment uptime and timely service responses, the SPS Supplier shall be factory-authorized to provide parts and supplies same as those used in the manufacture and installation of original equipment, and have factory-trained technicians available for servicing the SPS on a 24 hour emergency basis within a 25 mile radius of the project site.
- E. A single point of contact on behalf of multiple manufacturers does not meet the requirements of this Section.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- B. Section 23 09 23.10, STATUS MONITORING VIA CAMPUS AUTOMATION NETWORK: Monitoring of SPS equipment status via existing campus automation system.
- C. Section 25 10 10, ADVANCED UTILITY METERING SYSTEMS: Requirements for switchgear digital multi-meters.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.

- F. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Mediumvoltage enclosures, busing, and circuit breakers for generator paralleling switchgear.
- G. Section 26 32 13, ENGINE GENERATORS.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Generator paralleling controls shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects. Refer also to related specification sections for tests. Tests shall be conducted as per UL and ANSI standards. Factory tests shall be certified.
- B. Furnish four copies of certified manufacturer's factory test reports to the COTR prior to shipment of the controls.
- C. The Government shall have the option to witness the factory tests. The Government shall pay for all expenses of the Government Representative's trips to witness the testing. Notify the COTR not fewer than 30 days prior to factory tests.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Per the requirements of Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR.
 - b. Include sequences of operation and interconnecting controls diagrams, showing connections to switchgear, generators, automatic transfer switches, and remote annunciators.
 - c. Certification from the manufacturer that representative generator paralleling controls have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
 - 2. Manuals:
 - a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.

- 1) The terminals of wiring diagrams shall be identified to facilitate installation, maintenance, and operation.
- Wiring diagrams shall indicate internal wiring for each piece of equipment and the interconnection between the pieces of equipment, including related equipment specified in other sections.
- Provide a clear and concise description of operation, including detailed information required to properly operate the equipment.
- Approvals shall be based on complete submissions of manuals together with shop drawings.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Test Reports:
 - a. Two weeks prior to the final inspection, submit certified field test reports and data sheets.
- 4. Certifications: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that the generator paralleling controls conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the generator paralleling controls have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

99-12.....Health Care Facilities

110-10..... Emergency and Standby Power Systems

D. National Electrical Manufacturers Association (NEMA):

ICS 6-06.....Enclosures

E. Underwriters Laboratories Inc. (UL): 50-95..... Enclosures for Electrical Equipment 508A-07..... Industrial Control Panels

PART 2 - PRODUCTS

2.1 GENERATOR PARALLELING CONTROLS

- A. Generator paralleling controls shall be integral to the switchgear, or housed in a separate cubicle, or be integrated into the controls on each paralleled engine generator. The functional requirements are identical for all system topologies.
- B. The generator paralleling controls shall perform automatic and manual operation, synchronization, load management, monitoring, and alarm annunciation functions of the paralleled engine generator system.
- C. The control logic shall be distributed between the generator paralleling controls and each engine generator such that each engine generator is capable of starting and paralleling to the bus, in the event of failure of the generator paralleling controls and receipt of a start signal from any automatic transfer switch.
- D. The master control and display panel shall be a touchscreen panel, or a combination of digital and analog control, monitoring, and alarm devices. The generator paralleling control logic and master control and display panel shall be such that the master controls will continue to function in the event of a master control and display panel failure.
 - 1. The master control and display panel shall indicate the following status information:
 - a. Status of utility-source and generator-source buses.
 - b. Status of each utility- and generator-source circuit breaker, including protective relays if applicable.
 - c. Status of each engine generator, including start, run, stop, off, automatic operation, manual operation, speed in rotations per minute (RPM), oil pressure, coolant temperature, hours of operation.
 - d. Status of each automatic transfer switch.
 - 2. The master control and display panel shall indicate and trend the following metering information on a per-phase, line-to-line, lineto-neutral, and summary basis as applicable.

- a. Instantaneous and average volts, amperes, kilowatts, kilovars, kilovolt-amperes, frequency, and power factor for each utility and generator bus, and for each utility and generator source.
- b. Demand amperes, kilowatts, and kilovolt-amperes for each utility and generator bus, and for each utility and generator source.
- 3. The master control and display panel shall provide the following control functions for each generator.
 - a. Automatic, manual, start, stop.
- 4. The master control and display panel shall provide the following system control functions.
 - a. Automatic, manual, exercise, test with load, and test without load operation.
 - b. Load management functions that monitor bus loads and automatically or manually control generators to meet system requirements, including prioritization of Essential and Normal Electrical System loads and groups of loads as shown on the drawings, and operation under failure conditions of one or more engine generators.
 - c. Password-protected means to alter the system programming.
- 5. The master control and display panel shall provide the following alarm functions.
 - a. All alarms annunciated by each engine generator.
 - b. All system alarms.
- E. The master control and display panel shall be powered by at least two sources, which may be from engine generator start batteries and/or switchgear station batteries.
- F. Interconnecting Communications Protocol and Media: The generator paralleling controls shall be interconnected to the switchgear, engine generators, and the remote annunciator(s) by a dedicated fiber optic network as shown on the drawings. Provide all necessary fiber optic media, raceways, hardware, software, and programming necessary to establish interconnection between all components. Coordinate with requirements for system monitoring via the existing campus automation system as specified in Section 23 09 23.

2.2 REMOTE ANNUNCIATOR PANEL

A. A remote annunciator panel shall be installed at the Engineering Control Center, Boiler Plant, and VA Police Dispatch.

- B. The annunciator shall indicate alarm conditions as required by NFPA 110.
- C. Include control wiring between the remote annunciator panel and the engine generator. Wiring shall be as required by the manufacturer.

2.3 PARALLELING OPERATION

- A. Emergency Mode:
 - 1. Upon loss of the normal source of power supply, the generator paralleling controls shall automatically initiate the generator start sequence, and open MV Breakers disconnecting the Utility and PV Array circuits from the switchgear main bus, and the Load Bank circuit from the switchgear generator bus.
 - 2. Upon initiation of the automatic start sequence, both engine generators shall start. The first engine generator to achieve 90% of nominal voltage and frequency shall be connected to the generator bus. The remaining engine generator's synchronizer shall initiate control of voltage and frequency of the oncoming set with the bus. Upon synchronizing with the bus, the oncoming engine generator shall be paralleled on the bus; after a preset time delay (30-60 Sec), the paralleling controls shall close the MV Tie-Breaker to supply the 15 kV campus loop from the Gensets. The generator paralleling controls shall prevent the automatic transfer of loads to the bus until there is sufficient capacity to carry these loads. Provision shall be made to manually override the load addition circuits for supervised operation.
 - 2. Load management sensing shall be furnished to ensure that sufficient generating capacity is connected to the bus to carry the load. The load management sensing shall also ensure that not more than the required capacity plus a limited reserve is connected to the bus at any time. The system in conjunction with the load management shall ensure maximum efficiency in the utilization of engine generators to ensure maximum fuel economy.
 - 3. Load management sensing shall ensure that the on-line reserve capacity does not fall to less than 10% or exceed more than 110% of a single engine generator. Upon sensing if the connected load exceeds the preset limit for an established period of time, the next engine generator will be started and paralleled. If upon sensing, the connected load is determined to be less than the preset limit for an established period of time, the last engine generator to be

paralleled will be disconnected and shut down. Its controls will be automatically reset so that the engine generator will be ready for next operation.

- 4. While one engine generator is connected to the bus, and if the connected load exceeds the capacity of the bus, resulting in a decrease in system frequency to 58 Hz or less, load dumping will be initiated to reduce the connected load within the capacity of the bus. Similarly, with increased loading, the remaining engine generator will be signaled to start and be paralleled to the engine generator already connected to the bus, and the load dump signal will be automatically cancelled. Upon restoration of the normal source of power supply, as defined in the generator paralleling controls for an adjustable period of 0 to 30 minutes, the loads shall be transferred back to the normal power source. Subsequently, the engine generator shall be disconnected from the bus, run for an adjustable period of time up to 15 minutes maximum for cool down, and then shut down. All controls associated with operation of the engine generator shall automatically reset for the next automatic operation.
- B. Manual Mode: The engine generators and automatic transfer functions can be operated manually.
- C. Exercising Mode: Incorporate controls so as to allow automatic or manual exercising of individual generators such that each unit is connected in turn to the load bank for exercising.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Per the requirements of Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR.
- B. In seismic areas, generator paralleling controls shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Mount generator paralleling controls on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (4 inches) beyond the equipment. Provide a cable trench below

switchgear to facilitate duct bank entry and cable routing to the equipment to be mounted. Seal voids around duct openings in the trench wall with water- and oil-resistant caulking or sealant. Concrete work shall be as specified in Section 03 30 00, REINFORCED CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the generator paralleling controls manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the COTR. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted, and tested in accordance with the manufacturer's recommendations.
- B. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - d. Verify appropriate equipment grounding.
 - e. Verify appropriate anchorage and required area clearances.
 - 2. Systems Tests:
 - a. Verify proper operation of all control, monitoring, trending, and alarm functions.
 - b. Verify undisrupted operation of the system under conditions of loss of the generator paralleling controls.
 - c. Test and verify continuity of all interconnecting copper and fiber optic control media.
- C. Perform all acceptance checks and tests specified in Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR and Section 26 32 13, ENGINE GENERATORS.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the generator paralleling controls are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Furnish comprehensive training for VA personnel as specified in section 26 32 13 Engine Generators, Article 3.5.

---END---

9

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- G. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - c. Certification from the manufacturer that a representative panelboard has been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):
 IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-08....Enclosures for Electrical Equipment (1,000V)

Maximum)

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

70E-12.....Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL):

50-95..... Enclosures for Electrical Equipment

67-09....Panelboards

489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 208Y/120 V panelboards, and 14,000 A symmetrical for 480Y/277 V panelboards.
- J. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.

- 2. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 208Y/120 V Panelboard: 10,000 A symmetrical.
 - 2. 480Y/277 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study provided.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line

currents), or other accessory devices or functions shall be provided where shown on the drawings.

10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SURGE PROTECTIVE DEVICES

- A. Where shown on the drawings, furnish panelboards with integral surge protective devices.
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Provide field fabricated strut-channel support structures for mounting exterior panelboards adjacent to pad mounted transformers as shown on the drawings.
- C. In seismic areas, panelboards shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Install a printed schedule of circuits in each panelboard after approval by the COTR. Schedules shall reflect final load descriptions

connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards

- E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- F. Provide blank cover for each unused circuit breaker mounting space.
- G. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

C. National Electrical Manufacturers Association (NEMA):

WD 1-10.....General Color Requirements for Wiring Devices WD 6-08Wiring Devices - Dimensional Specifications

D. Underwriter's Laboratories, Inc. (UL):

20-10.....General-Use Snap Switches 231-07.....Power Outlets 467-07.....Grounding and Bonding Equipment 498-07.....Attachment Plugs and Receptacles 943-11.....Ground-Fault Circuit-Interrupters

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - 1. Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be brown in color.
 - 2. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, suitable for mounting in a standard outlet box, with end-oflife indication and provisions to isolate the face due to improper wiring. Ground fault interrupter shall consist of a differential current transformer, solid state sensing circuitry and a circuit

interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.

C. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification grade attachment plug caps are inserted.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.

- D. Outlet boxes for toggle switches shall be mounted on the strike side of doors.
- E. Provide barriers in multigang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- Install receptacles 450 mm (18 inches) above floor. Install specific-use receptacles at heights shown on the drawings.
- K. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical condition.
 - b. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - c. Test GFCI receptacles.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - c. Certification from the manufacturer that representative enclosed switches and circuit breakers have been seismically tested to International Building Code requirements. Certification shall be

based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

- 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - FU 1-07.....Low Voltage Cartridge Fuses
 - KS 1-06..... Distribution
 - Equipment Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL): 98-07.....Enclosed and Dead-Front Switches 248-00.....Low Voltage Fuses

489-09..... Molded Case Circuit Breakers and Circuit

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.2 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Feeders: Class RK1, time delay.

C. Control Circuits: Class CC, time delay.

2.3 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. In seismic areas, enclosed switches and circuit breakers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COTR.

---END---

SECTION 26 32 13 ENGINE GENERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of the medium-voltage engine generators as part of an overall Standby Power System (SPS).
- B. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer. Products provided under this Section shall be by the same manufacturer as the Medium-Voltage Switchgear provided under Section 26 13 13, and the Generator Paralleling Controls provided under Section 26 23 13. The SPS shall be a fully integrated, factory-assembled and -tested system.
- C. Maintenance Service: To assure maximum equipment uptime and timely service responses, the SPS Supplier shall be factory-authorized to provide parts and supplies same as those used in the manufacture and installation of original equipment, and have factory-trained technicians available for servicing the SPS on a 24 hour emergency basis within a 25 mile radius of the project site. A single point of contact on behalf of multiple manufacturers does not meet the requirements of this Section.

1.2 RELATED WORK

- A. Section 03 30 00, REINFORCED CONCRETE: Requirements for concrete equipment pads.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirement for seismic restraint for nonstructural components.
- C. Section 23 09 23.10, STATUS MONITORING VIA CAMPUS AUTOMATION NETWORK: Monitoring of SPS equipment status via existing campus automation system.
- D. Section 25 10 10, ADVANCED UTILITY METERING SYSTEMS: Requirements for switchgear digital multi-meters.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- F. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- G. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.

- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Requirements for pipe and equipment support and noise control.
- J. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Requirements for medium-voltage circuit breaker switchgear for use with medium-voltage generators.
- K. Section 26 23 13, GENERATOR PARALLELING CONTROLS: Requirements for generator paralleling.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification.

1.4 FACTORY TESTS

A. Load Test: At generator production plant prior to shipment, perform instrumented load test of one hour duration while the engine generator is delivering 100% of the specified kW; kVA @ 0.8 power factor reactive. During this test, record the following data at 20-minute intervals:

Time	Engine RPM	Oil Temperature Out
kW	Water Temperature In	Fuel Pressure
Voltage	Water Temperature Out	Oil Pressure
Amperes	Oil Temperature In	Ambient Temperature

- B. Cold Start Test: Record time required for the engine generator to develop specified voltage, frequency, and kW load from a standstill condition with engine at ambient temperature.
- C. Furnish four (4) copies of certified manufacturer's factory test reports to the COTR prior to shipment of the engine generators to ensure that the engine generator has been successfully tested as specified.
- D. The manufacturer shall furnish fuel, load banks, testing instruments, and all other equipment necessary to perform these tests.

E. The Government shall have an option to witness the factory tests. All expenses of the Government Representative's trips to witness the testing will be paid by the Government. Notify the COTR not less than 30 days prior to making tests at the factory.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Scaled drawings, showing plan views, side views, elevations, and cross-sections.
 - c. Certification from the manufacturer and appropriate labeling on the machinery that a representative engine generator has been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
 - 2. Diagrams:
 - a. Control system diagrams, control sequence diagrams or tables, wiring diagrams, interconnections diagrams (between engine generators, automatic transfer switches, paralleling switchgear, local control cubicles, remote annunciator panels, and fuel storage tanks, as applicable), and other like items.
 - 3. Technical Data:
 - a. Published ratings, catalog cuts, pictures, and manufacturer's specifications for engine generator, governor, voltage regulator, radiator, muffler, dampers, day tank, pumps, fuel tank, batteries and charger, jacket heaters, torsional vibration, and control and supervisory equipment.
 - b. Description of operation.
 - c. Short-circuit current capacity and subtransient reactance.
 - d. Sound power level data.
 - e. Radiator performance data indicating satisfactory air-at-core temperature, after temperature rise within enclosure, to account for applicable de-rate due to site specific elevation and ambient temperature conditions.

- f. Vibration isolation system performance data from no-load to fullload. This must include seismic qualification of the engine generator mounting, base, and vibration isolation.
- 4. Calculations:
 - a. Calculated performance derations appropriate to installed environment.
- 5. Manuals:
 - a. When submitting the shop drawings, submit complete maintenance and operating manuals, to include the following:
 - 1) Technical data sheets.
 - 2) Wiring diagrams.
 - Include information for testing, repair, troubleshooting, and factory recommended periodic maintenance procedures and frequency.
 - Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 6. Test Reports:
 - a. Submit certified factory test reports for approval.
 - b. Submit field test reports two weeks prior to the final inspection.
- 7. Certifications:
 - a. Prior to fabrication of the engine generator, submit the following for approval:
 - A certification in writing that an engine generator of the same model and configuration, with the same bore, stroke, number of cylinders, and equal or higher kW/kVA ratings as the proposed engine generator, has been operating satisfactorily with connected loads of not less than 75% of the specified kW/kVA rating, for not fewer than 2,000 hours without any failure of a crankshaft, camshaft, piston, valve, injector, or governor system.
 - 2) A certification in writing that devices and circuits will be incorporated to protect the voltage regulator and other components of the engine generator during operation at speeds other than the rated RPM while performing maintenance. Submit

thorough descriptions of any precautions necessary to protect the voltage regulator and other components of the system during operation of the engine generator at speeds other than the rated RPM.

- 3) A certification from the engine manufacturer stating that the engine exhaust emissions meet the applicable federal, state, and local regulations and restrictions. At a minimum, this certification shall include emission factors for criteria pollutants including nitrogen oxides, carbon monoxide, particulate matter, sulfur dioxide, non-methane hydrocarbon, and hazardous air pollutants (HPAs).
- b. Prior to installation of the engine generator at the job site, submit certified factory test data.
- c. Two weeks prior to the final inspection, submit the following.
 - Certification by the manufacturer that the engine generators conform to the requirements of the drawings and specifications, including enclosures bearing Oregon Gold Seal certification, and Field Certification by Underwriters Laboratories of engine generators, since UL2200 is not applicable to gensets above 600vac..
 - 2) Certification by the Contractor that the engine generators have been properly installed, adjusted, and tested.

1.6 STORAGE AND HANDLING

- A. Engine generators shall withstand shipping and handling stresses in addition to the electrical and mechanical stresses which occur during operation of the system. Protect radiator core with wood sheet.
- B. Store the engine generators in a location approved by the COTR.

1.7 JOB CONDITIONS

A. Job conditions shall conform to the arrangements and details shown on the drawings. The dimensions, enclosures, and arrangements of the engine generator system shall permit the operating personnel to safely and conveniently operate and maintain the system in the space designated for installation.

1.8 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

B. American National Standards Institute (ANSI): C37.50-07..... Low-Voltage AC Power Circuit Breakers Used In Enclosures-Test Procedures C39.1-81 (R1992)Requirements for Electrical Analog Indicating Instruments C. American Society of Testing Materials (ASTM): A53/A53M-10.....Standard Specification for Pipe, Steel, Black, and Hot-Dipped, Zinc Coated Welded and Seamless B88-09.....Specification for Seamless Copper Water Tube B88M-11.....Specification for Seamless Copper water Tube (Metric) D975-11b.....Diesel Fuel Oils D. Institute of Electrical and Electronic Engineers (IEEE): C37.13-08..... Low Voltage AC Power Circuit Breakers Used In Enclosures C37.90.1-02.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus E. International Code Council (ICC): IBC-12.....International Building Code F. National Electrical Manufacturers Association (NEMA): ICS 6-06.....Enclosures ICS 4-10.....Application Guideline for Terminal Blocks MG 1-11.....Motor and Generators MG 2-07.....Safety Standard and Guide for Selection, Installation and Use of Electric Motors and Generators PB 2-11..... Dead-Front Distribution Switchboards Maximum) G. National Fire Protection Association (NFPA): 30-12.....Flammable and Combustible Liquids Code 37-10..... Installations and Use of Stationary Combustion Engine and Gas Turbines 70-11.....National Electrical Code (NEC) 99-12.....Health Care Facilities 110-10.....Standard for Emergency and Standby Power Systems

H. Underwriters Laboratories, Inc. (UL):

50-07	Enclosures for Electrical Equipment	
142-06	Steel Aboveground Tanks for Flammable and	
	Combustible Liquids	
467-07	Grounding and Bonding Equipment	
489-09	Molded-Case Circuit Breakers, Molded-Case	
	Switches and Circuit-Breaker Enclosures	
508-99	.Industrial Control Equipment	
891-05	.Switchboards	
1236-06	Battery Chargers for Charging Engine-Starter	
	Batteries	
2085-97	.Insulated Aboveground Tanks for Flammable and	
	Combustible Liquids	
2200-98	Stationary Engine Generator Assemblies	

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. The engine generator system shall be in accordance with NFPA, UL, NEMA and ANSI, and as specified herein.
- B. Provide a factory-assembled, wired (except for field connections), complete, fully automatic engine generator system.
- C. Engine Generator Parameter Schedule:
 - 1. Power Rating: Emergency Standby
 - 2. Voltage: 12470V
 - 3. Rated Power: 1500 kW; 1,875 kVA continuous.
 - 4. Power Factor: 0.8 lagging
 - 5. Engine Generator Application: parallel with other generators on an isolated bus.
 - 6. Fuel: Ultra low sulfur off-highway #2 diesel
 - 7. Voltage Regulation: +/- 0.25% (maximum) (No Load to Full Load) (standalone applications)
 - 8. Phases: 3 Phase, Wye, 4 Wire.
 - 9. Engine generator system shall be capable of operating at 427 meters (1,400 feet) above sea level which will have average ambient air temperature ranging from a minimum of -7 °C (20°F) in winter to maximum of 40°C (104°F) in summer.

- Radiator performance shall be suitable for 112°F air-at-core temp, to account for temperature rise across machinery within generator enclosures.
- D. Assemble, connect, and wire the engine generator at the factory so that only the external connections need to be made at the construction site.
- E. Engine Generator Unit shall be factory-painted with manufacturer's primer and standard finishes.
- F. Connections between components of the system shall conform to the recommendations of the manufacturer.
- G. Couplings, shafts, and other moving parts shall be enclosed and guarded. Guards shall be metal, ruggedly constructed, rigidly fastened, and readily removable for convenient servicing of the equipment without disassembling any pipes and fittings.
- H. Engine generator shall have the following features:
 - 1. Factory-mounted on a common, rigid, welded, structural steel base.
 - 2. Engine generator shall be statically and dynamically balanced so that the maximum vibration in the horizontal, vertical, and axial directions shall be limited to 0.15 mm (0.0059 inch), with an overall velocity limit of 24 mm/sec (0.866 inch per second) RMS, for all speeds.
 - 3. Auxiliary spring isolator mounts having 1" deflection shall be provided by the genset manufacturer as part of the IBC certification. Spring mounts shall be installed between the genset baseframe and top of the sub-base fuel tank. The isolators shall be constrained with restraints capable of withstanding static forces in any direction equal to twice the weight of the supported equipment.
 - 4. Shall be capable of operating satisfactorily as specified for not fewer than 10,000 hours between major overhauls.
- Each engine generator specified for parallel operation shall be configured for automatic parallel operation.

2.2 ENGINE

- A. The engine shall be coupled directly to a generator.
- B. Minimum twelve cylinders; , 51.8 liter displacement, and maximum BMEP of 307 psi.
- C. The engine shall be able to start in a 4.5 °C (40 °F) ambient temperature while using No. 2 diesel fuel oil without the use of starting aids such as glow plugs and ether injections.

- D. The engine shall be equipped with electric heater for maintaining the coolant temperature between 32-38 °C (90-100 °F), or as recommended by the manufacturer.
 - 1. Install thermostatic controls, contactors, and circuit breakerprotected circuits for the heaters.
 - 2. The heaters shall operate continuously except while the engine is operating or the water temperature is at the predetermined level.

2.3 GOVERNOR

- A. Isochronous, electronic type.
- B. Steady-state speed band at 60 Hz shall not exceed plus or minus 0.33%.

2.4 LUBRICATION OIL SYSTEM

- A. Pressurized type.
- B. Positive-displacement pump driven by engine crankshaft.
- C. Full-flow strainer and full-flow or by-pass filters.
- D. Filters shall be replaceable type and shall remove particles as small as 3 microns without removing the additives in the oil. For by-pass filters, flow shall be diverted without flow interruption.
- E. Extend lube oil sump drain line out through the skid base and terminate it with a drain valve and plug.

