UPGRADE ELEVATOR CONTROLS

Project # 603-15-101

For the
Department of Veterans Affairs
Robley Rex VA Medical Center
Louisville, Kentucky 40206

PROJECT MANUAL Vol. 2 DIVISIONS - 21 - 28

September 25th, 2015

U.S. Department of Veterans Affairs

OWNER: DEPARTMENT OF VETERANS AFFAIRS

Robley Rex VA Medical Center Attn: Anthony, C. Costanzo

800 Zorn Ave. Louisville KY 40206 Phone: 502-287-4222

Email: anthony.costanzo@va.gov

ARCHITECT: GUIDON DESIGN

Attn: Stewart Whitcomb 905 N. Capitol Ave. Suite 100 Indianapolis IN, 46204

Phone: (317) 800.5843

Email: swhitcomb@guidondesign.com

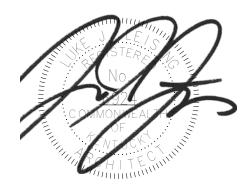
M/E/P ENGINEER: MILLER-REMICK LLC

Layne Bilbrough

Senior Electrical Designer 1010 Kings Highway South Cherry Hill, NJ 08034

856.429.4000

lbilbrough@miller-remick.com


ELEVATOR CONSULTANT: STUARD & ASSOCIATES, INC.

Steve Stuard

2500 Lincoln Hill Road Martinsville, IN 46151 Phone: 765.352.1975

stevestuard@elevatorinspection.com

DATE: September 25th, 2015

DEPARTMENT OF VETERANS AFFAIRS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE					
00 01 15	List of Drawing Sheets	09-11					
	DIVISION 01 - GENERAL REQUIREMENTS						
01 00 00	General Requirements						
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build						
01 33 23	Shop Drawings, Product Data, and Samples						
01 35 26	Safety Requirements						
01 42 19	Reference Standards						
01 57 19	Temporary Environmental Controls	01-11					
01 74 19	Construction Waste Management						
01 81 11	Sustainable Design Requirements	02-13*					
	DIVISION 02 - EXISTING CONDITIONS						
02 41 00	Demolition	02-15					
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES						
06 06 00	Translucent Resin Panel System						
06 20 00	Finish Carpentry	06-13					
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION						
07 72 00	Roof Accessories	05-15					
07 84 00	Firestopping	05-15					
07 92 00	Joint Sealants						
	DIVISION 09 - FINISHES						
09 06 00	Schedule for Finishes	04-15					
09 22 16	Non-Structural Metal Framing	10-14					
09 29 00	Gypsum Board	11-14					
09 51 00	Acoustical Ceilings	12-13					
09 65 16	Resilient Sheet Flooring	07-13					
09 65 19	Resilient Tile Flooring	05-15					
09 91 00	Painting	05-15*					
	DIVISION 10 - SPECIALTIES						
	DIVIDION TO - SPECIALITES						
10 14 00	Signage	05-15					

10 26 00	Wall and Door Protection	05-15*
	DIVISION 14- CONVEYING EQUIPEMENT	
14 21 10	Electric Traction Passenger Elevators P1-4	09-11
14 21 20	Electric Traction Passenger Elevators P7-9	09-11
14 21 30	Electric Traction Service Elevators S5-6	09-11
14 21 90	Passenger Elevators Data Connection P10-12	
	DIVISION 21- FIRE SUPPRESSION	
21 13 13	Wet-Pipe Sprinkler Systems	06-15
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-15
23 05 11	General Motor Requirements for HVAC and Steam	11-10
23 05 12	General Motor Requirements for HVAC and Steam Generation Equipment	11-10
23 07 11	HVAC and Boiler Plant Insulation	02-15
23 23 00	Refrigerant Piping	02-15
23 81 00	Decentralized VRF Equipment	02-11
	DIVISION 26 - ELECTRICAL	
26 05 11	Dominoments for Blockwisel Trackelletiens	12-12
	Requirements for Electrical Installations	
26 05 19 26 05 26	Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems	07-13 12-12
26 05 26	Raceway and Boxes for Electrical Systems	05-14
26 24 16	Panelboards	05-14
26 27 26	Wiring Devices	08-14
26 29 21	Enclosed Switches and Circuit Breakers	12-12
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	06-15
27 05 11	Grounding and Bonding for Communications Systems	06-15
27 05 33	Raceways and Boxes for Communications Systems	06-15
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 31 00	Fire Detection and Alarm	10-11

September 25, 2015 100% Design Documents Project No. 603-15-101

SECTION 00 01 15 LIST OF DRAWING SHEETS

Drawing No.	<u>Title</u>		
	GENERAL INFORMATION		
GI000	Cover Sheet		
GI101	Code Analysis		
	ARCHITECTURAL SYSTEMS		
AS001	Architectural Symbols and Abbreviations		
AS101	Floor Plans		
AS102	Floor Plans		
AS103	Floor Plans & Cab Plans		
AS501	Enlarged Plans		
AS811	Details		
	HEATING, VENTILATING, AIR CONDITIONING		
	HEATING, VENTIDATING, AIR CONDITIONING		
MH001	Mechanical - Cover Sheet		
MH001 MH101			
	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator		
MH101	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room		
MH101	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room		
MH101	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room Mechanical Schedules and Diagram		
MH101 MH601	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room Mechanical Schedules and Diagram ELECTRICAL		
MH101 MH601 EC001	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room Mechanical Schedules and Diagram ELECTRICAL ELECTRICAL - COVER SHEET		
MH101 MH601 EC001 EC002	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room Mechanical Schedules and Diagram ELECTRICAL ELECTRICAL - COVER SHEET ELECTRICAL - GENERAL NOTES		
MH101 MH601 EC001 EC002 E101	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room Mechanical Schedules and Diagram ELECTRICAL ELECTRICAL - COVER SHEET ELECTRICAL - GENERAL NOTES ELECTRICAL - FLOOR PLANS		
MH101 MH601 EC001 EC002 E101	Mechanical - Cover Sheet Mechanical New Work Plan 5 th Floor-Elevator Machine Room Mechanical Schedules and Diagram ELECTRICAL ELECTRICAL - COVER SHEET ELECTRICAL - GENERAL NOTES ELECTRICAL - FLOOR PLANS		

- - - END - - -

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 09 91 00, PAINTING.
- D. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the VA for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: customary access areas.
 - b. Ordinary Hazard Group 1 Occupancies: Mechanical Equipment Rooms Elevator Machine Rooms.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field

of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the Contracting Officer's Representative (COR). Submittals shall include, but not be limited to, the following:

1. Qualifications:

- a. Provide a copy of the installing contractors State of Kentucky contractor's license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.

4. Calculation Sheets:

a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - 3) One complete set in AutoCAD format or a format as directed by the COR.
 - b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
 - c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
 - d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
 - e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Kentucky contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):
 - 13-13......Installation of Sprinkler Systems
 - 25-14......Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems
 - 101-15.....Life Safety Code
 - 170-15.....Fire Safety Symbols
- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM): Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - 2. Piping sizes 2 inches and smaller shall be black steel Schedule 40 with threaded end connections.
 - 3. Piping sizes 2 ½ inches and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
 - 5. Plastic piping shall not be permitted except for drain piping.

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

2.2 VALVES

A. General:

- 1. Valves shall be in accordance with NFPA 13.
- 2. Do not use quarter turn ball valves for 2 inch or larger drain
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.

2.3 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.4 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of seven feet, six inches. Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, and seismic bracing shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the

- respective waterflow switch or pipe connection near to the pipe from where they were cut.
- E. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- F. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 2 inches nominally larger than the penetrating pipe for pipe sizes 1 inch to 3 ½ inches and 4 inches nominally larger for penetrating pipe sizes 4 inches and larger.
- G. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- H. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- I. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- J. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- K. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in presence of the COR or designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. COR: Contracting Officer's Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 07 84 00, FIRESTOPPING
- D. Section 07 92 00, JOINT SEALANTS
- E. Section 09 91 00, PAINTING
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- G. Section 23 07 11, HVAC, and BOILER PLANT INSULATION
- H. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC

B. Products Criteria:

1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital

electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.

- 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 3. Conform to codes and standards as required by the specifications.

 Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the COR.
- 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- C. Equipment Service Organizations:
 - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- D. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- G. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

H. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI):
 - 1. 430-2009......Central Station Air-Handling Units
- C. American National Standard Institute (ANSI):
 - 1. B31.1-2007......Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA):
 - 1. IP-20-2007......Specifications for Drives Using Classical V-Belts and Sheaves
 - 2. IP-21-2009.........Specifications for Drives Using Double-V (Hexagonal) Belts
 - 3. IP-22-2007......Specifications for Drives Using Narrow V-Belts and Sheaves
- E. Air Movement and Control Association (AMCA):
 - 1. 410-96......Recommended Safety Practices for Air Moving Devices
- F. American Society of Mechanical Engineers (ASME):
 - 1. Boiler and Pressure Vessel Code (BPVC):
 - 2. Section I-2007.....Power Boilers
 - 3. Section IX-2007.....Welding and Brazing Qualifications
 - 4. Code for Pressure Piping:
 - 5. B31.1-2007......Power Piping
- G. American Society for Testing and Materials (ASTM):
 - 1. A36/A36M-08......Standard Specification for Carbon Structural Steel
 - 2. A575-96(2007)......Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades
 - 3. E84-10......Standard Test Method for Surface Burning Characteristics of Building Materials
 - 4. Ell9-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:
 - 1. SP-58-2009..........Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation
 - 2. SP 69-2003......Pipe Hangers and Supports-Selection and Application
 - 3. SP 127-2001......Bracing for Piping Systems, Seismic Wind Dynamic, Design, Selection, Application
- I. National Electrical Manufacturers Association (NEMA):
 - 1. MG-1-2009......Motors and Generators
- J. J. National Fire Protection Association (NFPA):
 - 1. 31-06......Standard for Installation of Oil-Burning Equipment
 - 2. 54-09.....National Fuel Gas Code
 - 3. 70-08......National Electrical Code
 - 4. 85-07.....Boiler and Combustion Systems Hazards Code
 - 5. 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems
 - 6. 101-09.....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost to the Government.
 - 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Phasing of Work: Comply with all requirements shown on drawings or specified.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

 Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- E. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed.

 Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.

- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.4 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.5 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00,

- PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.

E. Valve Tags and Lists:

- 1. HVAC and Boiler Plant: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.6 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.7 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint form.

