SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 SAFETY REQUIREMENTS 1
1.2 GENERAL INTENTION
1.3 STATEMENT OF BID ITEM(S)1
1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR
1.5 CONSTRUCTION SECURITY REQUIREMENTS
1.6 OPERATIONS AND STORAGE AREAS
1.7 ALTERATIONS
1.8 DISPOSAL AND RETENTION
1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS
1.10 RESTORATION
1.11 PHYSICAL DATA
1.12 PROFESSIONAL SURVEYING SERVICES
1.13 LAYOUT OF WORK
1.14 AS-BUILT DRAWINGS15
1.15 USE OF ROADWAYS
1.16 RESIDENT ENGINEER'S FIELD OFFICE
1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT
1.18 TEMPORARY USE OF EXISTING ELEVATORS
1.19 TEMPORARY USE OF NEW ELEVATORS
1.20 TEMPORARY TOILETS
1.21 AVAILABILITY AND USE OF UTILITY SERVICES
1.22 NEW TELEPHONE EQUIPMENT

1.23	TESTS21
1.24	INSTRUCTIONS
1.25	GOVERNMENT-FURNISHED PROPERTY
1.26	RELOCATED // EQUIPMENT // ITEMS //
1.27	STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT25
1.28	CONSTRUCTION SIGN
1.29	SAFETY SIGN
1.30	PHOTOGRAPHIC DOCUMENTATION
1.31	FINAL ELEVATION Digital Images25
1.32	HISTORIC PRESERVATION
1.33	VA TRIRIGA CPMS

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for REPLACEMENT OF THE 12kV TRANSFORMER AT BUILDING 90 as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. NOT USED.
- D. NOT USED.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

1.3 STATEMENT OF BID ITEM(S)

- A. ITEM I, GENERAL CONSTRUCTION: Work includes general construction, alterations, roads, walks, grading, drainage, necessary removal of existing structures and construction and certain other items.
- ITEM II, Electrical Work: Work includes all labor, material, equipment and supervision to perform the required electrical construction work on this project including but not limited to transformer installation, wire pulling, wire termination, arc flash study.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that security escort arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
 - 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
 - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- C. NOT USED.
- D. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the Contracting officers representative (COR) for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.

- E. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
 - These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
 - 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
 - 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
 - All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions

- Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
- 2. A limited number of (2 to 5) permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

D. Working space and space available for storing materials shall be as determined by the COR.

 $01 \ 00 \ 00 \ -4$

- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR.
 - 1. Do not store materials and equipment in other than assigned areas.
 - Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- G. Phasing:

The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:

To insure such executions, Contractor shall furnish the COR with a schedule of approximate phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of

site, building or portion thereof. Arrange such phasing dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, COR and Contractor.

- I. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height, around the construction area indicated on the drawings. Provide gates as required for access with necessary hardware, including hasps and padlocks. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade. Remove the fence when directed by COR.
- J. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- K. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be

accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.

- Contractor shall submit a request to interrupt any such services to COR, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be

removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.

- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times with approval.
 - 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- N. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.
- O. NOT USED.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR of buildings and/or all areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of buildings.
 - Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
 - 3. Shall note any discrepancies between drawings and existing conditions at site.

- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately

protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are identified by attached tags or noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.
 - 4. PCB Transformers and Capacitors : The Contractor shall be responsible for disposal of the Polychlorinated Biphenyl (PCB) transformers and capacitors as required by the project specifications. The transformers and capacitors shall be taken out of service and handled in accordance with the procedures of the Environmental Protection Agency (EPA) and the Department of Transportation (DOT) as outlined in Code of Federal Regulation (CFR), Titled 40 and 49 respectively. The EPA's Toxic Substance Control Act (TSCA) Compliance Program Policy Nos. 6-PCB-6 and 6-PCB-7 also apply. Upon removal of PCB transformers and capacitors for disposal, the "originator" copy of the Uniform Hazardous Waste Manifest (EPA Form 8700-22), along with the Uniform Hazardous Waste Manifest Continuation Sheet (EPA Form 8700-22A) shall be returned to

the Contracting Officer who will annotate the contract file and transmit the Manifest to the Medical Center's Chief.

- a. Copies of the following listed CFR titles may be obtained from the Government Printing Office:
 - 40 CFR 261.....Identification and Listing of Hazardous Waste
 - 40 CFR 262..... Standards Applicable to Generators of Hazardous Waste
 - 40 CFR 263.....Standards Applicable to Transporters of Hazardous Waste
 - 40 CFR 761.....PCB Manufacturing, Processing, Distribution in Commerce, and use Prohibitions
 - 49 CFR 172.....Hazardous Material tables and Hazardous Material Communications Regulations
 - 49 CFR 173.....Shippers General Requirements for Shipments and Packaging
 - 49 CRR 173.....Subpart A General
 - 49 CFR 173.....Subpart B Preparation of Hazardous Material for Transportation
 - 49 CFR 173.....Subpart J Other Regulated Material; Definitions and Preparation

TSCA.....Compliance Program Policy Nos. 6-PCB-6 and 6-PCB-7

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.

B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. NOT USED.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or

removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.

- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 NOT USED.

1.12 PROFESSIONAL SURVEYING SERVICES

A registered professional land surveyor or registered civil engineer whose services are retained and paid for by the Contractor shall perform services specified herein and in other specification sections. The Contractor shall certify that the land surveyor or civil engineer is not one who is a regular employee of the Contractor, and that the land surveyor or civil engineer has no financial interest in this contract.

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

- B. Establish and plainly mark center lines for each building and corner of column lines and/or addition to each existing building, and such other lines and grades that are reasonably necessary to properly assure that location, orientation, and elevations established for each such structure and/or addition, roads, parking lots, , are in accordance with lines and elevations shown on contract drawings.
- C. Following completion of general mass excavation and before any other permanent work is performed, establish and plainly mark (through use of appropriate batter boards or other means) sufficient additional survey control points or system of points as may be necessary to assure proper alignment, orientation, and grade of all major features of work. Survey shall include, but not be limited to, location of lines and grades of footings, exterior walls, center lines of columns in both directions, major utilities and elevations of floor slabs:
 - Such additional survey control points or system of points thus established shall be checked and certified by a registered land surveyor or registered civil engineer. Furnish such certification to the COR before any work (such as footings, floor slabs, columns, walls, utilities and other major controlling features) is placed.
- D. During progress of work, and particularly as work progresses from floor to floor, Contractor shall have line grades and plumbness of all major form work checked and certified by a registered land surveyor or registered civil engineer as meeting requirements of contract drawings. Furnish such certification to the COR before any major items of concrete work are placed. In addition, Contractor shall also furnish to the COR certificates from a registered land surveyor or registered civil engineer that the following work is complete in every respect as required by contract drawings.
 - 1. Lines of each building and/or addition.
 - Elevations of bottoms of footings and tops of floors of each building and/or addition.

- Lines and elevations of sewers and of all outside distribution systems.
- 4. NOT USED.
- 5. Lines of elevations of all swales and interment areas.
- 6. Lines and elevations of roads, streets and parking lots.
- E. Whenever changes from contract drawings are made in line or grading requiring certificates, record such changes on a reproducible drawing bearing the registered land surveyor or registered civil engineer seal, and forward these drawings upon completion of work to COR.
- F. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
- C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

1.16 NOT USED.

1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - Permission to use each unit or system must be given by COR in writing. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the COR will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.

- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government. Boilers, pumps, feedwater heaters and auxiliary equipment must be operated as a complete system and be fully maintained by operating personnel. Boiler water must be given complete and continuous chemical treatment.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.18 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - Contractor makes all arrangements with the COR for use of elevators. The COR will ascertain that elevators are in proper condition. Contractor may use elevators for special nonrecurring time intervals when permission is granted. Personnel for operating elevators will not be provided by the Department of Veterans Affairs.

- 2. Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.
 - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
 - c. Finish flooring.
- 3. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes at the contractors expense.

1.19 TEMPORARY USE OF NEW ELEVATORS

- A. The Contractor and his personnel shall be permitted use of new elevator(s) subject to the following provisions:
 - Contractor shall make arrangements with the COR for use of elevator(s). Contractor may obtain elevator(s) for exclusive use.
 - Prior to the use of elevator(s), the Contractor shall have the elevator(s) inspected and accepted by an ASME accredited, certified elevator safety inspector. The acceptance report shall be submitted to the COR.
 - 3. Submit to the COR the schedule and procedures for maintaining equipment. Indicate the day or days of the week and total hours required for maintenance. A report shall be submitted to the COR monthly indicating the type of maintenance conducted, hours used, and any repairs made to the elevator(s).
 - The Contractor shall be responsible for enforcing the maintenance procedures as per VA and manufacturers recommendations and requirements.
 - During temporary use of elevator(s) all repairs, equipment replacement and cost of maintenance shall be the responsibility of the Contractor.

- Personnel for operating elevator(s) shall not be provided by the Department of Veterans Affairs.
- Contractor shall cover and provide maximum protection of the entire elevator(s) installation.
- 8. The Contractor shall arrange for the elevator company to perform operation of the elevator(s) so that an ASME accredited, certified elevator safety inspector can evaluate the equipment. The Contractor shall be responsible for any costs of the elevator company.
- 9. All elevator(s) parts worn or damaged during temporary use shall be removed and replaced with new parts at the contractors expense. This shall be determined by an ASME accredited certified elevator safety inspector after temporary use and before acceptance by the Government. Submit report to the COR for approval.
- 10. Elevator shall be tested as required by the testing section of the elevator(s) specifications before acceptance by the Department of Veterans Affairs. The Contractor shall be responsible for all cost associated with testing and inspection.

1.20 TEMPORARY TOILETS

- A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.
- A*. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.21 AVAILABILITY AND USE OF UTILITY SERVICES

A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for

chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.

- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.

a. Steam is available at no cost to Contractor.

- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. NOT USED.
- G. NOT USED.

1.22 NOT USED.

1.23 TESTS

- A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation.
- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental

conditions remain reasonably constant and are typical of the design conditions.

F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.24 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of

equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.25 GOVERNMENT-FURNISHED PROPERTY

- A. The Government shall deliver to the Contractor, the Government-furnished property shown on the Schedule.
- B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Medical Center.
- C. Contractor shall be prepared to receive this equipment from Government and store or place such equipment not less than 90 days before Completion Date of project.
- D. Notify Contracting Officer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment.
 - Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages.

- 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government.
- E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government.
- F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings.
- G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer.

1.26 RELOCATED EQUIPMENT

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.

- E. Contractor shall employ services of an installation engineer, who is an authorized representative of the manufacturer of this equipment to supervise assembly and installation of existing equipment, required to be relocated.
- F. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.

1.27 NOT USED.

- 1.28 NOT USED.
- 1.29 NOT USED.
- 1.30 NOT USED.

1.31 FINAL ELEVATION DIGITAL IMAGES

- A. A minimum of four (4) images of each elevation shall be taken with a minimum 6 MP camera, by a professional photographer with different settings to allow the COR to select the image to be printed. All images are provided to the RE on a CD.
- B. Photographs shall be taken upon completion, including landscaping. They shall be taken on a clear sunny day to obtain sufficient detail to show depth and to provide clear, sharp pictures. Pictures shall be 400 mm x 500 mm (16 by 20 inches), printed on regular weight paper, matte finish archival grade photographic paper and produced by a RA4 process from the digital image with a minimum 300 PPI. Identifying data shall be carried on label affixed to back of photograph without damage to photograph and shall be similar to that provided for final construction photographs.
- C. Furnish six (6) 400 mm x 500 mm (16 by 20 inch) color prints of the following buildings constructed under this project (elevations as selected by the RE from the images taken above). Photographs shall be artistically composed showing full front elevations. All images shall become property of the Government. Each of the selected six prints shall be place in a frame with a minimum of 2 inches of appropriate matting as a border. Provide a selection of a minimum of 3 different frames from which the SRE will select one style to frame all six

prints. Photographs with frames shall be delivered to the COR in boxes suitable for shipping.

1.32 HISTORIC PRESERVATION

Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up.

1.33 NOT USED.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples (including laboratory samples to be tested), test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals // (including any laboratory samples to be tested) // will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.

- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.
- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. //Submit samples required by Section 09 06 00, SCHEDULE FOR FINISHES, in quadruplicate. Submit samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications

for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.

- A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
- 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
- Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.
 - Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
 - Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
 - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
 - Contractor shall send a copy of transmittal letter to both Resident Engineer and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory.
 - Contractor shall forward a copy of transmittal letter to Resident Engineer simultaneously with submission to a commercial testing laboratory.
 - 5. Laboratory test reports shall be sent directly to Resident Engineer for appropriate action.

- 6. Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report.
- 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.
- D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- E. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.