2.5 FUEL SYSTEM

- A. Fuel storage for each genset shall be in sub-base style fuel storage tanks, packaged together integrally within the weatherproof, sound attenuated enclosure assembly, as specified in 2.15 hereinafter.
- B. Shall comply with NFPA 37 and NFPA 30, and have the following features:
 - 1. Injection pump(s) and nozzles.
 - 2. Plungers shall be carefully lapped for precision fit and shall not require any packing.
 - 3. Filters or screens that require periodic cleaning or replacement shall not be permitted in the injection system assemblies.
 - 4. Engine-mounted manual hand-priming pump shall be provided for priming engine by Operators. Gear-driven fuel transfer pump shall lift fuel from sub-base tank through primary filter then deliver pressurized fuel through secondary filter to injectors. Return surplus oil from the injectors shall be routed through an integrally mounted packaged fuel cooler assembly within the genset enclosure before returning to the sub-base storage tank by gravity or a pump.

- 5. Filter System:
 - a. Dual element primary filters with integral isolation valve shall be located between the sub-base fuel oil storage tank and the engine.
 - b. Secondary filters (engine-mounted) shall be located such that the oil will be thoroughly filtered before it reaches the injection system assemblies.
 - c. Filters shall be cleanable or replaceable type and shall entrap and remove water from oil as recommended by the engine manufacturer.
- C. SUB-BASE FUEL TANK: Provide Double Wall Generator Base Fuel tank of 7,500 gallon useable capacity for each generator. Capacity calculation shall allow for unuseable fuel below suction tube, and air-gap above fuel inside the tank for normal expansion/contraction. Comply with UL 2085, Protected Sub-Base mounted fuel tank assembly, complete with electrical stub-up as required and generator support cross members.
 - 1. Containment: Integral rupture basin with a capacity of 110 percent of nominal capacity of primary tank.
 - 2. Fittings include:
 - a. 2" Supply line with integral check/foot valve.
 - b. 2" Return line.
 - 2" Mechanical Fuel Gauge. с.
 - 4" x 2"Fill Port with drop tube. d.
 - e. 2" Leak Detection.
 - 2" Spare Ports, along with dedicated 2" ports with drop tube at f. opposite ends of tank for integration with permanent fuel cleaning system supply/return.
 - 2" Level Sensor Ports. q.
 - 2" Normal Vent [extended to 12' above grade] h.
 - i. Emergency Vent (size adjusted to code) [extended to 12' above grade]
 - Secondary Emergency Vent (size adjusted to code, and extended to j. 12' above grade)
 - OFPV (overfill prevention valve) and high level alarm for visual k. and audible indication locally at fill port.
 - Hazmat Decal kit. 1
 - m. Flame arrestor.
 - n. Fill spill containment basin, with drain valve to main tank.

- 3. Float sensor standard settings.
 - a. 95% Critical High (wired to overfill panel).
 - b. 90% High (wired to overfill panel).
 - c. 30% Low (wired to generator control panel).
 - d. Leak detection / tank rupture (wired to generator control
 panel).
- Five gallon spill box containing fuel fill gauge, with locking lid and ½" T-Handle drain.
- 5. Audible/Visual overfill alarm panel with Fuel level sensor switches wired to audio/visual alarm panel.
- 6. Fuel tank tested to 3 PSI.
- 7. Paint: Semi-gloxx black standard.
- D. Permanent Fuel Cleaning System:
 - 1. Provide one (1) Fuel Technologies Int'l FTI-5A packaged fuel cleaning system wall mounted within one generator enclosure and piped to supply/return at opposite ends of sub-base tank, together with (2) electrically actuated ball valves (field piping by contractor for supply/return at other generator tank) so that both tanks are automatically cleaned by one (1) FTI-5A. Wire FTI-5A alarm dry contact to generator control panel, programmed at generator control panel to annunciate at paralleling control switchgear..
- E. Piping System: Black steel, 1-inch, standard weight ASTM A-53 pipe and necessary manual isolation hand valves between sub-base tanks of each genset, supply and return, with flexible fittings suitable for the fuel furnished.

2.6 COOLING SYSTEM

- A. Liquid-cooled, closed loop, with fin-tube radiator mounted on the engine generator, and integral engine driven circulating pump.
- B. Cooling capacity shall not be less than the cooling requirements of the engine generator and its charge air aftercooler while operating continuously at 100% of its specified rating at 1,400 ft. elevation and 104°F ambient conditions specified, allowing for de-rate due to temperature rise across engine within generator enclosure.

- C. Water circulating pumps shall be the centrifugal type driven by engine. Incorporate pressure relief devices where required to prevent excessive pressure increase after the engine stops.
- D. Coolant shall be extended-life (6-year)antifreeze solution, 50% ethylene glycol and 50% soft water, with corrosion inhibitor additive as recommended by the manufacturer.
- E. Fan shall be driven by multiple belts from engine shaft with hazard guards for protection of personnel.
- F. Coolant hoses shall be flexible, per manufacturer's recommendation.
- G. Self-contained thermostatic-control valve shall modulate coolant flow to maintain optimum constant coolant temperature, as recommended by the engine manufacturer.
- H. Motor-Operated Dampers:
 - Dampers shall be provided as an integral part of the enclosure assembly and shall be two-position, electric motor-operated to the closed position; spring-open when de-energized (engine running).
 - Dampers shall open simultaneously with the starting of the diesel engine and shall close simultaneously with the stopping of the diesel engine.

2.7 AIR INTAKE AND EXHAUST SYSTEMS

- A. Air Intake:
 - Provide an engine-mounted air cleaner with replaceable dry filter and dirty filter indicator. Air cleaner housing shall be painted carbon steel bracket-mounted to engine, and painted match engine color. Open paper element style not allowed.
- B. Exhaust System:
 - Where a turbocharger is required, they shall be engine-mounted, driven by the engine gases, securely braced against vibration and adequately lubricated by the engine's filtered lubrication system.
 - 2. Exhaust Muffler:

Shall be super-critical grade type matched to the overall attenuation characteristics of the packaged enclosure specified in 2.15, and capable of the following noise attenuation:

Octave Band Hertz (Mid Frequency)	Minimum db Attenuation (.0002 Microbar Reference)
31	5
63	10

125	27
500	37
1000	31
2000	26
4000	25
8000	26

- 3. Pressure drop in the complete exhaust system shall be small enough for satisfactory operation of the engine generator while it is delivering 100% of its specified rating.
- 4. Exhaust pipe size between engine and muffler, and downstream of the muffler, shall be as recommended by the engine manufacturer to minimize velocity and back-pressure restriction within published specs of the engine manufacture.
- 5. Connections at the engine exhaust outlet shall be made with a flexible exhaust pipe. Provide bolted type pipe flanges welded to each end of the flexible section.
- C. Condensate drain at muffler shall be provided with a threaded drain.
- D. Exhaust Piping and Rain Cap: Exhaust muffler shall be internally mounted within generator enclosure with vertical discharge through the roof, and equipped with a heavy duty hinged rain cap. Exterior discharge pipe and rain cap to be stainless steel construction.
- E. Insulation for Exhaust Pipe and Muffler within Enclosure:
 - Calcium silicate minimum 75 mm (2 inches) thick with aluminum jacket or wire-on insulation blankets.
 - Insulation and jacket are not required on engine exhaust manifolds or turbochargers.
- F. Penetration through roof of enclosure shall be protected against rain ingestion while engine is running or not running, via vertically oriented welded flashing around roof penetration and rain cover welded to exhaust pipe.
- G. Vertical exhaust piping shall be provided with a hinged, gravityoperated, self-closing rain cover, both fabricated of stainless steel to eliminate corrosion over time.

2.8 ENGINE STARTING SYSTEM

A. The engine starting system shall start the engine at any position of the flywheel.

- B. Dual heavy-duty electric cranking motors for each engine for redundancy:
 - 1. Shall be engine-mounted.
 - 2. Shall crank the engine via a gear drive.
 - 3. Rating shall be adequate for cranking the cold engine at the voltage provided by the battery system, and at the required RPM during five consecutive starting attempts of 10 seconds cranking each at 10-second intervals, for a total of 50 seconds of actual cranking without damage (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
- C. Batteries shall be nickel-cadmium high discharge rate type, qty four(4) for system rating; not less than 2800cca/380ah.
 - 1. Each battery cell shall have minimum and maximum electrolyte level indicators and a flip-top flame arrestor vent cap.
 - 2. Batteries shall have connector covers for protection against external short circuits.
 - 3. With the charger disconnected, the batteries shall have sufficient capacity so that the total system voltage does not fall below 85% of the nominal system voltage with the following demands: Five consecutive starting attempts of 10 seconds cranking at 10 second intervals for a total of 50 seconds of actual cranking (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
 - 4. Battery racks shall be metal with an alkali-resistant finish and thermal insulation, and secured to the floor.
- D. Battery Charger:
 - 1. A current-limiting battery charger, conforming to UL 1236, shall be provided and shall automatically recharge the batteries. The charger shall be capable of an equalize-charging rate for recharging fully depleted batteries within 24 hours and a floating charge rate for maintaining the batteries at fully charged condition.
 - 2. An ammeter shall be provided to indicate charging rate. A voltmeter shall be provided to indicate charging voltage.

2.9 JACKET COOLANT HEATER

A. Provide a thermostatically-controlled electric heater mounted to the genset baseframe with high temperature reinforced hoses and isolation valves at engine block so that engine coolant temperature when engine is not running is automatically maintained within plus or minus 1.7 °C

(3 °F) of the temperature recommended by the engine manufacturer to meet the starting time specified at the minimum winter outdoor temperature.

2.10 GENERATOR

- A. Synchronous, amortisseur windings, bracket-bearing, self-venting, rotating-field type connected directly to the engine.
- B. Lifting lugs designed for convenient connection to and removal from the engine.
- C. Integral poles and spider, or individual poles dove-tailed to the spider.
- D. Designed for sustained short-circuit currents in conformance with NEMA Standards; 300% for 10 seconds.
- E. Designed for sustained operation at 100% of the RPM specified for the engine generator without damage.
- F. Telephone influence factor shall conform to NEMA MG 1.
- G. Furnished with brushless permanent magnet excitation system and digital programmable voltage regulator assembly.
- H. Nameplates attached to the generator shall show the manufacturer's name, equipment identification, serial number, voltage ratings, field current ratings, kW/kVA output ratings, power factor rating, time rating, temperature rise ratings, RPM ratings, full load current rating, number of phases and frequency, and date of manufacture.
- I. The grounded (neutral) conductor shall be electrically isolated from equipment ground and terminated to earth ground externally through a Neutral Grounding Resistor.

2.11 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Provide a floor-mounted, front access only, 15 kV compact vacuum breaker assembly mounted inside the weatherproof generator enclosure. The breaker assembly shall include a SEL 700G protective relay, fiber optic transceiver, PLC unit for interpreting paralleling controls, and a 125VDC - 24VDC power supply. The genset differential protection zone shall encompass the neutral end of the generator windings to the load side of the vacuum breaker.
- B. Electrical distribution from the gensets shall be 3 wire. The generator neutrals shall be grounded locally through a Neutral Grounding Resistor (NGR). Each NGR is to be NEMA 3R outdoor, pad mounted adjacent to each genset, and provided with a fused disconnect switch. NGR's shall be rated 200 amps for 10 seconds, 7200 volts,

26 32 13 ENGINE GENERATORS

30 JANUARY 2015 CONSTRUCTION DOCUMENTS 15

760°C. Provide 200:5 CT mounted within NGR for wiring to paralleling control switchgear for integrating ground-fault indication with other engine generator alarm indications. Ground fault protection shall be provided as part of the generator medium voltage circuit breaker switchgear cubicle utilizing neutral current sensor at the generator neutral grounding resistor.

2.12 CONTROLS

- A. Shall include Engine Generator Control Cubicle(s) and Remote Annunciator Panel.
- B. General:
 - 1. Control equipment shall be in accordance with UL 508, NEMA ICS-4, ICS-6, and ANSI C37.90.1.
 - 2. Panels shall be in accordance with UL 50.
 - 3. Cubicles shall be in accordance with UL 891.
 - 4. Coordinate controls with the paralleling control switchgear shown on the drawings so that the systems will operate as specified.
 - 5. Cubicles:
 - a. Code gauge steel: manufacturer's recommended heavy gauge steel with factory primer and light gray finish.
 - b. Doors shall be gasketed, attached with concealed or semiconcealed hinges, and shall have a permanent means of latching in closed position.
 - c. Panels shall be wall-mounted within generator enclosure.
 - d. Door locks for panels and cubicles shall be keyed identically to operate from a single key.
 - 6. Wiring: Insulated, rated at 600 V.
 - a. Install the wiring in vertical and horizontal runs, neatly harnessed.
 - b. Terminate all external wiring at heavy duty, pressure-type, terminal blocks.
 - 7. The equipment, wiring terminals, and wires shall be clearly and permanently labeled.
 - 8. The appropriate wiring diagrams shall be laminated or mounted under plexiglass within the frame on the inside of the cubicles and panels.
 - 9. All indicating lamps and switches shall be accessible and mounted on the cubicle doors.

- 10. Meters shall be per the requirements of Section 25 10 10, ADVANCED UTILITY METERING.
- 11. The manufacturer shall coordinate the interconnection and programming of the generator controls with all related equipment, including generator paralleling controls as applicable, specified in other sections.
- C. Engine generator Control Cubicle:
 - 1. Starting and Stopping Controls:
 - a. A three-position, maintained-contact type selector switch with positions marked "AUTOMATIC," "OFF," and "MANUAL." Provide flashing amber light for OFF and MANUAL positions.
 - b. A momentary contact push-button switch with positions marked "MANUAL START" and "MANUAL STOP."
 - c. Selector switch in AUTOMATIC position shall cause the engine to start automatically when a single pole contact in a remote device closes. When the generator's output voltage increases to not less than 90% of its rated voltage, and its frequency increases to not less than 58 Hz, the remote devices shall transfer the load to the generator. An adjustable time delay relay, in the 0 to 15 minute range, shall cause the engine generator to continue operating without any load after completion of the period of operation with load. Upon completion of the additional 0 to 15 minute (adjustable) period, the engine generator shall stop.
 - d. Selector switch in OFF position shall prevent the engine from starting either automatically or manually. Selector switch in MANUAL position shall also cause the engine to start when the manual start push-button is depressed momentarily.
 - e. With selector switch is in MANUAL position, depressing the MANUAL STOP push-button momentarily shall stop the engine after a cooldown period.
 - f. A maintained-contact, red mushroom-head push-button switch marked "EMERGENCY STOP" will cause the engine to stop without a cooldown period, independent of the position of the selector switch.
 - 2. Engine Cranking Controls:
 - a. The cranking cycles shall be controlled by a timer that will be independent of the battery voltage fluctuations.

- b. The controls shall crank the engine through one complete cranking cycle, consisting of four starting attempts of 10 seconds each with 10 seconds between each attempt.
- c. Total actual cranking time for the complete cranking cycle shall be 40 seconds during a 70-second interval.
- d. Cranking shall terminate when the engine starts so that the starting system will not be damaged. Termination of the cranking shall be controlled by self-contained, speed-sensitive switch. The switch shall prevent re-cranking of the engine until after the engine stops.
- e. After the engine has stopped, the cranking control shall reset.
- 3. Supervisory Controls:
 - a. Overcrank:
 - When the cranking control system completes one cranking cycle (four starting attempts), without starting the engine, the OVERCRANK signal light and the audible alarm shall be energized.
 - The cranking control system shall lock-out, and shall require a manual reset.
 - b. Coolant Temperature:
 - When the temperature rises to the predetermined first stage level, the HIGH COOLANT TEMPERATURE warning alarm signal light and the audible alarm shall be energized.
 - 2) When the temperature rises to the predetermined second stage level, which shall be low enough to prevent any damage to the engine but high enough to result in engine shutdown, the HIGH COOLANT TEMPERATURE failure signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage temperature settings shall be approximately -12 $^\circ\text{C}$ (10 $^\circ\text{F})$.
 - Permanently indicate the temperature settings near the associated signal light.
 - 5) When the coolant temperature drops to below 21 °C (70 °F), the "LOW COOLANT TEMPERATURE" signal light and the audible alarm shall be energized.
 - c. Low Coolant Level: When the coolant level falls below the minimum level recommended by the manufacturer, the LOW COOLANT LEVEL signal light and audible alarm shall be energized.

- d. Lubricating Oil Pressure:
 - 1) When the pressure falls to the predetermined first stage level, the OIL PRESSURE warning alarm signal light and the audible alarm shall be energized.
 - 2) When the pressure falls to the predetermined second stage level, which shall be high enough to prevent damage to the engine and low enough to result in engine shutdown, the OIL PRESSURE failure signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage pressure settings shall be approximately 15% of the oil pressure.
 - 4) The pressure settings near the associated signal light shall be permanently displayed so that the running oil pressure can be compared to the target (setpoint) value.
- e. Overspeed:
 - 1) When the engine RPM exceeds the maximum RPM recommended by the manufacturer of the engine, the engine shall stop.
 - 2) Simultaneously, the OVERSPEED signal light and the audible alarm shall be energized.
- f. Fuel Tank Leak/Rupture:

In the event that fuel is sensed by the fuel oil level switch within the secondary containment of the sub-base tank, the FUEL TANK LEAK/RUPTURE light and the audible alarm shall be energized.

g. Low Fuel - Main Storage Tank:

When the fuel oil level in the storage tank decreases to less than one-third of total tank capacity, the LOW FUEL-MAIN STORAGE TANK signal light and audible alarm shall be energized.

h. Reset Alarms and Signals:

Overcrank, Coolant Temperature, Coolant Level, Oil Pressure, Overspeed, and Low Fuel signal lights and the associated audible alarms shall require manual reset. A momentary-contact silencing switch and push-button shall silence the audible alarm by using relays or solid state devices to seal in the audible alarm in the de-energized condition. Elimination of the alarm condition shall automatically release the sealed-in circuit for the audible alarm so that it will be automatically energized again when the next alarm condition occurs. The signal lights shall require manual reset after elimination of the condition which caused them to be

energized. Install the audible alarm just outside the engine generator room in a location as directed by the COTR. The audible alarm shall be rated for 85 dB at 3 M (10 feet).

- 4. Monitoring Devices:
 - a. Provide LCD displays for the cooling water temperatures, lubricating oil pressures, engine exhaust temperatures, and battery voltage. These displays may be engine mounted with proper vibration isolation.
 - b. A running time indicator, totalizing not fewer than 9,999 hours, and an electric type tachometer.
 - c. A voltmeter, ammeter, frequency meter, kilowatt meter, manual adjusting knob for the output voltage, and the other items shown on the drawings shall be mounted on the front of the generator control panels.
 - d. Install potential and current transformers as required.
 - e. Visual Indications:
 - 1) OVERCRANK
 - 2) HIGH COOLANT TEMPERATURE warning alarm
 - 3) HIGH COOLANT TEMPERATURE failure
 - 4) LOW COOLANT TEMPERATURE
 - 5) OIL PRESSURE warning alarm
 - 6) OIL PRESSURE failure
 - 7) LOW COOLANT LEVEL
 - 8) GENERATOR BREAKER OPEN OR CLOSED STATUS
 - 9) OVERSPEED
 - 10) FUEL TANK LEAK/RUPTURE
 - 11) LOW FUEL MAIN STORAGE TANK
 - f. Lamp Test: The LAMP TEST momentary contact switch shall momentarily actuate the alarm buzzer and all the indicating lamps.
- 5. Automatic Voltage Regulator:
 - a. Shall correct voltage fluctuations rapidly and restore the output voltage to the predetermined level with a minimum amount of hunting.
 - b. Shall include voltage level rheostat located inside the control cubicle.
 - c. Provide a 3-phase automatic voltage regulator immune to waveform distortion.

2.13 REMOTE ANNUNCIATOR PANEL

- A. A remote annunciator panel dedicated to each generator unit shall be installed at the Engineering Control Center, Boiler Plant, and VA Police Dispatch.
- B. The annunciator shall indicate alarm conditions as required by NFPA 110.
- C. Include control wiring between the remote annunciator panel and the engine generator. Wiring shall be as required by the manufacturer.

2.14 SOUND-ATTENUATED ENCLOSURE

- A. The engine generator and related equipment shall be housed in an outdoor weatherproof enclosure designed and manufactured in accordance with IBC seismic standards and complying with appropriate snow, wind, floor, roof, live load requirements; having Oregon Gold Seal certification, and manufactured at an ISO9001 certified NQA #15216 facility.
- B. The enclosure shall be provided with a factory-installed and factorywired three-phase 208Y/120V wall-mounted panelboard, rated for and having sufficient 208V and 120V breakers to serve engine block heater, battery charger, convenience receptacles, and compact fluorescent light fixtures with vapor-tight guards and switches, battery-backed emergency lighting, exterior area lighting fixtures, motorized ventilation inlet louver, and permanent fuel cleaning system.
- C. Enclosure shall be constructed of 4"x4" tubular steel framing with 4"x2" cross members, fully welded. Provide structural members for exhaust muffler mounting. Wall and roof panels are minimum 14 gauge galvanneal with stiffeners welded 24" on-center, having fire-retardant mineral wool insulation finished on the inside with polypropylene sheeting and 22ga perforated galvanneal panels. Provide MC6x15.3 channel at enclosure base around perimeter. Provide pitched roof for rain-water run-off, along with permanent safety rings mitigating fall risks for personnel properly tethered.
- D. Enclosure shall be walk-in type and sound-attenuated (maximum 85 dBA at 1525 mm (5 feet) from any side, top and bottom to no more than 75 dBA when measured at 15 M (50 feet) horizontally from any part of the enclosure or appendage on the enclosure. Sound ratings shall be based on full-load condition of engine generator in a single unit operation condition.

- E. Airflow configuration shall be intake through rear of unit having birdscreen and motorized louver (spring open and motor close), together with gravity backdraft damper at radiator discharge, and discharge hood to re-direct air vertically up. Provide "clean out" access opening into the vertical discharge hood area. Enclosure shall be suitable for winds up to 193 kmh (120 miles per hour) roof load shall be equal to or greater than 200 kg/sq m (40 pounds per square foot) Non-distributed loading as required to meet IBC Standards.
- F. The enclosure shall meet the following requirements:
 - Radiator exhaust outlet shall be ducted through the roof of the enclosure.
 - Paint system consisting of solvent cleaning per SSPC-SP1, epoxy primer (2-5 mils DFT) and polyurethane top coat (1-3 mils DFT), in color selected by the owner from manufacturers paint chart.
 - Unit shall have sufficient guards to prevent entrance by birds or small animals.
 - 4. Batteries shall fit inside enclosure and alongside the engine generator. Batteries under the generator are not acceptable.
 - 5. The muffler shall be mounted and thermally-insulated inside the enclosure, complete with wire-on insulation blanket.
 - 6. Provide bolting hardware entirely of stainless steel.
 - 7. Provide three (3) single man-doors and one (1) double-wide access door, all with stainless steel hinges, lockable freezer-style latches having emergency egress interior handles, neoprene gasketed around perimeter, with rain drip edges overhead.
 - Engine oil drain, coolant drain, and crankcase breathers shall be extended to external wall surface of enclosure assy.
 - 9. Provide three sets of personnel platforms with handrails and stairs on one end, one assembly each along both sides and one in the middle shared between the gensets, of painted carbon steel construction except galvanized removable open grid treads.

2.15 LOAD BANK

A. Description: 750 kW, 12.47 kV, 3-phase, permanent outdoor, weatherproof, remote-controlled, forced-air-cooled, resistive unit capable of providing a balanced three-phase, delta-connected load to genset at 50 percent of the genset rated capacity. Unit shall be capable of selective control of load in 50 kW steps. An Automatic Load Step Controller shall be provided for maintaining a load on the generator set. The controller shall automatically add or subtract load steps in response to load changes as to maintain a minimum load level on the generator set. The controller shall include an initial timedelay circuit, and automatic time delayed load step application circuit. A remote contact closure shall be provided for activation and transfer of control. A separate current transformer shall be supplied loose for mounting and sensing of downstream loads.