2.8 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm
 (18 gauge), with integral baseplate, continuous welded corner seams,
 factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3
 mm (18 gauge) galvanized steel counter flashing cap with screws,
 built-in cant strip, (except for gypsum or tectum deck), minimum

- height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
- 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- C. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors:

 Permitted in concrete not less than 102 mm (four inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the COR for each job condition.
- D. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- E. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm

(1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.

G. Supports for Piping Systems:

- 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

2.9 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.

- 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.10 SPECIAL TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.11 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.12 ASBESTOS

1. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items,

- valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations

- and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

J. Work in Existing Building:

- 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COR's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.

3.2 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

 All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.3 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted.

 Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.

2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

3.4 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks.
 Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.

3.5 IDENTIFICATION SIGNS

A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall

- correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.6 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.7 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices.

 Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.8 STARTUP AND TEMPORARY OPERATION

A. Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.9 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

- tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.10 INSTRUCTIONS TO VA PERSONNEL

A. Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS, and Section 23 08 11, DEMONSTRATIONS AND TESTS FOR BOILER PLANT.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.3 SUBMITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Shop Drawings:

- 1. Provide documentation to demonstrate compliance with drawings and specifications.
- 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.

C. Manuals:

- 1. Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.

1.4 APPLICABLE PUBLICATIONS:

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

- B. National Electrical Manufacturers Association (NEMA):
 - MG 1-2006 Rev. $1\ 2009$.. Motors and Generators
 - MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

 Motors and Generators
- C. National Fire Protection Association (NFPA):

70-2008......National Electrical Code (NEC)

D. Institute of Electrical and Electronics Engineers (IEEE):

112-04.....Standard Test Procedure for Polyphase Induction

Motors and Generators

- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
 - 90.1-2007.....Energy Standard for Buildings Except Low-Rise
 Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - 1. Contractor's Option Electrically Commutated motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic commutation. The motor shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.
- D. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.

c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.

2. Three phase:

- a. Motors connected to 208-volt systems: 200 volts.
- b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
- c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt
 systems: 230 volts.
- d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt systems: 460 volts.
- e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- E. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746~W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- F. Motors shall be designed for operating the connected loads continuously in a $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$), the motors shall be rated for the actual ambient temperatures.
- G. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.

H. Motor Enclosures:

- 1. Shall be the NEMA types as specified and/or shown on the drawings.
- 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:

Robley Rex VAMC Upgrade Elevator Controls Louisville, KY September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.

I. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
- 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment.

 Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- J. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.

K. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum Premium Efficiencies				Minimum Premium Efficiencies			
Open Drip-Proof			Totally Enclosed Fan-Cooled				
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

L. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- D. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

A. The COR will observe startup and contractor testing of all equipment. Coordinate the startup and contractor testing schedules with COR. Provide a minimum of 7 days prior notice.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications to COR.

- - - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping.

A. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
- 8. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 9. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
- 10. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 11. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor

retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

12. RS: Refrigerant suction.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant piping and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, Standard Method of Test of Surface Burning Characteristics of Building Materials.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
 - **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

- UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
- UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
- 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
- 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- Not exceeding a 25.4 mm (1 in.) average clearance on all sides
- Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers.

Maintain ambient temperatures and conditions as required by printed

instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):
 L-P-535E (2)- 99......Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride Vinyl Acetate), Rigid.

 C. Military Specifications (Mil. Spec.):
- MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation
 MIL-A-24179A (1)-87.....Adhesive, Flexible Unicellular-Plastic
 Thermal Insulation
 MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and
 - Water-Resistant, Vapor-Barrier
 MIL-C-20079H-87......Cloth, Glass; Tape, Textile Glass; and Thread,
- Glass and Wire-Reinforced Glass
 D. American Society for Testing and Materials (ASTM):
 - A167-99(2004)......Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet, and Strip
 - B209-07......Standard Specification for Aluminum and
 Aluminum-Alloy Sheet and Plate
 C411-05.....Standard test method for Hot-Surface
 Performance of High-Temperature Thermal

Insulation

- C449-07......Standard Specification for Mineral Fiber

 Hydraulic-Setting Thermal Insulating and

 Finishing Cement
- C533-09.....Standard Specification for Calcium Silicate

 Block and Pipe Thermal Insulation
- C534-08......Standard Specification for Preformed Flexible

 Elastomeric Cellular Thermal Insulation in

 Sheet and Tubular Form
- C547-07.....Standard Specification for Mineral Fiber pipe Insulation

	GEEO 07	
	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-04	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-10	.Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-09c	.Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-09b	.Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
Е.	National Fire Protectio	
_,		.Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-08	.Standards for Ventilation Control and Fire
	JO 00	Protection of Commercial Cooking Operations
	101-09	
		.Standard methods of Tests of Fire Endurance of
	∆J±-00	
	255 06	Building Construction Materials .Standard Method of tests of Surface Burning
	200-00	
_		Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL):

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

723	·UL	Standard	for	Saf	ety	Test	for	Surface	Burning
	Cha	aracterist	cics	of	Buil	lding	Mate	erials w	rith
	Re	vision of	09/0	08					

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS):

SP58-2009......Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.2 REINFORCEMENT AND FINISHES

A. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.

2.3 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Contracting Officers

 Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces. Insulation shall be continuous through all sleeves and openings. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Anchors, supports and other metal

projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

3.2 INSULATION INSTALLATION

- A. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
 - 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
 - 6. For insulation exposed to weather, paint with two coats of UV blocking paint as recommended by the insulation manufacturer.

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

:	Insulation Thickne	ss Millime	ters (Inche	es)	
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature	Insulation Material	Less than	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
Range/Service		25 (1)		(2/2 3 /	
(40-60 degrees F)	Flexible Elastomeric	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
RS for DX refrigeration)	Cellular Thermal (Above ground piping only)	(===,			

- - - E N D - - -

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field refrigerant piping for direct expansion HVAC systems.
- B. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.

C. Definitions:

- Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
- 2. Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- D. Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of

- every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.
- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Pipe and equipment supports
 - g. Refrigerant and oil
 - h. Pipe/conduit roof penetration cover
 - i. Soldering and brazing materials
 - Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

В.	Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI):
	495-1999 (R2002)Standard for Refrigerant Liquid Receivers
	730-2005Flow Capacity Rating of Suction-Line Filters
	and Suction-Line Filter-Driers
	750-2007 Thermostatic Refrigerant Expansion Valves
	760-2007Performance Rating of Solenoid Valves for Use
	with Volatile Refrigerants
C.	American Society of Heating Refrigerating and Air Conditioning
	Engineers (ASHRAE):
	ANSI/ASHRAE 15-2007Safety Standard for Refrigeration Systems
	(ANSI)
	ANSI/ASHRAE 17-2008Method of Testing Capacity of Thermostatic
	Refrigerant Expansion Valves (ANSI)
	63.1-95 (RA 01)Method of Testing Liquid Line Refrigerant
	Driers (ANSI)
D.	American National Standards Institute (ANSI):
	ASME (ANSI)A13.1-2007Scheme for Identification of Piping Systems
	Z535.1-2006Safety Color Code
Ε.	American Society of Mechanical Engineers (ASME):
	ANSI/ASME B16.22-2001 (R2005)
	Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI)
	ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged
	Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI)
	ANSI/ASME B31.5-2006Refrigeration Piping and Heat Transfer
	Components (ANSI)
	ANSI/ASME B40.100-2005Pressure Gauges and Gauge Attachments
	ANSI/ASME B40.200-2008Thermometers, Direct Reading and Remote Reading
F.	American Society for Testing and Materials (ASTM)
	Al26-04Standard Specification for Gray Iron Castings
	for Valves, Flanges, and Pipe FittingsB32-08
	Standard Specification for Solder Metal
	B88-03Standard Specification for Seamless Copper
	Water Tube
	B88M-05Standard Specification for Seamless Copper
	Water Tube (Metric)

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

B280-08	Standar	d Specificati	on fo	r Seamless	Copper	Tube
	for Air	Conditioning	and	Refrigerati	ion Fiel	ld
	Service					

G. American Welding Society, Inc. (AWS):

Brazing Handbook

A5.8/A5.8M-04......Standard Specification for Filler Metals for Brazing and Braze Welding

H. Federal Specifications (Fed. Spec.)
Fed. Spec. GG

I. Underwriters Laboratories (U.L.):

U.L.207-2009......Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
 - a. Brazed Joints, refrigerant tubing: Cadmium free, AWSA5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5.
 - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
 - 2. Flanges and flanged fittings: ASME B16.24.
 - 3. Refrigeration Valves:
 - a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
 - b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous,

- corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
- c. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
- d. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 4. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- 5. Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication.

 Provide screwed brass seal caps.
- 6. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.

2.2 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.4 PIPE/CONDUIT ROOF PENETRATION COVER

- A. Prefabricated Roof Curb: Galvanized steel or extruded aluminum 300 mm (12 inches) overall height, continuous welded corner seams, treated wood nailer, 38 mm (1-1/2 inch) thick, 48 kg/cu.m (3 lb/cu.ft.) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.
- B. Penetration Cover: Galvanized sheet metal with flanged removable top. Provide 38 mm (1-1/2 inch) thick mineral fiber board insulation.
- C. Flashing Sleeves: Provide sheet metal sleeves for conduit and pipe penetrations of the penetration cover. Seal watertight penetrations.

2.5 PIPE INSULATION FOR DX HVAC SYSTEMS

A. Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - 1. Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
 - 3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems

in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.

- 4. Use copper tubing in protective conduit when installed below ground.
- 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.

B. Joint Construction:

- 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
 - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
 - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
 - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
 - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Pipe relief valve discharge to outdoors for systems containing more than 45 kg (100 lbs) of refrigerant.
- E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- F. Seismic Bracing: Refer to specification Section 13 05 41, SEISMIC RESTRAINTS REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS, for bracing of piping in seismic areas.

3.2 PIPE AND TUBING INSULATION

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

- A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - 1. Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
 - 2. Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.

- A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of COR. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
 - Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
 - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low

side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group Al refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.

B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
 - 1. Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
 - 2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
 - 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 81 00 DECENTRALIZED VRF SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies variable refrigerant flow (VRF) split-systems.