- 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
- 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS
1.2	DEFINITIONS
1.3	REGULATORY REQUIREMENTS
1.4	ACCIDENT PREVENTION PLAN (APP)6
1.5	ACTIVITY HAZARD ANALYSES (AHAs)11
1.6	PRECONSTRUCTION CONFERENCE
1.7 (CP)	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON"
1.8	TRAINING
1.9	INSPECTIONS
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS17
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE)18
1.12	INFECTION CONTROL19
1.13	TUBERCULOSIS SCREENING
1.14	FIRE SAFETY28
1.15	ELECTRICAL
1.16	FALL PROTECTION
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS
1.18	EXCAVATION AND TRENCHES
1.19	CRANES
1.20	CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)
1.21	CONFINED SPACE ENTRY
1.22	WELDING AND CUTTING

1.23	LADDERS		5
			_
1.24	FLOOR & WALL	OPENINGS	1

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning

A10.34-2012.....Protection of the Public on or Adjacent to Construction Sites

A10.38-2013.....Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations

C. American Society for Testing and Materials (ASTM):

E84-2013.....Surface Burning Characteristics of Building Materials

D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

10-2013.....Standard for Portable Fire Extinguishers

30-2012.....Flammable and Combustible Liquids Code

51B-2014..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2014.....National Electrical Code

70B-2013.....Recommended Practice for Electrical Equipment Maintenance

70E-2012Standard for Electrical Safety in the Workplace 99-2012.....Health Care Facilities Code 241-2013....Standard for Safeguarding Construction, Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification Manual

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1904Reporting and Recording Injuries & Illnesses

29 CFR 1910Safety and Health Regulations for General Industry

29 CFR 1926Safety and Health Regulations for Construction Industry

CPL 2-0.124.....Multi-Employer Citation Policy

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- B. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to

solve or resolve problems relating to the subject matter, the work, or the project.

- C. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- D. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.
- E. Recordable Injuries or Illnesses. Any work-related injury or illness that results in:
 - Death, regardless of the time between the injury and death, or the length of the illness;
 - Days away from work (any time lost after day of injury/illness onset);
 - 3. Restricted work;
 - 4. Transfer to another job;
 - 5. Medical treatment beyond first aid;
 - 6. Loss of consciousness; or
 - A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (6) above.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET.** Title, signature, and phone number of the following:

- Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
- Plan approver (company/corporate officers authorized to obligate the company);
- 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor;
 - 2) Contract number;
 - 3) Project name;
 - Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - A statement of the employer's ultimate responsibility for the implementation of his SOH program;
 - Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.

- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
- Requirements that no work shall be performed unless a designated competent person is present on the job site;
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
- 6) Lines of authority;
- 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

- Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all OSHA Recordable Incidents. The APP shall include accident/incident investigation procedure & identify person(s) responsible to provide the following to the // Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority:

1) Exposure data (man-hours worked);

- 2) Accident investigations, reports, and logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:

1) Emergency response ;

- 2) Contingency for severe weather;
- 3) Fire Prevention ;
- 4) Medical Support;
- 5) Posting of emergency telephone numbers;
- 6) Prevention of alcohol and drug abuse;

- 7) Site sanitation (housekeeping, drinking water, toilets);
- 8) Night operations and lighting ;
- 9) Hazard communication program;
- 10) Welding/Cutting "Hot" work ;
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;
- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) PreCast Concrete.
- C. Submit the APP to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar

days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.

- D. Once accepted by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Project Manager, project superintendent, project overall designated OSHA Competent Person, and facility Safety Officer, Contracting Officer Representative, Government Designated Authority. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public (as defined by ASSE/SAFE A10.34) and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority

and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.

- 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
- The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.

- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.

1.6 PRECONSTRUCTION CONFERENCE:

A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.

- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall

revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours,

locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.

G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - 2. The Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority will be notified immediately prior to start of the inspection and invited to accompany the inspection.
 - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.

4. A report of the inspection findings with status of abatement will be provided to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. Notify the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority as soon as practical, but no more than four hours after any accident meeting the definition of OSHA Recordable Injuries or Illnesses or High Visibility Accidents, property damage equal to or greater than \$5,000, or any weight handling equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority determine whether a government investigation will be conducted.
- B. Conduct an accident investigation for recordable injuries and illnesses, for Medical Treatment defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162, and provide the report to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority within 5 calendar days of the accident. The Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority monthly.

D. A summation of all OSHA recordable accidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - Hard Hats unless written authorization is given by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - Safety glasses unless written authorization is given by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.

 Hearing protection - Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Resident Engineer. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: **Class** [_____], however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:

1. Class I requirements:

- a. During Construction Work:
 - Notify the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
 - Execute work by methods to minimize raising dust from construction operations.
 - Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.
- b. Upon Completion:
 - 1) Clean work area upon completion of task
 - Notify the Project Manager // and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
- 2. Class II requirements:
 - a. During Construction Work:
 - Notify the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
 - Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
 - 3) Water mist work surfaces to control dust while cutting.
 - 4) Seal unused doors with duct tape.
 - 5) Block off and seal air vents.
 - Remove or isolate HVAC system in areas where work is being performed.
 - b. Upon Completion:
 - 1) Wipe work surfaces with cleaner/disinfectant.

- 2) Contain construction waste before transport in tightly covered containers.
- Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
- 4) Upon completion, restore HVAC system where work was performed
- 5) Notify the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
- 3. Class III requirements:
 - a. During Construction Work:
 - Obtain permit from the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.
 - 5) Contain construction waste before transport in tightly covered containers.
 - Cover transport receptacles or carts. Tape covering unless solid lid.

- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority and thoroughly cleaned by the VA Environmental Services Department.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - 3) Vacuum work area with HEPA filtered vacuums.
 - 4) Wet mop area with cleaner/disinfectant.
 - 5) Upon completion, restore HVAC system where work was performed.
 - 6) Return permit to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
- 4. Class IV requirements:
 - a. During Construction Work:
 - Obtain permit from the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure within work site utilizing HEPA equipped air filtration units.

- 5) Seal holes, pipes, conduits, and punctures.
- 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
- All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority with thorough cleaning by the VA Environmental Services Dept.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - Contain construction waste before transport in tightly covered containers.
 - Cover transport receptacles or carts. Tape covering unless solid lid.
 - 5) Vacuum work area with HEPA filtered vacuums.
 - 6) Wet mop area with cleaner/disinfectant.
 - 7) Upon completion, restore HVAC system where work was performed.
 - Return permit to the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:

- Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
- Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center) Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
 - e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
 - f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.
- D. Products and Materials:
 - Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
 - Barrier Doors: Self Closing Two-hour fire-rated solid core wood in steel frame, painted
 - 3. Dust proof two-hour fire-rated drywall
 - 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust

particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.

- 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation
 Blower Hose
- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product
- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be establish and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to Project Engineer and Facility CSC for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - 1. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building

openings. HEPA filtration is required where the exhaust dust may reenter the medical center.

- 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
- 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
- 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
- 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.
- I. Final Cleanup:

- Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.
- J. Exterior Construction
 - Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
 - Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
 - 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.

- 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
- 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
- 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).

- D. Temporary Construction Partitions:
 - Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas the areas that are described in phasing requirements and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
 - Install two-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
 - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.

- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241. Do not charge wet standpipes subject to freezing until weather protected.
- K. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.
 - L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
 - M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.
 - N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Facility Safety Office. Obtain permits from facility Safety Officer at least 24 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
 - O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Project Manager and Facility Safety

Officer or Contracting Officer Representative or Government Designated Authority.

- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the COR or other Government Designated Authority that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Chief of Facilities Managementand Facility Safety Officer or Contracting Officer Representative or Government Designated Authority

with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA specific to energized work activities will be developed, reviewed, and accepted prior to the start of that work.

- Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the The Chief of Facilities Management and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity has been accepted by the Project Manager and Facility Safety Officer or Contracting Officer Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. All 120-volt, single-phase 15- and 20-ampere receptacle outlets on construction sites shall have approved

ground-fault circuit interrupters for personnel protection. "Assured Equipment Grounding Conductor Program" only is not allowed.

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.

- 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
- 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
- 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P.
- B. All excavations and trenches 5 feet in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall be completed and provided to the Project Manager and/or Facility Safety Officer and/or other Government Designated Authority prior to commencing work for the day. At the end of the day, the permit shall be closed out and provided to the Project Manager and/or Facility Safety Officer and/or other Government Designated Authority. The permit shall be maintained onsite and include the following:
 - 1. Determination of soil classification
 - Indication that utilities have been located and identified. If utilities could not be located after all reasonable attempt, then excavating operations will proceed cautiously.

- 3. Indication of selected excavation protective system.
- Indication that the spoil pile will be stored at least 2 feet from the edge of the excavation and safe access provided within 25 feet of the workers.
- Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere.
- C. If not using an engineered protective system such as a trench box, shielding, shoring, or other Professional Engineer designed system and using a sloping or benching system, soil classification cannot be Solid Rock or Type A. All soil will be classified as Type B or Type C and sloped or benched in accordance with Appendix B of 29 CFR 1926.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date of November 10, 2014.
- C. A detailed lift permit shall be submitted 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing. The lift will not be allowed without approval of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1910.146 except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Project Manager and/or Facility Safety Officer and/or other Government Designated Authority.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Project Manager and/or Facility Safety Officer and/or other Government Designated Authority. Obtain permits from Project Manager and/or Facility Safety Officer and/or other Government Designated Authority at least 24 hours in advance. Designate contractor's responsible projectsite fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step

- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. See 21.F for covering and labeling requirements. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.

- 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
- Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
- 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location: DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

AABC	Associated Air Balance Council
	http://www.aabchq.com
AAMA	American Architectural Manufacturer's Association
	http://www.aamanet.org
AAN	American Nursery and Landscape Association
	http://www.anla.org
AASHTO	American Association of State Highway and Transportation Officials
	http://www.aashto.org
AATCC	American Association of Textile Chemists and Colorists
	http://www.aatcc.org
ACGIH	American Conference of Governmental Industrial Hygienists
	http://www.acgih.org
ACI	American Concrete Institute
	http://www.aci-int.net
ACPA	American Concrete Pipe Association
	http://www.concrete-pipe.org
ACPPA	American Concrete Pressure Pipe Association
	http://www.acppa.org
ADC	Air Diffusion Council
	http://flexibleduct.org
AGA	American Gas Association
	http://www.aga.org
AGC	Associated General Contractors of America
	http://www.agc.org
AGMA	American Gear Manufacturers Association, Inc.
	http://www.agma.org
AHAM	Association of Home Appliance Manufacturers
	http://www.aham.org
AISC	American Institute of Steel Construction
	http://www.aisc.org
AISI	American Iron and Steel Institute
	http://www.steel.org
AITC	American Institute of Timber Construction
	http://www.aitc-glulam.org
AMCA	Air Movement and Control Association, Inc.
	http://www.amca.org
ANLA	American Nursery & Landscape Association
	http://www.anla.org
ANSI	American National Standards Institute, Inc.
	http://www.ansi.org

APA	The Engineered Wood Association
	http://www.apawood.org
ARI	Air-Conditioning and Refrigeration Institute
	http://www.ari.org
ASAE	American Society of Agricultural Engineers
	http://www.asae.org
ASCE	American Society of Civil Engineers
	http://www.asce.org
ASHRAE	American Society of Heating, Refrigerating, and
	Air-Conditioning Engineers
	http://www.ashrae.org
ASME	American Society of Mechanical Engineers
	http://www.asme.org
ASSE	American Society of Sanitary Engineering
	http://www.asse-plumbing.org
ASTM	American Society for Testing and Materials
	http://www.astm.org
AWI	Architectural Woodwork Institute
	http://www.awinet.org
AWS	American Welding Society
	http://www.aws.org
AWWA	American Water Works Association
	http://www.awwa.org
BHMA	Builders Hardware Manufacturers Association
	http://www.buildershardware.com
BIA	Brick Institute of America
	http://www.bia.org
CAGI	Compressed Air and Gas Institute
	http://www.cagi.org
CGA	Compressed Gas Association, Inc.
	http://www.cganet.com
CI	The Chlorine Institute, Inc.
	http://www.chlorineinstitute.org
CISCA	Ceilings and Interior Systems Construction Association
	http://www.cisca.org
CISPI	Cast Iron Soil Pipe Institute
	http://www.cispi.org
CLFMI	Chain Link Fence Manufacturers Institute
	http://www.chainlinkinfo.org
CPMB	Concrete Plant Manufacturers Bureau
	http://www.cpmb.org