- B. Resistive Load Elements: Corrosion-resistant chromium alloy with ceramic and stainless-steel supports. Elements shall be double insulated and designed for repetitive on-off cycling. Elements shall be mounted in removable aluminized-steel heater cases. Galvanized steel is prohibited. Element's maximum resistance shall be between 100 and 105 percent of rated resistance.
- C. Load-Bank Heat Dissipation: Integral fan with totally enclosed motor shall provide uniform cooling airflow through load elements. Airflow and coil operating current shall be such that, at maximum load, with ambient temperature at the upper end of specified range, load-bank elements operate at not more than 50 percent of maximum continuous temperature rating of resistance elements.
- D. Load-Element Switching: Remote-controlled contactors switch groups of load elements. Contactor coils are rated 120 V. An integral control power transformer shall be provided to supply 120V, 1 phase, 60 Hz to the load bank's control and motor starter circuitry. Transformer primary and secondary control circuits shall be fuse protected. Contactor Enclosures: Heated by thermostatically controlled strip heaters to prevent condensation.
- E. Load-Bank Enclosures: NEMA 250, aluminized steel complying with NEMA ICS 6. Louvers at cooling-air intake and discharge openings shall prevent entry of rain and snow. Openings for airflow shall be screened with 1/2-inch- (13-mm-) square, galvanized-steel mesh. Reactive load bank shall include automatic shutters at air intake and discharge. Components other than resistive elements shall receive exterior epoxy coating with compatible primer.
- F. Protective Devices: Power input circuits to load banks shall be fused, and fuses shall be selected to coordinate with generator circuit breaker. Fuse blocks shall be located in contactor enclosure. Cooling airflow and overtemperature sensors shall automatically shut down and lock out load bank until manually reset. Safety interlocks on access

panels and doors shall disconnect load power, control, and heater circuits. Fan motor shall be separately protected by overload and short-circuit devices. Short-circuit devices shall be noninterchangeable fuses with 200,000 A short-circuit current rating.

- G. Remote-Control Panel: Separate from load bank in NEMA 250, NEMA 4 enclosure with a control power switch and pilot light, and switches controlling groups of load elements.
- H. Control Sequence: Control panel may be preset for adjustable singlestep loading of generator during automatic exercising.

2.16 SPARE PARTS

- A. For each engine generator:
 - 1. Six lubricating oil filters.
 - 2. Six primary fuel oil filters.
 - 3. Six secondary fuel oil filters.
 - 4. Six intake air filters.
 - 5. Maintenance, troubleshooting, and repair kit.
- B. For each battery charger:
 - 1. Three complete sets of fuses.
- C. For load bank:
 - 1. Three complete sets of fuses.
- D. For each control panel:
 - 1. Three complete sets of fuses, if applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install concrete bases of dimensions shown on the drawings.
- B. Installation of the engine generator shall comply with manufacturer's written instructions and with NFPA 110.
- C. Mounting:
 - Mounting flanges of fuel tank shall be attached directly to concrete base using wedge anchors of quantity, size and embedment according to selection calculations prepared by a professional structural engineer licensed in Oregon State.
 - Install sufficient anchor bolts so that the floor (pad) bearing pressure under each isolator is within the floor (pad) loading specification.
 - Install equal number of bolts on each side of the engine generator's base.

- D. In seismic areas, engine generators shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- E. Balance:
 - The vibration velocity in the horizontal, vertical, and axial directions shall not exceed 16.25 mm (0.65 inch) per second peak at any specific frequency. These limits apply to main structural components such as the engine block and the generator frame at the bearings.
- F. Connect all components of the generator system so that they will continue to be energized during failure of the normal electrical power supply system.
- G. Install supply and return fuel piping between each engine generator and the permanent fuel cleaning system.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Provide the services of a factory-authorized, factory-trained representative of the engine generator manufacturer to inspect fieldassembled components and equipment installation, and to supervise the field tests.
- B. When the complete engine generator system has been installed and prior to the final inspection, test all components of the system in the presence of the COTR for proper operation of the individual components and the complete system and to eliminate electrical and mechanical defects.
- C. Furnish and install fuel oil, lubricating oil, long-life anti-freeze liquid, water treatment, and rust-inhibitor; furnish temporary portable transformer, medium voltage cabling, resistive/reactive load bank, and low voltage cabling as required for testing of the engine generator system.

- D. Visual Inspection: Visually verify proper installation of engine generator and all components per manufacturer's pre-functional installation checklist.
- E. Set engine generator circuit breaker protective functions per the settings indicated in the results of the selective coordination study provided.
- F. Field Tests:
 - 1. Perform manufacturer's after-starting checks and inspections.
 - Test the engine generator for six hours of continuous operation as follows:
 - a. Two hours while delivering 100% of the specified kW.
 - b. Four hours while the engine generator is delivering 80% of its specified kW rating.
 - c. If during the 6-hour continuous test, an engine generator failure occurs or the engine generator cannot maintain specified power output, the test(s) are null and void. After repair and/or adjustments, the test(s) shall be repeated at no additional cost to the Government until satisfactory results are attained.
 - 3. Record the following test data at 30-minute intervals:
 - a. Time of day, as well as reading of running time indicator.
 - b. kW.
 - c. Voltage on each phase.
 - d. Amperes on each phase.
 - e. Engine RPM.
 - f. Frequency.
 - g. Coolant water temperature.
 - h. Fuel pressure.
 - i. Oil pressure.
 - j. Outdoor temperature.
 - k. Average ambient temperature in the vicinity of the engine generator.
 - Demonstrate that the engine generator will attain proper voltage and frequency within the specified time limit from a cold start after the closing of a single contact.
 - 5. For proper tuning of paralleled generator system, furnish a resistive/reactive-type load bank for the testing of the engine generator system. Test loads shall always include adequate resistance and reactance to assure stability of the loads and

equipment during all of the testing operations. The test load kW rating shall not be less than 2,250kW/2,812kVA. Temporary portable step-down transformer rated 2,500kVA and medium voltage cabling also required. Installing contractor having medium voltage experience shall make all temporary MV connections.

- G. Starting System Test:
 - Demonstrate that the batteries and cranking motor are capable of five starting attempts of 10 seconds cranking each at 10-second intervals with the battery charger turned off.
- H. Remote Annunciator Panel Tests:

Simulate conditions to verify proper operation of each visual or audible indication, interconnecting hardware and software, and reset button.

- I. Fuel systems shall be flushed and tested per Section 23 10 00, FACILITY FUEL SYSTEMS: Fuel supply and storage requirements.
- J. Automatic Operation Tests:

Test the engine generator and associated paralleling switchgear control together as a system to demonstrate automatic starting, loading and unloading. The load for this test shall be the actual connected loads. Initiate loss of normal source and verify the specified sequence of operation. Restore the normal power source and verify the specified sequence of operation. Verify resetting of controls to normal.

- K. Parallel Operation Test:
 - Test the capability of each engine generator to parallel and share load with other engine generators, individually and in all combinations. During operations, record load-sharing characteristics of each engine generator in parallel operation. Provide multiple load banks as required. Record the following data:
 - a. Ambient temperature (at 15-minute intervals).
 - b. Generator output current (before and after load changes).
 - c. Generator output voltage (before and after load changes).
 - d. Power division and exchange between engine generators.
 - e. Real power (watts) and reactive power (vars) on each engine generator.
 - 2. Connect each engine generator, while operating at no load, in parallel with one other engine generator in the system, operating at rated kW, until all possible two-unit-in-parallel combinations have been tested. Verify stabilization of voltage and frequency within

specified bandwidths and proportional sharing of real and reactive loads. Document stabilization of voltage, frequency within specified bandwidth, the active power division, active power exchange, reactive power division, voltage and frequency stability, and transient response in the following steps for each combination.

- a. Divide the load proportionally between the engine generators and operate in parallel for 15 minutes.
- b. Increase the load in steps until each engine generator is loaded to its service load.
- c. Decrease the load in steps until each engine generator is loaded to approximately 25% of its rated kW.
- d. Increase the load in steps until each engine generator is loaded to approximately 50% of its rated kW. Verify stabilization of voltage and frequency within specified bandwidths and proportional sharing of real and reactive load.
- e. Reduce the sum of the loads on all engine generators to the rated kW of one engine generator.
- f. Transfer a load equal to the rated kW of one engine generator to and from each engine generator. Verify stabilization of voltage and frequency within specified bandwidths and proportional sharing of real and reactive load.
- 3. Connect each engine generator, while operating at no load, in parallel with all multiple combinations of all other engine generators in the system, while operating at rated kW, until all multiple combinations of parallel operations have been achieved.
- L. At the completion of the field tests, fill the main storage tank and day tank with fuel of grade and quality as recommended by the manufacturer of the engine. Fill all engine fluids to levels as recommended by manufacturer.
- M. When any defects are detected during the tests, correct all the deficiencies and repeat all or part of the 6-hour continuous test as requested by the COTR, at no additional cost to the Government.
- N. Provide test and inspection results in writing to the COTR.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the engine generator(s) and control and annunciation components are in good operating condition and properly performing the intended function.

3.4 INSTRUCTIONS AND FINAL INSPECTIONS

- A. Laminate or mount under acrylic resin a set of operating instructions for the system and install instructions within a frame mounted on the wall near the engine generator at a location per the COTR.
- B. Furnish the services of a competent, factory-trained technician for one 4-hour period for instructions to VA personnel in basic operation and maintenance of the equipment, on the date requested by the COTR.
- 3.5 COMPREHENSIVE TRAINING FOR VA OPERATING AND MAINTENANCE PERSONNEL
 - A. Provide factory classroom training, for two VA employees, in the proper operation and maintenance of the 1500 kW generator sets and associated 15kV switchgear and paralleling controls. Training shall include but not be limited to procedures and intervals for periodic engine maintenance, fuel polishing system operation and maintenance; engine generator electronic controls and monitoring systems operation; procedures for responding to system trouble alerts; paralleling switchgear automation fundamentals and operation; electronics systems diagnostics and user defined settings; switchgear protective relaying operations, settings, and adjustments; remote monitoring and control functions; use of software tools applicable to systems setup, maintenance, and operations.
 - B. Allow 40 hours of classroom instruction; provide printed operation and maintenance instructional materials bound in booklets or binders, and licensed copies of available software tools stored on flash drives.

---END---

SECTION 31 20 00 EARTHWORK

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

- A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
 - 1. Site preparation.
 - 2. Excavation.
 - 3. Underpinning.
 - 4. Filling and backfilling.
 - 5. Grading.
 - 6. Soil Disposal.
 - 7. Clean Up.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - 1. Fills: Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM D698.
 - Existing Subgrade (Except Footing Subgrade): Same materials as
 1.2.A.1, that are not capable of direct support of slabs, pavement,
 and similar items with possible exception of improvement by
 compaction, proofrolling, or similar methods.
 - 3. Existing Subgrade (Footings Only): Same as paragraph 1, but no fill or backfill. If materials differ from reference borings and design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings.
- C. Trench Earthwork: Trenchwork required for utility lines.

- D. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above.
- E. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D6938.
- F. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
- G. Backfill: Soil materials or controlled low strength material used to fill an excavation.
- H. Unauthorized excavation: Removal of materials beyond indicated sub-grade elevations or indicated lines and dimensions without written authorization by the Resident Engineer. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
- I. Authorized additional excavation: Removal of additional material authorized by the Resident Engineer based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.
- J. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
- K. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- L. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- M. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- N. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe.
- O. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk.
- P. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings. 31 20 00 5 DECEMBER 2014

EARTHWORK

5 DECEMBER 2014 100% DESIGN SUBMITTAL 2

- Q. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.
- R. Contaminated soils: Soil that contains contaminates as defined and determined by the Resident Engineer or the Government's testing agency.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.
- D. Erosion Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, and Section 32 90 00, PLANTING.
- E. Paving sub-grade requirements: Section 32 12 16, ASPHALT PAVING.

1.4 CLASSIFICATION OF EXCAVATION:

A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Furnish to Resident Engineer:
 - Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size.
 - 2. Soil samples.
 - a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - b. Laboratory compaction curve in accordance with ASTM D698 for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - c. Test reports for compliance with ASTM D2940 requirements for subbase material.

- d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations.
- e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated.
- 3. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): T99-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-10.....Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb) Rammer and a 457 mm (18 inch) Drop C. American Society for Testing and Materials (ASTM): C33-03.....Concrete Aggregate D448-08.....Standard Classification for Sizes of Aggregate for Road and Bridge Construction D698-07e1.....Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort $(12,400 \text{ ft. } lbf/ft^3 (600 \text{ kN } m/m^3))$ D1140-00.....Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve D1556-07.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand Cone Method D1557-09.....Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN m/m³)) D2167-08.....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method

D2487-11	.Standard Classification of Soils for Engineering
	Purposes (Unified Soil Classification System)
D2940-09	Standard Specifications for Graded Aggregate
	Material for Bases or Subbases for Highways or
	Airports
D6938-10	.Standard Test Method for In-Place Density and
	Water Content of Soil and Soil-Aggregate by
	Nuclear Methods (Shallow Depth

D. Society of Automotive Engineers (SAE): J732-07.....Specification Definitions - Loaders J1179-08.....Hydraulic Excavator and Backhoe Digging Forces E. Oregon Department of Transportation (ODOT):

2008 Standard Specifications for Construction

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
- B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
- C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2inch) sieve and not more than 12 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;.
- D. Trench Earthwork:
 - Trench Foundation: Where additional excavation is required due to groundwater or other unstable conditions so that the native material cannot support the pipe, furnish one of the following materials for trench foundation:.
 - a. 1''-0'' or $\frac{3}{4}''-0''$ base aggregate conforming to ODOT 02630.10.
 - b. Other approved material.
 - Bedding: If groundwater is present in the bedding zone, use 3/4" 0 aggregate bedding. If groundwater is not present, and unless

otherwise specified, furnish one of the following materials for bedding the pipe:

- a. 3/8" 0 PCC fine aggregate conforming to ODOT 02690.30(h).
- b. Commercially available 3/4" 0 aggregate.
- c. No. 10 0 sand drainage blanket material conforming to 33 46 10.
- d. Reasonably well graded, from maximum size to dust, sand with 100% passing the 3/8 inch sieve.
- e. Commercially available 3/8" 0 or No. 10 0 sand.
- 3. Pipe Zone Material
 - a. For flexible pipes, backfill the pipe zone with bedding material as described in this Section.
 - b. For rigid pipes, unless otherwise directed, furnish either:
 1) 1" 0 or 3/4" 0 base aggregate conforming to ODOT 02630.10, or
 - 2) Commercially available 1" 0 or 3/4" 0 aggregate.
- 4. Trench Backfill: Furnish the following materials where shown or required:
 - a. Class A Backfill Use native or common material that, in the opinion of the Engineer, meets the characteristics required for the specific surface loading or other criteria of the backfill zone.
 - b. Class B Backfill Use granular material consisting of gravel or crushed rock meeting the requirements of Section 31 20 10.
 Designated size shall be 1" - 0 or 3/4" 0.
 - c. Class C Backfill Use clean sand with no particle size larger than 1/4 inch.
 - d. Class D Backfill Use pit run or bar run material, well graded from coarse to fine. The maximum dimension shall be 3 inches.
 - e. Class E Backfill Use Controlled Density Fill (CDF) conforming to the following:
 - 1) Cement shall be Type I or Type II portland cement conforming to ASTM C150 or blended cements conforming to ASTM C595.
 - Aggregates shall be non-expansive or reactive with 100 percent passing a 3/8 inch sieve and less than 10 percent passing the No. 200 sieve. Aggregate shall meet the requirements of ASTM C33.
 - 3) Fly ash shall conform to ASTM C618, Class F.
 - 4) Mix CDF ingredients as follows (approximate weight per cubic yard):

Ingredient	Approximate Weight Per Cubic Yard
Portland Cement	100 lbs. (min.)
Fly Ash	300 lbs.
Commercial Sand	1,200 lbs.
Commercial Fine Sand	210 lbs.
3/8 inch Aggregate	1,450 lbs.
Water	300 lbs. (max)
Total Air (percent)	6%

Mix may include pozzolan. Slump shall be between 5 and 10 inches. E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size

- 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.
- F. Granular Fill:
 - Granular fill shall consist of 1"-0" crushed rock conforming to ODOT 00641.
- G. Requirements for Offsite Soils: Offsite soils brought in for use as backfill shall comply with section 00160.60 and 00160.80 of the ODOT 2008 Standard Specifications for Construction.
- H. Buried Warning and Identification Tape: Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red:	Electric
Yellow:	Gas, Oil, Dangerous Materials
Orange:	Telephone and Other Communications
Blue:	Water Systems
Green:	Sewer Systems
White:	Steam Systems
Gray:	Compressed Air

I. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500

psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.

- J. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m (3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- K. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from areas within 4500 mm (15 feet) of new construction and 2250 mm (7.5 feet) of utility lines when removal is approved in advance by Resident Engineer. Remove materials from Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in construction area. Immediately repair damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Do not store building materials closer to trees and shrubs, that are to remain, than farthest extension of their limbs.
- D. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by Resident Engineer. Eliminate foreign materials, such as weeds, roots, stones, subsoil, frozen clods, and

similar foreign materials larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed.

- E. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center.
- F. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades.
 - 1. Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
 - 2. Locations of existing elevations indicated on plans are approximate from a site survey that measured spot elevations and subsequently generated existing contours and spot elevations. Proposed spot elevations and contour lines have been developed utilizing the existing conditions survey and developed contour lines and may be approximate. Contractor is responsible to notify Resident Engineer of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify Resident Engineer of any differences between existing or constructed grades, as compared to those shown on the plans.
 - 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans.
 - 4. Finish grading is specified in Section 32 90 00, PLANTING.

G. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the Resident Engineer, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
 - Design of the temporary support of excavation system is the responsibility of the Contractor. The Contractor shall submit a Shoring and Sheeting plan for approval 15 days prior to starting work. Submit drawings and calculations, certified by a registered professional engineer, describing the methods for shoring and sheeting of excavations. Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving.
 - Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the Resident Engineer.
 - Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.
 - 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall underpin the existing foundation, per Section 3.3 under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
 - 5. The Contractor is required to hire a Professional Geotechnical Engineer to provide inspection of excavations and soil/groundwater conditions throughout construction. The Geotechnical Engineer shall be responsible for performing pre-construction and periodic site visits throughout construction to assess site conditions. The Geotechnical Engineer shall update the excavation, sheeting and dewatering plans as construction progresses to reflect changing conditions and shall submit an updated plan if necessary. A written

report shall be submitted, at least monthly, informing the Contractor and Resident Engineer of the status of the plan and an accounting of the Contractor's adherence to the plan addressing any present or potential problems. The Geotechnical Engineer shall be available to meet with the Resident Engineer at any time throughout the contract duration.

- B. Excavation Drainage: Operate pumping equipment and/or provide other materials, means and equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 0.5 m (1.5 feet) below the working level.
- C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the Resident Engineer. for the blasting operations. Blasting will not be permitted.
- D. Proofrolling:
 - After rough grade has been established in cut areas and prior to placement of fill in fill areas under building and pavements, proofroll exposed subgrade with a fully loaded dump truck to check for pockets of soft material.
 - 2. Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. After stripping proof roll the existing subgrade of the inverter, generator, load 31 20 00 EARTHWORK 5 DECEMBER 2014 100% DESIGN SUBMITTAL

11

bank, and shed slabs as well as Building 231 paving areas with six passes of a dump truck loaded with 6 cubic meters (4 cubic yards) of soil. Operate the truck in a systematic manner to ensure the number of passes over all areas, and at speeds between 4 to 5.5 km/hour (2 1/2 to 3 1/2 mph). Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut as directed by the Resident Engineer. Maintain subgrade until succeeding operation has been accomplished.

- E. Building Earthwork:
 - 1. Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft materials to a solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings.
 - Do not tamp earth for backfilling in footing bottoms, except as specified.
 - 6. Slope grades to direct water away from excavations and to prevent ponding.
 - 7. Capillary water barrier (granular fill) under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor.
 - 8. Ensure that footing subgrades have been inspected and approved by the Resident Engineer prior to concrete placement. Excavate to bottom of pile cap prior to placing or driving piles, unless authorized otherwise by the Resident Engineer. Backfill and compact over excavations and changes in grade due to pile driving operations to 95 percent of ASTM D698 maximum density.
- F. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer and gravity irrigation):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell holes scooped out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular

material placed in layers not exceeding 150 mm (6 inches) loose thickness.

- d. Length of open trench in advance of piping laying shall not be greater than is authorized by Resident Engineer.
- e. Provide buried utility lines with utility identification tape.
 Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- g. Bedding and backfill shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with ODOT 00405.12. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide backfill materials indicated on drawings.
- 2. Sanitary and storm sewer and gravity irrigation trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of pipe shall be 600 mm (24 inches) maximum for pipe up to and including 300 mm (12 inches) diameter, and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - 1) Bed bottom quadrant of pipe on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose 31 20 00 5 DECEMBER 2014 EARTHWORK 100% DESIGN SUBMITTAL

13

thickness.1) Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.

- 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one sixth of pipe diameter below pipe to 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.
- b. Place and compact as specified remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- c. Use granular fill for bedding where rock or rocky materials are excavated.
- d. Provide buried utility lines with utility identification tape.
 Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
- e. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- f. Bedding and backfill shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with ODOT 00405.12. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698 maximum density. Plastic piping shall have bedding to spring line of pipe
- G. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. 31 20 00 EARTHWORK 5 DECEMBER 2014 100% DESIGN SUBMITTAL

14

Project #: 692-14-101

Excavation shall be accomplished as required by drawings and specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by Resident Engineer as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not. When unsuitable material is encountered and removed, contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on volume in cut section only. Removal and disposal of unsuitable material from existing soil pile as indicated on the Drawings will not be considered as differing site conditions.

- 1. Site Grading:
 - a. Provide a smooth transition between adjacent existing grades and new grades.
 - b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
 - c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances:
 - 1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch).
 - 2) Walks: Plus or minus 25 mm (1 inch).
 - 3) Pavements: Plus or minus 13 mm (1 inch).
 - d. Grading Inside Building Lines: Finish subgrade to a tolerance of 13 mm (1/2 inch) when tested with a 3000 mm (10 foot) straightedge.

3.3 UNDERPINNING:

A. Design of the underpinning system is the responsibility of the Contractor and should be designed by a registered professional engineer and is subject to review and approval by the Resident Engineer. Underpinning of existing building foundations, as indicated on structural drawings, or where excavation undermines existing foundations, shall be accomplished in the following manner:

- Make general excavation for new construction, where new foundations are to be below existing foundations, to elevation of new foundations (or sized stone subbase), maintaining a 45 degree sloped berm.
- For underpinning pits, underpin existing wall foundations by excavating 1200 mm (4 feet) wide pits to depth shown on drawings skipping 3 sections at any one time so as to maintain support for wall at all times.
- 3. Underpin intervening sections one at a time; no adjacent sections shall be underpinned until concrete in adjacent sections shall have reached 20 MPa (2500 psi) strength and have been dry packed with non-shrink grout to obtain positive bearing. Sheet and brace underpinning pits if soil will not stand on a vertical cut during this operation, or as required for safety of workmen. Repack any voids behind sheeting to prevent sloughing which could cause settlement of existing foundations. Contractor performing this portion of work shall have been prequalified by Resident Engineer as having previously performed successfully this type of work or will demonstrate his capability for successfully performing this work. It shall be sole responsibility of the Contractor to guard against objectionable movement or settlement and to preserve integrity of existing structures.
- The tip elevation of the underpinning pits shall be a minimum of 900 mm (3 feet) below the adjacent excavation elevation.
- 5. Subgrades at the tip of the underpinning pit shall be clean, dry, and free of debris and shall be observed by the Resident Engineer prior to concrete placement.
- 6. Concrete shall not be free fall greater than 3000 mm (10 feet) into the pit.

3.4 FILLING AND BACKFILLING:

A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, foundation drainage, and pipes coming in contact with backfill have been installed and work inspected and approved by Resident Engineer.

Project #: 692-14-101

- B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost.
- C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without prior approval of Resident Engineer. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesive materials to prevent wedging action or eccentric loading upon or against the structure. Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below:
 - 1. Fills, Embankments, and Backfill
 - a. Under proposed structures, building slabs, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material in accordance with ASTM D698 95 percent.
 - b. Curbs, curbs and gutters, ASTM D698, 95 percent.
 - c. Under Sidewalks, scarify and recompact top 150 mm (6 inches) below subgrade and compact each layer of backfill or fill material in accordance with ASTM D698, 95 percent.
 - d. Landscaped areas, top 400 mm (16 inches), ASTM D698, 85 percent.
 - e. Landscaped areas, below 400 mm (16 inches) of finished grade, ASTM D698, 90 percent.
 - 2. Natural Ground (Cut or Existing)
 - a. Under building slabs, steps and paved areas, top 150 mm (6 inches), ASTM D698, 95 percent.
 - b. Curbs, curbs and gutters, top 150 mm (6 inches), ASTM D698, 95 percent.
 - c. Under sidewalks, top 150 mm (6 inches), ASTM D698, 95 percent.