B. Definitions:

- 1. Energy Efficiency Ratio (EER): The ratio of net cooling capacity is Btu/h to total rate of electricity input in watts under designated operating conditions (Btu hour/Watt).
- 2. Seasonal Energy Efficiency Ratio (SEER): The ratio of the total cooling output of an air conditioner during its normal annual usage period for cooling in Btu/h divided by total electric energy input in watts during the same period (Btu hour/Watt).
- 3. Unitary: A Unitary Air Conditioner consists of one or more factory-made assemblies which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well.
- 4. Where such equipment is provided in more than one assembly the separate assemblies are to be designed to be used together and the requirements of rating are based upon use of matched assemblies.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 07 11, HVAC and BOILER PLANT INSULATION: Requirements for piping insulation.
- C. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant pipes and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Safety Standards: ASHRAE Standard 15, Safety Code for Mechanical Refrigeration.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Manufacturer's literature and data:
 - 1. Sufficient information, including capacities, pressure drops and piping connections clearly presented, shall be included to determine compliance with drawings and specifications for units noted below:
 - a. Unitary air conditioners:
 - 1) Variable refrigerant flow systems.
 - 2. Unit Dimensions required clearances, operating weights accessories and start-up instructions.
 - 3. Electrical requirements, wiring diagrams, interlocking and control wiring showing factory installed and portions to be field installed.
 - 4. Complete controls system interconnection diagrams.
- C. Certification: Submit proof of specified ARI Certification.
- D. Performance Rating: Submit catalog selection data showing equipment ratings and compliance with required sensible-to-heat-ratio, energy efficiency ratio (EER), and coefficient of performance (COP).
- E. Operating and Maintenance Manual: Submit three copies of Operating and Maintenance manual to the Contracting Officers Representative (COR) three weeks prior to final inspection.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

В.	Federal Specifications (Fed. Spec.):
	A-A-50502-90 Air conditioner (Unitary Heat Pump) Air to
	Air (3000-300,000 Btu)
C	Military Specifications (Mil. Specs.):
٠.	MIL-PRF-26915D-06 Primer Coating, for Steel Surfaces
D	Air-Conditioning, Heating, and Refrigeration Institute (AHRI):
υ.	210/240-08 Performance Rating of Unitary Air-
	Conditioning and Air-Source Heat Pump
	Equipment
	270-08 Sound Rating of Outdoor Unitary Equipment
	310/380-04 Standard for Packaged Terminal Air-
	Conditioners and Heat Pumps (CSA-C744-04)
	340/360-07 Performance Rating of Commercial and
	Industrial Unitary Air-Conditioning and
	Heat Pump Equipment F20 04 Development Parties of Degitive Dignizement
	520-04 Performance Rating of Positive Displacement
177	Condensing Units
Ŀ.	Air Movement and Control Association (AMCA):
	210-07 Laboratory Methods of Testing Fans for
	Aerodynamic Performance Rating (ANSI)
	410-96 Recommended Safety Practices for Users and
	Installers of Industrial and Commercial
-	Fans
r.	American National Standards Institute (ANSI):
	S12.51-02(R2007)Acoustics - Determination of Sound Power
	Levels of Noise Sources Using Sound
	Pressure - Precision Method for
	Reverberation Rooms (same as ISO 3741:1999)
G.	American Society of Heating, Refrigerating, and Air-Conditioning
	Engineers (ASHRAE):
	2008 Handbook
	15-10 Safety Standard for Refrigeration Systems
	(ANSI)

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- I. American Society of Civil Engineers (ASCE)
 ASCE 7-10Minimum Design Loads for Buildings and
 Other Structures
- K. National Fire Protection Association (NFPA) Publications: 90A-09Standard for the Installation of Air-Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 UNITARY AIR CONDITIONERS - GENERAL

- A. Applicable ARI Standards:
 - 1. Cooling Capacity 39.6 kW (135,000 Btu/h) and More: AHRI 340/
 - 2. Cooling Capacity Less Than 39.6 kW (135,000 Btu/h): AHRI 210/240. Units shall be listed in the ARI Directory of Certified Unitary Air-Conditioners.
- B. Performance Rating: Cooling capacity of units shall meet the sensible heat and total heat requirements shown in the contract documents. In selecting unit size, make true allowance for "sensible to total heat ratio" to satisfy required sensible cooling capacity.
- C. Machinery Guards: Provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor. Drive guards may be excluded where motors and drives are inside factory fabricated casings.
- D. Corrosion Prevention: Unless specified otherwise, equipment fabricated from ferrous metals that do not have a zinc coating

or a duplex coating of zinc and paint shall be treated for prevention of rust with a factory coating or paint system that will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall be tested for 500 hours. The salt-spray fog test shall be in accordance with ASTM B117 using a 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no signs of blistering, wrinkling or cracking, no loss of adhesion, and the specimen shall show no signs of rust beyond 3 mm (1/8-inch) on both sides from the scratch mark. Provide factory-coated coils for protection from corrosion by using multiple stage electrodeposition coating process. Refer to Drawings and Section 23 82 16, AIR COILS, for additional coil requirements.

2.2 VARIABLE FLOW REFIGERANT SYSTEM (VFR)

- A. System shall have multiple indoor units connected to a single outdoor unit with single or multiple variable speed compressors.
- B. System is to have cooling capability. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.

C. Outdoor Unit:

1. Compressor:

- a. Each outdoor unit module shall be equipped with one inverter driven scroll hermetic compressor. Non inverter-driven compressors shall not be allowed.
- b. A crankcase heater(s) shall be factory mounted on the compressor(s).
- c. The outdoor unit compressor shall have an inverter to modulate capacity. The capacity shall be completely variable with a turndown of 18% of rated capacity.
- d. The compressor will be equipped with an internal thermal overload.
- e. The compressor shall be mounted to avoid the transmission of vibration.

2. Coil:

- a. The outdoor coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing.
- b. The coil shall be protected with an integral metal guard.
- c. The outdoor coil shall include 4 circuits with two position valves for each circuit, except for the last stage.

3. Fan:

- a. Each outdoor unit module shall be furnished with one or two direct drive, variable speed propeller type fan(s).
- b. The fan shall be factory set for operation under 0 in. WG external static pressure, but capable of normal operation under a maximum of 0.24 in. WG external static pressure via dipswitch.
- c. All fan motors shall have inherent protection, have permanently lubricated bearings, and be completely variable speed.
- d. All fan motors shall be mounted for quiet operation.
- e. All fans shall be provided with a raised guard to prevent contact with moving parts.
- f. The outdoor unit shall have vertical discharge airflow.

4. Refrigerant

a. R410A.

5. Electrical:

- a. The outdoor unit shall be capable of satisfactory operation within voltage limits of 414-506V (460V/60Hz).
- b. The outdoor unit shall be controlled by integral microprocessors.
- c. The control circuit between the indoor units and the outdoor unit shall be 24VDC completed using a 2conductor, twisted pair shielded cable to provide total integration of the system.

6. Unit Cabinet:

a. The casing(s) shall be fabricated of galvanized steel, bonderized and finished. Unit cabinets shall be able to withstand 960 hours per ASTM B117 criteria.

7. Miscellaneous:

- a. Outdoor unit shall have a sound rating no higher than 60 dBA.
- b. Both refrigerant lines from the outdoor unit to the BC (Branch Circuit) Controller (Single or Main) shall be insulated in accordance with the installation manual.
- c. The outdoor unit shall have an accumulator with refrigerant level sensors and controls.
- d. The outdoor unit shall have a high pressure safety switch, over-current protection, crankcase heater and DC bus protection.
- e. The outdoor unit shall have the ability to operate with a maximum height difference of 164 feet. The greatest length is not to exceed 541 feet between outdoor unit and the indoor units without the need for line size changes or traps.
- f. The outdoor unit shall be capable of operating in heating mode down to $-4\,^{\circ}\text{F}$ ambient temperature or cooling mode down to $-10\,^{\circ}\text{F}$ ambient temperature.
- g. The outdoor unit shall not cease operation in any mode based solely on outdoor ambient temperature.
- h. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.

D. WALL MOUNTED INDOOR UNIT

1. General:

a. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all

factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor.

- b. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, and a test run switch.
- c. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

2. Unit Cabinet:

- a. All casings, regardless of model size, shall have the same white finish
- b. Drain and refrigerant piping connections.
- c. Separate back plate which secures the unit firmly to the wall.

3. Fan:

- a. The indoor fan shall be an assembly with one or two line-flow fan(s) direct driven by a single motor.
- b. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
- c. A manual adjustable guide vane shall be provided with the ability to change the airflow from side to side (left to right).
- d. A motorized air sweep louver shall provide an automatic change in airflow by directing the air up and down to provide uniform air distribution.

4. Filter:

a. Return air shall be filtered by means of an easily removable, washable filter.

5. Coil:

- a. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
- b. The tubing shall have inner grooves for high efficiency heat exchange.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- c. All tube joints shall be brazed with phos-copper or silver alloy.
- d. The coils shall be pressure tested at the factory.
- e. A condensate pan and drain shall be provided under the coil.
- f. Both refrigerant lines to the PKFY indoor units shall be insulated in accordance with the installation manual.

6. Electrical:

- a. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
- b. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz)

7. Controls:

- a. This unit shall use controls provided to perform functions necessary to operate the system and coordinate with outdoor unit and branch controller. Refer to the controls part of this specification for details on controllers and other control options.
- b. The unit shall be able to control external backup heat.
- c. The unit shall have a factory built in radio receiver for wireless remote control.
- d. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
- e. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8°F 9.0°F adjustable deadband from set point.

- f. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
- g. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

E. SYSTEM CONTROLS

1. General:

a. The system shall operate at 24 to 30VDC. Controller power and communications shall be via a common non-polar communications bus.

2. Wiring:

- a. Control wiring shall be installed in a daisy chain configuration from indoor unit to indoor unit, to the outdoor unit. Control wiring to remote controllers shall be run from the indoor unit terminal block to the controller associated with that unit.
- b. Control wiring for the remote controller shall be from the remote controller to the first associated indoor unit connection.
- c. Control wiring for the Simple MA and Wireless MA remote controllers shall be from the remote controller (receiver) to the first associated indoor unit (TB-15) then to the remaining associated indoor units (TB-15) in a daisy chain configuration.
- d. Wiring type: 2-conductor (16 AWG), twisted, stranded, shielded wire.

3. Controller

- a. Controller shall be capable of controlling up to 16 indoor units (defined as 1 group).
- b. Controller shall be approximately $5.5" \times 5"$ in size and white in color with an auto-timeout touch screen LCD display.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- c. Controller shall support English for commands and display information.
- d. Controller shall control the following grouped operations: On/Off, Operation Mode (cool, heat, auto*, dry, fan and setback temperature set point, fan speed setting, and airflow direction setting. The Controller shall support timer settings of on/off/temperature up to 8 times in a day in 5-minute increments.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Rooftop Unit Support: Install unit level on structural curbs.