CRA	California Redwood Association
	http://www.calredwood.org
CRSI	Concrete Reinforcing Steel Institute
	http://www.crsi.org
CTI	Cooling Technology Institute
	http://www.cti.org
DHI	Door and Hardware Institute
	http://www.dhi.org
EGSA	Electrical Generating Systems Association
	http://www.egsa.org
EEI	Edison Electric Institute
	http://www.eei.org
EPA	Environmental Protection Agency
	http://www.epa.gov
ETL	ETL Testing Laboratories, Inc.
	http://www.et1.com
FAA	Federal Aviation Administration
	http://www.faa.gov
FCC	Federal Communications Commission
	http://www.fcc.gov
FPS	The Forest Products Society
	http://www.forestprod.org
GANA	Glass Association of North America
	http://www.cssinfo.com/info/gana.html/
FM	Factory Mutual Insurance
	http://www.fmglobal.com
GA	Gypsum Association
	http://www.gypsum.org
GSA	General Services Administration
	http://www.gsa.gov
HI	Hydraulic Institute
	http://www.pumps.org
HPVA	Hardwood Plywood & Veneer Association
	http://www.hpva.org
ICBO	International Conference of Building Officials
	http://www.icbo.org
ICEA	Insulated Cable Engineers Association Inc.
	http://www.icea.net
\ICAC	
	Institute of Clean Air Companies

IEEE	Institute of Electrical and Electronics Engineers
	http://www.ieee.org\
IMSA	International Municipal Signal Association
	http://www.imsasafety.org
IPCEA	Insulated Power Cable Engineers Association
NBMA	Metal Buildings Manufacturers Association
	http://www.mbma.com
MSS	Manufacturers Standardization Society of the Valve and Fittings
	Industry Inc.
	http://www.mss-hq.com
NAAMM	National Association of Architectural Metal Manufacturers
	http://www.naamm.org
NAPHCC	Plumbing-Heating-Cooling Contractors Association
	http://www.phccweb.org.org
NBS	National Bureau of Standards
	See - NIST
NBBPVI	National Board of Boiler and Pressure Vessel Inspectors
	http://www.nationboard.org
NEC	National Electric Code
	See - NFPA National Fire Protection Association
NEMA	National Electrical Manufacturers Association
	http://www.nema.org
NFPA	National Fire Protection Association
	http://www.nfpa.org
NHLA	National Hardwood Lumber Association
	http://www.natlhardwood.org
NIH	National Institute of Health
	http://www.nih.gov
NIST	National Institute of Standards and Technology
	http://www.nist.gov
NLMA	Northeastern Lumber Manufacturers Association, Inc.
	http://www.nelma.org
NPA	National Particleboard Association
	18928 Premiere Court
	Gaithersburg, MD 20879
	(301) 670-0604
NSF	National Sanitation Foundation
	http://www.nsf.org
NWWDA	Window and Door Manufacturers Association
	http://www.nwwda.org

OSHA	Occupational Safety and Health Administration
	Department of Labor
PCA	http://www.osha.gov
PCA	Portland Cement Association
DOT	http://www.portcement.org Precast Prestressed Concrete Institute
PCI	http://www.pci.org
PPI	The Plastic Pipe Institute
	http://www.plasticpipe.org
PEI	Porcelain Enamel Institute, Inc.
1 1 1	http://www.porcelainenamel.com
PTI	Post-Tensioning Institute
1 1 1	http://www.post-tensioning.org
RFCI	The Resilient Floor Covering Institute
KF CI	http://www.rfci.com
RIS	Redwood Inspection Service
KT2	See - CRA
RMA	Rubber Manufacturers Association, Inc.
NMA	
SCMA	http://www.rma.org
SCMA	Southern Cypress Manufacturers Association
	http://www.cypressinfo.org
SDI	Steel Door Institute
TOMA	http://www.steeldoor.org
IGMA	Insulating Glass Manufacturers Alliance
	http://www.igmaonline.org
SJI	Steel Joist Institute
	http://www.steeljoist.org
SMACNA	Sheet Metal and Air-Conditioning Contractors
	National Association, Inc.
	http://www.smacna.org
SSPC	The Society for Protective Coatings
	http://www.sspc.org
STI	Steel Tank Institute
	http://www.steeltank.com
SWI	Steel Window Institute
	http://www.steelwindows.com
TCA	Tile Council of America, Inc.
	http://www.tileusa.com
TEMA	Tubular Exchange Manufacturers Association
	http://www.tema.org

TPI	Truss Plate Institute, Inc.
	583 D'Onofrio Drive; Suite 200
	Madison, WI 53719
	(608) 833-5900
UBC	The Uniform Building Code
	See ICBO
UL	Underwriters' Laboratories Incorporated
	http://www.ul.com
ULC	Underwriters' Laboratories of Canada
	http://www.ulc.ca
WCLIB	West Coast Lumber Inspection Bureau
	6980 SW Varns Road, P.O. Box 23145
	Portland, OR 97223
	(503) 639-0651
WRCLA	Western Red Cedar Lumber Association
	P.O. Box 120786
	New Brighton, MN 55112
	(612) 633-4334
WWPA	Western Wood Products Association
	http://www.wwpa.org
	E N D

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM 1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council http://www.aabchq.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AAN American Nursery and Landscape Association http://www.anla.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org
- AGA American Gas Association http://www.aga.org

- AGC Associated General Contractors of America http://www.agc.org
- AGMA American Gear Manufacturers Association, Inc. http://www.agma.org
- AHAM Association of Home Appliance Manufacturers http://www.aham.org
- AIA American Institute of Architects

http://www.aia.org

- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute http://www.steel.org
- AITC American Institute of Timber Construction http://www.aitc-glulam.org
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANLA American Nursery & Landscape Association http://www.anla.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- APA The Engineered Wood Association http://www.apawood.org
- ARI Air-Conditioning and Refrigeration Institute http://www.ari.org
- ASAE American Society of Agricultural Engineers http://www.asae.org
- ASCE American Society of Civil Engineers http://www.asce.org

- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org
- ASME American Society of Mechanical Engineers http://www.asme.org
- ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org
- ASTM American Society for Testing and Materials http://www.astm.org
- AWI Architectural Woodwork Institute http://www.awinet.org
- AWS American Welding Society http://www.aws.org
- AWWA American Water Works Association http://www.awwa.org
- BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com
- BIA Brick Institute of America http://www.bia.org
- CAGI Compressed Air and Gas Institute http://www.cagi.org
- CGA Compressed Gas Association, Inc. http://www.cganet.com
- CI The Chlorine Institute, Inc. http://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute http://www.cispi.org

- CLFMI Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org
- CPMB Concrete Plant Manufacturers Bureau http://www.cpmb.org
- CRA California Redwood Association http://www.calredwood.org
- CRSI Concrete Reinforcing Steel Institute http://www.crsi.org
- CTI Cooling Technology Institute http://www.cti.org
- DHI Door and Hardware Institute http://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org
- EEI Edison Electric Institute http://www.eei.org
- EPA Environmental Protection Agency http://www.epa.gov
- ETL ETL Testing Laboratories, Inc. http://www.etl.com
- FAA Federal Aviation Administration http://www.faa.gov
- FCC Federal Communications Commission http://www.fcc.gov
- FPS The Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.cssinfo.com/info/gana.html/
- FM Factory Mutual Insurance http://www.fmglobal.com

01 42 19 - 5

GΑ Gypsum Association http://www.gypsum.org General Services Administration GSA http://www.gsa.gov ΗI Hydraulic Institute http://www.pumps.org HPVA Hardwood Plywood & Veneer Association http://www.hpva.org ICBO International Conference of Building Officials http://www.icbo.org Insulated Cable Engineers Association Inc. ICEA http://www.icea.net \ICAC Institute of Clean Air Companies http://www.icac.com IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org\ IMSA International Municipal Signal Association http://www.imsasafety.org IPCEA Insulated Power Cable Engineers Association NBMA Metal Buildings Manufacturers Association http://www.mbma.com MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc. http://www.mss-hq.com NAAMM National Association of Architectural Metal Manufacturers http://www.naamm.org NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org NBS National Bureau of Standards See - NIST

- NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org
- NEC National Electric Code See - NFPA National Fire Protection Association
- NEMA National Electrical Manufacturers Association http://www.nema.org
- NFPA National Fire Protection Association http://www.nfpa.org
- NHLA National Hardwood Lumber Association http://www.natlhardwood.org
- NIH National Institute of Health http://www.nih.gov
- NIST National Institute of Standards and Technology http://www.nist.gov
- NLMA Northeastern Lumber Manufacturers Association, Inc. http://www.nelma.org
- NPA National Particleboard Association 18928 Premiere Court Gaithersburg, MD 20879 (301) 670-0604
- NSF National Sanitation Foundation http://www.nsf.org
- NWWDA Window and Door Manufacturers Association http://www.nwwda.org
- OSHA Occupational Safety and Health Administration Department of Labor http://www.osha.gov
- PCA Portland Cement Association http://www.portcement.org

- PCI Precast Prestressed Concrete Institute http://www.pci.org
- PPI The Plastic Pipe Institute http://www.plasticpipe.org
- PEI Porcelain Enamel Institute, Inc. http://www.porcelainenamel.com
- PTI Post-Tensioning Institute http://www.post-tensioning.org
- RFCI The Resilient Floor Covering Institute http://www.rfci.com
- RIS Redwood Inspection Service See - CRA
- RMA Rubber Manufacturers Association, Inc. http://www.rma.org
- SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org
- SDI Steel Door Institute http://www.steeldoor.org
- IGMA Insulating Glass Manufacturers Alliance http://www.igmaonline.org
- SJI Steel Joist Institute http://www.steeljoist.org
- SMACNA Sheet Metal and Air-Conditioning Contractors
 National Association, Inc.
 http://www.smacna.org
- SSPC The Society for Protective Coatings http://www.sspc.org
- STI Steel Tank Institute http://www.steeltank.com

SWI	Steel Window Institute http://www.steelwindows.com
TCA	Tile Council of America, Inc. http://www.tileusa.com
TEMA	Tubular Exchange Manufacturers Association http://www.tema.org
TPI	Truss Plate Institute, Inc. 583 D'Onofrio Drive; Suite 200 Madison, WI 53719 (608) 833-5900
UBC	The Uniform Building Code See ICBO
UL	Underwriters' Laboratories Incorporated
ULC	Underwriters' Laboratories of Canada <u>http://www.ulc.ca</u>
WCLIB	West Coast Lumber Inspection Bureau 6980 SW Varns Road, P.O. Box 23145 Portland, OR 97223 (503) 639-0651
WRCLA	Western Red Cedar Lumber Association P.O. Box 120786 New Brighton, MN 55112 (612) 633-4334
WWPA	Western Wood Products Association

- - - E N D - - -

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
 - Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
 - 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA): 33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Resident Engineer to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Resident Engineer and the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.

- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the Resident Engineer. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted.
 - 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence

isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.

- Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
- 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local 2016 (design year) storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.
 - b. Reuse or conserve the collected topsoil sediment as directed by the Resident Engineer. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING.
 - c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control featuress on the

Environmental Protection Plan. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.

- Manage borrow areas on and off Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- Manage and control spoil areas on and off Government property to limit spoil to areas shown on the Environmental Protection Plan and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the Resident Engineer.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning

construction operations, list species that require specific attention along with measures for their protection.

- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of California and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
 - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
 - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Resident Engineer. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00p.m unless otherwise permitted by local ordinance or the Resident Engineer. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80

01 57 19- 6

75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA):

EARTHMOVING		MATERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	////
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the A weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face.

Submit the recorded information to the Resident Engineer noting any problems and the alternatives for mitigating actions.

- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Resident Engineer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

MODIFICATION

06-01-12 CONTENT REVISED IN REFERENCE TO REQUIREMENT FOR RECYCLING OF CONSTRUCTION AND DEMOLITION WASTE.

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

C. Lead Paint: Section 02 83 33.13, LEAD BASED PAINT REMOVAL AND DISPOSAL.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

01 74 19 - 3

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.

 $01 \ 74 \ 19 \ - \ 4$

- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:

- a. List of each material and quantity to be salvaged, reused, recycled.
- b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):

LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

01 74 19 - 7

- - - E N D - - -

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup,

control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Resident Engineer as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA Resident Engineer and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the Resident Engineer and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the Resident Engineer.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to

the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.

- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and Resident Engineer. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the Resident Engineer and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the Resident Engineer to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or Resident Engineer will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the Resident Engineer of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or Resident Engineer, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 32 16.01 ARCHITECTURAL AND ENGINEERING CPM SCHEDULES
- C. Section 01 32.16 NETWORK ANALYSIS SCHEDULES
- D. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- E. Section 01 32.16.16 NETWORK ANALYSIS SCHEDULES (SMALL PROJECTS -DESIGN/BID/BUILD)
- F. Section 01 32.16.17 PROJECT SCHEDULES (SMALL PROJECTS- DESIGN/BUILD)
- G. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- H. Section 01 81 11 SUSTAINABNLE DESIGN REQUIREMENTS
- I. Section 07 08 00 FACILITY EXTERIOR CLOSURE COMMISSIONING.
- J. Section 21 08 00 COMMISSIONING OF FIRE PROTECTION SYSTEMS.
- K. Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- L. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- M. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.
- N. Section 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS.
- O. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- P. Section 33 08 00 COMMISSIONING OF SITE UTILITIES.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. Not used.
- D. Not used.