Project #: 692-14-101

- D. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas shown on drawings and/or from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- E. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.5 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet).
- D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean.

- E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
- F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.
- G. Finish subgrade in a condition acceptable to Resident Engineer at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather.
- H. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- C. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- D. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- E. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center.

----- E N D -----

31 20 00 EARTHWORK

SECTION 32 05 23 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section shall cover site work concrete constructed upon the prepared subgrade and in conformance with the lines, grades, thickness, and cross sections shown on the Drawings. Construction shall include the following:
- B. Curb, gutter, and combination curb and gutter wheel stop
- C. Pedestrian Pavement: Walks grade slabs wheelchair curb ramps
- D. Vehicular Pavement: Driveways.
- E. Equipment Pads: Transformers, generator pads,

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- C. Section 01 45 29, TESTING LABORATORY SERVICES.
- D. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- E. Section 05 50 00, METAL FABRICATIONS.
- F. Section 31 20 00, EARTHWORK.

1.3 DESIGN REQUIREMENTS

Design all elements with the latest published version of applicable codes.

1.4 WEATHER LIMITATIONS

- A. Hot Weather: Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.
- B. Cold Weather: Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

1.5 SUBMITTALS

Contractor shall submit the following.

- A. Manufacturers' Certificates and Data certifying that the following materials conform to the requirements specified.
 - 1. Expansion joint filler
 - 2. Hot poured sealing compound
 - 3. Reinforcement
 - 4. Curing materials
- B. Jointing Plan for all concrete areas.
- C. Concrete Mix Design.
- D. Concrete Test Reports
- E. Construction Staking Notes from Surveyor.
- F. Data and Test Reports: Select subbase material.
 - 1. Job-mix formula.
 - Source, gradation, liquid limit, plasticity index, percentage of wear, and other tests as specified and in referenced publications.

1.6 APPLICABLE PUBLICATIONS

The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Refer to the latest edition of all referenced Standards and codes.

A.	American Association of State Highway and Transportation Officials
	(AASHTO):
	M147-65-ULMaterials for Aggregate and Soil-Aggregate
	Subbase, Base and Surface Courses (R 2004)
	M148-05-ULLiquid Membrane-Forming Compounds for Curing
	Concrete (ASTM C309)
	M171-05-ULSheet Materials for Curing Concrete (ASTM C171)
	M182-05-ULBurlap Cloth Made from Jute or Kenaf and Cotton
	Mats
в.	American Society for Testing and Materials (ASTM):
	A82/A82M-07Standard Specification for Steel Wire, Plain,
	for Concrete Reinforcement
	A185/185M-07Standard Specification for Steel Welded Wire
	Reinforcement, Plain, for Concrete
	A615/A615M-12Standard Specification for Deformed and Plain
	Carbon Steel Bars for Concrete Reinforcement
	A653/A653M-11Standard Specification for Steel Sheet, Zinc
	Coated (Galvanized) or Zinc Iron Alloy Coated
	(Galvannealed) by the Hot Dip Process

2

Project #: 692-14-101

A706/A706M-09bStandard Specification for Low Alloy Steel
Deformed and Plain Bars for Concrete
Reinforcement
A767/A767M-09Standard Specification for Zinc Coated
(Galvanized) Steel Bars for Concrete
Reinforcement
A775/A775M-07bStandard Specification for Epoxy Coated
Reinforcing Steel Bars
_
A820/A820M-11Standard Specification for Steel Fibers for Fiber Reinforced Concrete
C31/C31M-10Standard Practice for Making and Curing Concrete
Test Specimens in the field
C33/C33M-11aStandard Specification for Concrete Aggregates
C39/C39M-12Standard Test Method for Compressive Strength of
Cylindrical Concrete Specimens
C94/C94M-12Standard Specification for Ready Mixed Concrete
C143/C143M-10aStandard Test Method for Slump of Hydraulic
Cement Concrete
C150/C150M-12Standard Specification for Portland Cement
C171-07Standard Specification for Sheet Materials for
Curing Concrete
C172/C172M-10Standard Practice for Sampling Freshly Mixed
Concrete
C173/C173M-10bStandard Test Method for Air Content of Freshly
Mixed Concrete by the Volumetric Method
C192/C192M-07Standard Practice for Making and Curing Concrete
Test Specimens in the Laboratory
C231/C231M-10Standard Test Method for Air Content of Freshly
Mixed Concrete by the Pressure Method
C260/C260M-10aStandard Specification for Air Entraining
Admixtures for Concrete
C309-11 Standard Specification for Liquid Membrane
Forming Compounds for Curing Concrete
C494/C494M-12Standard Specification for Chemical Admixtures
for Concrete
C618-12 Standard Specification for Coal Fly Ash and Raw
or Calcined Natural Pozzolan for Use in Concrete
C666/C666M-03(2008)Standard Test Method for Resistance of Concrete
to Rapid Freezing and Thawing

```
D1751-04(2008).....Standard Specification for Preformed Expansion
Joint Filler for Concrete Paving and Structural
Construction (Non-extruding and Resilient
Bituminous Types)
D4263-83(2012)....Standard Test Method for Indicating Moisture in
Concrete by the Plastic Sheet Method.
D4397-10....Standard Specification for Polyethylene Sheeting
for Construction, Industrial and Agricultural
Applications
```

- C. American Welding Society (AWS): D1.4/D1.4M (2005).....Structural Welding Code - Reinforcing SteelD. Oregon Department of Transportation (ODOT): 2008 Standard Specifications
- for Construction

PART 2 - PRODUCTS

2.1 GENERAL

A. Concrete Type: Concrete shall be as per Table 1 - Concrete Type, air entrained.

	Concrete	Strength	Non-Air- Entrained	Air-Entrained		
	Min. 28 Day Comp. Str. Psi (MPa)	Min. Cement lbs/c. yd (kg/m ³)	Max. Water Cement Ratio	Min. Cement lbs/c. yd (kg/m ³)	Max. Water Cement Ratio	
Туре А	5000 (35) ^{1,3}	630 (375)	0.45	650 (385)	0.40	
Туре В	$4000 (30)^{1,3}$	550 (325)	0.55	570 (340)	0.50	
Туре С	3000 (25) ^{1,3}	470 (280)	0.65	490 (290)	0.55	
Type D	3000 (25) ^{1,2}	500 (300)	*	520 (310)	*	

TABLE I - CONCRETE TYPE

- If trial mixes are used, the proposed mix design shall achieve a compressive strength 1200 psi (8.3 MPa) in excess of the compressed strength. For concrete strengths above 5000 psi (35 Mpa), the proposed mix design shall achieve a compressive strength 1400 psi (9.7 MPa) in excess of the compressed strength.
- 2. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44.
- 3. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.
- B. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

-				
TYPE	MAXIMUM SLUMP*			
Curb & Gutter	3 inches (75 mm)			
Pedestrian Pavement	3 inches (75 mm)			
Vehicular Pavement	2 inches (50 mm) (Machine Finished) 4 inches (100 mm) (Hand Finished)			
Equipment Pad	3 to 4 inches (75 to 100 mm)			
* For concrete to be vibrated: Slump as determined by ASTM C143. Tolerances as established by ASTM C94.				

TABLE II - MAXIMUM SLUMP - INCHES (MM)

2.2 REINFORCEMENT

A. The type, amount, and locations of steel reinforcement shall be as shown on the drawings and in the specifications.

2.3 SELECT SUBBASE (WHERE REQUIRED)

A. Subbase shall be granular material consisting of gravel or crushed rock meeting the requirements of ODOT 00640.10. Designated size shall be 1"-0" or $\frac{3}{4}$ "-0".

2.4 FORMS

- A. Use metal or wood forms that are straight and suitable in cross-section, depth, and strength to resist springing during depositing and consolidating the concrete, for the work involved.
- B. Do not use forms if they vary from a straight line more than 1/8 inch (3 mm) in any ten foot (3000 mm) long section, in either a horizontal or vertical direction.
- C. Wood forms should be at least 2 inches (50 mm) thick (nominal). Wood forms shall also be free from warp, twist, loose knots, splits, or other defects. Use approved flexible or curved forms for forming radii.

2.5 CONCRETE CURING MATERIALS

- A. Concrete curing materials shall conform to one of the following:
 - Burlap having a weight of seven ounces (233 grams) or more per yard (square meter) when dry.
 - 2. Impervious Sheeting conforming to ASTM C171.
 - 3. Liquid Membrane Curing Compound conforming to ASTM C309, Type 1 and shall be free of paraffin or petroleum.

2.6 EXPANSION JOINT FILLERS

Material shall conform to ASTM D1751-04.

PART 3 - EXECUTION

3.1 SUBGRADE PENETRATION

- A. Prepare, construct, and finish the subgrade as specified in Section 31 20 00, EARTHWORK.
- B. Maintain the subgrade in a smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE

- A. Mixing: Proportion the select subbase by weight or by volume in quantities so that the final approved job-mixed formula gradation, liquid limit, and plasticity index requirements will be met after subbase course has been placed and compacted. Add water in approved quantities, measured by weight or volume, in such a manner to produce a uniform blend.
- B. Placing:
 - Place the mixed material on the prepared subgrade in a uniform layer to the required contour and grades, and to a loose depth not to exceed 8 inches (200 mm), and that when compacted, will produce a layer of the designated thickness.
 - 2. When the designated compacted thickness exceeds 6 inches (150 mm), place the material in layers of equal thickness. Remove unsatisfactory areas and replace with satisfactory mixture, or mix the material in the area.
 - 3. In no case will the addition of thin layers of material be added to the top layer in order to meet grade.
 - 4. If the elevation of the top layer is 1/2 inch (13 mm) or more below the grade, excavate the top layer and replace with new material to a depth of at least 3 inches (75 mm) in compacted thickness.
- C. Compaction:
 - 1. Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
 - Moisten or aerate the material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used.
 - 3. Compact each layer to at least 95 percent or 100 percent of maximum density as specified in Section 31 20 00, EARTHWORK.
- D. Smoothness Test and Thickness Control: Test the completed subbase for grade and cross section with a straight edge.
 - 1. The surface of each layer shall not show any deviations in excess of 3/8 inch (10 mm).

- 2. The completed thickness shall be within 1/2 inch (13 mm) of the thickness as shown on the Drawings.
- E. Protection:
 - 1. Maintain the finished subbase in a smooth and compacted condition until the concrete has been placed.
 - When Contractor's subsequent operations or adverse weather disturbs the approved compacted subbase, excavate, and reconstruct it with new material meeting the requirements herein specified, at no additional cost to the Government.

3.3 SETTING FORMS

- A. Base Support:
 - Compact the base material under the forms true to grade so that, when set, they will be uniformly supported for their entire length at the grade as shown.
 - 2. Correct imperfections or variations in the base material grade by cutting or filling and compacting.
- B. Form Setting:
 - Set forms sufficiently in advance of the placing of the concrete to permit the performance and approval of all operations required with and adjacent to the form lines.
 - Set forms to true line and grade and use stakes, clamps, spreaders, and braces to hold them rigidly in place so that the forms and joints are free from play or movement in any direction.
 - 3. Forms shall conform to line and grade with an allowable tolerance of 1/8 inch (3 mm) when checked with a straightedge and shall not deviate from true line by more than 1/4 inch (6 mm) at any point.
 - 4. Do not remove forms until removal will not result in damaged concrete or at such time to facilitate finishing.
 - 5. Clean and oil forms each time they are used.
 - Make necessary corrections to forms immediately before placing concrete.
 - 7. When any form has been disturbed or any subgrade or subbase has become unstable, reset and recheck the form before placing concrete.
- C. The Contractor's Registered Professional Land Surveyor, specified in Section 00 72 00, GENERAL CONDITIONS, shall establish the control, alignment and the grade elevations of the forms or concrete slipforming machine operations. Staking notes shall be submitted for approval to the Resident Engineer prior to placement of concrete. If discrepancies exist between the field conditions and the Drawings, Contractor shall notify

Resident Engineer immediately. No placement of concrete shall occur if a discrepancy greater than 1 inch (25 mm) is discovered.

3.4 EQUIPMENT

- A. The Resident Engineer shall approve equipment and tools necessary for handling materials and performing all parts of the work prior to commencement of work.
- B. Maintain equipment and tools in satisfactory working condition at all times.

3.5 PLACING REINFORCEMENT

- A. Reinforcement shall be free from dirt, oil, rust, scale or other substances that prevent the bonding of the concrete to the reinforcement. All reinforcement shall be supported for proper placement within the concrete section.
- B. Before the concrete is placed, the Resident Engineer shall approve the reinforcement placement, which shall be accurately and securely fastened in place with suitable supports and ties. The type, amount, and position of the reinforcement shall be as shown on the Drawings.

3.6 PLACING CONCRETE - GENERAL

- A. Obtain approval of the Resident Engineer before placing concrete.
- B. Remove debris and other foreign material from between the forms before placing concrete.
- C. Before the concrete is placed, uniformly moisten the subgrade, base, or subbase appropriately, avoiding puddles of water.
- D. Convey concrete from mixer to final place of deposit by a method which will prevent segregation or loss of ingredients. Deposit concrete so that it requires as little handling as possible.
- E. While being placed, spade or vibrate and compact the concrete with suitable tools to prevent the formation of voids or honeycomb pockets. Vibrate concrete well against forms and along joints. Over-vibration or manipulation causing segregation will not be permitted. Place concrete continuously between joints without bulkheads.
- F. Install a construction joint whenever the placing of concrete is suspended for more than 30 minutes and at the end of each day's work.
- G. Workmen or construction equipment coated with foreign material shall not be permitted to walk or operate in the concrete during placement and finishing operations.
- H. Cracked or Chipped Concrete Surfaces and Bird Baths. Cracked or chipped concrete and bird baths will not be allowed. Concrete with cracks or chips and bird baths will be removed and replaced to the nearest joints,

and as approved by the Resident Engineer, by the Contractor with no additional cost to the Government.

3.7 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS

- A. Place concrete in the forms in one layer of such thickness that, when compacted and finished, it will conform to the cross section as shown.
- B. Deposit concrete as near to joints as possible without disturbing them but do not dump onto a joint assembly.
- C. After the concrete has been placed in the forms, use a strike-off guided by the side forms to bring the surface to the proper section to be compacted.
- D. Consolidate the concrete thoroughly by tamping and spading, or with approved mechanical finishing equipment.
- E. Finish the surface to grade with a wood or metal float.
- F. All Concrete pads and pavements shall be constructed with sufficient slope to drain properly.

3.8 PLACING CONCRETE FOR VEHICULAR PAVEMENT

- A. Deposit concrete into the forms as close as possible to its final position.
- B. Place concrete rapidly and continuously between construction joints.
- C. Strike off concrete and thoroughly consolidate by a finishing machine, vibrating screed, or by hand-finishing.
- D. Finish the surface to the elevation and crown as shown.
- E. Deposit concrete as near the joints as possible without disturbing them but do not dump onto a joint assembly. Do not place adjacent lanes without approval by the Resident Engineer.

3.9 CONCRETE FINISHING - GENERAL

- A. The sequence of operations, unless otherwise indicated, shall be as follows:
 - Consolidating, floating, straight-edging, troweling, texturing, and edging of joints.
 - 2. Maintain finishing equipment and tools in a clean and approved condition.

3.10 CONCRETE FINISHING CURB AND GUTTER

- A. Round the edges of the gutter and top of the curb with an edging tool to a radius of 1/4 inch (6 mm) or as otherwise detailed.
- B. Float the surfaces and finish with a smooth wood or metal float until true to grade and section and uniform in textures.
- C. Finish the surfaces, while still wet, with a bristle type brush with longitudinal strokes.

- D. Immediately after removing the front curb form, rub the face of the curb with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Brush the surface, while still wet, in the same manner as the gutter and curb top.
- E. Except at grade changes or curves, finished surfaces shall not vary more than 1/8 inch (3 mm) for gutter and 1/4 (6 mm) for top and face of curb, when tested with a 10 foot (3000 mm) straightedge.
- F. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints.
- G. Correct any depressions which will not drain. See Article 3.6, Paragraph H, above.
- H. Visible surfaces and edges of finished curb, gutter, and/or combination curb and gutter shall be free of blemishes, form marks, and tool marks, and shall be uniform in color, shape, and appearance.

3.11 CONCRETE FINISHING PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs, Wheelchair Curb Ramps:
 - Finish the surfaces to grade and cross section with a metal float, troweled smooth and finished with a broom moistened with clear water.
 - 2. Brooming shall be transverse to the line of traffic.
 - 3. Finish all slab edges, including those at formed joints, carefully with an edger having a radius as shown on the Drawings.
 - 4. Unless otherwise indicated, edge the transverse joints before brooming. The brooming shall eliminate the flat surface left by the surface face of the edger. Execute the brooming so that the corrugation, thus produced, will be uniform in appearance and not more than 1/16 inch (2 mm) in depth.
 - 5. The completed surface shall be uniform in color and free of surface blemishes, form marks, and tool marks. The finished surface of the pavement shall not vary more than 3/16 inch (5 mm) when tested with a 10 foot (3000 mm) straightedge.
 - The thickness of the pavement shall not vary more than 1/4 inch (6 mm).
 - Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints at no additional cost to the Government.

3.12 CONCRETE FINISHING EQUIPMENT PADS

A. After the surface has been struck off and screeded to the proper elevation, provide a smooth dense float finish, free from depressions or irregularities.

- B. Carefully finish all slab edges with an edger having a radius as shown in the Drawings.
- C. After removing the forms, rub the faces of the pad with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The finish surface of the pad shall not vary more than 1/8 inch (3 mm) when tested with a 10 foot (3000 mm) straightedge.
- D. Correct irregularities exceeding the above. See Article 3.6, Paragraph H, above.

3.13 JOINTS - GENERAL

- A. Place joints, where shown on the Shop Drawings and Drawings, conforming to the details as shown, and perpendicular to the finished grade of the concrete surface.
- B. Joints shall be straight and continuous from edge to edge of the pavement.

3.14 CONTRACTION JOINTS

- A. Cut joints to depth as shown with a grooving tool or jointer of a radius as shown or by sawing with a blade producing the required width and depth.
- B. Construct joints in curbs and gutters by inserting 1/8 inch (3 mm) steel plates conforming to the cross sections of the curb and gutter.
- C. Plates shall remain in place until concrete has set sufficiently to hold its shape and shall then be removed.
- D. Finish edges of all joints with an edging tool having the radius as shown.
- E. Score pedestrian pavement with a standard grooving tool or jointer.

3.15 EXPANSION JOINTS

- A. Use a preformed expansion joint filler material of the thickness as shown to form expansion joints.
- B. Material shall extend the full depth of concrete, cut and shaped to the cross section as shown, except that top edges of joint filler shall be below the finished concrete surface where shown to allow for sealing.
- C. Anchor with approved devices to prevent displacing during placing and finishing operations.
- D. Round the edges of joints with an edging tool.
- E. Form expansion joints as follows:
 - 1. Without dowels, about structures and features that project through, into, or against any site work concrete construction.
 - 2. Using joint filler of the type, thickness, and width as shown.

3. Installed in such a manner as to form a complete, uniform separation between the structure and the site work concrete item.

3.16 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on the Shop Drawing jointing plan and Drawings.
- B. Place transverse construction joints of the type shown, where indicated and whenever the placing of concrete is suspended for more than 30 minutes.
- C. Use a butt-type joint with dowels in curb and gutter if the joint occurs at the location of a planned joint.
- D. Use keyed joints with tiebars if the joint occurs in the middle third of the normal curb and gutter joint interval.

3.17 FORM REMOVAL

- A. Forms shall remain in place at least 12 hours after the concrete has been placed. Remove forms without injuring the concrete.
- B. Do not use bars or heavy tools against the concrete in removing the forms. Promptly repair any concrete found defective after form removal.

3.18 CURING OF CONCRETE

- A. Cure concrete by one of the following methods appropriate to the weather conditions and local construction practices, against loss of moisture, and rapid temperature changes for at least seven days from the beginning of the curing operation. Protect unhardened concrete from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready to install before actual concrete placement begins. Provide protection as necessary to prevent cracking of the pavement due to temperature changes during the curing period. If any selected method of curing does not afford the proper curing and protection against concrete cracking, remove and replace the damaged pavement and employ another method of curing as directed by the Resident Engineer.
- B. Burlap Mat: Provide a minimum of two layers kept saturated with water for the curing period. Mats shall overlap each other at least 150 mm (6 inches).
- C. Impervious Sheeting: Use waterproof paper, polyethylene-coated burlap, or polyethylene sheeting. Polyethylene shall be at least 4 mils (0.1 mm) in thickness. Wet the entire exposed concrete surface with a fine spray of water and then cover with the sheeting material. Sheets shall overlap each other at least 12 inches (300 mm). Securely anchor sheeting.
- D. Liquid Membrane Curing:

- 1. Apply pigmented membrane-forming curing compound in two coats at right angles to each other at a rate of 200 square feet per gallon (5 m2/L) for both coats.
- Do not allow the concrete to dry before the application of the membrane.
- 3. Cure joints designated to be sealed by inserting moistened paper or fiber rope or covering with waterproof paper prior to application of the curing compound, in a manner to prevent the curing compound entering the joint.
- 4. Immediately re-spray any area covered with curing compound and damaged during the curing period.

3.19 CLEANING

- A. After completion of the curing period:
 - 1. Remove the curing material (other than liquid membrane).
 - 2. Sweep the concrete clean.
 - 3. After removal of all foreign matter from the joints, seal joints as specified.
 - 4. Clean the entire concrete of all debris and construction equipment as soon as curing and sealing of joints has been completed.

3.20 PROTECTION

The contractor shall protect the concrete against all damage prior to final acceptance by the Government. Remove concrete containing excessive cracking, fractures, spalling, or other defects and reconstruct the entire section between regularly scheduled joints, when directed by the Resident Engineer, and at no additional cost to the Government. Exclude traffic from vehicular pavement until the concrete is at least seven days old, or for a longer period of time if so directed by the Resident Engineer.

3.21 FINAL CLEAN-UP

Remove all debris, rubbish and excess material from the Station.

- - - E N D - - -

SECTION 32 12 16 ASPHALT PAVING

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall cover the composition, mixing, construction upon the prepared subgrade, and the protection of hot asphalt concrete pavement. The hot asphalt concrete pavement shall consist of an aggregate or asphalt base course and asphalt surface course constructed in conformity with the lines, grades, thickness, and cross sections as shown. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course.

1.2 RELATED WORK

- A. Laboratory and field testing requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Paragraph 3.3 and Section 31 20 00, EARTHWORK.

1.3 INSPECTION OF PLANT AND EQUIPMENT

The Resident Engineer shall have access at all times to all parts of the material producing plants for checking the mixing operations and materials and the adequacy of the equipment in use.

1.4 ALIGNMENT AND GRADE CONTROL

The Contractor's Registered Professional Land Surveyor shall establish and control the pavement (aggregate or asphalt base course and asphalt surface course) alignments, grades, elevations, and cross sections as shown on the Drawings.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Data and Test Reports:
 - Aggregate Base Course: Sources, gradation, liquid limit, plasticity index, percentage of wear, and other tests required by State Highway Department.
 - Asphalt Base/Surface Course: Aggregate source, gradation, soundness loss, percentage of wear, and other tests required by State Highway Department.
 - 3. Job-mix formula.
- C. Certifications:

- 1. Asphalt prime and tack coat material certificate of conformance to State Highway Department requirements.
- 2. Asphalt cement certificate of conformance to State Highway Department requirements.
- 3. Job-mix certification Submit plant mix certification that mix equals or exceeds the State Highway Specification.
- D. One copy of State Highway Department Specifications.
- E. Provide MSDS (Material Safety Data Sheets) for all chemicals used on ground.