 Coordinate wall penetrations and flashing with wall

 construction. Secure rooftop units to structural support with
 anchor bolts.
- B. Install wind and seismic restraints according to manufacturer's written instructions. Wind and seismically restrained vibration isolation roof-curb rails are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- C. Install units level and plumb maintaining manufacturer's recommended clearances and tolerances.
- D. Install ground-mounting, compressor-condenser components on polyethylene mounting base.
- E. Install roof-mounting compressor-condenser components on equipment supports specified in Section 07 72 00, ROOF ACCESSORIES. Anchor units to supports with removable, cadmiumplated fasteners.
- F. Install and Connect Refrigerant Piping:
 - Installing contractor shall provide and install all accessories and piping for a fully operational system. Refer to manufacturer's installation manual for full instructions.
 - Traps, filter driers, and sight glasses are NOT to be installed on the refrigerant piping or condensate lines.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 3. Standard ACR fittings rated for use with R410A are to be used for all connections. Proprietary manufacturer-specific appurtenances are not allowed.
- 4. Refrigerant pipe for VFR system shall be made of phosphorus deoxidized copper, and has two types.
 - a. ACR "Annealed": Soft copper pipe, can be easily bent with human's hand.
 - b. ACR "Drawn Temper": Hard copper pipe (Straight pipe), being stronger than Type-O pipe of the same radical thickness.
- 5. The maximum operation pressure of R410A air conditioner is 623 psi. The refrigerant piping should ensure the safety under the maximum operation pressure. Refer to manufacturer's recommend piping requirements.
- G. Flare connection should follow dimensions provided in manufacturer's installation manuals.
- H. Connect refrigerant piping to coils with shutoff valves on the suction and liquid lines at the coil and a union or flange at each connection at the coil and condenser.
- I. Install wall sleeves in finished wall assembly and weatherproof. Install and anchor wall sleeves to withstand, without damage seismic forces as required by code.
- J. Install roof penetration weather tight boot covers as recommended by the roofing manufacturer.

3.2 CONNECTIONS

- A. Provide all system control wiring according to the VRF manufacturer's instructions to provide full functionality of the system as described in the specifications.
- B. Verify condensate drainage requirements and install per the manufacturer's instructions.
- C. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or interior area drain.

- D. Install piping adjacent to units to allow service and maintenance.
- E. Ground equipment and install power wiring, switches, and controls for all components of the VFR systems.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections: After installing units and after electrical circuitry has been energized, test units for compliance with requirements. Inspect for and remove shipping bolts, blocks, and tie-down straps. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Test and adjust controls and safeties.

 Replace damaged and malfunctioning controls and equipment.

 Remove and replace malfunctioning units and retest as specified above.

3.4 INSTRUCTIONS

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

3.5 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.6 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS.

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - 1. The Government shall have the option of witnessing factory tests.

 The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.

- 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - Damaged equipment shall be repaired or replaced, as determined by the COR
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First

- Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
 - 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the COR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COR.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- equipment shall be removed and reinstalled as directed at no additional cost to the Government.
- 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements.

 Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Arc flash boundary (inches).

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 3. Available arc flash incident energy at the corresponding working distance (calories/cm2).
- 4. Required PPE category and description.
- 5. Limited approach distance (inches), restricted approach distance (inches).
- 6. Equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION 26 05 11".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.

3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.

F. Maintenance and Operation Manuals:

- Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.

4. The manuals shall include:

- a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
- b. A control sequence describing start-up, operation, and shutdown.
- c. Description of the function of each principal item of equipment.
- d. Installation instructions.
- e. Safety precautions for operation and maintenance.
- f. Diagrams and illustrations.
- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and

maintenance, including addresses and factory certification qualifications.

- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of

one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements.

 Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PART 2 - PRODUCTS (NOT USED)

PART 3 - PART 3 - EXECUTION (NOT USED)

- - - E N D - - -

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.

- 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10	.Standard	Specification	for	Vinyl	Chloride
	Plastic 1	Pressure-Sensit	ive	Electi	rical
	Insulati	ng Tape			

D2304-10Test Method for Thermal Endura	nce of Rigid
Electrical Insulating Material	s
D3005-10Low-Temperature Resistant Viny	l Chloride
Plastic Pressure-Sensitive Ele	ctrical

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA):
 - WC 70-09......Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):

70-11......National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

44-10Thermoset-Insulated Wires and Cables
33-08Thermoplastic-Insulated Wires and Cables
467-07Grounding and Bonding Equipment
486A-486B-03Wire Connectors

486C-04.....Splicing Wire Connectors

486D-05.....Sealed Wire Connector Systems

486E-09.....Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

Branch Circuit Cables

514B-04......Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

D. Color Code:

- 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 4. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	A	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with

the NEC. Coordinate color coding in the field with the Contracting Officers Representative (COR).

6. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:

- Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
- 2. Use nonmetallic pull ropes.
- 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
- 4. All conductors in a single conduit shall be pulled simultaneously.
- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

- - - E N D - - -

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:

 Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.

2. Test Reports:

a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Contracting Officers Representative (COR).

3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07Standard	Specification	for	Hard-Drawn	Copper

Wire

B3-07.....Standard Specification for Soft or Annealed Copper Wire

B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard,

or Soft

- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 - 81-83...... IEEE Guide for Measuring Earth Resistivity,
 Ground Impedance, and Earth Surface Potentials
 of a Ground System Part 1: Normal Measurements

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

70E-12......National Electrical Safety Code

99-12.....Health Care Facilities

E. Underwriters Laboratories, Inc. (UL):

467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors

- shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND CONNECTIONS

A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.

B. Above Grade:

- 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 2. Connection to Building Steel: Exothermic-welded type connectors.
- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

2.5 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together

with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.7 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.8 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.9 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

resistance, but the specified number of electrodes must still be provided.

C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

- - - E N D - - -

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- B. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- C. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.

- 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05......Electrical Rigid Steel Conduit C80.3-05......Steel Electrical Metal Tubing C80.6-05......Electrical Intermediate Metal Conduit C. National Fire Protection Association (NFPA): 70-11......National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-11......Surface Metal Raceway and Fittings 50-95......Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13..... Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12......Conduit, Tubing, and Cable Fittings 514C-07......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11......Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit

797-07..... Electrical Metallic Tubing

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

	1242-06	.Electrical Intermediate Metal Conduit - Steel
Ε.	National Electrical Man	ufacturers Association (NEMA):
	TC-2-13	.Electrical Polyvinyl Chloride (PVC) Tubing and
		Conduit
	TC-3-13	.PVC Fittings for Use with Rigid PVC Conduit and
		Tubing
	FB1-12	.Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing and
		Cable
	FB2.10-13	.Selection and Installation Guidelines for
		Fittings for use with Non-Flexible Conduit or
		Tubing (Rigid Metal Conduit, Intermediate
		Metallic Conduit, and Electrical Metallic
		Tubing)
	FB2.20-12	.Selection and Installation Guidelines for
		Fittings for use with Flexible Electrical
		Conduit and Cable
F.	American Iron and Steel	Institute (AISI):
	S100-2007	.North American Specification for the Design of
		Cold-Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

B. Conduit:

- 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
- 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
- 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.

- 7. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 3. Flexible Metal Conduit Fittings:

- a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
- b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 6. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm $(1.5 \times 1.5 \text{ inches})$, 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by COR.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
 - 2. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT.

 Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum $1.8\,$ M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

3.5 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.6 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.8 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to

junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.

C. Install expansion and deflection couplings where shown.

3.9 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm $(1.125\ inch)$ in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.

- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.10 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:

 Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1. Shop Drawings:

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

IBC-12.....International Building Code

C. National Electrical Manufacturers Association (NEMA):

PB 1-11.....Panelboards

250-08..... Enclosures for Electrical Equipment (1,000V Maximum)

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

70E-12.....Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL):

50-95......Enclosures for Electrical Equipment

67-09.....Panelboards

489-09..... Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 1. Hinged "door-in-door" type.
- 2. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker magnetic trip setting shall be set to maximum, unless otherwise noted.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.

9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of enclosures with rust-preventive paint before the new interior components are installed. Provide new trim. Trim shall fit tight to the enclosure.
- G. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.

- d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA):

70-11	National	Electrical	Code	(NEC)

- 99-12.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):

WD	1-10	.General	Color	Requirements	for	Wiring	Devices
WD	6-08	.Wiring 1	Devices	s - Dimensiona	al Sp	pecifica	ations

D. Underwriter's Laboratories, Inc. (UL):

5-11	Surface 1	Metal	Raceways	and	Fittings
------	-----------	-------	----------	-----	----------

- 20-10......General-Use Snap Switches
- 231-07.....Power Outlets

467-07......Grounding and Bonding Equipment

498-07.....Attachment Plugs and Receptacles

943-11.....Ground-Fault Circuit-Interrupters

1449-07.....Surge Protective Devices

1472-96.....Solid State Dimming Controls

PART 2 - PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

- 1. Bodies shall be ivory in color.
- 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
- 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
- 4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring.
 - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the hospital-grade listing.
- 5. Safety Type Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - 2) Screws exposed while the wall plates are in place shall be the tamperproof type.
- 6. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the hospital grade listing and as follows.
 - a. Bodies shall be brown nylon.
- C. Receptacles; 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity

shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

- E. Surge Protective (TVSS) Receptacles shall have integral surge suppression in line to ground, line to neutral, and neutral to ground modes.
 - 1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 Volts and minimum single transient pulse energy dissipation of 210 Joules.
 - 2. Active TVSS Indication: LED, visible in face of device to indicate device is active or no longer in service.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self-grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.

2.4 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
- 2. Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
- 3. Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
- 4. Conductors shall be as specified in Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
- 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
- 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multigang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to

locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.

- ${\tt H.}$ Install wall switches 1.2 ${\tt M}$ (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical condition.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - 2. Healthcare Occupancy Tests:
 - a. Test hospital grade receptacles for retention force per NFPA99.

- - - E N D - - -

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
 Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

2. Manuals:

a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
- 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

	debignation only.
В.	International Code Council (ICC):
	IBC-12International Building Code
C.	National Electrical Manufacturers Association (NEMA):
	FU 1-07Low Voltage Cartridge Fuses
	KS 1-06Enclosed and Miscellaneous Distribution
	Equipment Switches (600 Volts Maximum)
D.	National Fire Protection Association (NFPA):
	70-11National Electrical Code (NEC)
Ε.	Underwriters Laboratories, Inc. (UL):
	98-07Enclosed and Dead-Front Switches
	248-00Low Voltage Fuses
	489-09 Molded Case Circuit Breakers and Circuit
	Breaker Enclosures

PART 2 - PRODUCTS

2.1 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project.

Deliver the spare fuses to Contracting Officers Representative (COR).