1.5 ACRONYMS

List of Acronyms		
Acronym	Meaning	
A/E	Architect / Engineer Design Team	
AHJ	Authority Having Jurisdiction	
ASHRAE	Association Society for Heating Air Condition and Refrigeration Engineers	
BOD	Basis of Design	

List of Acronyms		
Acronym	Meaning	
BSC	Building Systems Commissioning	
CCTV	Closed Circuit Television	
CD	Construction Documents	
CMMS	Computerized Maintenance Management System	
CO	Contracting Officer (VA)	
COR	Contracting Officer's Representative (see also VA-RE)	
COBie	Construction Operations Building Information Exchange	
CPC	Construction Phase Commissioning	
Cx	Commissioning	
CxA	Commissioning Agent	
CxM	Commissioning Manager	
CxR	Commissioning Representative	
DPC	Design Phase Commissioning	
FPT	Functional Performance Test	
GBI-GG	Green Building Initiative - Green Globes	
HVAC	Heating, Ventilation, and Air Conditioning	
LEED	Leadership in Energy and Environmental Design	
NC	Department of Veterans Affairs National Cemetery	
NCA	Department of Veterans Affairs National Cemetery	
NCA	Administration	
NEBB	National Environmental Balancing Bureau	
O&M	Operations & Maintenance	
OPR	Owner's Project Requirements	
PFC	Pre-Functional Checklist	
PFT	Pre-Functional Test	
SD	Schematic Design	
SO	Site Observation	
TAB	Test Adjust and Balance	
VA	Department of Veterans Affairs	
VAMC	VA Medical Center	
VA CFM	VA Office of Construction and Facilities Management	
VACO	VA Central Office	
VA PM	VA Project Manager	
VA-RE	VA Resident Engineer	
USGBC	United States Green Building Council	

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training. Accuracy: The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines. **Benchmarks:** Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument. <u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>COBie:</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the

Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

<u>Commissionability</u>: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned <u>Commissioning Agent (CxA)</u>: The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists</u>: Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

<u>Commissioning Design Review:</u> The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

<u>Commissioning Issue</u>: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation).

<u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

01 91 00 - 7

Commissioning Plan: A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process. **Commissioning Process:** A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements. **Commissioning Report:** The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms. **Commissioning Report:** The final commissioning plan, issue log, correspondence and all appropriate check sheets and test forms.

contractor.

<u>Commissioning Specifications</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD)</u>: Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC)</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Coordination Drawings</u>: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

Data Logging: The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

Deferred System Test: Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

Design Criteria: A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR. **Design Intent:** The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

Design Narrative: A written description of the proposed design solutions that satisfy the requirements of the OPR.

Design Phase Commissioning (DPC): All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Industry Accepted Best Practice: A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

Installation Verification: Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices. Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process. Lessons Learned Workshop: A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability</u>: A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment. Maintainability also includes components that have readily obtainable repair parts or service.

<u>Manual Test:</u> Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation'). <u>Owner's Project Requirements (OPR):</u> A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information. **Peer Review:** A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

Precision: The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

<u>Pre-Design Phase Commissioning:</u> Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project <u>Pre-Functional Checklist (PFC):</u> A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing. <u>Pre-Functional Test (PFT):</u> An inspection or test that is done before functional testing. PFT's include installation verification and system

and component start up tests.

Procedure or Protocol: A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

<u>Range</u>: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated. **<u>Resolution</u>**: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

<u>Special System Inspections</u>: Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

Static Tests: Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

Start Up Tests: Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

Systems Manual: A system-focused composite document that includes all information required for the owners operators to operate the systems. **Test Procedure:** A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Testing: The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function. Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC. Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

Training Plan: A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown, and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

Verification: The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning</u>: Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit</u>: A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

- A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
- B. The following systems will be commissioned as part of this project:

Systems To Be Commissioned					
System	Description				

Systems To Be Commissioned						
System	Description					
HVAC						
Direct Digital Control	Operator Interface Computer, Operator Work					
System**	Station (including graphics, point mapping,					
	trends, alarms), Network Communications					
	Modules and Wiring, Integration Panels. [DDC					
	Control panels will be commissioned with the					
	systems controlled by the panel]					
Chilled Water System**	Chillers (centrifugal, rotary screw, air-					
	cooled), pumps (primary, secondary, variable					
	primary), VFDs associated with chilled water					
	system components, DDC Control Panels					
	(including integration with Building Control					
	System)					
Condenser Water	Cooling Towers, Fluid Coolers, heat					
System**	exchangers/economizers, pumps, VFDs associated					
	with condenser water system components, DDC					
	control panels.					
HVAC Air Handling	Air handling Units, packaged rooftop AHU,					
Systems**	Outdoor Air conditioning units, humidifiers,					
	DDC control panels					
HVAC Energy Recovery	Heat Wheels, Heat Recovery Loops, AHU					
Systems**	Integrated Heat Recovery					
Humidity Control	Humidifiers, de-humidifiers, controls,					
Systems	interface with facility DDC					
Electrical						
Grounding & Bonding	Witness 3rd party testing, review reports					
Systems						
Electrical System	Review reports, verify field settings					
Protective Device	consistent with Study					
Study						
Secondary Unit	Medium-voltage components, transformers, low-					
Substations	voltage distribution, verify breaker testing					
	results (injection current, etc.)					

Systems To Be Commissioned						
System	Description					
Low-Voltage	Normal power distribution system, Life-safety					
Distribution System	power distribution system, critical power					
distribution system, equipment power						
	distribution system, switchboards,					
	distribution panels, panelboards, verify					
	breaker testing results (injection current,					
	etc.)					
Table Notes						
** Donotog gygtomg that	LEED requires to be commissioned to comply					

** Denotes systems that LEED requires to be commissioned to comply with the LEED Fundamental Commissioning pre-requisite.

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - User: Representatives of the facility user and operation and maintenance personnel.
 - 3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with

entity responsible for system and equipment installation, recommend corrective action.

- 5. Review and comment on commissioning documentation.
- 6. Participate in meetings to coordinate Systems Functional Performance Testing.
- 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
- 8. Provide information to the Commissioning Agent for developing commissioning plan.
- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute

minutes to commissioning team members and attendees within five workdays of the commissioning meeting.

- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents. Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

- A. Commissioning Plan: A document, prepared by Commissioning Agent, which outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
 - Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
 - 3. Identification of systems and equipment to be commissioned.
 - 4. Schedule of Commissioning Coordination meetings.
 - 5. Identification of items that must be completed before the next operation can proceed.
 - 6. Description of responsibilities of commissioning team members.
 - 7. Description of observations to be made.
 - 8. Description of requirements for operation and maintenance training.
 - 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
 - Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
 - 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
 - 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode

of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:

- 1. Name and identification code of tested system.
- 2. Test number.
- 3. Time and date of test.
- 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
- 5. Dated signatures of the person performing test and of the witness, if applicable.
- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot-check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.

- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating a Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - g. Include information that may be helpful in diagnosing or evaluating the issue.
 - h. Note recommended corrective action.
 - i. Identify commissioning team member responsible for corrective action.
 - j. Identify expected date of correction.
 - k. Identify person that identified the issue.
 - 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.

- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:
 - Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
 - 2. Commissioning plan.
 - 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
 - 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
 - 5, Commissioning Issues Log.
 - Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.

- 4. Updated Commissioning Issues Log, including status of unresolved issues.
- 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
 - 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.

- 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary stepby-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA Resident Engineer with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning

report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.

- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
 - The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within seven days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within seven days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and

to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to

discuss scheduling conflicts, and to discuss upcoming commissioning process activities.

- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or - 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or - 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Construction Phase		CxA =	Commis	sionir	nt	L = Lead	
			Resider	it Eng	P = Participate		
Comminationing D	Commissioning Roles & Responsibilities		Design	Arch,	/Engin	eer	A = Approve
Commissioning R	oles & Responsibilities	PC = F	rime C	Contrac	ctor		R = Review
		0&M =	Gov't	Facil	ity 0&	М	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Construction Commissioning Kick Off meeting	L	A	Ρ	P	0	
	Commissioning Meetings	L	А	Р	Р	0	
	Project Progress Meetings	P	A	Р	L	0	
	Controls Meeting	L	A	P	Ρ	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	А	P	P	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	A	R	R	0	
Schedules	Duration Schedule for Commissioning						
Schedures	Activities	L	A	R	R	N/A	
ODD and DOD	Maintain OPR on behalf of Owner		7		Ð	0	
OPR and BOD		L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	

Construction Phase		CxA =	Commis	sioni	L = Lead		
			RE = Resident Engineer				P = Participate
		A/E =	A/E = Design Arch/Engineer				A = Approve
Commissioning R	oles & Responsibilities	PC = P	Prime C	Contra	ctor		R = Review
		O&M =	Gov't	Facil	ity O&	М	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Document	TAB Plan Review	L	A	R	R	0	
Reviews	Submittal and Shop Drawing Review	R	A	R	L	0	
	Review Contractor Equipment Startup Checklists	L	A	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	A	R	R	N/A	
Site	Witness Factory Testing	P	A	P	L	0	
observations	Construction Observation Site Visits	L	A	R	R	0	
Functional Test Protocols	Final Pre-Functional Checklists	L	A	R	R	0	
lest Piotocois	Final Functional Performance Test Protocols	L	A	R	R	0	
Technical Activities	Issues Resolution Meetings	P	A	P	L	0	
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	A	R	R	0	

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phase		CxA =	Commi	ssion	L = Lead		
			eside	nt Eng	P = Participate		
Commissioning Roles & Responsibilities		A/E =	Desig	n Arcl	n/Engi	neer	A = Approve
Commissioning F	Koles & Responsibilities	PC = P	rime	Contra	actor		R = Review
		0&M =	Gov't	. Faci	lity O	ЖM	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Commissioning Meetings	L	А	Р	Р	0	
	Project Progress Meetings	P	А	Р	L	0	
	Pre-Test Coordination Meeting	L	А	Р	Р	0	
	Lessons Learned and Commissioning Report Review Meeting	L	A	Р	P	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	P	P	Р	0	
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	A	R	R	0	
Schedules	Prepare Functional Test Schedule	L	A	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	А	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	

Acceptance Phase			Commi	ssion	ent	L = Lead	
		RE = Resident Engineer					P = Participate
		A/E =	Desig	n Arcl	n/Engi	neer	A = Approve
Commissioning R	Coles & Responsibilities	PC = P	rime	Contra	actor		R = Review
		O&M =	Gov't	Faci	Lity O	&М	0 = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
	Review Operations & Maintenance Manuals	L	А	R	R	R	
	Training Plan Review	L	А	R	R	R	
	Warranty Review	L	A	R	R	0	
	Review TAB Report	L	А	R	R	0	
Site	Construction Observation Site Visits	L	А	R	R	0	
Observations	Witness Selected Equipment Startup	L	A	R	R	0	
Functional	TAB Verification	L	A	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	A	P	P	P	
	Retesting	L	A	Р	Р	P	
Technical	Issues Resolution Meetings	5	7	P	-	0	
Activities	Systems Training	P	A	P	L	-	
	Systems framing	L	S	R	P	P	
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	А	R	R	0	
	Final Commissioning Report	L	A	R	R	R	
	Prepare Systems Manuals	L	A	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase			Commi	ssion	ent	L = Lead	
		RE = R	eside	nt Eng		P = Participate	
Complexity of the D		A/E =	Desig	n Arcl	n/Engi	neer	A = Approve
Commissioning R	oles & Responsibilities	PC = P	rime	Contra	actor		R = Review
		O&M = Gov't Facility O&M					0 = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Post-Occupancy User Review Meeting	L	А	0	Р	P	
Site Observations	Periodic Site Visits	L	А	0	0	Р	
Functional	Deferred and/or seasonal Testing	L	А	0	P	P	
Test Protocols							
Technical Activities	Issues Resolution Meetings	L	S	0	0	Р	

Warranty Phase		CxA = Commissioning Agent					L = Lead
		RE = R	eside	nt Eng		P = Participate	
a		A/E =	Desig	n Arcl	n/Engi:	neer	A = Approve
Commissioning F	Commissioning Roles & Responsibilities		rime	Contra		R = Review	
		O&M = Gov't Facility O&M					O = Optional
Category	Task Description	CxA	RE	A/E	PC	0&M	Notes
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	А		R	P	
Reports and	Final Commissioning Report Amendment	L	А		R	R	
Logs	Status Reports	L	А		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.
 - c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.

- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
- 4. Execution of Equipment Startup
 - a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
 - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
 - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
 - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall

correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.

C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.4 PHASED COMMISSIONING

A. not used.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers - Critical, Priority, and Maintenance.
 - Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
 - 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.

- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the Resident Engineer and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the Resident Engineer. Any pretest trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the Resident Engineer, prior to the execution of Systems Functional Performance Testing.
 - 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.
 - 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The

plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.

- 4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.
- E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the Resident Engineer and Commissioning Agent.
 - 1. Point-to-Point checkout documentation;
 - Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
 - 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM		
Sensor	Calibration	O&M Calibration Procedure

	Frequency	Reference
Discharge air temperature	Once a year	Volume I Section D.3.aa
Discharge static pressure	Every 6 months	Volume II Section A.1.c

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1									
Control	Proportional	Integral	Derivative	Interval					
Reference	Constant	Constant	Constant						
Heating Valve Output	1000	20	10	2 sec.					

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.
- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list

of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.

- D. Purpose of Test Procedures: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms developed by the Commissioning Agent will include, but not be limited to, the following information:
 - 1. System and equipment or component name(s)
 - 2. Equipment location and ID number
 - Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
 - 4. Date
 - 5. Project name
 - 6. Participating parties
 - 7. A copy of the specification section describing the test requirements
 - 8. A copy of the specific sequence of operations or other specified parameters being verified
 - 9. Formulas used in any calculations
 - 10. Required pretest field measurements
 - 11. Instructions for setting up the test.
 - 12. Special cautions, alarm limits, etc.

- 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
- 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
- 15. A section for comments.
- 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
 - Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
 - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
 - 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
 - 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C

(54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.

- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. Not used.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently

tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.

K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance are identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.

- 4. When there is no dispute on an item of noncompliance and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
 - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a

01 91 00 - 51

justified reason for a claim of delay or for a time extension by the Contractor.

- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
 - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's Resident Engineer, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.

- Review course materials (including operation and maintenance manuals).
- 7. Review and discuss locations and other facilities required for instruction.
- Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
- For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded.

Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

- e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.
- D. Quality Assurance:
 - Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
 - Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
 - 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.
- E. Training Coordination:
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
 - Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
 - 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.
- F. Instruction Program:
 - Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.

- b. Intrusion detection systems.
- c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
- d. Medical equipment, including medical gas equipment and piping.
- e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
- f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
- g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
- h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
- i. HVAC instrumentation and controls.
- j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
- k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
- 1. Lighting equipment and controls.
- m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.
- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.

- f. Operating characteristics.
- g. Limiting conditions.
- H, Performance curves.
- 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.

- c. Noise and vibration adjustments.
- d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.
- H. Training Execution:
 - Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.
 - 2. Instruction:
 - a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
 - b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.

- 2) The VA will furnish an instructor to describe VA's operational philosophy.
- 3) The VA will furnish the Contractor with names and positions of participants.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
- I. Demonstration and Training Recording:
 - General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - Video Format: Provide high quality color DVD color on standard size DVD disks.
 - Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

----- END -----

SECTION 02 21 00 SITE SURVEYS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the gathering of research documents, performance of a property and topographic survey and preparation of a site survey map.

1.2 DEFINITIONS

- A. Professional Land Surveyor: One who possesses a valid state license as a "Professional Land Surveyor" from the state in which they practice.
- B. Professional Civil Engineer: One who possesses a valid state license as a "Professional Civil Engineer" from the state in which they practice. For this section, the term "surveyor" shall also include Professional Civil Engineers authorized to practice Land Surveying under the laws of the state in which they practice.

PART 2 - EXECUTION

- A. The surveyor shall research available public records for all mapping, monumentation, plats, governmental surveys etc. that may pertain to the subject property. Research all applicable public utilities for substructure data such as sewers, storm drains, water lines, electrical conduits etc.
- B. The survey shall be performed on the ground in accordance with the current "Accuracy Standards for Land Title Surveys" as adopted, from time to time, by the American Congress on Surveying and Mapping, the National Society of Professional Surveyors, and the American Land Title Association.
- C. The surveyor, when applicable, shall consult with the Contracting Officer to determine scale of plat or map and size of drawings.
- D. The surveyor shall furnish two sets of prints of the plat or map of survey and the electronic CADD file for 3D software. The sheets shall be numbered, the total number of sheets indicated and the match lines shall be shown on each sheet.
- E. On the plat or map, the survey boundary shall be drawn to a scale not larger than 1 inch = 30 feet (25 mm = 9 m), with the scale clearly indicated. A graphic scale, shown in feet or meters or both, shall be included. A north arrow shall be shown and when practicable, the plat or map of survey shall be oriented so that north is at the top of the drawing. Symbols or abbreviations used shall be identified on the face

05-01-13

of the plat or map by use of a legend or other means. Supplementary or exaggerated diagrams shall be presented accurately on the plat or map where dimensional data is too small to be shown clearly at full scale. The plat or map shall be 30 by 42 inches.

- F. The survey shall contain the following applicable information:
 - The name, address, telephone number, and signature of the Professional Land Surveyor who made the survey, his or her official seal and registration number, the date the survey was completed and the dates of all revisions.
 - 2. The survey drawing(s) submitted shall bear the following certification adjacent to the Engineer's official seal: "I hereby certify that all information indicated on this drawing was obtained or verified by actual measurements in the field and that every effort has been made to furnish complete and accurate information."
 - Vicinity map showing the property surveyed in reference to nearby highways or major street intersections.
 - Flood zone designation (with proper annotation based on Federal Flood Insurance Rate Maps or the state or local equivalent, by scaled map location and graphic plotting only).
 - 5. Land area as defined by the boundaries of the legal description of the surveyed premises, including legal description of the land.
 - 6. All data necessary to indicate the mathematical dimensions and relationships of the boundary represented by bearings and distances, and the length and radius of each curve, together with elements necessary to mathematically define each curve. The point of beginning of the surveyor's description and the basis of bearings shall also be shown.
 - 7. When record bearings or angles or distances differ from measured bearings, angles or distances, both record and measured bearings, angles, and distances shall be clearly indicated. If the record description fails to form a mathematically closed figure, the surveyor shall so indicate.
 - 8. Measured and record distances from corners of parcels surveyed to the nearest right-of-way lines of streets in urban or suburban areas, together with recovered lot corners and evidence of lot corners, shall be noted. The distances to the nearest intersecting street shall be indicated and verified. Names and widths of streets

02 21 00 - 2

and highways abutting the property surveyed and widths of rights of way shall be given. Observable evidence of access (or lack thereof) to such abutting streets or highways shall be indicated. Observable evidence of private roads shall be so indicated. Streets abutting the premises, which have been described in Record Documents, but not physically opened, shall be shown and so noted.

- 9. The identifying titles of all recorded plats, filed maps, right of way maps, or similar documents which the survey represents, wholly or in part, with their appropriate recording data. The survey shall indicate platted setback or building restriction lines which have been recorded in subdivision plats or which appear in a Record Document which has been delivered to the surveyor. Contiguity, gores, and overlaps along the exterior boundaries of the survey premises, where ascertainable from field evidence or Record Documents, or interior to those exterior boundaries, shall be clearly indicated or noted. Where only a part of a recorded lot or parcel is included in the survey, the balance of the lot or parcel shall be indicated.
- 10. All evidence of found monuments shall be shown and noted. All evidence of monuments found beyond the surveyed premises on which establishment of the corners of the survey premises are dependent, and their application related to the survey shall be indicated.
- 11. The character of any and all evidence of possession shall be stated and the location of such evidence carefully given in relation to both the measured boundary lines and those established by the record. An absence of notation on the survey shall be presumptive of no observable evidence of possession.
- 12. The location of all buildings upon the plot or parcel shall be shown and their locations defined by measurements perpendicular to the boundaries. If there are no buildings, so state. Proper street numbers shall be shown where available.
- 13. All easements evidenced by a Record Document which have been delivered to the surveyor shall be shown, both those burdening and those benefiting the property surveyed, indicating recording information. If such an easement cannot be located, a note to this affect shall be included. Observable evidence of easements and/or servitudes of all kinds, such as those created by roads, rights-ofways, water courses, drains, telephone, telegraph, or electric

lines, water, sewer, oil or gas pipelines on or across the surveyed property and on adjoining properties if they appear to affect the surveyed property, shall be located and noted. Surface indications, if any, or of underground easements and/or servitudes shall also be shown.

- 14. The character and location of all walls, buildings, fences, and other visible improvements within five feet of each side of the boundary lines shall be noted. Without expressing a legal opinion, physical evidence of all encroaching structural appurtenances and projections, such as fire escapes, bay windows, windows and doors that open out, flue pipes, stoops, eaves, cornices, areaways, stoops, trip, etc., by or on adjoining property or on abutting streets, on any easement or over setback lines shown by Record Documents shall be indicated with the extent of such encroachment or projection.
- 15. Driveways and alleys on or crossing the property must be shown. Where there is evidence of use by other than the occupants of the property, the surveyor must so indicate on the plat or map. Where driveways or alleys on adjoining properties encroach, in whole or in part, on the property being surveyed, the surveyor must so indicate on the plat or map with appropriate measurements.
- 16. Location, alignment and dimensions of all roads, curbs, walks, parking and paved areas abutting the subject land. Indicate road centerlines with true bearings and lengths by 50 foot stationing. Describe curves by designating the points of curvature and tangency by station. Include all curve data as well a location of radius and vertex points. Elevations on 50 foot (15 m) centers on centerline of roads, edges of roads and top and bottom of curbs.
- 17. As accurately as the evidence permits, the location of cemeteries and burial grounds disclosed in the process of researching title to the premises or observed in the process of performing the field work for the survey, shall be shown.
- 18. Ponds, lakes, springs, or rivers bordering on or running through the premises being surveyed shall be shown. When a property surveyed contains a natural water boundary, the surveyor shall measure the location of the boundary according to appropriate surveying methods and note on the plat or map the date of the measurement and the caveat that the boundary is subject to change due to natural causes

and that it may or may not represent the actual location of the limit of title. When the surveyor is aware of changes in such boundaries, the extent of those changes shall be identified.

- 19. Contours at a minimum interval of 1 foot (305 mm). Base vertical control on the permanent (not assumed) National Geodetic Survey (NGS) or VA Medical Center Bench Mark. Note location, description and datum. Surveyor to establish three benchmarks on the property that are based on the NGS. Horizontal and vertical control to be provided on each control point.
- 20. Identify and show if possible, setback, height, and floor space area restrictions of record or disclosed by applicable zoning or building codes (in addition to those recorded in subdivision maps). If none, so state.
- 21. Exterior dimensions of all buildings at ground level. Show square footage of exterior footprint of all buildings at ground level and gross floor area of all buildings.
- 22. Measured height of all buildings above grade at a defined location. If no defined location is provided, the point of measurement shall be shown.
- 23. Elevations at each entrance to buildings, service docks, building corners, steps, ramps and grade slabs.
- 24. Substantial, visible improvements (in addition to buildings) such as signs, parking areas, swimming pools, etc.
- 25. Parking areas and, if striped, the striping and the type (eg. handicapped, motorcycle, regular, etc.) and number of parking spaces.
- 26. Indication of access to a public way such as curb cuts and driveways.
- 27. Location of utilities existing on or serving the surveyed property as determined by observed evidence together with plans and markings provided by utility companies, and other appropriate sources (with references as to the source of information. Locate and show all fire hydrants located within 500 feet of the subject property.
- 28. Railroad tracks and sidings.
- 29. Manholes, catch basins, valve vaults or other surface indications of subterranean uses together with depths or invert elevations, sizes, and materials of all pipes.

02 21 00 - 5

- 30. Wires and cables (including their function) crossing the survey premises, all poles on or within ten feet of the surveyed premises, and the dimensions of all cross-wires or overhangs affecting the surveyed premises.
- 31. Utility company installations on the surveyed premises.
- 32. Names of adjoining owners of platted lands together with zoning classification.
- 33. Observable evidence of earth moving work, building construction or building additions within recent months.
- 34. Any changes in street right-of-way lines either completed or proposed, and available from the controlling jurisdiction. Observable evidence of recent street or sidewalk construction or repairs.
- 35. Observable evidence of site use as a solid waste dump, sump or sanitary landfill.
- 36. All trees with a minimum diameter of 6" measured at 48" above the base of the tree. Perimeter outline only of thickly wooded areas with description of predominant vegetation.

- - - E N D - - -

SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies cast-in-place structural concrete and materials and mixes for other concrete.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Concrete roads, walks, and similar exterior site work: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.

1.3 TESTING AGENCY FOR CONCRETE MIX DESIGN:

- A. Testing agency for the trial concrete mix design retained and reimbursed by the Contractor and approved by Resident Engineer. For all other testing, refer to Section 01 45 29 Testing Laboratory Services.
- B. Testing agency maintaining active participation in Program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology. Accompany request for approval of testing agency with a copy of Report of Latest Inspection of Laboratory Facilities by CCRL.
- C. Testing agency shall furnish equipment and qualified technicians to establish proportions of ingredients for concrete mixes.