PART 2 - PRODUCTS

2.1 GENERAL

A. Aggregate base and asphalt concrete materials shall conform to the requirements of the following and other appropriate sections of the Oregon Department of Transportation 2008 Standard Specification for Construction, including amendments, addenda and errata. Where the term "Engineer" or "Commission" is referenced in the State Highway Specifications, it shall mean the VA Resident Engineer or VA Contracting Officer.

2.2 AGGREGATES

- A. Provide aggregates consisting of crushed stone, gravel, sand, or other sound, durable mineral materials processed and blended, and naturally combined.
- B. Subbase aggregate (where required) maximum size: 38mm(1-1/2").
- C. Base aggregate maximum size:
 - 1. Base course over 152mm(6") thick: 38mm(1-1/2");
 - 2. Other base courses: 19mm(3/4").

2.3 ASPHALTS

- A. Asphalt Cement: Use 64-22 grade of asphalt cement for all pavement areas. Provide asphalt cement conforming to the requirements of ODOT's publication, "Standard Specifications for Asphalt Materials."
- B. Mix Type and Broadband Limits: Mix type and broadband limits shall meet the following:
 - 1. Mix Type: Furnish the type(s) of HMAC shown or as directed. The broadband limits for each of the mix types are specified below.
 - 2. Broadband Limits: Provide a JMF for the specified mix type within the control points listed below:

Dense-Graded Mixes								
	1" Dense Control Points (% Passing by Weight)		3/4" Dense Control Points (% Passing by Weight)		1/2" Dense Control Points (% Passing by Weight)		3/8" Dense Control Points (% Passing by Weight)	
Sieve								
Size								
	Min	Max	Min	Max	Min	Max	Min	Max
1-1/2"	99	100						
1"	90	100		100				
3/4"		90	90	100		100		
1/2"				90	90	100		100
3/8"						90	90	100
No. 4								90
No. 8	19	45	23	49	28	58	32	67
No. 200	1.0	7.0	2.0	8.0	2.0	10.0	2.0	10.0

PART 3 - EXECUTION

3.1 GENERAL

The Asphalt Concrete Paving equipment, weather limitations, job-mix formula, mixing, construction methods, compaction, finishing, tolerance, and protection shall conform to the requirements of the appropriate sections of the State Highway Specifications for the type of material specified.

3.2 MIXING ASPHALTIC CONCRETE MATERIALS

- A. Provide hot plant-mixed asphaltic concrete paving materials.
 - Temperature leaving the plant: 143 degrees C(290 degrees F) minimum, 160 degrees C(320 degrees F) maximum.
 - 2. Temperature at time of placing: 138 degrees C(280 degrees F) minimum.

3.3 SUBGRADE

- A. Shape to line and grade and compact with self-propelled rollers.
- B. All depressions that develop under rolling shall be filled with acceptable material and the area re-rolled.
- C. Soft areas shall be removed and filled with acceptable materials and the area re-rolled.
- D. Should the subgrade become rutted or displaced prior to the placing of the subbase, it shall be reworked to bring to line and grade.
- E. Proof-roll the subgrade with maximum 45 tonne (50 ton) gross weight dump truck as directed by VA Resident Engineer or VA Contracting Officer. If

pumping, pushing, or other movement is observed, rework the area to provide a stable and compacted subgrade.

3.4 BASE COURSES

- A. Subbase (when required)
 - 1. Spread and compact to the thickness shown on the drawings.
 - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
 - 3. After completion of the subbase rolling there shall be no hauling over the subbase other than the delivery of material for the top course.

B. Base

- 1. Spread and compact to the thickness shown on the drawings.
- 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
- 3. After completion of the base rolling there shall be no hauling over the base other than the delivery of material for the top course.
- C. Thickness tolerance: Provide the compacted thicknesses shown on the Drawings within a tolerance of minus 0.0mm (0.0") to plus 12.7mm (0.5").
- D. Smoothness tolerance: Provide the lines and grades shown on the Drawings within a tolerance of 5mm in 3m (3/16 inch in ten feet).
- E. Moisture content: Use only the amount of moisture needed to achieve the specified compaction.

3.5 PLACEMENT OF ASPHALTIC CONCRETE PAVING

- A. Remove all loose materials from the compacted base.
- B. Apply the specified prime coat, and tack coat where required, and allow to dry in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- C. Receipt of asphaltic concrete materials:
 - Do not accept material unless it is covered with a tarpaulin until unloaded, and unless the material has a temperature of not less than 130 degrees C(280 degrees F).
 - Do not commence placement of asphaltic concrete materials when the atmospheric temperature is below 10 degrees C (50 degrees F), not during fog, rain, or other unsuitable conditions.
- D. Spreading:
 - 1. Spread material in a manner that requires the least handling.
 - Where thickness of finished paving will be 76mm (3") or less, spread in one layer.
- E. Rolling:

- 1. After the material has been spread to the proper depth, roll until the surface is hard, smooth, unyielding, and true to the thickness and elevations shown own the drawings.
- 2. Roll in at least two directions until no roller marks are visible.
- 3. Finished paving smoothness tolerance:
 - a. No depressions which will retain standing water.
 - b. No deviation greater than 3mm in 1.8m (1/8" in six feet).

3.6 PROTECTION

Protect the asphaltic concrete paved areas from traffic until the sealer is set and cured and does not pick up under foot or wheeled traffic.

3.7 FINAL CLEAN-UP

Remove all debris, rubbish, and excess material from the work area.

- - - E N D - - -

SECTION 32 31 13 CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 DESCRIPTION

This work consists of all labor, materials, and equipment necessary for furnishing and installing chain link fence, gates and accessories in conformance with the lines, grades, and details as shown.

1.2 RELATED WORK

- A. Temporary Construction Fence: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Rough Grading: Section 31 20 00, EARTH WORK.
- C. Finish Grading: Section 32 90 00, PLANTING.

1.3 MANUFACTURER'S QUALIFICATIONS

Fence, gates, and accessories shall be products of manufacturers regularly engaged in manufacturing items of type specified.

1.4 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Chain link fencing, gates and all accessories.
 - 2. Manufacturer's Certificates: Zinc-coating complies with complies with specifications.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society for Testing and Materials (ASTM):

A121-07 Metallic Coated Carbon Steel Barbed Wire				
A392-07 Fence Fabric				
A491-11 Link Fence Fabric				
A817-07				
Fabric and Marcelled Tension Wire				
C94-12Ready-Mixed Concrete				
F567-11a Fence				
F626-08Fence Fittings				

PART 2 - PRODUCTS

2.1 GENERAL

Materials shall conform to the above referenced publications for ferrous metals, zinc-coated; and detailed specifications forming the various parts thereto; and other requirements specified herein. Zinc-coat metal members (including fabric, gates, posts, rails, hardware and other ferrous metal items) after fabrication shall be reasonably free of excessive roughness, blisters and sal-ammoniac spots.

2.2 CHAIN-LINK FABRIC

- A. Steel Chain Link Fabric: 2 in. mesh, 11 gauge 8 ft. high
 - Zinc-Coated Steel Fabric: hot dipped galvanized before or after weaving.

a. Class 2 - 2.0 oz/ft^2 (610 g/m²)

2.3 STEEL FENCE FRAMEWORK

- A. Round steel pipe and rail: Group IA Heavy Industrial Fence Framework, schedule 40 galvanized pipe. Exterior zinc coating Type A, interior zinc coating Type A. Rails shall meet the requirements of AASSHTO M 181. Line post: 1 ¼" size
 - 1. End, Corner, Pull post: 3" size
 - 2. Brace rails, top, bottom, and intermediate rails, 1.660 in. (42.2 mm) OD, 2.27 lb/ft

2.4 TENSION WIRE

- A. Metallic Coated Steel Marcelled Tension Wire: 7 gauge (0.177 in.) (4.50 mm) marcelled wire
 - 1. Type II Zinc-Coated Class 5 2.0 $\text{oz/ft}^{\,\text{2}}$ (610 $\text{g/m}^{\,\text{2}})$

2.5 BARBED WIRE

- A. Metallic Coated Steel Barbed Wire: Double 12-½ gauge (0.099 in.) (2.51 mm) twisted strand wire, with 4 point 14 gauge (0.080 in.) (2.03 mm) round barbs spaced 5 inches (127 mm) on center.
 - Coating Type A Aluminum-Coated (Aluminized): Strand wire coating Type A - 0.30 oz/ft² (90 g/m²) with aluminum alloy barbs.

2.6 FITTINGS

A. Tension and Brace Bands: Galvanized pressed steel, minimum steel thickness of 12 gauge (0.105 in.) (2.67 mm), minimum width of 3/4 in. (19 mm) and minimum zinc coating of 1.20 oz/ft² (366 g/m²). Bands

Project #: 692-14-101

supplied with 5/16 in. (7.94 mm) or 3/8 in. (9.53 mm) galvanized steel carriage bolts.

- B. Terminal Post Caps, Line Post Loop Tops, Rail and Brace Ends, Boulevard Clamps, Rail Sleeves: Pressed steel galvanized after fabrication having a minimum zinc coating of 1.20 oz/ft² (366 g/m²).
- C. Truss Rod Assembly: 3/8 in. (9.53 mm) diameter steel truss rod with a pressed steel tightener, minimum zinc coating of 1.2 oz/ft² (366 g/m²), assembly capable of withstanding a tension of 2,000 lbs. (970 kg).
- D. Tension Bars: Galvanized steel one-piece length 2 in. (50 mm) less than the fabric height. Minimum zinc coating 1.2 oz. $/ft^2$ (366 g/m²).
 - 1. Bars for 2 in. (50 mm) and 1 ¾ in. (44 mm) mesh shall have a minimum cross section of 3/16 in. (4.8 mm) by 3/4 in. (19 mm).
 - Bars for 1 in. (25 mm) mesh shall have a cross section of 1/4 in.
 (6.4 mm) by 3/8 in. (9.5 mm).
 - 3. Bars for small mesh 3/8 in. (10 mm), 1/2 in. (13 mm) and 5/8 in. (16 mm) shall be attached (sandwiched) to the terminal post using a galvanized steel strap having a minimum cross section of 2 in. (51 mm) by 3/16 in. (4.8 mm) with holes spaced 15 in. (381 mm) on center to accommodate 5/16 in. (7.9 mm) carriage bolts which are to be thru bolted thru the strap the mesh and thru the terminal post.
- E. Barbed Wire Arms: In compliance with ASTM F626, pressed steel galvanized after fabrication, minimum zinc coating of 1.20 oz. /ft² (366 g/m²), capable of supporting a vertical 250 lb (113 kg) load. Type I - three strand 45 degree (0.785 rad) arm.

2.7 TIE WIRE AND HOG RINGS

Tie Wire and Hog Rings: Galvanized minimum zinc coating 1.20 oz/ft^2 (366 g/m²) 9 gauge (0.148) (3.76 mm) steel wire. Polymer coated; match the coating, class and color to that of the chain link fabric.

2.8 SWING GATES

A. Swing Gates: double 7' opening. Galvanized steel welded fabrication. Gate frame members 1.900 in. OD (48.3 mm) Group IA F1083 schedule 40 pipe. Frame members spaced no greater than 8 ft. (2440 mm) apart vertically and horizontally. Welded joints protected by applying zincrich paint. Positive locking gate latch fabricated of 5/16 in. (7.9 mm) thick by 1 ¾" (44.45 mm) pressed steel galvanized after fabrication. Galvanized malleable iron or heavy gauge pressed steel post and frame hinges. Match gate fabric to that of the fence system. Gateposts 3" OD. Polymer coated gate frames and gateposts; match the coating type and color to that specified for the fence framework. Moveable parts such as hinges, latches and drop rods may be field coated using a liquid polymer touch up.

2.9 CONCRETE

Concrete for post footings shall have a 28-day compressive strength of 3,000 psi (25.8 MPa).

PART 3 EXECUTION

3.1 CLEARING FENCE LINE

Clearing: Surveying, clearing, grubbing, grading and removal of debris for the fence line or any required clear areas adjacent to the fence. Surveying, clearing, grubbing, grading and removal of debris for the fence line or any required clear areas adjacent to the fence is included in the earthwork contractor's contract. The contract drawings indicate the extent of the area to be cleared and grubbed.

3.2 FRAMEWORK INSTALLATION

- A. Posts: Posts shall be set plumb in concrete footings. Minimum footing depth, 24 in. (609.6 mm). Minimum footing diameter four times the largest cross section of the post up to 4.00" (101.6mm) O.D. and three times the largest cross section of post greater than 4.00" (101.6mm).
 O.D. Gate posts require larger footings. Top of post concrete footing to be at grade and crowned to shed water away from the post. Line posts installed at intervals not exceeding 10 ft. (3.05 m) on center.
- B. Top rail: When specified, install 21 ft. (6.4 m) lengths of rail continuous thru the line post or barb arm loop top. Splice rail using top rail sleeves minimum 6 in. (152 mm) long. The rail shall be secured to the terminal post by a brace band and rail end. Bottom rail or intermediate rail shall be field cut and secured to the line posts using boulevard bands or rail ends and brace bands. Fences 12 feet (3.66 m) high or higher require mid rail.
- C. Terminal posts: End, corner, pull and gate posts shall be braced and trussed for fence 6 ft. (1.8 m) and higher and for fences 5 ft. (1.5 m) in height not having a top rail.
- D. Tension wire: Shall be installed 4 in. (102 mm) up from the bottom of the fabric. Fences without top rail shall have a tension wire installed 4 in. (102 mm) down from the top of the fabric. Tension wire to be stretched taut, independently and prior to the fabric, between the terminal posts and secured to the terminal post using a brace band. Secure the tension wire to the chain link fabric with a 9 gauge hog

Project #: 692-14-101

rings 18 in. (457 mm) on center and to each line post with a tie wire. Install the top tension wire through the barb arm loop for fences having barbed wire and no top rail.

3.3 CHAIN LINK FABRIC INSTALLATION

- A. Chain Link Fabric: Install fabric to outside of the framework. Attach fabric to the terminal post by threading the tension bar through the fabric; secure the tension bar to the terminal post with tension bands and 5/16 in. (8 mm) carriage bolts spaced no greater than 12 inches (305 mm) on center. Small mesh fabric less than 1 in. (25 mm), attach to terminal post by sandwiching the mesh between the post and a vertical 2 in. wide (50 mm) by 3/16 in. (5 mm) steel bar using carriage bolts, thru bolted thru the bar, mesh and post spaced 15 in. (381 mm) on center. Chain link fabric to be stretched taut free of sag. Fabric to be secured to the line post with tie wires spaced no greater than 12 inches (305 mm) on center. Secure fabric to the tension wire with hog rings spaced no greater than 18 inches (457 mm) apart.
- B. Tie wire shall be wrapped 360 degrees (6.28 rad) around the post or rail and the two ends twisted together three full turns. Excess wire shall be cut off and bent over to prevent injury. The installed fabric shall have a ground clearance on no more than 2 inches (50 mm).

3.4 BARBED WIRE INSTALLATION

Barbed Wire: Stretched taut between terminal posts and secured in the slots provided on the line post barb arms. Attach each strand of barbed wire to the terminal post using a brace band. Indicate type of barb arm, Type I and direction outward for installation of Type I arm.

3.5 GATE INSTALLATION

A. Swing Gates: Installation of swing gates and gateposts in compliance with ASTM F567. Direction of swing shall be inward. Gates shall be plumb in the closed position having a bottom clearance of 3 in. (76 mm) grade permitting. Hinge and latch offset opening space from the gate frame to the post shall be no greater than 3 in. (76 mm) in the closed position. Double gate drop bar receivers shall be set in a concrete footing minimum 6 in. (152 mm) diameter 24 in. (610 mm) deep. Gate leaf holdbacks shall be installed for all double gates. Electrically operated gates and accessories must be manufactured and installed in compliance with manufacturer's recommendations.

Project #: 692-14-101

B. Horizontal Slide Gates: Installation varies by design and manufacturer, install according to manufacturer's instructions and in accordance with ASTM F567. Gates shall be plum in the closed position, installed to slide with an initial pull force no greater than 40 lbs. (18.14 kg). Double gate drop bar receivers to be installed in a concrete footing minimum 6 in. (152 mm) diameter, 24 in. (610 mm) deep. Ground clearance shall be 3 in. (76 mm), grade permitting. Electrically operated gates and accessories must be manufactured and installed in compliance with manufacturer's recommendations.

3.6 NUTS AND BOLTS

Bolts: Carriage bolts used for fittings shall be installed with the head on the secure side of the fence. All bolts shall be peened over to prevent removal of the nut.

3.7 ELECTRICAL GROUNDING

Grounding: Grounding, when required, shall be specified and included in Section 26 05 26. A licensed electrical contractor shall install grounding.

3.8 CLEAN UP

Clean Up: The area of the fence line shall be left neat and free of any debris caused by the installation of the fence.

- - - E N D - - -

SECTION 32 90 00

PLANTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. The work in this section consists of furnishing and installing plant, soils, turf, grasses and landscape materials required as specified in locations shown.

1.2 DEFINITIONS

- A. Backfill: The earth used to replace earth in an excavation.
- B. Container-Grown Stock: Healthy, vigorous, well-rooted plants grown in a container, with a well-established root system reaching sides of container and maintaining a firm ball when removed from container. Container shall be rigid enough to hold ball shape and protect root mass during shipping and be sized according to ANSI Z60.1 for type and size of plant required.
- C. Finish Grade: Elevation of finished surface of planting soil.
- D. Topsoil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil.
- E. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.
- F. Planting Soil: Standardized topsoil; existing, native surface topsoil; existing, in-place surface soil; imported topsoil; or manufactured topsoil that is modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.
- G. Plant Material: These terms refer to vegetation in general, including trees, shrubs, vines, ground covers, turf and grasses, ornamental grasses, bulbs, corms, tubers, or herbaceous vegetation.
- H. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.
- I. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

1.3 DELIVERY, STORAGE AND HANDLING

- A. Notify the Contracting Officer's Representative of the delivery schedule in advance so the plant material may be inspected upon arrival at the job site. Remove unacceptable plant and landscape materials from the job site immediately.
- B. Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of conformance with state and federal laws, as applicable. Keep seed and other packaged materials in dry storage away from contaminants.
- C. Bulk Materials:
 - 1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants. Keep bulk materials in dry storage away from contaminants.
 - 2. Provide erosion control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 - 3. Accompany each delivery of bulk fertilizers and soil amendments with appropriate certificates.
- D. Do not prune shrubs before delivery. Protect bark, branches, and root systems from sun scald, drying, wind burn, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy their natural shape. Provide protective covering of plants during shipping and delivery. Do not drop plants during delivery and handling.
- E. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than 6 hours after delivery, set plants in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.
 - 1. Do not remove container-grown stock from containers before time of planting.
 - 2. Water root systems of plants stored on-site deeply and thoroughly with a fine-mist spray. Water as often as necessary to maintain root systems in a moist, but not overly-wet, condition.
- F. All pesticides and herbicides shall be properly labeled and registered with the U.S. Department of Agriculture. Deliver materials in original, unopened containers showing, certified analysis, name and address of manufacturer, product label, manufacturer's application instructions

specific to the project and indication of conformance with state and federal laws, as applicable.

1.4 PROJECT CONDITIONS

- A. Verify actual grade elevations, service and utility locations, irrigation system components, and dimensions of plantings and construction contiguous with new plantings by field measurements before proceeding with planting work.
- B. Coordinate planting periods with maintenance periods to provide required maintenance from date of Substantial Completion. Plant during one of the following periods:
 - 1. Spring Planting: March 1 June 1.
 - 2. Fall Planting: September 1 November 30.
- C. Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions and warranty requirements.
- D. Plant shrubs and other plants after finish grades are established and before planting turf areas unless otherwise indicated.
 - 1. When planting shrubs and other plants after planting turf areas, protect turf areas, and promptly repair damage caused by planting operations.
- E. Plant shrubs and other plants after finish grades and irrigation system components are established but not before irrigation system components are installed, tested and approved.
 - 1. When planting shrubs and other plants, protect irrigation system components and promptly repair damage caused by planting operations.

1.5 OUALITY ASSURANCE:

- A. Products Criteria:
 - 1. When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

- B. Installer Qualifications: A qualified landscape installer whose work has resulted in successful establishment of plants.
 - Installer shall be a licensed landscape contractor and will be required to submit one copy of license to the Contracting Officer's Representative.
 - Require Installer to maintain an experienced supervisor on Project site when work is in progress.
 - 3. Pesticide Applicator: Licensed in state of project, commercial.
- C. A qualified Arborist shall be licensed and required to submit one copy of license to the Contracting Officer's Representative.
- D. Include an independent or university laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed.
- E. For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; pH; and mineral and plant-nutrient content of the soil.

1. Report suitability of tested soil for plant growth.

- a. Based upon the test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 1000 sq. ft. (92.9 sq. m) or volume per cu. yd (0.76 cu. m) for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.
- b. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action.
- F. Provide quality, size, genus, species, variety and sources of plants indicated, complying with applicable requirements in ANSI Z60.1.
- G. Measure according to ANSI Z60.1. Do not prune to obtain required sizes.
 - Measure shrubs with branches and trunks or canes in their normal position. Take height measurements from or near the top of the root flare for field-grown stock and container grown stock. Measure main body of shrub for height and spread; do not measure branches or roots tip to tip. Take caliper measurements 4 inch (100 mm) caliper size.

- 2. Measure other plants with stems, petioles, and foliage in their normal position.
- H. Contracting Officer's Representative may observe plant material either at place of growth or at site before planting for compliance with requirements for genus, species, variety, cultivar, size, and quality. Contracting Officer's Representative retains right to observe shrubs further for size and condition of balls and root systems, pests, disease symptoms, injuries, and latent defects and to reject unsatisfactory or defective material at any time during progress of work. Remove rejected shrubs immediately from Project site.

1. Notify Contracting Officer's Representative of plant material sources seven days in advance of delivery to site.

- I. Include product label and manufacturer's literature and data for pesticides and herbicides.
- J. Conduct a pre-installation conference at Project site.

1.6 SUBMITTALS

- A. Submit product data for each type of product indicated, including soils:
 - 1. Include quantities, sizes, quality, and sources for plant materials.
 - 2. Include EPA approved product label, MSDS (Material Safety Data Sheet) and manufacturer's application instructions specific to the Project.
- B. Submit samples and manufacturer's literature for each of the following for approval before work is started.
 - 1. Organic and Compost Mulch: 1-pint (0.5-liter) volume of each organic and compost mulch required; in sealed plastic bags labeled with composition of materials by percentage of weight and source of mulch. Each Sample shall be typical of the lot of material to be furnished; provide an accurate representation of color, texture, and organic makeup.
 - 2. Mineral Mulch: 2 lb (1.0 kg). Insert quantity of each mineral mulch required, in sealed plastic bags labeled with source of mulch. Sample shall be typical of the lot of material to be delivered and installed on the site; provide an accurate indication of color, texture, and makeup of the material.
- C. Qualification data for qualified landscape Installer. Include list of similar projects completed by Installer demonstrating Installer's

capabilities and experience. Include project names, addresses, and year completed, and include names and addresses of owners' contact persons.

- D. Prior to delivery, provide notarized certificates attesting that each type of manufactured product, from the manufacturer, meet the requirements specified and shall be submitted to the Contracting Officer's Representative for approval:
 - 1. Plant Materials (Department of Agriculture certification by State Nursery Inspector declaring material to be free from insects and disease).
 - 2. Seed and Turf Materials notarized certificate of product analysis.
 - 3. Manufacturer's certified analysis of standard products.
 - 4. Analysis of other materials by a recognized laboratory made according to methods established by the Association of Official Analytical Chemists, where applicable.
- E. Material Test Reports: For standardized ASTM D5268 and imported or manufactured topsoil.
- F. Maintenance Instructions: Recommended procedures to be established by Owner for maintenance of plants during a calendar year. Submit before start of required maintenance periods.

1.7 PLANT AND TURF ESTABLISHMENT PERIOD

A. The establishment period for plants and turf shall begin immediately after installation, with the approval of the Contracting Officer's Representative, and continue until the date that the Government accepts the project or phase for beneficial use and occupancy. During the Establishment Period the Contractor shall maintain the plants and turf as required in Part 3.