- - - E N D - - -

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere	
AC	Alternating Current	
AE	Architect and Engineer	
AFF	Above Finished Floor	
AHJ	Authority Having Jurisdiction	
ANSI	American National Standards Institute	
AWG	American Wire Gauge (refer to STP and UTP)	
AWS	Advanced Wireless Services	
BCT	Bonding Conductor for Telecommunications (also	
	Telecommunications Bonding Conductor (TBC))	
BDA	Bi-Directional Amplifier	
BICSI	Building Industry Consulting Service International	
BIM	Building Information Modeling	
BOM	Bill of Materials	
BTU	British Thermal Units	
BUCR	Back-up Computer Room	
BTS	Base Transceiver Station	
CAD	AutoCAD	
CBOPC	Community Based Out Patient Clinic	

CBOC Community Based Out Patient Clinic (refer to CBOPC, COVAMC) CCS TIP's Cross Connection System (refer to VCCS and HCCS) CFE Contractor Furnished Equipment CFM US Department of Veterans Affairs Office of Construct and Facilities Management CFR Consolidated Federal Regulations CIO Communication Information Officer (Facility, VISN or Region))
CCS TIP's Cross Connection System (refer to VCCS and HCCS CFE Contractor Furnished Equipment CFM US Department of Veterans Affairs Office of Construct and Facilities Management CFR Consolidated Federal Regulations CIO Communication Information Officer (Facility, VISN or	
CFE Contractor Furnished Equipment CFM US Department of Veterans Affairs Office of Construct and Facilities Management CFR Consolidated Federal Regulations CIO Communication Information Officer (Facility, VISN or	
CFM US Department of Veterans Affairs Office of Construct and Facilities Management CFR Consolidated Federal Regulations CIO Communication Information Officer (Facility, VISN or	ion
and Facilities Management CFR Consolidated Federal Regulations CIO Communication Information Officer (Facility, VISN or	ion
CFR Consolidated Federal Regulations CIO Communication Information Officer (Facility, VISN or	
CIO Communication Information Officer (Facility, VISN or	
Region)	
cm Centimeters	
CO Central Office	
COR Contracting Officer's Representative	
CPU Central Processing Unit	
CSU Customer Service Unit	
CUP Conditional Use Permit(s) - Federal/GSA for VA	
dB Decibel	
dBm Decibel Measured	
dBmV Decibel per milli-Volt	
DC Direct Current	
DEA United States Drug Enforcement Administration	
DSU Data Service Unit	
EBC Equipment Bonding Conductor	
ECC Engineering Control Center (refer to DCR, EMCR)	
EDGE Enhanced Data (Rates) for GSM Evolution	
EDM Electrical Design Manual	
EMCR Emergency Management Control Room (refer to DCR, ECC)	
EMI Electromagnetic Interference (refer to RFI)	
EMS Emergency Medical Service	
EMT Electrical Metallic Tubing or thin wall conduit	
ENTR Utilities Entrance Location (refer to DEMARC, POTS, L	EC)
EPBX Electronic Digital Private Branch Exchange	

ESR	Vendor's Engineering Service Report
FA	Fire Alarm
FAR	Federal Acquisition Regulations in Chapter 1 of Title 48
	of Code of Federal Regulations
FMS	VA's Headquarters or Medical Center Facility's
	Management Service
FR	Frequency (refer to RF)
FTS	Federal Telephone Service
GFE	Government Furnished Equipment
GPS	Global Positioning System
GRC	Galvanized Rigid Metal Conduit
GSM	Global System (Station) for Mobile
HCCS	TIP's Horizontal Cross Connection System (refer to CCS &
	VCCS)
HDPE	High Density Polyethylene Conduit
HDTV	Advanced Television Standards Committee High-Definition
	Digital Television
HEC	Head End Cabinets(refer to HEIC, PA)
HEIC	Head End Interface Cabinets(refer to HEC, PA)
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
HSPA	High Speed Packet Access
HZ	Hertz
IBT	Intersystem Bonding Termination (NEC 250.94)
IC	Intercom
ICRA	Infectious Control Risk Assessment
IDEN	Integrated Digital Enhanced Network
IDC	Insulation Displacement Contact
IDF	Intermediate Distribution Frame
ILSM	Interim Life Safety Measures
IMC	Rigid Intermediate Steel Conduit
IRM	Department of Veterans Affairs Office of Information
	Resources Management

ISDN	Integrated Services Digital Network
ISM	Industrial, Scientific, Medical
IWS	Intra-Building Wireless System
LAN	Local Area Network
LBS	Location Based Services, Leased Based Systems
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)
LED	Light Emitting Diode
LMR	Land Mobile Radio
LTE	Long Term Evolution, or 4G Standard for Wireless Data
	Communications Technology
М	Meter
MAS	Medical Administration Service
MATV	Master Antenna Television
MCR	Main Computer Room
MCOR	Main Computer Operators Room
MDF	Main Distribution Frame
MH	Manholes or Maintenance Holes
MHz	Megaherts (10 ⁶ Hz)
mm	Millimeter
MOU	Memorandum of Understanding
MW	Microwave (RF Band, Equipment or Services)
NID	Network Interface Device (refer to DEMARC)
NEC	National Electric Code
NOR	Network Operations Room
NRTL	OSHA Nationally Recognized Testing Laboratory
NS	Nurse Stations
NTIA	U.S. Department of Commerce National Telecommunications
	and Information Administration
OEM	Original Equipment Manufacturer
OI&T	Office of Information and Technology
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)
OSH	Department of Veterans Affairs Office of Occupational

	Safety and Health
OSHA	United States Department of Labor Occupational Safety
	and Health Administration
OTDR	Optical Time-Domain Reflectometer
PA	Public Address System (refer to HE, HEIC, RPEC)
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)
PCR	Police Control Room (refer to SPCC, could be designated
	SCC)
PCS	Personal Communications Service (refer to UPCS)
PE	Professional Engineer
PM	Project Manager
PoE	Power over Ethernet
POTS	Plain Old Telephone Service (refer to DEMARC, LEC, PBX)
PSTN	Public Switched Telephone Network
PSRAS	Public Safety Radio Amplification Systems
PTS	Pay Telephone Station
PVC	Poly-Vinyl Chloride
PWR	Power (in Watts)
RAN	Radio Access Network
RBB	Rack Bonding Busbar
RE	Resident Engineer or Senior Resident Engineer
RF	Radio Frequency (refer to FR)
RFI	Radio Frequency Interference (refer to EMI)
RFID	RF Identification (Equipment, System or Personnel)
RMC	Rigid Metal Conduit
RMU	Rack Mounting Unit
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC, PA)
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security (COMSEC)
SFO	Solicitation for Offers

SME	Subject Matter Experts (refer to AHJ)
SMR	Specialized Mobile Radio
SMS	Security Management System
SNMP	Simple Network Management Protocol
SPCC	Security Police Control Center (refer to PCR, SMS)
STP	Shielded Balanced Twisted Pair (refer to UTP)
STR	Stacked Telecommunications Room
TAC	VA's Technology Acquisition Center, Austin, Texas
TCO	Telecommunications Outlet
TER	Telephone Equipment Room
TGB	Telecommunications Grounding Busbar (also Secondary
	Bonding Busbar (SBB))
TIP	Telecommunications Infrastructure Plant
TMGB	Telecommunications Main Grounding Busbar (also Primary
	Bonding Busbar (PBB))
TMS	Traffic Management System
TOR	Telephone Operators Room
TP	Balanced Twisted Pair (refer to STP and UTP)
TR	Telecommunications Room (refer to STR)
TWP	Twisted Pair
UHF	Ultra High Frequency (Radio)
UMTS	Universal Mobile Telecommunications System
UPCS	Unlicensed Personal Communications Service (refer to
	PCS)
UPS	Uninterruptible Power Supply
USC	United States Code
UTP	Unshielded Balanced Twisted Pair (refer to TP and STP)
ŪV	Ultraviolet
V	Volts
VAAR	Veterans Affairs Acquisition Regulation
VACO	Veterans Affairs Central Office
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)

VCCS	TIP's Vertical Cross Connection System (refer to CCS and			
	HCCS)			
VHF	Very High Frequency (Radio)			
VISN	Veterans Integrated Services Network (refers to			
	geographical region)			
VSWR	Voltage Standing Wave Radio			
W	Watts			
WEB	World Electronic Broadcast			
WiMAX	Worldwide Interoperability (for MW Access)			
WI-FI	Wireless Fidelity			
WMTS	Wireless Medical Telemetry Service			
WSP	Wireless Service Providers			

B. Definitions:

- 1. Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- 2. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point.
- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a

- physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 13. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 14. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 15. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 16. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 17. Microducts: All forms of air blown fiber pathways.
- 18. Ohm: A unit of restive measurement.

Robley Rex VAMC Upgrade Elevator Controls Louisville, KY September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 19. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 20. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 21. Sound (SND): Changing air pressure to audible signals over given time span.
- 22. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 23. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 24. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 25. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.

B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:

1.	Federal Communicatio	ns Commission, (FCC) CFR, Title 47:
	Part 15	Restrictions of use for Part 15 listed RF
		Equipment in Safety of Life Emergency Functions
		and Equipment Locations
	Part 47	Chapter A, Paragraphs 6.1-6.23, Access to
		Telecommunications Service, Telecommunications
		Equipment and Customer Premises Equipment
	Part 58	Television Broadcast Service
	Part 73	Radio and Television Broadcast Rules
	Part 90	Rules and Regulations, Appendix C
	Form 854	Antenna Structure Registration
	Chapter XXIII	National Telecommunications and Information
		Administration (NTIA, P/O Commerce, Chapter
		XXIII) the 'Red Book'- Chapters 7, 8 & 9
		compliments CFR, Title 47, FCC Part 15, RF
		Restriction of Use and Compliance in "Safety of
		Life" Functions & Locations
_		

2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction:

RUS Bull 1751F-630 Design of Aerial Cable Plants

RUS Bull 1751F-640 Design of Buried Cable Plant, Physical

Considerations

RUS Bull 1751F-643 Underground Plant Design

RUS Bull 1751F-815 Electrical Protection of Outside Plants,

RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants

(PC-4)

RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2)

RUS Bull 345-50 Trunk Carrier Systems (PE-60)

RUS Bull 345-65 Shield Bonding Connectors (PE-65)

RUS Bull 345-72 Filled Splice Closures (PE-74)

RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80)