1.4 TOLERANCES:

- A. Formwork: ACI 117, except the elevation tolerance of formed surfaces before removal of shores is +0 mm (+0 inch) and -20 mm (-3/4 inch).
- B. Reinforcement Fabricating and Placing: ACI 117, except that fabrication tolerance for bar sizes Nos. 10, 13, and 16 (Nos. 3, 4, and 5) (Tolerance Symbol 1 in Fig. 2.1(a), ACI, 117) used as column ties or stirrups is +0 mm (+0 inch) and -13 mm (-1/2 inch) where gross bar length is less than 3600 mm (12 feet), or +0 mm (+0 inch) and -20 mm (-3/4 inch) where gross bar length is 3600 mm (12 feet) or more.
- C. Cross-Sectional Dimension: ACI 117, except tolerance for thickness of slabs 12 inches or less is +20 mm (+3/4 inch) and - 6 mm (-1/4 inch). Tolerance of thickness of beams more than 300 mm (12 inch) but less than 900 mm (3 feet) is +20 mm (+3/4 inch) and -10 mm (-3/8 inch).

- D. Slab Finishes: ACI 117, Section 4.5.6, F-number method in accordance with ASTM E1155, except as follows:
 - Test entire slab surface, including those areas within 600 mm (2 feet) of construction joints and vertical elements that project through slab surface.
 - Maximum elevation change which may occur within 600 mm (2 feet) of any column or wall element is 6 mm (0.25 inches).
 - 3. Allow sample measurement lines that are perpendicular to construction joints to extend past joint into previous placement no further than 1500 mm (5 feet).

1.5 REGULATORY REQUIREMENTS:

- A. ACI SP-66 ACI Detailing Manual.
- B. ACI 318 Building Code Requirements for Reinforced Concrete.
- C. ACI 301 Standard Specifications for Structural Concrete.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings: Reinforcing steel: Complete shop drawings
- C. Mill Test Reports:
 - 1. Reinforcing Steel.
 - 2. Cement.
- D. Manufacturer's Certificates:
 - 1. Abrasive aggregate.
 - 2. Lightweight aggregate for structural concrete.
 - 3. Air-entraining admixture.
 - 4. Chemical admixtures, including chloride ion content.
 - 5. Waterproof paper for curing concrete.
 - 6. Liquid membrane-forming compounds for curing concrete.
 - 7. Non-shrinking grout.
 - 8. Liquid hardener.
 - 9. Waterstops.
 - 10. Expansion joint filler.
 - 11. Adhesive binder.
- E. Testing Agency for Concrete Mix Design: Approval request including qualifications of principals and technicians and evidence of active participation in program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology and copy of report of latest CCRL, Inspection of Laboratory.

- F. Test Report for Concrete Mix Designs: Trial mixes including water-cement fly ash ratio curves, concrete mix ingredients, and admixtures.
- G. Shoring and Reshoring Sequence: Submit for approval a shoring and reshoring sequence for flat slab/flat plate portions, prepared by a registered Professional Engineer. As a minimum, include timing of form stripping, reshoring, number of floors to be re-shored and timing of re-shore removal to serve as an initial outline of procedures subject to modification as construction progresses. Submit revisions to sequence, whether initiated by Resident Engineer (see FORMWORK) or Contractor.
- H. Test reports on splitting tensile strength (Fct) of lightweight concrete.

1.7 DELIVERY, STORAGE, AND HANDLING:

- A. Conform to ACI 304. Store aggregate separately for each kind or grade, to prevent segregation of sizes and avoid inclusion of dirt and other materials.
- B. Deliver cement in original sealed containers bearing name of brand and manufacturer, and marked with net weight of contents. Store in suitable watertight building in which floor is raised at least 300 mm (1 foot) above ground. Store bulk cement and fly ash in separate suitable bins.
- C. Deliver other packaged materials for use in concrete in original sealed containers, plainly marked with manufacturer's name and brand, and protect from damage until used.

1.8 PRE-CONCRETE CONFERENCE:

- A. General: At least 15 days prior to submittal of design mixes, conduct a meeting to review proposed methods of concrete construction to achieve the required results.
- B. Agenda: Includes but is not limited to:
 - 1. Submittals.
 - 2. Coordination of work.
 - 3. Availability of material.
 - 4. Concrete mix design including admixtures.
 - 5. Methods of placing, finishing, and curing.
 - 6. Finish criteria required to obtain required flatness and levelness.
 - 7. Timing of floor finish measurements.
 - 8. Material inspection and testing.

- C. Attendees: Include but not limited to representatives of Contractor; subcontractors involved in supplying, conveying, placing, finishing, and curing concrete; lightweight aggregate manufacturer; admixture manufacturers; Resident Engineer; Consulting Engineer; Department of Veterans Affairs retained testing laboratories for concrete testing and finish (F-number) verification.
- D. Minutes of the meeting: Contractor shall take minutes and type and distribute the minutes to attendees within five days of the meeting.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI): 117-10.....Specifications for Tolerances for Concrete Construction and Materials and Commentary 211.1-91(R2009).....Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete 211.2-98(R2004).....Standard Practice for Selecting Proportions for Structural Lightweight Concrete 214R-11.....Guide to Evaluation of Strength Test Results of Concrete 301-10.....Standard Practice for Structural Concrete 304R-00(R2009).....Guide for Measuring, Mixing, Transporting, and Placing Concrete 305.1-06..... Specification for Hot Weather Concreting 306.1-90(R2002).....Standard Specification for Cold Weather Concreting 308.1-11.....Specification for Curing Concrete 309R-05.....Guide for Consolidation of Concrete 318-11.....Building Code Requirements for Structural Concrete and Commentary 347-04.....Guide to Formwork for Concrete SP-66-04.....ACI Detailing Manual C. American National Standards Institute and American Hardboard Association (ANSI/AHA): A135.4-2004.....Basic Hardboard

D.	American Society for Te	sting and Materials (ASTM):
	A82/A82M-07	.Standard Specification for Steel Wire, Plain,
		for Concrete Reinforcement
	A185/185M-07	.Standard Specification for Steel Welded Wire
		Reinforcement, Plain, for Concrete
	A615/A615M-09	.Standard Specification for Deformed and Plain
		Carbon Steel Bars for Concrete Reinforcement
	A653/A653M-11	.Standard Specification for Steel Sheet, Zinc
		Coated (Galvanized) or Zinc Iron Alloy Coated
		(Galvannealed) by the Hot Dip Process
	A706/A706M-09	.Standard Specification for Low Alloy Steel
		Deformed and Plain Bars for Concrete
		Reinforcement
	A767/A767M-09	.Standard Specification for Zinc Coated
		(Galvanized) Steel Bars for Concrete
		Reinforcement
	A775/A775M-07	.Standard Specification for Epoxy Coated
		Reinforcing Steel Bars
	A820-11	.Standard Specification for Steel Fibers for
		Fiber Reinforced Concrete
	А996/А996М-09	.Standard Specification for Rail Steel and Axle
		Steel Deformed Bars for Concrete Reinforcement
	C31/C31M-10	.Standard Practice for Making and Curing
		Concrete Test Specimens in the field
	C33/C33M-11A	.Standard Specification for Concrete Aggregates
	C39/C39M-12	.Standard Test Method for Compressive Strength
		of Cylindrical Concrete Specimens
	С94/С94М-12	.Standard Specification for Ready Mixed Concrete
	C143/C143M-10	.Standard Test Method for Slump of Hydraulic
		Cement Concrete
	C150-11	.Standard Specification for Portland Cement
	C171-07	.Standard Specification for Sheet Materials for
		Curing Concrete
	C172-10	.Standard Practice for Sampling Freshly Mixed
		Concrete
	C173-10	.Standard Test Method for Air Content of Freshly
		Mixed Concrete by the Volumetric Method

C192/C192M-07Standard Practice for Making and Curing
Concrete Test Specimens in the Laboratory
C231-10 Of Freshly
Mixed Concrete by the Pressure Method
C260-10 Air Entraining
Admixtures for Concrete
C309-11for Membrane
Forming Compounds for Curing Concrete
C330-09for Lightweight
Aggregates for Structural Concrete
C494/C494M-11Standard Specification for Chemical Admixtures
for Concrete
C618-12 Standard Specification for Coal Fly Ash and Raw
or Calcined Natural Pozzolan for Use in
Concrete
C666/C666M-03(R2008)Standard Test Method for Resistance of Concrete
to Rapid Freezing and Thawing
C881/C881M-10Standard Specification for Epoxy Resin Base
Bonding Systems for Concrete
Bonding Systems for Concrete C1107/1107M-11Standard Specification for Packaged Dry,
C1107/1107M-11Standard Specification for Packaged Dry,
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink)
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006)Standard Methods for Rubber Products Chemical
<pre>C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006)Standard Methods for Rubber Products Chemical Analysis</pre>
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006)Standard Methods for Rubber Products Chemical Analysis D412-06AE2Standard Test Methods for Vulcanized Rubber and
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006)Standard Methods for Rubber Products Chemical Analysis D412-06AE2Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension
<pre>C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006)Standard Methods for Rubber Products Chemical Analysis</pre> D412-06AE2Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension D1751-04(R2008)Standard Specification for Preformed Expansion
C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006)Standard Methods for Rubber Products Chemical Analysis D412-06AE2Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension D1751-04(R2008)Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural
<pre>C1107/1107M-11Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) C1315-11Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2011)Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006)Standard Methods for Rubber Products Chemical Analysis D412-06AE2Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension D1751-04(R2008)Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient</pre>

- D4397-10.....Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications E1155-96(R2008).....Standard Test Method for Determining F_F Floor Flatness and F_L Floor Levelness Numbers F1869-11....Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride.
- E. American Welding Society (AWS): D1.4/D1.4M-11.....Structural Welding Code - Reinforcing Steel
- F. Concrete Reinforcing Steel Institute (CRSI): Handbook 2008
- G. National Cooperative Highway Research Program (NCHRP): Report On.....Concrete Sealers for the Protection of Bridge Structures
- H. U. S. Department of Commerce Product Standard (PS):

PS 1.....Construction and Industrial Plywood

- PS 20.....American Softwood Lumber
- I. U. S. Army Corps of Engineers Handbook for Concrete and Cement: CRD C513.....Rubber Waterstops CRD C572.....Polyvinyl Chloride Waterstops

PART 2 - PRODUCTS:

2.1 FORMS:

- A. Wood: PS 20 free from loose knots and suitable to facilitate finishing concrete surface specified; tongue and grooved.
- B. Plywood: PS-1 Exterior Grade B-B (concrete-form) 16 mm (5/8 inch), or 20 mm (3/4 inch) thick for unlined contact form. B-B High Density Concrete Form Overlay optional.
- C. Metal for Concrete Rib-Type Construction: Steel (removal type) of suitable weight and form to provide required rigidity.
- D. Permanent Steel Form for Concrete Slabs: Corrugated, ASTM A653, Grade E, and Galvanized, ASTM A653, G90. Provide venting where insulating concrete fill is used.
- E. Corrugated Fiberboard Void Boxes: Double faced, completely impregnated with paraffin and laminated with moisture resistant adhesive, size as shown. Design forms to support not less than 48 KPa (1000 psf) and not

lose more than 15 percent of their original strength after being completely submerged in water for 24 hours and then air dried.

- F. Form Lining:
 - 1. Hardboard: ANSI/AHA A135.4, Class 2 with one (S1S) smooth side)
 - Plywood: Grade B-B Exterior (concrete-form) not less than 6 mm (1/4 inch) thick.
 - 3. Plastic, fiberglass, or elastomeric capable of reproducing the desired pattern or texture.
- G. Concrete products shall comply with following standards for biobased materials:

Material Type	Percent by Weight
Concrete Penetrating Liquid	79 percent biobased material
Concrete form Release Agent	87 percent biobased material
Concrete Sealer	11 percent biobased material

The minimum-content standards are based on the weight (not the volume) of the material.

H. Form Ties: Develop a minimum working strength of 13.35 kN (3000 pounds) when fully assembled. Ties shall be adjustable in length to permit tightening of forms and not have any lugs, cones, washers to act as spreader within form, nor leave a hole larger than 20 mm (3/4 inch) diameter, or a depression in exposed concrete surface, or leave metal closer than 40 mm (1 1/2 inches) to concrete surface. Wire ties not permitted. Cutting ties back from concrete face not permitted.

2.2 MATERIALS:

- A. Portland Cement: ASTM C150 Type I or II.
- B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalies, and loss on ignition (LOI) not to exceed 5 percent.
- C. Coarse Aggregate: ASTM C33.
 - Size 67 or Size 467 may be used for footings and walls over 300 mm (12 inches) thick.
 - 2. Coarse aggregate for applied topping, encasement of steel columns, and metal pan stair fill shall be Size 7.
 - Maximum size of coarse aggregates not more than one-fifth of narrowest dimension between sides of forms, one-third of depth of

slabs, nor three-fourth of minimum clear spacing between reinforcing bars.