1.8 PLANT AND TURF MAINTENANCE SERVICE

- A. Provide initial maintenance service for shrubs, ground cover and other plants by skilled employees of landscape Installer. Begin maintenance immediately after plants are installed and continue until plantings are acceptably healthy and well established but for not less than maintenance period below.
 - 1. Maintenance Period: 12 months from date of Substantial Completion.
- B. Obtain continuing maintenance proposal from Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services,

obligations, conditions, and terms for agreement period and for future renewal options.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below, form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American National Standards Institute (ANSI):

Z60.1-04..... Stock

- C. Association of Official Seed Analysts (AOSA): Rules for Testing Seed.
- D. American Society For Testing And Materials (ASTM):

C136-06.....Sieve Analysis of Fine and Coarse Aggregates C516-08.....Vermiculite Loose Fill Thermal Insulation C549-06.....Perlite Loose Fill Insulation C602-07.....Agricultural Liming Materials D5268-07.....Topsoil Used for Landscaping Purposes

E. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada.

1.10 WARRANTY

- A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance, unless noted otherwise below. Further, the Contractor will provide all manufacturer's and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.
 - 1. Plant and Turf Warranty Periods will begin from the date of Substantial Completion and Government acceptance of the project.
 - a. Shrubs and Ornamental Grasses: 12 months.
 - b. Turf, and Other Plants: 12 months.
 - 2. The Contractor shall have completed, located, and installed all plants and turf according to the plans and specifications. All plants and turf are expected to be living and in a healthy condition at the time of final inspection.
 - 3. The Contractor will replace any dead plant material and any areas void of turf immediately, unless required to plant in the succeeding planting season. Provide extended warranty for period

equal to original warranty period for replacement plant materials. Replacement plant and turf warranty will begin on the day the work is completed.

- 4. Replacement of relocated plants, that the Contractor did not supply, is not required unless plant failure is due to improper handling and care during transplanting. Loss through Contractor negligence requires replacement in plant type and size.
- 5. The Government will reinspect all plants and turf at the end of the Warranty Period. The Contractor will replace any dead, missing, or defective plant material and turf immediately. The Warranty Period will end on the date of this inspection provided the Contractor has complied with the warranty work required by this specification. The Contractor shall also comply with the following requirements:
- a. Replace plants that are more than 25 percent dead, missing or defective plant material prior to final inspection.
- b. A limit of one replacement of each plant will be required except for losses or replacements due to failure to comply with requirements.
- c. Mulch and weed plant beds and saucers. Just prior to final inspection, treat these areas to a second application of approved pre-emergent herbicide.
- d. Complete remedial measures directed by the Contracting Officer's Representative to ensure plant and turf survival.
- e. Repair damage caused while making plant or turf replacements.
- B. Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period.

1. Failures include, but are not limited to, the following:

- a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by Owner, or incidents that are beyond Contractor's control.
- b. Structural failures including plantings falling or blowing over.

PART 2 - PRODUCTS

2.1 PLANT MATERIAL

A. Plant and turf materials: ANSI Z60.1; will conform to the varieties specified and be true to botanical name as listed in Hortus Third; nursery-grown plants and turf material true to genus, species, variety, cultivar, stem form, shearing, and other features indicated on Drawings;

> 32,90,00 PLANTING

30 JANUARY 2015 CONSTRUCTION DOCUMENTS 8

healthy, normal and unbroken root systems developed by transplanting or root pruning; well-shaped, fully branched, healthy, vigorous stock, densely foliated when in leaf; free of disease, pests, eggs, larvae, and defects such as knots, sun scald, windburn, injuries, abrasions, and disfigurement.

- 1. The minimum acceptable sizes of all plants, measured before pruning with branches in normal position, shall conform to the measurements designated. Plants larger in size than specified may be used with the approval of the Contracting Officer's Representative, with no change in the contract price. When larger plants are used, increase the ball of earth or spread of roots in accordance with ANSI Z60.1.
- 2. Provide nursery grown plant material conforming to the requirements and recommendations of ANSI Z60.1. Dig and prepare plants for shipment in a manner that will not cause damage to branches, shape, and future development after planting.
- 3. Container grown plants shall have sufficient root growth to hold the earth intact when removed from containers, but shall not be root bound.
- 4. Make substitutions only when a plant (or alternates as specified) is not obtainable and the Contracting Officer's Representative authorizes a change order providing for use of the nearest equivalent obtainable size or variety of plant with the same essential characteristics and an equitable adjustment of the contract price.
- 5. Existing plants to be relocated, ball sizes shall conform to requirements for collected plants in ANSI Z60.1, and plants shall be dug, handled, and replanted in accordance with applicable sections of these specifications.
- 6. Do not use plants harvested from the wild, from native stands, from an established landscape planting, or not grown in a nursery unless otherwise indicated.
- B. Label at least one plant of each variety, size, and caliper with a securely attached, waterproof and weather-resistant label bearing legible the correct designation of common name and full scientific name, including genus and species. Include nomenclature for hybrid, variety, or cultivar, if applicable for the plant as indicated in the Plant Schedule or Plant

Legend shown on the Drawings. Labels shall be securely attached and not be removed.

2.2 INORGANIC SOIL AMENDMENTS

- A. Lime: ASTM C602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:
 - 1. Class: T, with a minimum of 99 percent passing through No. 8 (2.36 mm) sieve and a minimum of 75 percent passing through No. 60 (0.25 mm) sieve.
 - 2. Class: O, with a minimum of 95 percent passing through No. 8 (2.36 mm) sieve and a minimum of 55 percent passing through No. 60 (0.25 mm) sieve.
 - 3. Provide lime in form of ground dolomitic limestone.
- B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent sulfur, with a minimum of 99 percent passing through No. 6 (3.35 mm) sieve and a maximum of 10 percent passing through No. 40 (0.425 mm) sieve.
- C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.
- D. Aluminum Sulfate: Commercial grade, unadulterated.
- E. Perlite: ASTM C549, horticultural perlite, soil amendment grade.
- F. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through No. 50 (0.30 mm) sieve.
- G. Coarse Sand shall be concrete sand, ASTM C33 Fine Aggregate, clean, sharp free of limestone, shale and slate particles, and toxic materials.
- H. Vermiculite: ASTM C516, horticultural grade and free of any toxic materials.
- I. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.
- J. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.3 ORGANIC SOIL AMENDMENTS

- A. Organic matter: Commercially prepared compost. Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 3/4 inch (19 mm) sieve; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
 - 1. Organic Matter Content: 50 to 60 percent of dry weight.

- 2. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.
- B. Peat: A natural product of peat moss derived from a fresh-water site, except as otherwise specified. Peat shall be shredded and granulated to pass through a 1/2 inch (13 mm) mesh screen with a pH range of 3.4 to 4.8 and conditioned in storage piles for at least 6 months after excavation.
- C. Wood derivatives: Decomposed, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture and free of chips, stones, sticks, soil, or toxic materials.
- D. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, debris, and material harmful to plant growth.

2.4 PLANT AND TURF FERTILIZERS

- A. Soil Test: Evaluate existing soil conditions and requirements prior to fertilizer selection and application to minimize the use of all fertilizers and chemical products. Obtain approval of Contracting Officer's Representative for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions prior to application. Apply products during favorable weather and site conditions according to manufacturer's written instructions and warranty requirements. Fertilizers to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer applicable to specific areas as required for Project conditions and application. Provide commercial grade plant and turf fertilizers, free flowing, uniform in composition and conforms to applicable state and federal regulations.
- B. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:
 - Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.
- C. Slow-Release Fertilizer: Granular or pellet fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

- Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.
- D. Plant Tablets: Tightly compressed chip type, long-lasting, slow-release, commercial-grade planting fertilizer in tablet form. Tablets shall break down with soil bacteria, converting nutrients into a form that can be absorbed by plant roots.
 - 1. Size: 5-gram tablets.
 - Nutrient Composition shall be 20 percent nitrogen, 10 percent phosphorous, and 5 percent potassium, by weight plus micronutrients.

2.5 PLANTING SOILS

- A. Planting Soil: ASTM D5268 topsoil, with pH range of 5.5 to 7, a minimum of 2 percent organic material content; free of stones 1 inch (25 mm) or larger in any dimension and other extraneous materials harmful to plant growth. Mix ASTM D5268 topsoil with the following soil amendments and fertilizers as recommended by the soils analysis.
- B. Existing Planting Soil: Existing, native surface topsoil formed under natural conditions retained during excavation process and stockpiled onsite. Verify suitability of native surface topsoil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 - Supplement with another specified planting soil when quantities are insufficient.
 - 2. Mix existing, native surface topsoil with the following soil amendments and fertilizers as recommended by the soils analysis.
- C. Imported Planting Soil: Imported topsoil or manufactured topsoil from offsite sources can be used if sufficient topsoil is not available on site to meet the depth as specified herein. The Contractor shall furnish imported topsoil. At least 10 days prior to topsoil delivery, notify the Contracting Officer's Representative of the source(s) from which topsoil is to be furnished. Obtain imported topsoil displaced from naturally welldrained construction or mining sites where topsoil occurs at least 4 inches (100 mm) deep; do not obtain from bogs, or marshes.

2.6 BIOSTIMULANTS

A. Biostimulants: Contain soil conditioners, VAM fungi, and endomycorrhizal and ectomycorrhizal fungi spores and soil bacteria appropriate for existing soil conditions.

2.7 MULCH

- A. Organic Mulch: Free from deleterious materials and suitable as a top dressing of trees and shrubs, consisting of one of the following:
 - 1. Type: Douglas Fir
 - 2. The cover will allow the absorption of moisture and allow rainfall or applied water to percolate to the underlying soil.
 - 3. Size Range shall be 3 inches (76 mm) maximum, 1/2 inch (13 mm) minimum.
 - 4. Color shall be natural.

2.8 WATER

A. Water shall not contain elements toxic to plant life. Water to be obtained from site at no cost to the Contractor.

2.9 ANTIDESICCANT

A. Antidesiccant: An emulsion specifically manufactured for agricultural use that will provide a protective film over plant surfaces permeable enough to permit transpiration.

2.10 SEED

- A. Grass Seed: Fresh, clean, dry, new-crop seed complying with "AOSA, Rules for Testing Seed" for purity and germination tolerances. Seed shall be labeled in conformance with U. S. Department of Agriculture rules and regulations under the Federal Seed Act and applicable state seed laws. Wet, moldy, or otherwise damaged seed will not be acceptable.
- B. Seed Species: Not less than 95 percent germination, not less than 85 percent pure seed, and not more than 0.5 percent weed seed.
 - 1. Full Sun: Sheep Fescue, Canada Bluegrass, Hard Fescue, and Annual Rye.

2.11 PESTICIDES

A. Consider IPM (Integrated Pest Management) practices to minimize the use of all pesticides and chemical products. Obtain approval of Chief Engineer for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions prior to application. Apply products during favorable weather and site conditions according to manufacturer's written instructions and warranty requirements. Pesticides to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

> 32 90 00 PLANTING

- B. Pre-Emergent Herbicide (Selective and Non-Selective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.
- C. Post-Emergent Herbicide (Selective and Non-Selective): Effective for controlling weed growth that has already germinated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance.
 - Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
 - Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
 - 3. Suspend soil spreading, grading, and tilling operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
 - 4. Uniformly moisten excessively dry soil that is not workable and which is too dusty.
 - 5. Special conditions may exist that warrant a variance in the specified planting dates or conditions. Submit a written request to the Contracting Officer's Representative stating the special conditions and proposal variance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Contracting Officer's Representative and replace with new planting soil.

3.2 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities and turf areas and existing plants from damage caused by planting operations.

- B. Install erosion control measures to prevent erosion or displacement of soils and discharge of soil bearing water runoff or airborne dust to adjacent properties and walkways.
- C. Lay out individual shrub locations and areas for multiple plantings. Stake locations, outline areas, adjust locations when requested, and obtain approval by the Contracting Officer's Representative of layout before excavating or planting. The Contracting Officer's Representative may approve adjustments to plant material locations to meet field conditions.
- D. Apply antidesiccant to shrubs using power spray to provide an adequate film over trunks (before wrapping), branches, stems, twigs, and foliage to protect during digging, handling, and transportation.
 - If deciduous shrubs are moved in full leaf, spray with antidesiccant at nursery before moving and again two weeks after planting.
- E. Wrap shrubs with burlap fabric over trunks, branches, stems, twigs, and foliage to protect from wind and other damage during digging, handling, and transportation.

3.3 PLANTING AREA ESTABLISHMENT

- A. Loosen subgrade of planting areas to a minimum depth of 6 inches (150 mm). Remove stones larger than 1 inch (25 mm), in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 - 1. Apply fertilizer directly to subgrade before loosening.
 - 2. Spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 - a. Delay mixing fertilizer with planting soil if planting will not proceed within a few days.
 - b. Mix lime with dry soil before mixing fertilizer.
 - 3. Spread planting soil to a depth of 6 inches (150 mm) but not less than required to meet finish grades after natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 - a. Spread approximately one-half the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches (100 mm) of subgrade. Spread remainder of planting soil.
- B. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

C. Before planting, obtain Contracting Officer's Representative acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.4 EXCAVATION FOR SHRUBS

- A. Planting Pits and Trenches: Excavate circular planting pits with sides sloping inward at a 45 degree angle. Excavations with vertical sides are not acceptable. Trim perimeter of bottom leaving center area of bottom raised slightly to support root ball and assist in drainage away from center. Do not further disturb base. Ensure that root ball will sit on undisturbed base soil to prevent settling. Scarify sides of planting pit smeared or smoothed during excavation.
 - 1. Excavate approximately 3 times as wide as ball diameter for container-grown stock.
 - 2. Excavate at least 12 inches (300 mm) wider than root spread and deep enough to accommodate vertical roots for bare-root stock.
 - 3. Do not excavate deeper than depth of the root ball, measured from the root flare to the bottom of the root ball.
 - 4. If area under the plant was initially dug too deep, add soil to raise it to the correct level and thoroughly tamp the added soil to prevent settling.
 - 5. Maintain required angles of repose of adjacent materials as shown on the Drawings. Do not excavate subgrades of adjacent paving, structures, hardscapes, or other new or existing improvements.
 - 6. Maintain supervision of excavations during working hours.
 - 7. Keep excavations covered or otherwise protected when unattended by Installer's personnel.
 - 8. Use topsoil to form earth saucers or water basins for watering around plants. Basins to be 2 inches (50 mm) high for shrubs and 4 inches (100 mm) high for trees.
- B. Subsoil and topsoil removed from excavations may not be used as planting soil.
- C. Notify Contracting Officer's Representative if unexpected rock or obstructions detrimental to trees or shrubs are encountered in excavations.
- D. Notify Contracting Officer's Representative if subsoil conditions evidence unexpected water seepage or retention in tree or shrub planting pits.
- E. Fill excavations with water and allow water to percolate away before positioning trees and shrubs.

3.5 SHRUB PLANTING

- A. Prior to planting, verify that root flare is visible at top of root ball according to ANSI Z60.1. If root flare is not visible, remove soil in a level manner from the root ball to where the top-most root emerges from the trunk. After soil removal to expose the root flare, verify that root ball still meets size requirements.
- B. Remove stem girdling roots and kinked roots. Remove injured roots by cutting cleanly; do not break.
- C. Set container-grown plants and in center of planting pit or trench with root flare 2 inches (50 mm) above adjacent finish grades.
 - 1. Use planting soil for backfill.
 - 2. Carefully remove root ball from container without damaging root ball or plant. Do not use planting stock if root ball is cracked or broken before or during planting operation.
 - 3. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half full, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
 - 4. Place planting tablets in each planting pit when pit is approximately one-half filled; in amounts recommended in soil reports from soil-testing laboratory. Place tablets beside soilcovered roots about 1 inch (25 mm) from root tips; do not place tablets in bottom of the hole or touching the roots.
 - 5. Continue backfilling process. Water again after placing and tamping final layer of soil.
- D. When planting on slopes, set the plant so the root flare on the uphill side is flush with the surrounding soil on the slope; the edge of the root ball on the downhill side will be above the surrounding soil. Apply enough soil to cover the downhill side of the root ball.

3.6 SHRUB PRUNING

- A. Remove only dead, dying, or broken branches. Do not prune for shape.
- B. Prune, thin, and shape shrubs according to standard professional horticultural and arboricultural practices. Unless otherwise indicated by Contracting Officer's Representative; remove only injured, dying, or dead branches from shrubs; and prune to retain natural character.
- C. Do not apply pruning paint to wounds.

3.7 ROOT-BARRIER INSTALLATION

3.8 GROUND COVER AND PLANT INSTALLATION

- A. Set out and space ground cover and plants other than trees, shrubs, and vines 36 inches (75mm) apart in even rows with triangular spacing.
- B. Use planting soil for backfill.
- C. Dig holes large enough to allow spreading of roots.
- D. Work soil around roots to eliminate air pockets and leave a slight saucer indentation around plants to hold water.
- E. Water thoroughly after planting, taking care not to cover plant crowns with wet soil.
- F. Protect plants from hot sun and wind; remove protection if plants show evidence of recovery from transplanting shock.

3.9 MULCH INSTALLATION

- A. Mulch backfilled surfaces of planting areas and other areas indicated. Keep mulch out of plant crowns and off buildings, pavements, utility standards/pedestals, and other structures.
 - Trees and Tree-like Shrubs in Turf Areas: Apply mulch ring of 3 inch (75 mm) average thickness, with 36 inch (900 mm) radius around trunks or stems. Do not place mulch within 3 inches (75 mm) of trunks or stems.
 - 2. Mulch in Planting Areas: Apply 3 inch (75 mm) average thickness of mulch over whole surface of planting area, and finish level with adjacent finish grades. Do not place mulch within 3 inches (75 mm) of trunks or stems.

3.10 PLANT MAINTENANCE

- A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring plant saucers, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings. Spray or treat as required to keep trees and shrubs free of insects and disease.
- B. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.
- C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use IPM (Integrated Pest Management) practices whenever possible to minimize the use of pesticides and reduce hazards. Treatments include physical controls such as hosing

off foliage, mechanical controls such as traps, and biological control agents.

3.11 TURF AREA PREPARATION AND GRADING

- A. For newly graded subgrades loosen subgrade to a minimum depth of 4 inches (100 mm). Remove stones larger than 1 inch (25 mm) in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 - 1. Apply fertilizer and soil amendments directly to subgrade before loosening, at rates recommended by the soils analysis.
 - 2. Spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 - 3. Spread planting soil to a depth of 6 inches (150 mm) but not less than required to meet finish grades after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 - a. Spread approximately 1/2 the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches (100 mm) of subgrade. Spread remainder of planting soil.
 - b. Reduce elevation of planting soil to allow for soil thickness of sod.
- B. Finish grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch (13 mm) of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in the immediate future.

3.12 SEEDING

- A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph (8 km/h). Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 - 1. Do not use wet seed or seed that is moldy or otherwise damaged.
 - 2. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.
- B. Sow seed at a total rate of 200 pounds per acre.
- C. Rake seed lightly into top 1/8 inch (3 mm) of soil, roll lightly, and water with fine spray.
- D. Protect seeded areas from hot, dry weather or drying winds by applying wood cellulose fiber mulch. Soak areas, scatter mulch uniformly at 200 pounds per acre and roll surface smooth.

3.13 SPRIGGING

A. Soil moist. Weed by hand or hoe. Do not treat sprig area with herbicide.

3.14 TURF RENOVATION

- A. Renovate existing turf damaged by Contractor's operations, such as storage of materials or equipment and movement of vehicles.
 - 1. Reestablish turf where settlement or washouts occur or where minor regrading is required.
 - 2. Install new planting soil as required.
- B. Remove sod and vegetation from diseased or unsatisfactory turf areas; do not bury in soil.
- C. Remove topsoil containing foreign materials such as oil drippings, fuel spills, stones, gravel, and other construction materials resulting from Contractor's operations, and replace with new planting soil.
- D. Mow, dethatch, core aerate, and rake existing turf.
- E. Remove weeds before seeding. Where weeds are extensive, apply selective herbicides as required. Do not use pre-emergence herbicides.
- F. Remove waste and foreign materials, including weeds, soil cores, grass, vegetation, and turf, and legally dispose of them off Owner's property.
- G. Till stripped, bare, and compacted areas thoroughly to a soil depth of 6 inches (150 mm).
- H. Apply soil amendments and initial fertilizers required for establishing new turf and mix thoroughly into top 4 inches (100 mm) of existing soil. Install new planting soil to fill low spots and meet finish grades.
- I. Apply seed and protect as required for new turf.
- J. Water newly planted areas and keep moist until new turf is established.

3.15 TURF MAINTENANCE

- A. Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.
 - Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
 - In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.

- 3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use IPM (Integrated Pest Management) practices whenever possible to minimize the use of pesticides and reduce hazards.
- B. Install and maintain temporary piping, hoses, and turf-watering equipment
 - to convey water from sources and to keep turf uniformly moist to a depth of 4 inches (100 mm).
 - Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
 - 2. Water turf with fine spray at a minimum rate of 1 inch (25 mm) per week unless rainfall precipitation is adequate.
- C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than 1/3 of grass height. Remove no more than 1/3 of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

1. Mow grass to 1-1/2 to 2 inches (38 to 50 mm).

3.16 SATISFACTORY TURF

- A. Turf installations shall meet the following criteria as determined by Contracting Officer's Representative:
 - 1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. (0.92 sq. m) and bare spots not exceeding 5 by 5 inches (125 by 125 mm.
- B. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

3.17 PESTICIDE APPLICATION

- A. Apply pesticides and other chemical products and biological control agents in accordance with authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Contracting Officer's Representative before each application is performed.
- B. Pre-Emergent Herbicides (Selective and Non-Selective): Applied to tree, shrub, and ground-cover areas in accordance with manufacturer's written recommendations. Do not apply to seeded areas.

C. Post-Emergent Herbicides (Selective and Non-Selective): Applied only as necessary to treat already-germinated weeds and in accordance with manufacturer's written recommendations.

3.18 CLEANUP AND PROTECTION

- A. During planting, keep adjacent paving and construction clean and work area in an orderly condition.
- B. Protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings.
- C. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.
- D. Erect temporary fencing or barricades and warning signs, as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.
- E. After installation and before Project Completion, remove nursery tags, nursery stakes, tie tape, labels, wire, burlap, and other debris from plant material, planting areas, and Project site.
- F. Remove nondegradable erosion control measures after grass establishment period.
- G. Remove surplus soil and waste material including excess subsoil, unsuitable soil, trash, and debris and legally dispose of them off Owner's property.

--- END ---

SECTION 33 40 00

STORM SEWER AND IRRIGATION UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of outside, underground storm sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTHWORK.
- B. Concrete Work, Reinforcing, Placement and Finishing: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. Fabrication of Steel Ladders: Section 05 50 00, METAL FABRICATIONS.
- D. Materials and Testing Report Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- E. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 ABBREVIATIONS

- A. HDPE: High-density polyethylene
- B. PE: Polyethylene

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Handle manholes, catch basins, and stormwater inlets according to manufacturer's written rigging instructions.

1.5 COORDINATION

- A. Coordinate connection to storm sewer main with the Public Agency providing storm sewer off-site drainage.
- B. Coordinate exterior utility lines and connections to building services up to the actual extent of building wall.

1.6 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.

2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

1.7 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings and appurtenances, including jointing materials, hydrants, valves and other miscellaneous items.