3. US Department of Commerce/National Institute of Standards Technology, (NIST):

FIPS PUB 1-1 Telecommunications Information Exchange

Robley Rex VAMC	
Upgrade Elevator	Controls
Louisville, KY	

FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
	Circuit Terminating Equipment for operation
	with Packet Switched Networks, or Between Two
	DTEs, by Dedicated Circuit
FIPS PUB 140/2	Telecommunications Information Security
	Algorithms
FIPS PUB 143	General Purpose 37 Position Interface between
	DTE and Data Circuit Terminating Equipment
FIPS 160/2	Electronic Data Interchange (EDI),
FIPS 175	Federal Building Standard for
	Telecommunications Pathway and Spaces
FIPS 191	Guideline for the Analysis of Local Area
	Network Security
FIPS 197	Advanced Encryption Standard (AES)
FIPS 199	Standards for Security Categorization of
	Federal Information and Information Systems
11G D	Former (DoD):

4. US Department of Defense, (DoD):

MIL-STD-188-110	Interoperability and Performance Standards for
	Data Modems
MIL-STD-188-114	Electrical Characteristics of Digital Interface
	Circuits
MIL-STD-188-115	Communications Timing and Synchronizations
	Subsystems
MIL-C-28883	Advanced Narrowband Digital Voice Terminals
MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial,
	Radio Frequency, (Series BNC (Uncabled), Socket
	Contact, Jam Nut Mounted, Class 2)

- 5. US Department of Health and Human Services:

 The Health Insurance Portability and Accountability Act of 1996
 (HIPAA) Privacy, Security and Breach Notification Rules
- 6. US Department of Justice: 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
- 7. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards):

Robley Rex VAMC	
Upgrade Elevator	Controls
Louisville, KY	

Subpart 7	Approved NRTLs; obtain a copy at
	http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.htm
	<u>l</u>)
Subpart 35	Compliance with NFPA 101, Life Safety Code
Subpart 36	Design and Construction Requirements for Exit
	Routes
Subpart 268	Telecommunications
Subpart 305	Wiring Methods, Components, and Equipment for
	General Use
Subpart 508	Americans with Disabilities Act Accessibility
	Guidelines; technical requirement for
	accessibility to buildings and facilities by
	individuals with disabilities

- 8. US Department of Transportation, (DoT):
 - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.
 - b. COMSEC, "VA wide coordination and control of security classified communication assets."
 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
 - d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
 - e. Handbook 6100 Telecommunications: Cyber and Information Security Office of Cyber and Information Security, and Handbook 6500 - Information Security Program.
 - f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety

- Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/dts/otpca/nrtl/index.html
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - 2. Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - 3. Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit

Robley Rex VAMO	1
Upgrade Elevato	or Controls
Louisville, KY	

444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories

Robley Rex V	VAMC	
Upgrade Elev	vator	Controls
Louisville,	KY	

		1863-2013	Standard for Safety, communications Circuits
			Accessories
		1865-2007	Standard for Safety for Vertical-Tray Fire
			Protection and Smoke-Release Test for
			Electrical and Optical-Fiber Cables
		2024-2011	Standard for Optical Fiber Raceways
		2024-2014	Standard for Cable Routing Assemblies and
			Communications Raceways
		2196-2001	Standard for Test of Fire Resistive Cable
		60950-1 ed. 2-2014	Information Technology Equipment Safety
D.	Ind	dustry Standards:	
	1.	Advanced Television	Systems Committee (ATSC):
		A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
			Digital Television System
		A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
			RF/Transmission System Characteristics
		A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
			Service Multiplex and Transport System
			Characteristics
		A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
			2 Video System Characteristics
		A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
			Audio System Characteristics
		A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
			Enhanced AC-3 Audio System Characteristics
	2.	American Institute of	f Architects (AIA): 2006 Guidelines for Design &
	Construction of Health Care Facilities.		
	3.	American Society of I	Mechanical Engineers (ASME):
		A17.1 (2013)	Safety Code for Elevators and Escalators
			Includes Requirements for Elevators,
			Escalators, Dumbwaiters, Moving Walks, Material
			Lifts, and Dumbwaiters with Automatic Transfer
			Devices
		17.3 (2011)	Safety Code for Existing Elevators and
			Escalators
		17.4 (2009)	Guide for Emergency Personnel
		17.5 (2011)	Elevator and Escalator Electrical Equipment

4. American Society for	r Testing and Materials (ASTM):
B1 (2001)	Standard Specification for Hard-Drawn Copper
	Wire
B8 (2004)	Standard Specification for Concentric-Lay-
	Stranded Copper Conductors, Hard, Medium-Hard,
	or Soft
D1557 (2012)	Standard Test Methods for Laboratory Compaction
	Characteristics of Soil Using Modified Effort
	56,000 ft-lbf/ft3 (2,700 kN-m/m3)
D2301 (2004)	Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical
	Insulating Tape
B258-02 (2008)	Standard Specification for Standard Nominal
	Diameters and Cross-Sectional Areas of AWG
	Sizes of Solid Round Wires Used as Electrical
	Conductors
D709-01(2007)	Standard Specification for Laminated
	Thermosetting Materials
D4566 (2008)	Standard Test Methods for Electrical
	Performance Properties of Insulations and
	Jackets for Telecommunications Wire and Cable
5. American Telephone	and Telegraph Corporation (AT&T) - Obtain
following AT&T Publ	<pre>ications at https://ebiznet.sbc.com/SBCNEBS/):</pre>
ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
	Environmental, and Physical Design Requirements
ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
	Requirements
ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and
	Removal Requirements - Cable Racks and Raceways
ATT-TP-76306 (2009)	Electrostatic Discharge Control
ATT-TP-76400 (2012)	Detail Engineering Requirements
ATT-TP-76402 (2013)	AT&T Raised Access Floor Engineering and
	Installation Requirements
ATT-TP-76405 (2011)	Technical Requirements for Supplemental Cooling
	Systems in Network Equipment Environments
ATT-TP-76416 (2011)	Grounding and Bonding Requirements for Network
	Facilities

ATT-TP-76440 (2005)	Ethernet Specification
ATT-TP-76450 (2013)	Common Systems Equipment Interconnection
	Standards for AT&T Network Equipment Spaces
ATT-TP-76461 (2008)	Fiber Optic Cleaning
ATT-TP-76900 (2010)	AT&T Installation Testing Requirement
ATT-TP-76911 (1999)	AT&T LEC Technical Publication Notice

6. British Standards Institution (BSI):

BS EN 50109-2 Hand Crimping Tools - Tools for The Crimp

Termination of Electric Cables and Wires for

Low Frequency and Radio Frequency Applications

- All Parts & Sections. October 1997

7. Building Industry Consulting Service International(BICSI):

ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices

ANSI/BICSI 004-2012 Information Technology Systems Design and

Implementation Best Practices for Healthcare

Institutions and Facilities

ANSI/NECA/BICSI

568-2006 Standard for Installing Commercial Building
Telecommunications Cabling

NECA/BICSI 607-2011 Standard for Telecommunications Bonding and
Grounding Planning and Installation Methods for
Commercial Buildings

ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System

Design and Implementation Best Practices

8. Electronic Components Assemblies and Materials Association, (ECA).

ECA EIA/RS-270 (1973)Tools, Crimping, Solderless Wiring Devices
Recommended Procedures for User Certification

EIA/ECA 310-E (2005) Cabinets, and Associated Equipment

- 9. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities.
- 10. Insulated Cable Engineers Association (ICEA):
 ANSI/ICEA

S-80-576-2002 Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications Wiring Systems

ANSI/ICEA

Robley Rex V	7AMC	
Upgrade Elev	ator	Controls
Louisville,	KY	

	S-84-608-2010	Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640(2011) Optical Fiber Outside Plant Communications Cable
	ANSI/ICEA	
	S-90-661-2012	Category 3, 5, & 5e Individually Unshielded
		Twisted-Pair Indoor Cable for Use in General
		Purpose and LAN Communication Wiring Systems
	S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,
		Polyolefin Insulated, Copper Conductors
	S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
		Insulated, Copper Conductors
	ICEA S-102-700	
	(2004)	Category 6 Individually Unshielded Twisted Pair
		Indoor Cables (With or Without an Overall
		Shield) for use in Communications Wiring
		Systems Technical Requirements
11.		cal and Electronics Engineers (IEEE):
	ISSN 0739-5175	March-April 2008 Engineering in Medicine and
		Biology Magazine, IEEE (Volume: 27, Issue:2)
		Medical Grade-Mission Critical-Wireless
		Networks
	IEEE C2-2012	National Electrical Safety Code (NESC)
	C62.41.2-2002/	
	Cor 1-2012 IEEE	Recommended Practice on Characterization of
		Surges in Low-Voltage (1000 V and Less) AC
		Power Circuits 4)
	C62.45-2002	IEEE Recommended Practice on Surge Testing for
		Equipment Connected to Low-Voltage (1000 V and
	04 0040	Less) AC Power Circuits
	81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground
		Impedance, and Earth Surface Potentials of a
	100 1000	Grounding System
	100-1992	IEEE the New IEEE Standards Dictionary of
	602 2007	Electrical and Electronics Terms
	602-2007	IEEE Recommended Practice for Electric Systems
		in Health Care Facilities

Robley Rex VAMC	
Upgrade Elevator	Controls
Louisville, KY	

1100-2005	IEEE Recommended Practice for Powering and
	Grounding Electronic Equipment
12. International Code	Council:
AC193 (2014)	Mechanical Anchors in Concrete Elements
13. International Organ	ization for Standardization (ISO):
ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and
	Computing Technology in Healthcare Facilities -
	Recommendations for Electromagnetic
	Compatibility (Management of Unintentional
	Electromagnetic Interference) with Medical
	Devices
14. National Electrical	Manufacturers Association (NEMA):
NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V
	Maximum)
ANSI C62.61 (1993)	American National Standard for Gas Tube Surge
	Arresters on Wire Line Telephone Circuits
ANSI/NEMA FB 1 (201	2)Fittings, Cast Metal Boxes and Conduit Bodies
	for Conduit, Electrical Metallic Tubing EMT)
	and Cable
ANSI/NEMA OS 1 (200	9)Sheet-Steel Outlet Boxes, Device Boxes, Covers,
	and Box Supports
NEMA SB 19 (R2007)	NEMA Installation Guide for Nurse Call Systems
TC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with
	Rigid PVC Conduit and Tubing
NEMA VE 2 (2006)	Cable Tray Installation Guidelines
15. National Fire Prote	ction Association (NFPA):
70E-2015	Standard for Electrical Safety in the Workplace
70-2014	National Electrical Code (NEC)
72-2013	National Fire Alarm Code
75-2013	Standard for the Fire Protection of Information
	Technological Equipment
76-2012	Recommended Practice for the Fire Protection of
	Telecommunications Facilities
77-2014	Recommended Practice on Static Electricity
90A-2015	Standard for the Installation of Air
	Conditioning and Ventilating Systems
99-2015	Health Care Facilities Code