- D. Lightweight Aggregates for Structural Concrete: ASTM C330, Table 1. Maximum size of aggregate not larger than one-fifth of narrowest dimension between forms, nor three-fourth of minimum clear distance between reinforcing bars. Contractor to furnish certified report to verify that aggregate is sound and durable, and has a durability factor of not less than 80 based on 300 cycles of freezing and thawing when tested in accordance with ASTM C666.
- E. Fine Aggregate: ASTM C33. Fine aggregate for applied concrete floor topping shall pass a 4.75 mm (No. 4) sieve, 10 percent maximum shall pass a 150 µm (No. 100) sieve.
- F. Mixing Water: Fresh, clean, and potable.
- G. Admixtures:
 - 1. Water Reducing Admixture: ASTM C494, Type A and not contain more chloride ions than are present in municipal drinking water.
 - 2. Water Reducing, Retarding Admixture: ASTM C494, Type D and not contain more chloride ions than are present in municipal drinking water.
 - 3. High-Range Water-Reducing Admixture (Superplasticizer): ASTM C494, Type F or G, and not contain more chloride ions than are present in municipal drinking water.
 - 4. Non-Corrosive, Non-Chloride Accelerator: ASTM C494, Type C or E, and not contain more chloride ions than are present in municipal drinking water. Admixture manufacturer must have long-term noncorrosive test data from an independent testing laboratory of at least one year duration using an acceptable accelerated corrosion test method such as that using electrical potential measures.
 - 5. Air Entraining Admixture: ASTM C260.
 - Microsilica: Use only with prior review and acceptance of the Resident Engineer. Use only in conjunction with high range water reducer.
 - 7. Calcium Nitrite corrosion inhibitor: ASTM C494 Type C.
 - 8. Prohibited Admixtures: Calcium chloride, thiocyanate or admixtures containing more than 0.05 percent chloride ions are not permitted.
 - 9. Certification: Written conformance to the requirements above and the chloride ion content of the admixture prior to mix design review.

- H. Vapor Barrier: ASTM D4397, 0.25 mm (10 mil.
- I. Reinforcing Steel: ASTM A615, or ASTM A996, deformed, grade as shown.
- J. Welded Wire Fabric: ASTM A185.
- K. Reinforcing Bars to be Welded: ASTM A706.
- L. Galvanized Reinforcing Bars: ASTM A767.
- M. Epoxy Coated Reinforcing Bars: ASTM A775.
- N. Cold Drawn Steel Wire: ASTM A82.
- O. Reinforcement for Concrete Fireproofing: 100 mm x 100 mm x 3.4 mm diameter (4 x 4-W1.4 x W1.4) welded wire fabric, secured in place to hold mesh 20 mm (3/4 inch) away from steel. Mesh at steel columns shall be wired to No. 10 (No. 3) vertical corner steel bars.
 - P. Reinforcement for Metal Pan Stair Fill: 50 mm (2 inch) wire mesh, either hexagonal mesh at .8Kg/m² (1.5 pounds per square yard), or square mesh at .6Kg/m² (1.17 pounds per square yard).
 - Q. Supports, Spacers, and Chairs: Types which will hold reinforcement in position shown in accordance with requirements of ACI 318 except as specified.
 - R. Expansion Joint Filler: ASTM D1751.
 - S. Sheet Materials for Curing Concrete: ASTM C171.
 - T. Liquid Membrane-forming Compounds for Curing Concrete: ASTM C309, Type I, with fugitive dye, and shall meet the requirements of ASTM C1315.Compound shall be compatible with scheduled surface treatment, such as paint and resilient tile, and shall not discolor concrete surface.
 - U. Abrasive Aggregate: Aluminum oxide grains or emery grits.
 - V. Liquid Hardener and Dustproofer: Fluosilicate solution of magnesium fluosilicate or zinc fluosilicate. Magnesium and zinc may be used separately or in combination as recommended by manufacturer. Use only on exposed slab. Do not use where floor is covered with resilient flooring, paint or other finish coating.
 - W. Moisture Vapor Emissions & Alkalinity Control Sealer: 100% active colorless aqueous siliconate solution concrete surface.
 - 1. ASTM C1315 Type 1 Class A, and ASTM C309 Type 1 Class A, penetrating product to have no less than 34% solid content, leaving no sheen, volatile organic compound (VOC) content rating as required to suite

regulatory requirements. The product shall have at least a five (5) year documented history in controlling moisture vapor emission from damaging floor covering, compatible with all finish materials.

- 2. MVE 15-Year Warranty:
 - a. When a floor covering is installed on a below grade, on grade, or above grade concrete slab treated with Moisture Vapor Emissions & Alkalinity Control Sealer according to manufacturer's instruction, sealer manufacturer shall warrant the floor covering system against failure due to moisture vapor migration or moisture-born contaminates for a period of fifteen (15) years from the date of original installation. The warranty shall <u>cover</u> <u>all labor and materials</u> needed to replace all floor covering that fails due to moisture vapor emission & moisture born contaminates.
- X. Penetrating Sealer: For use on parking garage ramps and decks. High penetration silane sealer providing minimum 95 percent screening per National Cooperative Highway Research Program (NCHRP) No. 244 standards for chloride ion penetration resistance. Requires moist (non-membrane) curing of slab.
- Y. Non-Shrink Grout:
 - 1. ASTM C1107, pre-mixed, produce a compressive strength of at least 18 MPa at three days and 35 MPa (5000 psi) at 28 days. Furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent bearing under a 1200 mm x 1200 mm (4 foot by 4 foot) base plate.
 - 2. Where high fluidity or increased placing time is required, furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent under an 450 mm x 900 mm (18 inch by 36 inch) base plate.
- Z. Adhesive Binder: ASTM C881.
- AA. Waterstops:
 - 1. Polyvinyl Chloride Waterstop: CRD C572.
 - 2. Rubber Waterstops: CRD C513.
 - 3. Bentonite Waterstop: Flexible strip of bentonite 25 mm x 20 mm (1 inch by 3/4 inch), weighing 8.7 kg/m (5.85 lbs. per foot) composed

of Butyl Rubber Hydrocarbon (ASTM D297), Bentonite (SS-S-210-A) and Volatile Matter (ASTM D6).

- 4. Non-Metallic Hydrophilic: Swellable strip type compound of polymer modified chloroprene rubber that swells upon contact with water shall conform to ASTM D412 as follows: Tensile strength 420 psi minimum; ultimate elongation 600 percent minimum. Hardness shall be 50 minimum on the type A durameter and the volumetric expansion ratio in in 70 deg water shall be 3 to 1 minimum.
- BB. Porous Backfill: Crushed stone or gravel graded from 25 mm to 20 mm (1 inch to 3/4 inch).
- CC. Fibers:
 - Synthetic Fibers: Monofilament or fibrillated polypropylene fibers for secondary reinforcing of concrete members. Use appropriate length and 0.9 kg/m³ (1.5 lb. per cubic yard). Product shall have a UL rating.
 - Steel Fibers: ASTM A820, Type I cold drawn, high tensile steel wire for use as primary reinforcing in slab-on-grade. Minimum dosage rate 18 kg/m³ (30 lb. per cubic yard).
- DD. Epoxy Joint Filler: Two component, 100 percent solids compound, with a minimum shore D hardness of 50.
- EE. Bonding Admixture: Non-rewettable, polymer modified, bonding compound.
- FF. Architectural Concrete: For areas designated as architectural concrete on the Contract Documents, use colored cements and specially selected aggregates as necessary to produce a concrete of a color and finish which exactly matches the designated sample panel.

2.3 CONCRETE MIXES:

- A. Mix Designs: Proportioned in accordance with Section 5.3, "Proportioning on the Basis of Field Experience and/or Trial Mixtures" of ACI 318.
 - If trial mixes are used, make a set of at least 6 cylinders in accordance with ASTM C192 for test purposes from each trial mix; test three for compressive strength at 7 days and three at 28 days.
 - 2. Submit a report of results of each test series, include a detailed listing of the proportions of trial mix or mixes, including cement, fly ash, admixtures, weight of fine and coarse aggregate per m³ (cubic yard) measured dry rodded and damp loose, specific gravity, fineness modulus, percentage of moisture, air content,

water-cement -fly ash ratio, and consistency of each cylinder in terms of slump. // include dry unit weight of lightweight structural concrete.

- 3. Prepare a curve showing relationship between water-cement -fly ash ratio at 7-day and 28-day compressive strengths. Plot each curve using at least three specimens.
- 4. If the field experience method is used, submit complete standard deviation analysis.
- B. Fly Ash Testing: Submit certificate verifying conformance with ASTM 618 initially with mix design and for each truck load of fly ash delivered from source. Submit test results performed within 6 months of submittal date. Notify Resident Engineer immediately when change in source is anticipated.
 - Testing Laboratory used for fly ash certification/testing shall participate in the Cement and Concrete Reference Laboratory (CCRL) program. Submit most recent CCRL inspection report.
- C. After approval of mixes no substitution in material or change in proportions of approval mixes may be made without additional tests and approval of Resident Engineer or as specified. Making and testing of preliminary test cylinders may be carried on pending approval of cement and fly ash , providing Contractor and manufacturer certify that ingredients used in making test cylinders are the same. Resident Engineer may allow Contractor to proceed with depositing concrete for certain portions of work, pending final approval of cement and fly ash and approval of design mix.
- D. Cement Factor: Maintain minimum cement factors in Table I regardless of compressive strength developed above minimums. Use Fly Ash as an admixture with 20% replacement by weight in all structural work. Increase this replacement to 40% for mass concrete, and reduce it to 10% for drilled piers and caissons. Fly ash shall not be used in highearly mix design.

Concrete Strength		Non-Air- Entrained	Air-Ent:	rained
Min. 28 Day Comp. Str. MPa (psi)	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio
35 (5000) ^{1,3}	375 (630)	0.45	385 (650)	0.40
30 (4000) ^{1,3}	325 (550)	0.55	340 (570)	0.50
25 (3000) ^{1,3}	280 (470)	0.65	290 (490)	0.55
25 (3000) ^{1,2}	300 (500)	*	310 (520)	*

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE

- If trial mixes are used, the proposed mix design shall achieve a compressive strength 8.3 MPa (1200 psi) in excess of f'c. For concrete strengths above 35 Mpa (5000 psi), the proposed mix design shall achieve a compressive strength 9.7 MPa (1400 psi) in excess of f'c.
- 2. Lightweight Structural Concrete. Pump mixes may require higher cement values.
- 3. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44.
- 4. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.
- E. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

Type of Construction	Normal Weight	Lightweight Structural
	Concrete	Concrete
Reinforced Footings and Substructure Walls	75mm (3 inches)	75 mm (3 inches)
Slabs, Beams, Reinforced Walls, and Building Columns	100 mm (4 inches)	100 mm (4 inches)

TABLE II - MAXIMUM SLUMP, MM (INCHES)*

F. Slump may be increased by the use of the approved high-range waterreducing admixture (superplasticizer). Tolerances as established by ASTM C94. Concrete containing the high-range-water-reducing admixture may have a maximum slump of 225 mm (9 inches). The concrete shall arrive at the job site at a slump of 50 mm to 75 mm (2 inches to 3 inches), and 75 mm to 100 mm (3 inches to 4 inches) for lightweight concrete. This should be verified, and then the high-range-water-reducing admixture added to increase the slump to the approved level.

G. Air-Entrainment: Air-entrainment of normal weight concrete shall conform with Table III. Air-entrainment of lightweight structural concrete shall conform with Table IV. Determine air content by either ASTM C173 or ASTM C231.

TABLE III - TOTAL AIR CONTENT FOR VARIOUS SIZES OF COARSE AGGREGATES (NORMAL CONCRETE)

Nominal Maximum Size of Total Air Content	Coarse Aggregate, mm (Inches) Percentage by Volume
10 mm (3/8 in).6 to 10	13 mm (1/2 in).5 to 9
20 mm (3/4 in).4 to 8	25 mm (1 in).3-1/2 to 6-1/2
40 mm (1 1/2 in).3 to 6	

TABLE IV AIR CONTENT OF LIGHTWEIGHT STRUCTURAL CONCRETE

Nominal Maximum size of	Coarse Aggregate, mm's (Inches)
Total Air Content	Percentage by Volume
Greater than 10 mm (3/8 in) 4 to 8	10 mm (3/8 in) or less 5 to 9

- H. High early strength concrete, made with Type III cement or Type I cement plus non-corrosive accelerator, shall have a 7-day compressive strength equal to specified minimum 28-day compressive strength for concrete type specified made with standard Portland cement.
- I. Lightweight structural concrete shall not weigh more than air-dry unit weight shown. Air-dry unit weight determined on 150 mm by 300 mm (6 inch by 12 inch) test cylinders after seven days standard moist curing followed by 21 days drying at 23 degrees C \pm 1.7 degrees C (73.4 \pm 3 degrees Fahrenheit), and 50 (plus or minus 7) percent relative humidity. Use wet unit weight of fresh concrete as basis of control in field.
- J. Concrete slabs placed at air temperatures below 10 degrees C (50 degrees Fahrenheit) use non-corrosive, non-chloride accelerator. Concrete required to be air entrained use approved air entraining admixture. Pumped concrete, synthetic fiber concrete, architectural concrete,

concrete required to be watertight, and concrete with a water/cement ratio below 0.50 use high-range water-reducing admixture (superplasticizer).