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185/A185M-07	.Steel Welded Wire Reinforcement, Plain, for Concrete
A242/A242M-04(2009)	.High-Strength Low-Alloy Structural Steel
A536-84(2009)	.Ductile Iron Castings
A615/A615M-09b	.Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
A760/A760M-10	.Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains
A798/A798M-07	.Installing Factory-Made Corrugated Steel Pipe for Sewers and Other Applications
A849-10	.Post-Applied Coatings, Paving, and Linings for Corrugated Steel Sewer and Drainage Pipe
A929/A929M-01(2007)	.Steel Sheet, Metallic-Coated by the Hot-Dip Process for Corrugated Steel Pipe
B745/B745M-97(2005)	.Corrugated Aluminum Pipe for Sewers and Drains
В788/В788М-09	.Installing Factory-Made Corrugated Aluminum Culverts and Storm Sewer Pipe
C14-07	.Non-reinforced Concrete Sewer, Storm Drain, and Culvert Pipe
C33/C33M-08	.Concrete Aggregates

C76-11	Reinforced Concrete Culvert, Storm Drain, and . Sewer Pipe
C139-10	.Concrete Masonry Units for Construction of Catch Basins and Manholes
C150/C150M-11	.Portland Cement
C443-10	.Joints for Concrete Pipe and Manholes, Using Rubber Gaskets
C478-09	.Precast Reinforced Concrete Manhole Sections
C506-10b	Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe
C507-10b	Reinforced Concrete Elliptical Culvert, Storm. Drain, and Sewer Pipe
C655-09	.Reinforced Concrete D-Load Culvert, Storm Drain, and Sewer Pipe
C857-07	.Minimum Structural Design Loading for Underground Precast Concrete Utility Structures
C891-09	.Installation of Underground Precast Concrete Utility Structures
C913-08	.Precast Concrete Water and Wastewater Structures
C923-08	Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals
C924-02(2009)	.Testing Concrete Pipe Sewer Lines by Low- Pressure Air Test Method
C990-09	Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants
C1103-03(2009)	Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines
C1173-08	.Flexible Transition Couplings for Underground Piping Systems

C1433-10	Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers
C1479-10	Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations
D448-08	Sizes of Aggregate for Road and Bridge Construction
D698-07e1	Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
D1056-07	Flexible Cellular Materials—Sponge or Expanded Rubber
D1785-06	Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
D2321-11	Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications
D2751-05	Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings
D2774-08	Underground Installation of Thermoplastic Pressure Piping
D3034-08	Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings
D3350-10	Polyethylene Plastics Pipe and Fittings Materials
D3753-05e1	Glass-Fiber-Reinforced Polyester Manholes and Wetwells
D4101-11	Polypropylene Injection and Extrusion Materials
D5926-09	Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems
F477-10	Elastomeric Seals (Gaskets) for Joining Plastic Pipe

F714-10Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F794-03(2009)Poly(Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter F891-10Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F894-07Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe F949-10Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings F1417-11Installation Acceptance of Plastic Gravity
Sewer Pipe and Fittings Based on Controlled Inside Diameter F891-10Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F894-07Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe F949-10Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings
Pipe With a Cellular Core F894-07Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe F949-10Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings
Sewer and Drain Pipe F949-10Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings
Pipe With a Smooth Interior and Fittings
F1417-11
Sewer Lines Using Low-Pressure Air
F1668-08 Construction Procedures for Buried Plastic Pipe
C. American Association of State Highway and Transportation Officials (AASHTO):
M190-04Bituminous-Coated Corrugated Metal Culvert Pipe and Pipe Arches
M198-10Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants
M252-09 Pipe Pipe
M294-10 to 1500 mm) Diameter
D. American Water Works Association(AWWA):

C105/A21.5-10.....Polyethylene Encasement for Ductile iron Pipe Systems

C110-08..... Ductile-Iron and Gray-Iron Fittings

C219-11....Bolted, Sleeve-Type Couplings for Plain-End Pipe

C600-10..... Mains and Their Appurtenances

C900-07.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

M23-2nd ed.....PVC Pipe "Design And Installation"

E. American Society of Mechanical Engineers (ASME):

A112.6.3-2001.....Floor and Trench Drains

A112.14.1-2003.....Backwater Valves

A112.36.2M-1991.....Cleanouts

F. American Concrete Institute (ACI):

318-05..... and Commentary and Commentary

350/350M-06.....Environmental Engineering Concrete Structures and Commentary

G. National Stone, Sand and Gravel Association (NSSGA): Quarried Stone for Erosion and Sediment Control

1.9 WARRANTY

The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturers' and suppliers' written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 CONCRETE PIPE AND FITTINGS

- A. Non-Reinforced-Concrete sewer pipe and fittings shall be ASTM C14, Class
 3, with bell-and-spigot or tongue-and-groove ends and gasketed joints
 with ASTM C443, rubber gaskets.
- B. Reinforced-Concrete sewer pipe and fittings shall be ASTM C76 or ASTM C655.
 - 1. Bell-and-spigot or tongue-and-groove ends and gasketed joints with ASTM C443, rubber gaskets.
 - 2. Class V: Wall C

2.3 DUCTILE IRON PIPE:

Use centrifugally cast ductile iron pipe meeting the requirements of AWWA C151. Ductile iron pipe shall have a cement-mortar lining and seal coating meeting the requirements of AWWA C104. Ductile iron pipe to be joined using bolted flanged joints shall be Standard Thickness Class 53. All other ductile iron pipe shall be Standard Thickness Class 50 or the thickness class specified or indicated.

2.4 NONPRESSURE TRANSITION COUPLINGS

A. Comply with ASTM C1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground non-pressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials

- 1. For concrete pipes: ASTM C443, rubber.
- 2. For plastic pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
- 3. For dissimilar pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings: Couplings shall be an elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Shielded, flexible couplings shall be elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistantmetal tension band and tightening mechanism on each end.
- E. Ring-Type, flexible couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.
- 2.5 CLEANOUTS
 - A. Cast-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include

gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

- 1. Top-Loading Classification(s): Heavy Duty
- 2. Pipe fitting and riser to cleanout shall be same material as main pipe line.
- B. Plastic Cleanouts shall have PVC body with PVC threaded plug. Pipe fitting and riser to cleanout shall be of same material as main line pipe.

2.6 MANHOLES AND CATCH BASINS

A. Standard Precast Concrete Manholes:

- Description: ASTM C478 (ASTM C478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
- 2. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
- 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
- 4. Base Section: 6 inch (150 mm) minimum thickness for floor slab and 4inch (102 mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
- 5. Riser Sections: 4 inch (102 mm) minimum thickness, and lengths to provide depth indicated.
- 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slabtop type is indicated, and top of cone of size that matches grade rings.
- 7. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
- 8. Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
- 9. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm) ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.
- 10. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Manhole Frames and Covers:
 - 1. Description: Ferrous; 24 inch (610 mm) ID by 7 to 9 inch (175 to 225 mm) riser with 4 inch (102 mm) minimum width flange and 26-inch (600

mm) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

2. Material: ASTM A536, Grade 60-40-18 ductile

2.7 CONCRETE FOR MANHOLES AND CATCH BASINS

- A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C150, Type II.
 - 2. Fine Aggregate: ASTM C33, sand.
 - 3. Coarse Aggregate: ASTM C33, crushed gravel.
 - 4. Water: Potable.
- B. Concrete Design Mix: 4000 psi (27.6 MPa) minimum, compressive strength in 28 days.
 - 1. Reinforcing Fabric: ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A615, Grade 60 (420 MPa) deformed steel.
- C. Manhole Channels and Benches: Channels shall be the main line pipe material. Include benches in all manholes and catch basins.
 - Channels: Main line pipe material or concrete invert. Height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope. Invert Slope: Same slope as the main line pipe. Bench to be concrete, sloped to drain into channel. Minimum of 6 inch slope from main line pipe to wall sides.

2.8 PIPE OUTLETS

- A. Head walls: Cast in-place reinforced concrete, with apron and tapered sides.
- B. Riprap basins: Broken, irregularly sized and shaped, graded stone according to ODOT 2008 Standard Specifications of Construction

2.9 HEADWALLS

A. Headwalls: Cast in-place concrete with a minimum compressive strength of 3000 psi (20 MPa) at 28 days.

2.10 RESILIENT CONNECTORS AND DOWNSPOUT BOOTS FOR BUILDING ROOF DRAINS

A. Resilient connectors and downspout boots: Flexible, watertight connectors used for connecting pipe to manholes and inlets, and shall conform to ASTM C923.

2.11 WARNING TAPE

A. Standard, 4-Mil polyethylene 3 inch (76 mm) wide tape detectable type, purple with black letters, and imprinted with "CAUTION BURIED STORM SEWER BELOW".

PART 3 - EXECUTION

3.1 PIPE BEDDING

A. The bedding surface of the pipe shall provide a firm foundation of uniform density throughout the entire length of pipe. Concrete pipe requirements are such that when no bedding class is specified, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform with the lowest one-fourth of the outside portion of circular pipe. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall not be more than the length, depth, and width required for properly making the particular type of joint. Plastic pipe bedding requirements shall meet the requirements of ASTM D2321. Bedding, haunching and initial backfill shall be either Class IB or Class II material. Corrugated metal pipe bedding requirements shall conform to ASTM A798.

3.2 PIPING INSTALLATION

- A. Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 1. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
 - 2. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
 - 3. Inspect pipes and fittings, for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
 - 4. Clean interior of all pipe thoroughly before installation. When work is not in progress, open ends of pipe shall be closed securely to prevent entrance of storm water, dirt or other substances.
 - 5. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly

wiped or swabbed to remove any dirt, trash or excess jointing materials.

- 6. Do not walk on pipe in trenches until covered by layers of shading to a depth of 12 inches (300 mm) over the crown of the pipe.
- 7. Warning tape shall be continuously placed 12 inches (300 mm) above storm sewer piping.
- C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.
- F. Install gravity-flow, nonpressure drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow.
 - 2. Install ductile iron piping and special fittings according to AWWA C600.
 - 3. Install corrugated steel piping according to ASTM A798.
 - 4. Install corrugated aluminum piping according to ASTM B788.
 - 5. Install ABS sewer piping according to ASTM D2321 and ASTM F1668.
 - 6. Install PE corrugated sewer piping according to ASTM D2321 with gasketed joints.
 - 7. Install PVC cellular-core piping, PVC sewer piping, and PVC profile gravity sewer piping, according to ASTM D2321 and ASTM F1668.
 - 8. Install non-reinforced-concrete and reinforced concrete sewer piping according to ASTM C1479.
 - 9. Install force-main pressure piping according to the following:
 - a. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosionresistant rods, pipe or fittings; or cast in-place concrete supports or anchors.
 - b. Install ductile iron pressure piping and special fittings according to AWWA C600.
 - c. Install PVC pressure piping according to AWWA M23, or ASTM D2774 and ASTM F1668.

- d. Install corrosion-protection piping encasement over the following underground metal piping according to AWWA C105/A21.5.
 - 1) Hub-and-spigot, cast iron soil pipe and fittings.
 - 2) Hubless cast iron soil pipe and fittings.
 - 3) Ductile iron pipe and fittings.
 - 4) Expansion joints and deflection fittings.

3.3 REGRADING

- A. Raise or lower existing manholes and structures frames and covers in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.

3.4 CONNECTIONS TO EXISTING VA-OWNED MANHOLES

A. Make pipe connections and alterations to existing manholes so that finished work will conform as nearly as practicable to the applicable requirements specified for new manholes, including concrete and masonry work, cutting, and shaping.

3.5 CONNECTIONS TO EXISTING PUBLIC UTILITY MANHOLES

- A. Comply with all rules and regulations of the public utility.
- B. Backwater Valve Installation
- C. Cleanout Installation
 - Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast iron soil pipe fittings in sewer pipes at branches for cleanouts and cast iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - a. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - b. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 - c. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic service areas.

- d. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- 2. Set cleanout frames and covers in earth in cast in-place concrete block, as indicated.
- D. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.6 DRAIN INSTALLATION

A. Install type of drains in locations indicated.

- Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
- 2. Use Medium-Duty, top-loading classification cleanouts in paved foottraffic areas.
- 3. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic service areas.
- 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- B. Embed drains in 4 inch (102 mm) minimum concrete around bottom and sides.
- C. Set drain frames and covers with tops flush with pavement surface.
- D. Assemble trench sections with flanged joints and embed trench sections in 4 inch (102 mm) minimum concrete around bottom and sides.

3.7 MANHOLE INSTALLATION

- A. Install manholes, complete with appurtenances and accessories indicated. Install precast concrete manhole sections with sealants according to ASTM C891.
- B. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches (76 mm) above finished surface elsewhere unless otherwise indicated.
- C. Circular Structures:
 - Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch (15 mm) or cement mortar applied with a trowel and finished to an even glazed surface.
 - 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top shall be sealed with a preform flexible gasket material specifically manufactured for this type of application. Adjust the length of the rings so that the eccentric conical top section will be at the

required elevation. Cutting the conical top section is not acceptable.

- 3. Precast reinforced concrete manhole risers and tops. Install as specified for precast reinforced concrete rings.
- D. Rectangular Structures:
 - 1. Precast concrete structures shall be placed on a 8 inch (200 mm) reinforced concrete pad, or be provided with a precast concrete base section. Structures provided with a base section shall be set on an 8 inch (200 mm) thick aggregate base course compacted to a minimum of 95 percent of the maximum density as determined by ASTM D698. Set precast section true and plumb. Seal all joints with preform flexible gasket material.
 - Do not build structures when air temperature is 32 deg F (0 deg C), or below.
 - 3. Invert channels shall be smooth and semicircular in shape conforming to inside of adjacent sewer section. Make changes in direction of flow with a smooth curve of as large a radius as size of structure will permit. Make changes in size and grade of channels gradually and evenly. Construct invert channels by one of the listed methods: a. Forming directly in concrete base of structure. b. Building up with brick and mortar.
 - 4. Floor of structure outside the channels shall be smooth and slope toward channels not less than 1 to 12 or more than 1 to 6. Bottom slab and benches shall be concrete.
 - 5. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
 - 6. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
 - 7. Install manhole frames and covers on a mortar bed, and flush with the finish pavement. Frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. In unpaved areas, the rim elevation shall be 2 inches (50 mm) above the adjacent finish grade. Install an 8 inch (203 mm) thick, by 12 inch (300 mm) concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.8 CATCH BASIN INSTALLATION

- A. Construct catch basins to sizes and shapes indicated.
- B. Set frames and grates to elevations indicated.

3.9 STORMWATER INLET AND OUTLET INSTALLATION

- A. Construct inlet head walls, aprons, and sides of reinforced concrete.
- B. Construct riprap of broken stone.
- C. Install outlets that spill onto grade, anchored with concrete.
- D. Install outlets that spill onto grade, with flared end sections that match pipe.
- E. Construct energy dissipaters at outlets.

3.10 CONNECTIONS

- A. Connect nonpressure, gravity-flow drainage piping in building's storm building drains specified in Division 22 Section FACILITY STORM DRAINAGE PIPING.
- B. Encase entire connection fitting, plus 6 inch (150 mm) overlap, with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
- C. Make connections to existing piping and underground manholes.
 - Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping.
 - Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping.
 - 3. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, use epoxybonding compound as interface between new and existing concrete and piping materials.
 - 4. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

- D. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 - a. Shielded flexible couplings for same or minor difference OD pipes.
 - b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
 - 2. Use pressure-type pipe couplings for force-main joints.

3.11 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

- A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:
 - Close open ends of piping with at least 8 inch (203 mm) thick, brick masonry bulkheads.
 - 2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.
- B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:
 - 1. Remove manhole or structure and close open ends of remaining piping.
 - 2. Remove top of manhole or structure down to at least 24 inches (610 mm) below final grade. Fill to within 12 inches (300 mm) of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.
- C. Backfill to grade according to Division 31 Section EARTH MOVING.

3.12 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edge of underground structures.

3.13 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.1. Submit separate reports for each system inspection.

16

- 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
- 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
- 4. Reinspect and repeat procedure until results are satisfactory.

3.14 TESTING OF STORM SEWERS:

A. Submit separate report for each test.

- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - 2. Test completed piping systems according to requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours advance notice.
 - 4. Submit separate report for each test.
 - 5. Air test gravity sewers. Concrete Pipes conform to ASTM C924, Plastic Pipes conform to ASTM F1417, all other pipe material conform to ASTM C828 or C924, after consulting with pipe manufacturer. Testing of individual joints shall conform to ASTM C1103.
 - 6. Test force-main storm drainage piping. Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psi (1035 kPa).
 - a. Ductile iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 - b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.
- C. Leaks and loss in test pressure constitute defects that must be repaired. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

30 JANUARY 2015

3.15 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with potable water.

--- E N D ---

SECTION 34 71 13 VEHICLE BARRIERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section includes passive High-Security Vehicle Barricades of fixed bollards of crash resistance rating.

1.2 RELATED WORK

- A. Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS, for concrete driveway and approach paving.
- B. Section 03 30 00, CAST-IN-PLACE CONCRETE, for concrete islands and curbing.
- C. Section 05 50 00, METAL FABRICATIONS, for pipe bollards.

1.3 SYSTEM DESCRIPTION

A. Barricade system mounted in the ground as detailed on the drawings.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Indicate dimensions, required clearances, method of field assembly, and location and size of each field connection.
- C. Certificate test reports confirming compliance's with specified resistive rating.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

1.6 COORDINATION

A. Coordinate installation of anchorages for parking control equipment. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

PART 3-EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, critical dimensions, and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install bollards in concrete foundation pad as detailed on the drawings.

3.3 FIELD QUALITY CONTROL

A. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

- - - END - - -

SECTION 35 20 16 FABRICATED STAINLESS STEEL SLIDE GATES

PART 1 - GENERAL

- 1.1 SECTION INCLUDES
 - A. Fabricated stainless steel slide gates and operators
 - В. Туре
 - 1. Upward opening.
 - 2. Design gates and operators for isolating service.
 - 3. Fabricated slide gates of stainless steel construction with slides and guides provided by one manufacturer.
 - 4. Rising stem design is required unless otherwise specified or noted on the Drawings.

1.2 REFERENCED SECTIONS

- A. The following Sections are referenced in this Section
 - 1. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
 - 2. Section 05 50 00 METAL FABRICATIONS

1.3 REFERENCED STANDARDS

- A. This section contains references to the following documents. They are part of this section as specified and modified. In case of conflict between the requirements of the section and those of the listed documents, the requirements of this section shall prevail.
 - 1. AWWA C561: Fabricated Stainless Steel Slide Gates

1.4 DESIGN REQUIREMENTS

- A. Structural
 - 1. Slide Plate, Plate Reinforcement, and Frames
 - a. Apply safety factor of 5.0 with regard to ultimate tensile, compressive and shear strength.
 - b. Minimum permissible thickness: 1/4".
 - Slide Plate Deflection: Not more than 1/720 of the plate span, or 1/16-inch, whichever is less, at specified maximum hydraulic head.
 - 3. Structural Members Forming The Yoke
 - a. Size to accommodate the loads developed by the gate operating device as determined by the stem sizing calculations.
 - b. Limit yoke deflection to L/360 at maximum operating loads.
 - c. Minimum permissible thickness: $\ensuremath{^{\prime\prime}}\xspace$.

- 4. For operating forces used for determining the strength of gate components comprising of yokes, frames, discs, stems, disc nut pockets, and other load-bearing members, base on the sum of the guide friction force and the weight of disc and stem. Use factor of safety of 1.5.
- 5. When the gate is in motion, base the operating forces on the sum of the frictional force and the weight of disc and stem. Use factor of safety of 1.5.
- B. For stem sizing, select and provide the largest stem diameter determined by the following calculations:
 - For manually operated gates, determine stem diameters required to withstand tension and compression loads created by manual operation of the gate under the following conditions:
 - a. Loads created by the application of a 40 pound force on the handwheel or hand crank. Apply a safety factor of 2.0 to compressive load calculations.
 - b. Loads created by a 50 foot-pound torque applied to the operating nut. Apply a safety factor of 2.0 to compressive load calculations.
 - c. Under both conditions, determine stem diameter that will not exceed one-fifth of the ultimate tensile strength of the stem material.
 - 2. Provide stem guides to achieve a slenderness ratio (L/R) not less than 200 for each unsupported section of the stem.
- C. Allowable Leakage Limits
 - 1. At design seating head, leakage not to exceed 0.05 gallons-perminute per foot of seating perimeter.
 - 2. At design unseating head, leakage not to exceed 0.10 gallons-perminute per foot of seating perimeter.
- D. Size gate actuators in accordance with AWWA C561, latest edition.

1.5 SUBMITTALS

- A. Comply with Section 01 33 23.
- B. Include the following items:
 - Product Data: Submit manufacturer's standard catalog data, descriptive literature, parts list and specifications describing system components.
 - 2. Certified installation drawings indicating principal dimensions, general construction of the assembly, materials of construction and installation instructions for each gate and operator.
 - 3. Plan, cross section, and details showing proposed mounting.
 - 4. Parts list including materials of construction.

- 5. Calculations justifying the size of stem, gate, slide reinforcing, and operator.
 - a. Include calculations showing gate deflection under maximum hydraulic loading condition.
 - b. Submit gate opening and closing thrust forces that will be transmitted to the support structure with operator at extreme positions and load.
- 6. Anchor bolt design calculations and details. All calculations and design details shall be made and signed by a civil or structural engineer currently registered in the State of California.
- 7. Manufacturer's recommended installation instructions with detail drawings showing installation in the specific structure for gate and operator.
- 8. Affidavits of compliance in accordance with AWWA C561, latest edition.
- 9. Complete and submit the following forms from Section 01 91 00:
 - a. Unit Responsibility Form.
 - b. Additional forms required during startup per Part 3.

1.6 QUALITY ASSURANCE

- A. Comply with AWWA Standard C561 except as modified by this section.
- B. Experience
 - Document that manufacturer has minimum 10 years of successful design and manufacturing fabricated stainless steel weir gates per AWWA C561, latest edition.
 - 2. List 5 wastewater treatment plant projects in California, with similar gates, completed in the last 3 years. Provide contact and phone number.
- 1.7 PRODUCT SHIPMENT, PROTECTION, AND STORAGE
 - A. Handle and store in accordance with the manufacturer's recommendations. Avoid warping gate frame and maintain tolerances between seating faces.
 - B. For self-contained slide gates, ship as a fully assembled unit, complete and ready for installation, except electric actuators and cylinders shall be shipped separately and installed in the field.
 - C. Ship slide gates that are not in a self-contained arrangement in components and assemble in the field. Pack gate stems in sturdy wood crates and bolt slide plates and frames securely to wood skids to protect unit and to provide safe handling. Package and ship actuator separately.

PART 2 - PRODUCTS

- 2.1 MANUFACTURERS
 - A. Waterman
 - B. Golden Harvest
 - C. Rodney Hunt Fontaine
 - D. Whipps, Inc.
 - E. Or equal, as specified in Section 01 33 23
 - F. Modify equipment as required to meet the requirements of this section.

2.2 MATERIALS

- A. Frame, Slide Plate, Rails, Wall Thimbles, and Yoke: ASTM A240 or ASTM A276, Type 316L stainless steel.
- B. Lifting Nut: ASTM B584 bronze.
- C. Thrust Nut for Rising Stem Type Slide Gates: ASTM B584 bronze.
- D. Clevis and Bolt for Rising Stem Gates (in lieu of thrust nut): ASTM A276, Type 316 stainless steel.
- E. Seals
 - 1. Top and Side Seals: Neoprene J-seals per ASTM D2000 or UHMWPE per ASTM D4020 (with compression cord).
 - Bottom Seal: Neoprene per ASTM D2000, Grade 2 BC-510 or Grade 2 BC-625.
- F. Stems, Stem Guide Mounting Brackets, and Stem Couplers: ASTM A276 Type 316 Stainless Steel.
- G. Bolts, Studs, Fasteners, Anchor Bolts, and adhesive anchors: ASTM A276 Type 316 Stainless Steel.
- H. Stem Cover Cap and Base Adapters: Aluminum Type 6061-T6, Class II clear anodized finish.
- I. Stem Cover Body: Aluminum Pipe, Type 6061-T6; Schedule 40. Class II clear anodized finish.
- J. Stem Guides: UHMW.

2.3 EQUIPMENT FEATURES

- A. Slide Plate
 - 1. Comprised of a single flat stainless steel plate, reinforced as required, to meet the specified design criteria for deflection.
- B. Slide Plate Guides (Frame)
 - 1. Comprised of structural members bolted together or welded to form a rigid, one-piece frame designed to mount directly to a concrete

wall, round manhole, wall thimble, or standard pipe flange as specified.