Robley Rex V	AMC	
Upgrade Elev	ator	Controls
Louisville,	KY	

	101-2015	Life Safety Code
	241	Safeguarding construction, alternation and
		Demolition Operations
	255-2006	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2014	Standard for the Installation of Lightning
		Protection Systems
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
16.	Society for Protecti	ve Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17.	Society of Cable Tel	ecommunications Engineers (SCTE):
	ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
		Distribution Coaxial Cable
18.	Telecommunications I	ndustry Association (TIA):
	TIA-120 Series	Telecommunications Land Mobile communications
		(APCO/Project 25) (January 2014)
	TIA TSB-140	Additional Guidelines for Field-Testing Length,
		Loss and Polarity of Optical Fiber Cabling
		Systems (2004)
	TIA-155	Guidelines for the Assessment and Mitigation of
		Installed Category 6 Cabling to Support
		10GBASE-T (2010)
	TIA TSB-162-A	Telecommunications Cabling Guidelines for
		Wireless Access Points (2013)
	TIA-222-G	Structural Standard for Antenna Supporting
		Structures and Antennas (2014)
	TIA/EIA-423-B	Electrical Characteristics of Unbalanced
		Voltage Digital Interface Circuits (2012)
	TIA-455-C	General Requirements for Standard Test
		Procedures for Optical Fibers, Cables,
		Transducers, Sensors, Connecting and

Robley Rex VAMC	
Upgrade Elevator	Controls
Louisville, KY	

	Terminating Devices, and other Fiber Optic
	Components (August 2014)
TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5-μ Core Diameter/125-um Cladding Diameter
	Class la Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:

Robley Rex VAMC	
Upgrade Elevator	Controls
Louisville, KY	

	Delevered mediated Dairy Gablian Granden
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4
	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)
TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
·	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
111.01, 1111 001	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
ANS1/11A-002-A	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
11A-942-A	
mra 1150	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)

Robley Rex VAMC Upgrade Elevator Controls Louisville, KY September 25, 2015 BID DOCUMENTS Project No. 603-15-101

TIA-1179

Healthcare Facility Telecommunications
Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as "rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
 - 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
 - 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
 - 6. General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
 - 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
 - 8. Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
 - 9. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
 - 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

- 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 14. Underground ducts, raceways, precast manholes and pull boxes: Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.
- 15. Lightning protection: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- 16. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- 17. Conductors and cables for electronic safety and security systems:

 Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND

 SECURITY.
- 18. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 19. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 20. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 21. Detection and screening systems: Section 28 13 53, SECURITY ACCESS DETECTION.
- 22. Intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions: Section 28 16 11, INTRUSION DETECTION EQUIPMENT AND SYSTEMS.
- 23. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
- 24. Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.
- 25. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

26. Emergency Call telephones, intercom systems, with blue strobe light and equipment: Section 28 52 31, SECURITY EMERGENCY CALL/DURESS ALARM/COMMUNICATIONS SYSTEM AND EQUIPMENT.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - 2. Movement of materials: Unload materials and equipment delivered to site.
 - 3. Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 - 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - 2. Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:

Robley Rex VAMC
Upgrade Elevator Controls
Louisville, KY

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 1. Supply test equipment of accuracy better than parameters to be tested.
- 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IV twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.
- Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.

I. Submittal Drawings:

- 1. Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
- 2. Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

A. Provide following closeout submittals prior to project closeout date:

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 1. Warranty certificate.
- 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
- 3. Project record documents.
- 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - 6. Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
 - 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.

1. Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.

C. Record Wiring Diagrams:

- 1. Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
- 2. General Drawing Specifications: Detail and elevation drawings to be
 D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale
 of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other
 enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm
 (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch =
 12 inches). Building composite floor plan drawings to be D size 61
 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175
 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.

D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - 1. OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.

- 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
- 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
- 4. Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of

foreign matter during installation; vacuum clean both inside and outside before testing and operating.

C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

A. Comply with FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.

- B. Tape must be self-extinguishing and cannot support combustion; arc-proof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 UNDERGROUND CABLES

- A. Provide buried closure suitable for enclosing a straight, butt, and branch splice in a container into which can be poured an encapsulating compound.
- B. Provide closure of adequate strength to protect splice and maintain cable shield electrical continuity in buried environment.
- C. Provide re-enterable encapsulating compound maintaining chemical stability of closure.
- D. Provide filled splice cases in accordance with RUS Bull 345-72.
- E. Provide gel filled cable meeting requirements of ICEA S-99-689 and RUS 1755.890.
- F. In Vault or Manhole:
 - Provide underground closure suitable to house a straight, butt, and branch splice in a protective housing into which can be poured an encapsulating compound
 - 2. Closure must be suitable thermoplastic, thermo-set, or stainless steel material supplying structural strength to pass mechanical and electrical requirements in a vault or maintenance hole (manhole) environment.
- G. Re-Enterable Encapsulating Compound: Product maintaining chemical stability of closure.
- H. Provide gel-filled splice cases in accordance with RUS Bull 345-72.

2.7 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - 1. Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - 5. Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - 6. Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
 - 7. Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
 - 8. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
 - 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4) inch).
 - 10. Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
 - 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
 - 12. Do not support piping risers or conduit on sleeves.

- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.

B. Core Drilling:

- 1. Avoid core drilling whenever possible.
- 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
- 3. Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
- 4. Protect areas from damage.

C. Verification of In-Place Conditions:

- Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
- 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.

G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections;

install and support roof-mounted equipment on structural steel or roof curbs as appropriate.

N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - 2. Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or non-compliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result

from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.

G. Tests:

- 1. Interim inspection is required at approximately 50 percent of installation.
- 2. Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
- 3. Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
- 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
- 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568A pin assignments and cabling connections are in compliance with TIA standards.
- 6. Visually confirm minimum Category 5e cable marking at TCOs, CCSs locations, patch cords and origination locations.
- 7. Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two

working days; provide COR with written confirmation of defective cable reels removal from project site.

- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - b. Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:
 - a. Utility provider entrance.
 - b. ENTR or DEMARC.
 - c. TR interconnections.
 - d. System interfaces in locations listed herein.
 - e. HE interconnections.
 - f. Antenna (outside and inside) interconnections.
 - g. System and lightning ground interconnections.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- h. Communications circulating ground system.
- i. UPS areas.
- j. Each general floor areas.
- k. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

I. Acceptance Test:

- Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- 2. Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - 3) Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - 3) EMS Representatives: Police, Sherriff, City, County or State representatives.
- 4. Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.

- 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
- 2) Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
- 3) Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
- 4) If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.

J. Acceptance Test Procedure:

- Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
- 2. A system inventory including available spare parts must be taken at this time.
- 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
- 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
- 5. Inventory system diagrams, record drawings, equipment manuals, pretest results.
- Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.

K. Operational Test:

- 1. Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
- 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.

- b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
- c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - 1. If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.

- I. Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - 2. Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - 3. Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - 2. Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Ground Rods:

- 1. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- 2. Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
 - 1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
 - 2. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:
 - 1. Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:
 - a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
- c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
- d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole grounding lugs.
- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each $12-24 \times 19.1 \text{ mm}$ (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- 2. Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- H. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copper-to-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), antennas, satellite dishes, towers, raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Install telecommunications bonding backbone conductor throughout building via telecommunications backbone pathways effectively bonding all interior telecommunications grounding busbars in telecommunications rooms, telephone operators room, main computer room, digital telephone (PBX) equipment room, VoIP active equipment room, and network operations room to telecommunications main grounding busbar in Demarc room after testing bond to verify bonding conductor for telecommunications from grounding electrode conductor is installed per NEC. Size telecommunications bonding backbone conductor as specified in TIA-607-B.
- C. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- D. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- E. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- F. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- G. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - 4. Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 5. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
 - 6. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.

7. Bonding Jumpers:

- a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
- b. Use connector manufacturer's compression tool.
- 8. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts.

- Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
- c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
- d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.

H. Telecommunications Room Bonding:

- 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
- 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:
 - 1) Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
 - 2) Install 16 $\mathrm{mm^2}$ (6 AWG) bonding jumpers across aluminum pan junctions.
- I. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - 1. Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - 2. At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars

are provided at rear of lineup of bolted together equipment racks.

- c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
- d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- J. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- K. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- L. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - 2. Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- M. Communications Cable Tray Systems:
 - 1. Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.
 - 2. Where metallic cable tray systems are mechanically discontinuous:

- a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is
 0.010 ohms or less, as verified by measuring across splice plate connection.
- b. Install 16 mm^2 (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
- 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.

N. Communications Raceway Grounding:

- Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
- 2. Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.

O. Ground Resistance:

- 1. Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
- 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
- 3. Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
 - 3. Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI
 - 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Conform to UL 5.
- 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.

C. Conduit Fittings:

- 1. Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ $\ensuremath{\mathsf{NEMA}}$ FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - 2) Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - g. Provide OEM approved fittings.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows:

 Malleable iron, steel or aluminum alloy materials; Zinc or

- cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.
- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - 2) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 6. Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 7. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- 8. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 9. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

10. Rigid Aluminum Fittings:

- a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- d. Indent type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made of "pot metal" are not permitted.
- f. Provide OEM approved fittings.
- 11. Wireway Fittings: As recommended by wireway OEM.

D. Conduit Supports:

- 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.

- 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - 2. Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
 - 5. Size: Metric Designator 53 (trade size 2) or smaller.
 - 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.

- 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
- 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
- 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.

I. Outlet Boxes:

- 1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
- 2. Flush wall mounted 12.7 cm (5 inches) square x 7.3 cm (2-7/8 inches); deep pressed galvanized steel.
- 3. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

K. Cable Tray:

- 1. Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
- 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
- 3. Provide continuous welded top side wire to protect cable insulation and installers.