- 2. Vertical Guides
 - a. Design self-contained gates to extend in one continuous piece from the gate invert to form posts for supporting the yoke. Size vertical guides to retain the slide plate and to withstand forces generated by the gate operating mechanism.
 - b. Design non-self-contained gates to extend in one continuous piece from the gate invert to form posts for supporting at least 2/3 of the slide plate height when the gate is in the full open position. Size vertical guides to retain the slide plate and to withstand forces generated by the gate operating mechanism.
 - c. Guide Slot Depth: Minimum 1-inch.
 - d. Guide Slot Liners: Incorporate replaceable UHMWPE bearing strips on both sides of the guide slot.
- C. Yoke (Self-contained Gates)
 - 1. Formed by structural members welded to the vertical guides.
 - 2. Location Relative to Operating Floor
 - a. Minimum Height of Yoke: 3 feet 6 inches above the operating floor.
 - b. Maximum Height of Yoke: High enough above the operating floor to allow the bottom of the upward acting slide plate to be raised above the maximum water surface elevation when the gate is in the full up position.
 - 3. Design to allow removal of slide from guides without removing gate frame from structure.
- D. Stem and Stem Guides
 - Stem diameter as required to meet specified sizing criteria, minimum 1.50-inch diameter. Length suitable to extend at least 2 inches above the stop collar when the gate is in the closed position.
 - 2. Use machine cut or cold-rolled, full-depth, Acme type threads with RMS surface roughness of 63-16 micro-inches.
 - 3. Provide adjustable stop collar located at closed gate position.
 - Use stem couplers with internal threads when stems are made up of more than one section. Hold coupler in place with bolts or with key and keyway.
 - 5. Stem Guides: Split, UHMWPE bushed, adjustable in two directions to properly align stem.
- E. Stem Cover
 - 1. Clear plastic with vent hole, drain and top cap.

- 2. Place open and closed labels at appropriate locations with adhesive tape and graduation at 1-inch intervals.
- F. Seals
 - 1. Frame mount top and side seals.
 - 2. Provide top and side seals designed for field replacement without removing the gate from the wall or wall thimble.
 - 3. J bulb style
 - a. Make fully field adjustable.
 - b. Equip with stainless steel retainer plates.
 - c. Seal design to be independent of UHMW slot liners.
 - 4. Self-adjusting style.
 - a. Make fully self-adjusting, with no field adjustment required.
 - b. Machine groove into UHMW slot liners and install continuous compression cord to ensure contact between UHWM slot liners and gate in all positions.
 - 5. For conventional closure, mount bottom seal on bottom of slide or on bottom member of frame and design to seal against invert portion of frame.

2.4 SLIDE GATE OPERATORS

- A. Manual Gate Operators
 - 1. Furnish per Paragraph 1.04.F, Gate Schedule.
 - a. Provide either handwheel or hand crank as scheduled.
 - b. If operator is not listed in Gate Schedule, select the type of manual operator to meet the maximum operator effort requirement specified below.
 - c. Comply with requirements of AWWA C561 pertaining to manual lifting devices.
 - 2. Size gate operator to allow gate operation with an effort of not more than 40-lb pull on the handwheel/hand crank.
 - 3. Handwheel Type Operators
 - a. Non-geared.
 - B. Provide operating nut in the center of the handwheel.
 - 4. Hand Crank Operators
 - a. Geared type designed to allow operation of gate under the specified design hydraulic head condition with a maximum effort of 40 pound pull on the crank.
 - b. Enclose gears and bearings in a weatherproof housing with pressure fittings for grease lubrication. Construct pinion shaft of crank operated mechanisms of stainless steel and support by roller or needle bearings.

c. Crank Handles: Removable from the operator and fitted with a corrosion resistant rotating handle. Maximum crank radius: 15-inches.

2.5 FABRICATION

- A. Shop Fabrication
 - 1. Workmanship
 - a. Conform to design dimensions with bolt holes accurately drilled to match mounting pattern.
 - b. Free from defects, burrs, grease and dirt.
 - Tolerances: Within 1/8-inch of square, flatness and dimensional tolerances.
- B. Welding
 - 1. Comply with AWS D1.6.
 - 2. Make welds free of slag, weld splatter and discoloration from heat.

2.6 SOURCE QUALITY CONTROL

- A. Verification of Operation: Operate slide gate from fully closed to fully open to verify proper operation.
- B. Welders:
 - a. ASME Section IX or AWS D1.6. Certification is required.
 - b. Submit documentation.

2.7 ANCHORS

- A. Comply with Section 05 50 00.
- B. Provide calculations.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Align and install each gate in accordance with the manufacturer's written instructions.
- B. Seal the space between the gate frame and the wall surface with non-shrink grout.
- C. Install the seal between the gate frame and the mounting surface in accordance with the written recommendations of the seal material manufacturer and the gate manufacturer. Make the seal between the gate frame and the wall surface watertight.
- D. Provide factory-trained personnel to check installation and test initial operation.

3.2 FIELD QUALITY CONTROL

A. Corrective Actions: Replace or repair work to eliminate defects, deficiencies and irregularities.

3.3 PERFORMANCE TESTING

- A. Perform field leakage tests as specified in AWWA C561.
 - 1. Maximum allowable leakage rate: Per Paragraph 1.04.C.
 - 2. Conduct field leakage tests with no head on one side of the gate being tested.
 - 3. No leakage is permitted from the seal between the frame of the gate and the concrete wall surface.

- - - E N D - - -

35 20 16

SECTION 48 14 00 SOLAR ENERGY ELECTRICAL POWER GENERATION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design and provide a complete and functional 1.2MWDc grid tie ground mounted photovoltaic systems within the area specified on plans. The system shall include photovoltaic panels, inverters, disconnects, combiner boxes, conduits, wires and all other equipment and installation necessary for a complete and fully functional solar photovoltaic system.
- B. Provide system layout, include the actual orientation and tilt of the array shall be optimized based upon computer study for the specific project location and its associated weather data and sun pattern. Provide design analysis and installation recommendation for optimum output and energy saving. The system shall consist of photovoltaic modules array, rack mounting details, terminal and combiner boxes, quick-connect electrical connectors, DC wiring, DC disconnects, grid-connected inverters, AC disconnect, and a data acquisition and monitoring system (DAS) and isolation transformer. C. The requirements of this Section apply to all sections of Division 48 related to solar energy electrical power generation systems.

1.2 WORK INCLUDED

- A. Provide engineering, labor, materials, and accessories required to furnish, install, start up and commission complete operating solar photovoltaic systems. Labor, materials, or accessories not specifically called for in contract Documents, but required to provide a complete operating system shall be provided without additional cost to owner.
- B. Determine, coordinate and incorporate the design construction requirements of the Architect, Structural Engineer, Mechanical Engineer, General Contractor, other Subcontractors, and local Power service provider.
- C. Provide an internet based solar PV system installation monitoring system that included data acquisition system, real-time reporting software as listed below:
 - i) Data Acquisition System: determine the amount of power being generated by the PV system.

ii) Real time reporting software: Internet-based application reports how much power being produced, consumed, and also maintains historical data.

1.3 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: General construction practices.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES: Submittals.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS: General requirements for commissioning.
- D. SECTION 23 09 23, STATUS MONITORING VIA CAMPUS AUTOMATION NETWORK
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical installation requirements.
- F. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Requirements for current conductors.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for grounding.
- H. Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS: Requirements for boxes, conduits, and raceways.
- I. Section 26 08 00, COMMISSIONING OF ELECTRICAL SYSTEMS: Requirements for commissioning the electrical system, subsystem, and equipment.
- J. Section 26 29 21, DISCONNECT SWITCHES: Requirements for disconnects.

1.4 DEFINTIONS

- A. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, shall be defined in IEEE 100.
- B. Unless otherwise specified or indicated, solar energy conversion and solar photovoltaic energy system terms used in these specifications, and on the drawings, shall be defined in ASTM E772 and IEC 61836.

1.5 QUALITY ASSURANCE

- A. Solar Energy Electrical Power Generation System installer(s) shall demonstrate that they have successfully installed at least four projects that, in aggregate, equal or exceed the size of the proposed project. References shall be provided for each of these referenced projects.
- B. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- C. Racking for solar photovoltaic system designs shall be prepared under the signature of a licensed Professional Engineer (PE). Among the

documents that shall be submitted by the licensed engineer are environmental loading analyses (including wind, snow and where applicable, seismic) and the rack and substrate's ability to withstand these environmental forces. In the instance where the rack is installed on the ground, adequate information shall be presented to demonstrate the earth's ability to support the proposed design.

- D. Submit Solar Energy Electrical Power Generation System data package for the following items:
 - 1. Troubleshooting guide for solar photovoltaic systems
 - 2. Solar photovoltaic module warranty
 - 3. Operation instructions
 - 4. Preventive maintenance and inspection data, including a schedule for system operators
- E. Solar photovoltaic module warranty:
 - 1. Furnish five year manufacturer's warranty against defects in materials and workmanship.
 - 2. Furnish manufacturer's warranty with respect to power output that continues for a total of 25 years: the first 10 years at 90% minimum rated power output and the balance of 15 years at 80% minimum rated power output.
 - 3. PV modules shall be UL approved.

1.6 SUBMITTALS

- A. Where proposed system shall be prepare appropriate applications and submittals to Contracting Officer's Technical Representative (COTR). Where proposed system shall be connected in front of the meter and tied directly to the grid, prepare appropriate applications and submittals to the COTR. In all cases, the local utility may have a requirement for further electrical studies, which may include power factor analysis, short circuit protection studies, grid wiring adequacy or capacities of upstream switches or transformers. If such requirements exist and are required by said utility, these requirements shall be fulfilled by the Contractor.
- B. Submit six copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections, to the COTR.

- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- D. If equipment submitted differs in arrangement from that shown on the submittals, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract and acceptable to the COTR.
- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications from the applicable other manufacturers, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for independent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- G. Shop Drawings: Include photovoltaic module structural supports solar module control sequences and instrument mounting and interconnections and all other components, parts and pieces required to complete the functioning assembly. Where applicable, include pre-fabricated assemblies such as inverter skids or racking assemblies, and shop drawings for foundations or other support structures.
- H. Product Data: Include detailed information for components of the solar energy system.
 - 1. Wiring
 - 2. Wiring Specialties
 - 3. DC-AC Inverter
 - 4. Solar Storage Battery Option
 - 5. Solar Modules
 - 6. Collector Supports
 - 7. Instrumentation
 - 8. Switch gear
 - 9. DC and AC disconnects, where applicable

- 10. Combiner boxes, where applicable
- 11. Rack system, precast concrete ballasts
- 12. Monitoring systems, including appropriate interfacing with existing facility data collection systems.
- Certificates: Submit technical representative's certification that the installation has been implemented as intended by the system designer and where applicable, recommended by the manufacturer.
- J. Manufacturer's Instructions
- K. Operation and Maintenance Solar Energy Systems Data Package:
 - 1. Safety precautions
 - 2. Operator restart
 - 3. Startup, shutdown, and post-shutdown procedures
 - 4. Normal operations
 - 7. Preventive maintenance plan and schedule
 - 8. Troubleshooting guides and diagnostic techniques
 - 9. Wiring and control diagrams
 - 10. Maintenance and repair procedures
 - 11. Removal and replacement instructions
 - 12. Spare parts and supply list
 - 13. O&M submittal data
 - 14. Parts identification
 - 15. Testing equipment and special tool information
 - 16. Warranty information
 - 17. Testing and performance data
 - 18. Contractor information
- L. Closeout Submittals:
 - Posted operating instructions for solar photovoltaic energy system: provide for wiring identification codes and diagrams of solar photovoltaic systems, operating instructions, control matrix, and troubleshooting instructions.
 - 2. Solar photovoltaic system verification certificate per IEC 62446.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

	E772-11	Standard Terminology of Solar Energy Conversion
	E1038-10	Standard Test Method for Determining Resistance
		of Photovoltaic Modules to Hail by Impact with
		Propelled Ice Balls
C.	Institute of Electrical	and Electronics Engineers (IEEE):
	100-00	The Authoritative Dictionary of IEEE Standards
		Terms, Seventh Edition
	519-92	Recommended Practices and Requirements for
		Harmonic Control in Electric Power Systems
	937-07	Recommended Practice for Installation and
		Maintenance of Lead-Acid Batteries for
		Photovoltaic (PV) Systems
	1013-07	Recommended Practice for Sizing Lead-Acid
		Batteries for Stand-Alone Photovoltaic (PV)
		Systems
	1361-03	Guide for Selection, Charging, Test and
		Evaluation of Lead-Acid Batteries Used in
		Stand-Alone Photovoltaic (PV) Systems
	1526-03	Recommended Practice for Testing the
		Performance of Stand-Alone Photovoltaic Systems
	1547-03	Standard for Interconnecting Distributed
		Resources with Electric Power Systems
	1561-07	Guide for Optimizing the Performance and Life
		of Lead-Acid Batteries in Remote Hybrid Systems
	1562-07	Guide for Array and Battery Sizing in Stand-
		Alone Photovoltaic (PV) Systems
	1661-07	Guide for Test and Evaluation of Lead-Acid
		Batteries Used in Photovoltaic (PV) Hybrid
		Power Systems
D.	International Code Counc	cil (ICC):
	IBC-12	International Building Code
	IFC-12	International Fire Code
	IRC-12	International Residential Code
Ε.	International Electroted	chnical Commission (IEC):
	60529-04	Degrees of Protection Provided by Enclosures
		(IP Code); Ed 1.0

```
61215-05..... Crystalline Silicon Terrestrial Photovoltaic
                         (PV) Modules - Design Qualification and Type
                        Approval; Ed 2.0
  61646-08.....Thin-Film Terrestrial Photovoltaic (PV) Modules
                        - Design Qualification and Type Approval; Ed
                        2.0
  61730-1-04..... Photovoltaic (PV) Module Safety Qualification -
                        Part 1: Requirements for Construction; Ed 1.0
  61836-07.....Solar Photovoltaic Energy Systems - Terms,
                        Definitions and Symbols; Ed. 2.0
   62446-09.....Grid-Connected Photovoltaic (PV) Systems -
                        Minimum Requirements for System Documentation,
                        Commissioning Tests and Inspection; Ed 1.0
F. International Organization for Standardization (ISO):
   9001-08..... Quality Management Systems - Requirements
G. National Electrical Manufacturer's Association (NEMA):
   250-08..... Enclosures for Electrical Equipment (1,000
                        Volts Maximum)
H. National Fire Protection Association (NFPA):
   70-11.....National Electrical Code (NEC)
I. Underwriters Laboratories (UL):
   6-07..... Clectrical Rigid Metal Conduit - Steel; Ed 14
   94-96..... of Plastic Materials for Flammability of Plastic Materials for
                        Parts in Devices and Appliances; Ed 5
   797-07..... Electrical Metallic Tubing - Steel; Ed 9
   969-95..... Standard for Marking and Labeling Systems; Ed 4
  1242-06.....Standard for Electrical Intermediate Metal
                        Conduit - Steel; Ed 4
  1703-02.....Standard for Flat-Plate Photovoltaic Modules
                        and Panels; Ed 3
  1741-10.....Standard for Inverters, Converters, Controllers
                        and Interconnection System Equipment for Use
                        with Distributed Energy Resources
```

PART 2 - PRODUCTS

2.1 GENERAL

A. Provide materials to fabricate solar energy systems in accordance with this section. At the Contractor's option, provide factory-

prefabricated solar equipment packages which include photovoltaic modules, batteries or other energy storage, inverters, and controls which meet the requirements of this section.

B. The COTR or local environmental entities may require environmental impact studies which may include, for example, effects upon wildlife. The Contractor shall determine which entity has jurisdiction over environmental matters and shall make appropriate inquiry and comply with all applicable regulations.

2.2 GROUNDING

- A. Array frame shall be installed in accordance with NFPA 70 NEC 250.
- B. Shall ground according to manufacturer instructions per UL 1703.
- C. DC Ground-Fault Protector:
 - 1. Shall be listed per UL 1703.
 - 2. Shall comply with requirements of the NEC to reduce fire hazards.
 - 3. Ungrounded DC solar photovoltaic arrays shall comply with the NEC.

2.3 PV ARRAY CIRCUIT COMBINER BOX

- A. Shall include internal overcurrent protection devices with dead front.
- B. Shall be contained in non-conductive NEMA Type 4X enclosure per NEMA 250.
- C. Up to 48 volts DC: Shall use DC breakers that meet NEC requirements for overcurrent protection, are ETL-tested, and UL-listed.
- D. Up to 600 volts DC, paralleling system: Shall use fuses instead of breakers.
- E. Shall be listed to UL 1741.
- F. Ground mounted arrays shall have a combiner box
- G. Where applicable, combiner box shall be a disconnecting combiner box.

2.4 SWITCH/DISCONNECTING MEANS

- A. Shall be in accordance with the NEC, as shown on the drawings, and as specified.
- B. Means of disconnect shall be UL-listed.
- C. Refer to COTR for exact locations.
- D. Utility External Disconnect Switch (UEDS): Refer to COTR as several states do not require UEDS for small solar photovoltaic systems as the inverter shall provide the same function per NFPA 70 NEC 690.61.

2.5 BATTERY CHARGE CONTROLLER

A. Shall be capable of withstanding 25% over-amperage for limited time per the NEC.

- B. Charge controller or self-regulating system shall be required for a stand-alone system with battery storage. Charge controller's adjusting mechanism shall be accessible only to qualified persons.
- C. Shall be listed to UL 1741.
- D. Charge controller shall include maximum power point tracking (MPPT) and temperature compensation.
- E. Shall be manufactured in a facility with ISO 9001 certification.

2.6 WIRING SPECIALTIES

- A. Direct Current Conductor:
 - 1. If Exposed: Shall use USE-2, UF (inadequate at 60°C [140°F]), or SE, 90°C [194°F] wet-rated and sunlight-resistant (usually for tracking modules).
 - 2. If in Conduit: Shall use RHW-2, THWN-2, or XHHW-2 90°C [194°F], wetrated conductors required.
- B. Conduits and Raceways:
 - 1. Shall use solid steel conduit listed per UL 6, UL 1242, UL 797 (as appropriate) except for tracking modules. Weather tight EMT installations shall be allowed for DC wiring in weather protected areas.
 - 2. Shall use expansion joints on long conduit runs.
 - 3. Cannot be installed on modules.
- C. Weather impacted enclosures shall be rated to NEMA 3R or better per NEMA 250.
- D. Cable Assemblies and Junction Boxes:
 - 1. Shall be UL-listed.
 - 2. Shall be rated IP65 or IP67 per IEC 60529.
 - 3. Shall be rated to 5VA flammability per UL 94.
- E. Prohibited Wiring Materials: Not UL-listed, or listed materials used in unapproved environments.

2.7 DC-AC INVERTER

- A. Shall have stand-alone, utility-interactive, or combined capabilities.
- B. Shall be listed to UL 1741, per IRC M2302.4.
- C. Shall comply with IEEE 519 and IEEE 1547.
- D. Shall be listed per FCC Part 15 Class A (commercial): Unintended radiators.
- E. Shall include maximum power point tracking (MPPT) features.

F. Shall include anti-islanding protection if paralleling arrangement is required.

2.8 SOLAR PHOTOVOLTAIC (PV) MODULES

- A. Minimum Performance Parameters as per IBC 1509.7.4, IRC M2302.3, UL 1703.
- B. Photovoltaic Panel Types:
 - Monocrystalline: Listed to UL 1703, IEC 61215 and 61730, ISO 9000 or 9001; per NFPA 70 NEC 110.3, 690.4(D).
 - Polycrystalline: Listed to UL 1703, IEC 61215 and 61730, ISO 9000 or 9001; per NFPA 70 NEC 110.3, 690.4(D).
 - 3. Thin-Film/Flexible: Listed to UL 1703, IEC 61646 and 61730, ISO 9000 or 9001; per NFPA 70 NEC 110.3, 690.4(D).
- C. Module and System Identification
 - 1. Module or Panel:
 - a. UL 969 defines weather resistance.
 - b. UL 1703 defines marking contents and format.
 - 2. Main Service Disconnect: per IFC 605.11.1.3, NFPA 70 NEC 690.13.
 - 3. Identification Content and Format: per NFPA 70 NEC 690.51.
 - Identification for DC Conduit, Raceways, Enclosures, Cable Assemblies, and Junction Boxes: IFC 605.11.1, IFC 605.11.1.4
 - Identification for Inverter: per NFPA 70 NEC 690.4(D), inverter shall be identified and listed for the application.
- D. Bypass diodes shall be built into each PV module either between each cell or each string of cells.
- E. Other Components: refer to UL 1703.
- F. Hail Protection: Compliant with testing procedure per ASTM E-1038.
- G. Lightning Protection: Shall ground according to manufacturer instructions per UL 1703.
- H. Access, Pathways, and Smoke Ventilation: per IFC 605.11.3, access and spacing requirements observed in order to: ensure access to the roof, provide pathways to specific areas of the roof, provide for smoke ventilation opportunities area, and, where applicable, provide emergency access egress from the roof.
- I. Fire Classification:
 - 1. IBC 1505.8 for building-integrated photovoltaic and solar shingles.

2. IBC 1509.7.2 or IRC M2302.2.2: Although not technically enforceable, every effort shall be made to ensure the solar photovoltaic module is not combustible.

2.10 COLLECTOR SUPPORTS

- A. Wind Resistance Requirement:
 - 1. For rack-mounted: IBC 1509.7.1
- B. Mechanical Load Requirement: UL 1703.
- C. Ground Mount solar Racking System:
 - 1. Shall require a Professional Engineer (PE) stamp on foundation design.
 - 2. Precast Concrete Ballasts: configured site specific up to 120mph conditions.

2.11 INSTRUMENTATION

- A. Charge Controller: See 2.2.G.
- B. Meters: If grid-connected system, net smart meter provided by utility.
- C. Sensors:
 - 1. Temperature sensor shall be a component in the MPPT control system.
 - May install additional data acquisition sensors to measure irradiance, wind speed, and ambient and PV module temperatures. Any additional sensors shall require a conduit separate from the current conductor conduit.
- D. Datalogger/Monitoring System: Shall be a packaged system capable of string-level monitoring or in the case of micro-inverters, capable of monitoring and logging an individual module's information.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install the solar photovoltaic system in accordance with the NEC, this section, and the printed instructions of the manufacturer per ICC IBC 1507.17.2. Prior to system start-up, ensure no copper wire remains exposed with the exception of grounding wire in certain circumstances per manufacturer instructions.
 - 1. Refer to ICC IBC 1507.17.2; ICC IRC R905.16.2 for BIPV and Solar Shingles.
 - 2. Refer to ICC IBC 1509.7.3; ICC IRC M2302.2 for rack-mounted PV.
 - 3. Refer to ICC IBC 1507.1, 2; ICC IRC R905.16.3 for materials.

- B. Wiring Installation: Workers shall be made aware that photovoltaic modules will be live and generating electricity when there is any ambient light source and shall take appropriate precautions. Utilize on site measurements in conjunction with engineering designs to accurately cut wires and layout before making permanent connections. Ensure wires are free of snags and sharp edges that have the potential to compromise the wire insulation.
- C. Instrumentation: Install instruments as recommended by the control manufacturers. Locate control panels within the PV equipment adjacent to the Generator locations.
- F. Ground Mounted Photovoltaic Installations: If structure is used as equipment grounding conductor, ensure compliance with NFPA 70 NEC 250.136 and 690.43. Wiring shall not be readily accessible.

3.2 FIELD QUALITY CONTROL

- A. Field Inspection: Prior to initial operation, inspect the photovoltaic system for conformance to drawings, specifications and NFPA 70. Inspect the following information on each collector:
 - 1. Manufacturer's name or trademark
 - 2. Model name or number
 - 3. Certifying agency label and rating.
- B. Tests: Provide equipment and apparatus required for performing tests. Correct defects disclosed by the tests and repeat tests. Conduct testing in the presence of the QC COTR.
 - Module String Voltage Test: Prior to connecting wiring to the combiner box, use a digital multimeter to ensure each series string's polarity is correct. Tests shall be performed in accordance with IEC 62446.
 - Operation Tests: Perform tests on electrical systems, in accordance with the manufacturer's written recommendations. Tests for standalone systems shall be performed per IEEE 1526.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the solar photovoltaic electrical power generation system is in good operating condition and properly performing the intended function.

3.4 COMMISSIONING

- A. Contractor shall coordinate with electrical utility to establish interconnection agreement if system is grid-tied.
- B. Connect the solar array to the electrical utility grid only after receiving prior approval from the utility company.
- C. Only qualified personnel shall connect the solar array to the utility grid.

3.5 INSTRUCTION

- A. A complete set of operating instructions for the solar photovoltaic electrical power generation system shall be laminated or mounted under acrylic glass and installed in a frame near the equipment.
- B. Furnish the services of a factory-trained technician for one, 4-hour training period for instructing personnel in the maintenance and operation of the solar photovoltaic electrical power generation system, on the dates requested by the COTR.

---END---