- 4. High strength steel wires formed into a $50 \times 100 \text{ mm}$ (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
- 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: 105 mm (4 inch).
 - c. Width: 300 mm (12 inches).
- 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
- 7. Provide accessories to protect, support and install wire basket tray system.
- L. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- M. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Master Antenna Television Equipment and Systems	27 41 31	J-Hooks, Bridle Rings, conduit to Cable Tray, Partitioned Cable Tray
Public Address and Mass Notification Systems	27 51 16	Complete conduit
Intercommunications and Program systems	27 51 23	Conduit to Cable Tray, Partitioned Cable Tray
Nurse Call	27 52 23	Complete Conduit
Security Emergency Call, Duress Alarm, and Telecommunications	27 52 31	Conduit to Cable Tray, Partitioned Cable Tray
Miscellaneous Medical Systems	27 52 41	Complete Conduit
Distributed Radio Antenna Equipment and System	27 53 19	Conduit to Cable Tray, Partitioned Cable Tray

System	Specification Section	Installed Method
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code
Physical Access Control System	28 13 00	Conduit to Cable Tray Partitioned Cable Tray
Physical Access Control System and Database Management	28 13 16	Conduit to Cable Tray Partitioned Cable Tray
Security Access Detection	28 13 53	Complete Conduit
Intrusion Detection System	28 16 00	Conduit to Cable Tray, Partitioned Cable Tray
Video Surveillance	28 23 00	Complete Conduit
Electronic Personal Protection System	28 26 00	Conduit to Cable Tray, Partitioned Cable Tray
Fire Detection and Alarm	28 31 00	Complete Conduit

B. Penetrations:

1. Cutting or Holes:

- a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
- b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
- c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - 1) Fill and seal clearances between raceways and openings with fire stop material.
 - 2) Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.

C. Conduit Installation:

- 1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
- 2. Install insulated bushings on all conduit ends.
- 3. Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
- 4. Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.
- 8. Minimum radius of communication conduit bends:

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- 10. Provide pull wire in all empty conduits; sleeves through floor are exceptions.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- 13. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
- E. Furred or Suspended Ceilings and in Walls:
 - 1. Rigid steel or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.

3. Tightening set screws with pliers is not permitted.

F. Exposed Work Installation:

- 1. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
- 2. Align and run conduit parallel or perpendicular to building lines.
- 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
- 4. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
- 5. Surface Metal Raceways: Use only where shown on drawings.
- 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

G. Expansion Joints:

- 1. Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
- 2. Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.

H. Conduit Supports, Installation:

- 1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
- 2. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is $2.5\ m$ (8 foot) on center.
- 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200

- pounds). Attach each conduit with U-bolts or other accepted fasteners.
- 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
- 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - 3) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- 8. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- 9. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

I. Box Installation:

- 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.

- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- 3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - 2. Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
 - 4. Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - -

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Contracting Officers Representative (COR) or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.

C. Fire alarm signals:

- 1. Building(s) shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
- 2. Building(s) shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly

transmitted to the main fire alarm system control unit located in the security office.

E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

A fully addressable fire alarm system as an extension of an existing non-addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- A. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- B. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
- C. Meets this specification section
- D. Is UL listed or FM approved
- E. Is compatible with new equipment being installed
- F. Is verified as operable through contractor testing and inspection
- G. Is warranted as new by the contractor.
- H. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- I. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- J. Basic Performance:
- K. Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
- L. Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- M. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
- N. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
- O. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- P. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

 Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.

1.4 SUBMITTALS

A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Drawings:

- 1. Prepare drawings using AutoCAD Release 14 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
- 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.

- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.

C. Manuals:

- Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
- d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
- e. Complete listing of all digitized voice messages.
- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.

- c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
- d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
- e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.

D. Certifications:

- 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72.

 A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment.

 The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COR or his authorized representative.

G. Emergency Service:

- 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COR or his authorized representative.
- 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.

- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency call-back hours is based on actual time spent on site and does not include travel time.
- H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):

NFPA 13	Standard f	for the	Installation	of	Sprinkler
	Systems, 2	2010 edi	tion		

NFPA 14		Standard	for	the	Installation	of	Standpipes	and
	I	Hose Syst	ems,	201	0 edition			

NFPA	20	Stand	dard	for	the	Installat	ion	of	Stationar	У
		Pumps	for	Fir	e Pr	otection,	2010	0 e	dition	

NFPA	70Nation	al Elec	trical	Code	(NEC),	2010	edition
NFPA	72Nationa	al Fire	Alarm	Code,	2010	editio	'n

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

NFPA	90A	.Standard	for	the	Installation	n of Air	
		Condition	ning	and	Ventilating	Systems,	2009
		edition					

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI):
 - S3.41......Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional
 - 3. All new conduits shall be 3/4 inch (19 mm) minimum.

B. Wire:

1. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 2. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- 3. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.

C. Terminal Boxes, Junction Boxes, and Cabinets:

- 1. Shall be galvanized steel in accordance with UL requirements.
- 2. All boxes shall be sized and installed in accordance with NFPA 70.
- 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
- 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
- 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser.

 Terminal strips shall be labeled as specified or as approved by the COR.

2.3 FIRE ALARM CONTROL UNIT

A. General:

- 1. Each building shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.
- 2. Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.
- 4. Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control unit.

B. Enclosure:

 The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion

- protected, given a rust-resistant prime coat, and manufacturer's standard finish.
- 2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
 - 2. Display screen shall have a minimum 15-inch (380 mm) diagonal non-glare screen capable of displaying 24 lines of 80 characters each.
 - 3. Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
 - 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.

D. Power Supply:

- 1. The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
- The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
- 3. Power supply for smoke detectors shall be taken from the fire alarm control unit.
- 4. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
- 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch.

The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.

G. Trouble signals:

- 1. Arrange the trouble signals for automatic reset (non-latching).
- 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - 1. Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - 2. Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - 4. Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
 - 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
 - 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
 - 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.

9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.

I. Remote Transmissions:

- 1. Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
- 2. Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
 - 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
 - 4. Batteries shall be sealed, gel cell type.
 - 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.

B. Batteries:

1. Battery shall be of the sealed, maintenance free type, 24-volt nominal.

- 2. Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
- 3. Battery racks shall be steel with an alkali-resistant finish.

 Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.

C. Battery Charger:

- Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
- 2. Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
- 3. Shall have protection to prevent discharge through the charger.
- 4. Shall have protection for overloads and short circuits on both AC and DC sides.
- 5. A trouble condition shall actuate the fire alarm trouble signal.
- 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - 1. Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
 - 2. Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
 - 3. The initial alarm received shall be indicated as such.
 - 4. A selector switch shall be provided for viewing subsequent alarm messages.
 - 5. The display shall be UL listed for fire alarm application.
 - 6. Annunciators shall display information for all buildings connected to the system. Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COR.

B. Printers:

- System printers shall be high reliability digital input devices, UL approved, for fire alarm applications. The printers shall operate at a minimum speed of 30 characters per second. The printer shall be continually supervised.
- 2. Printers shall be programmable to either alarm only or event logging output.
 - a. Alarm printers shall provide a permanent (printed) record of all alarm information that occurs within the fire alarm system. Alarm information shall include the date, time, building number, floor, zone, device type, device address, and condition.
 - b. Event logging printers shall provide a permanent (printed) record of every change of status that occurs within the fire alarm system. Status information shall include date, time, building number, floor, zone, device type, device address and change of status (alarm, trouble, supervisory, reset/return to normal).
- 3. System printers shall provide tractor drive feed pins for conventional fan fold 8-1/2" x 11" (213 mm x 275 mm) paper.
- 4. The printers shall provide a printing and non-printing self test feature.
- 5. Power supply for printers shall be taken from and coordinated with the building emergency service.
- 6. Each printer shall be provided with a stand for the printer and paper.
- 7. Spare paper and ribbons for printers shall be stocked and maintained as part of the one year guarantee period services in addition to the one installed after the approval of the final acceptance test.

2.7 ALARM NOTIFICATION APPLIANCES

A. Bells:

- 1. Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
- 2. Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on outlet boxes.

- 4. Bells located outdoors shall be weatherproof type with metal housing and protective grille.
- 5. Each bell circuit shall have a minimum of 20 percent spare capacity.

B. Speakers:

- 1. Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
- 2. Frequency response shall be a minimum of $400~\mathrm{HZ}$ to $4,000~\mathrm{HZ}$.
- 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

C. Strobes:

- Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
- 2. Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
- 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.

D. Fire Alarm Horns:

- 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
- 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on conduit boxes.
- 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
- 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.8 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.

- 2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.

B. Smoke Detectors:

- 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
- 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

C. Heat Detectors:

- 1. Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
- 2. Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
- 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
- 4. Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector Elevator P-1) for each elevator group. Locate key test station in plain view on elevator machine room wall.

D. Water Flow and Pressure Switches:

- 1. Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
- 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type.
- 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

E. Extinguishing System Connections:

- 1. Kitchen Range Hood and Duct Suppression Systems:
 - a. Each suppression system shall be equipped with a micro-switch connected to the building fire alarm control unit. Discharge of a suppression system shall automatically send a alarm signal to the building fire detection and alarm system for annunciation.
 - b. Operation of this suppression system shall also automatically shut off all sources of fuel and heat to all equipment requiring protection under the same hood.
- 2. Each gaseous suppression system shall be monitored for system alarm and system trouble conditions via addressable interface devices.

2.9 SUPERVISORY DEVICES

A. Duct Smoke Detectors:

- 1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
- 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.

B. Sprinkler and Standpipe System Supervisory Switches:

- Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
- 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
- 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device.
- 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
- 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
- 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.

2.10 ADDRESS REPORTING INTERFACE DEVICE

A. Shall have unique addresses that reports directly to the building fire alarm panel.

- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit.

 Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COR.

2.13 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5
 - 2. Heat detectors 2 of each type
 - 3. Fire alarm strobes 5
 - 4. Fire alarm bells 5

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- 5. Fire alarm speakers 5
- 6. Smoke detectors 20
- 7. Duct smoke detectors with all appurtenances 1
- 8. Sprinkler system water flow switch 1 of each size
- 9. Sprinkler system water pressure switch 1 of each type
- 10. Sprinkler valve tamper switch 1 of each type
- 11. Control equipment utility locksets 5
- 12. Control equipment keys 25
- 13. 2.5 oz containers aerosol smoke 12
- 14. Printer paper 3 boxes
- 15. Printer replacement ribbons 3
- 16. Monitor modules 3
- 17. Control modules 3
- 18. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- B. Spare and replacement parts shall be in original packaging and submitted to the COR.
- C. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COR.
- D. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system on site. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.14 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COR before being posted.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - 1. Operate the emergency voice communication system in Buildings. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - 2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Buildings.
 - 3. Release only the magnetic door holders in the smoke zone on the floor from which alarm was initiated after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.
- C. Smoke detectors in the primary elevator lobbies of Buildings shall, in addition to the above functions, return all elevators in the bank to the secondary floor.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

- D. Smoke detectors in the remaining elevator lobbies, elevator machine room, or top of hoistway shall, in addition to the above functions, return all elevators in the bank to the primary floor.
- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that floor
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- H. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.

September 25, 2015 BID DOCUMENTS Project No. 603-15-101

5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - 1. Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 2. Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the

- system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - - E N D - - -