- K. Durability: Use air entrainment for exterior exposed concrete subjected to freezing and thawing and other concrete shown or specified. For air content requirements see Table III or Table IV.
- L. Enforcing Strength Requirements: Test as specified in Section 01 45 29, TESTING LABORATORY SERVICES, during the progress of the work. Seven-day tests may be used as indicators of 28-day strength. Average of any three 28-day consecutive strength tests of laboratory-cured specimens representing each type of concrete shall be equal to or greater than specified strength. No single test shall be more than 3.5 MPa (500 psi) below specified strength. Interpret field test results in accordance with ACI 214. Should strengths shown by test specimens fall below required values, Resident Engineer may require any one or any combination of the following corrective actions, at no additional cost to the Government:
 - Require changes in mix proportions by selecting one of the other appropriate trial mixes or changing proportions, including cement content, of approved trial mix.
 - 2. Require additional curing and protection.
 - 3. If five consecutive tests fall below 95 percent of minimum values given in Table I or if test results are so low as to raise a question as to the safety of the structure, Resident Engineer may direct Contractor to take cores from portions of the structure. Use results from cores tested by the Contractor retained testing agency to analyze structure.
 - 4. If strength of core drilled specimens falls below 85 percent of minimum value given in Table I, Resident Engineer may order load tests, made by Contractor retained testing agency, on portions of building so affected. Load tests in accordance with ACI 318 and criteria of acceptability of concrete under test as given therein.
 - 5. Concrete work, judged inadequate by structural analysis, by results of load test, or for any reason, shall be reinforced with additional construction or replaced, if directed by the Resident Engineer.

2.4 BATCHING AND MIXING:

A. General: Concrete shall be "Ready-Mixed" and comply with ACI 318 and ASTM C94, except as specified. Batch mixing at the site is permitted.

Mixing process and equipment must be approved by Resident Engineer. With each batch of concrete, furnish certified delivery tickets listing information in Paragraph 16.1 and 16.2 of ASTM C94. Maximum delivery temperature of concrete is 38°C (100 degrees Fahrenheit). Minimum delivery temperature as follows:

Atmospheric Temperature	Minimum Concrete Temperature
-1. degrees to 4.4 degrees C (30 degrees to 40 degrees F)	15.6 degrees C (60 degrees F.)
-17 degrees C to -1.1 degrees C (0 degrees to 30 degrees F.)	21 degrees C (70 degrees F.)

1. Services of aggregate manufacturer's representative shall be furnished during the design of trial mixes and as requested by the Resident Engineer for consultation during batching, mixing, and placing operations of lightweight structural concrete. Services will be required until field controls indicate that concrete of required quality is being furnished. Representative shall be thoroughly familiar with the structural lightweight aggregate, adjustment and control of mixes to produce concrete of required quality. Representative shall assist and advise Resident Engineer.

PART 3 - EXECUTION

3.1 FORMWORK:

- A. General: Design in accordance with ACI 347 is the responsibility of the Contractor. The Contractor shall retain a registered Professional Engineer to design the formwork, shores, and reshores.
 - Form boards and plywood forms may be reused for contact surfaces of exposed concrete only if thoroughly cleaned, patched, and repaired and Resident Engineer approves their reuse.
 - 2. Provide forms for concrete footings unless Resident Engineer determines forms are not necessary.
 - 3. Corrugated fiberboard forms: Place forms on a smooth firm bed, set tight, with no buckled cartons to prevent horizontal displacement, and in a dry condition when concrete is placed.
- B. Treating and Wetting: Treat or wet contact forms as follows:
 - Coat plywood and board forms with non-staining form sealer. In hot weather, cool forms by wetting with cool water just before concrete is placed.

- 2. Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
- 3. Use sealer on reused plywood forms as specified for new material.
- C. Size and Spacing of Studs: Size and space studs, wales and other framing members for wall forms so as not to exceed safe working stress of kind of lumber used nor to develop deflection greater than 1/270 of free span of member.
- D. Unlined Forms: Use plywood forms to obtain a smooth finish for concrete surfaces. Tightly butt edges of sheets to prevent leakage. Back up all vertical joints solidly and nail edges of adjacent sheets to same stud with 6d box nails spaced not over 150 mm (6 inches) apart.
- E. Lined Forms: May be used in lieu of unlined plywood forms. Back up form lining solidly with square edge board lumber securely nailed to studs with all edges in close contact to prevent bulging of lining. No joints in lining and backing may coincide. Nail abutted edges of sheets to same backing board. Nail lining at not over 200 mm (8 inches) on center along edges and with at least one nail to each square foot of surface area; nails to be 3d blued shingle or similar nails with thin flatheads.
- F. Architectural Liner: Attach liner as recommended by the manufacturer with tight joints to prevent leakage.
- G. Wall Form Ties: Locate wall form ties in symmetrically level horizontal rows at each line of wales and in plumb vertical tiers. Space ties to maintain true, plumb surfaces. Provide one row of ties within 150 mm (6 inches) above each construction joint. Space through-ties adjacent to horizontal and vertical construction joints not over 450 mm (18 inches) on center.
 - Tighten row of ties at bottom of form just before placing concrete and, if necessary, during placing of concrete to prevent seepage of concrete and to obtain a clean line. Ties to be entirely removed shall be loosened 24 hours after concrete is placed and shall be pulled from least important face when removed.
 - 2. Coat surfaces of all metal that is to be removed with paraffin, cup grease or a suitable compound to facilitate removal.
- H. Inserts, Sleeves, and Similar Items: Flashing reglets, steel strips, masonry ties, anchors, wood blocks, nailing strips, grounds, inserts, wire hangers, sleeves, drains, guard angles, forms for floor hinge

boxes, inserts or bond blocks for elevator guide rails and supports, and other items specified as furnished under this and other sections of specifications and required to be in their final position at time concrete is placed shall be properly located, accurately positioned, and built into construction, and maintained securely in place.

- Locate inserts or hanger wires for furred and suspended ceilings only in bottom of concrete joists, or similar concrete member of overhead concrete joist construction.
- Install sleeves, inserts and similar items for mechanical services in accordance with drawings prepared specially for mechanical services. Contractor is responsible for accuracy and completeness of drawings and shall coordinate requirements for mechanical services and equipment.
- 3. Do not install sleeves in beams, joists or columns except where shown or permitted by Resident Engineer. Install sleeves in beams, joists, or columns that are not shown, but are permitted by the Resident Engineer, and require no structural changes, at no additional cost to the Government.
- 4. Minimum clear distance of embedded items such as conduit and pipe is at least three times diameter of conduit or pipe, except at stub-ups and other similar locations.
- 5. Provide recesses and blockouts in floor slabs for door closers and other hardware as necessary in accordance with manufacturer's instructions.
- I. Construction Tolerances:
 - Set and maintain concrete formwork to assure erection of completed work within tolerances specified and to accommodate installation of other rough and finish materials. Accomplish remedial work necessary for correcting excessive tolerances. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government.
 - Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements.

3.2 PLACING REINFORCEMENT:

- A. General: Details of concrete reinforcement in accordance with ACI 318 unless otherwise shown.
- B. Placing: Place reinforcement conforming to CRSI DA4, unless otherwise shown.
 - 1. Place reinforcing bars accurately and tie securely at intersections and splices with 1.6 mm (16 gauge) black annealed wire. Use epoxycoated tie wire with epoxy-coated reinforcing. Secure reinforcing bars against displacement during the placing of concrete by spacers, chairs, or other similar supports. Portions of supports, spacers, and chairs in contact with formwork shall be made of plastic in areas that will be exposed when building is occupied. Type, number, and spacing of supports conform to ACI 318. Where concrete slabs are placed on ground, use concrete blocks or other non-corrodible material of proper height, for support of reinforcement. Use of brick or stone supports will not be permitted.
 - 2. Lap welded wire fabric at least 1 1/2 mesh panels plus end extension of wires not less than 300 mm (12 inches) in structural slabs. Lap welded wire fabric at least 1/2 mesh panels plus end extension of wires not less than 150 mm (6 inches) in slabs on grade.
 - 3. Splice column steel at no points other than at footings and floor levels unless otherwise shown.
- C. Spacing: Minimum clear distances between parallel bars, except in columns and multiple layers of bars in beams shall be equal to nominal diameter of bars. Minimum clear spacing is 25 mm (1 inch) or 1-1/3 times maximum size of coarse aggregate.
- D. Splicing: Splices of reinforcement made only as required or shown or specified. Accomplish splicing as follows:
 - Lap splices: Do not use lap splices for bars larger than Number 36 (Number 11). Minimum lengths of lap as shown.
 - 2. Welded splices: Splicing by butt-welding of reinforcement permitted providing the weld develops in tension at least 125 percent of the yield strength (fy) for the bars. Welding conform to the requirements of AWS D1.4. Welded reinforcing steel conform to the chemical analysis requirements of AWS D1.4.
 - a. Submit test reports indicating the chemical analysis to establish weldability of reinforcing steel.

- b. Submit a field quality control procedure to insure proper inspection, materials and welding procedure for welded splices.
- c. Department of Veterans Affairs retained testing agency shall test a minimum of three splices, for compliance, locations selected by Resident Engineer.
- 3. Mechanical Splices: Develop in tension and compression at least 125 percent of the yield strength (fy) of the bars. Stresses of transition splices between two reinforcing bar sizes based on area of smaller bar. Provide mechanical splices at locations indicated. Use approved exothermic, tapered threaded coupling, or swaged and threaded sleeve. Exposed threads and swaging in the field not permitted.
 - a. Initial qualification: In the presence of Resident Engineer, make three test mechanical splices of each bar size proposed to be spliced. Department of Veterans Affairs retained testing laboratory will perform load test.
 - b. During installation: Furnish, at no additional cost to the Government, one companion (sister) splice for every 50 splices for load testing. Department of Veterans Affairs retained testing laboratory will perform the load test.
- E. Bending: Bend bars cold, unless otherwise approved. Do not field bend bars partially embedded in concrete, except when approved by Resident Engineer.
- F. Cleaning: Metal reinforcement, at time concrete is placed, shall be free from loose flaky rust, mud, oil, or similar coatings that will reduce bond.
- G. Future Bonding: Protect exposed reinforcement bars intended for bonding with future work by wrapping with felt and coating felt with a bituminous compound unless otherwise shown.

3.3 VAPOR BARRIER:

- A. Except where membrane waterproofing is required, interior concrete slab on grade shall be placed on a continuous vapor barrier.
 - Place 100 mm (4 inches) of fine granular fill over the vapor barrier to act as a blotter for concrete slab.
 - Vapor barrier joints lapped 150 mm (6 inches) and sealed with compatible waterproof pressure-sensitive tape.
 - 3. Patch punctures and tears.

3.4 SLABS RECEIVING RESILIENT COVERING

- A. Slab shall be allowed to cure for 6 weeks minimum prior to placing resilient covering. After curing, slab shall be tested by the Contractor for moisture in accordance with ASTM D4263 or ASTM F1869. Moisture content shall be less than 3 pounds per 1000 sf prior to placing covering.
- B. In lieu of curing for 6 weeks, Contractor has the option, at his own cost, to utilize the Moisture Vapor Emissions & Alkalinity Control Sealer as follows:
 - Sealer is applied on the day of the concrete pour or as soon as harsh weather permits, prior to any other chemical treatments for concrete slabs either on grade, below grade or above grade receiving resilient flooring, such as, sheet vinyl, vinyl composition tile, rubber, wood flooring, epoxy coatings and overlays.
 - Manufacturer's representative will be on the site the day of concrete pour to install or train its application and document. He shall return on every application thereafter to verify that proper procedures are followed.
 - a. Apply Sealer to concrete slabs as soon as final finishing operations are complete and the concrete has hardened sufficiently to sustain floor traffic without damage.
 - b. Spray apply Sealer at the rate of 20 m^2 (200 square feet) per gallon. Lightly broom product evenly over the substrate and product has completely penetrated the surface.
 - c. If within two (2) hours after initial application areas are subjected to heavy rainfall and puddling occurs, reapply Sealer product to these areas as soon as weather condition permits.

3.5 CONSTRUCTION JOINTS:

- A. Unless otherwise shown, location of construction joints to limit individual placement shall not exceed 24,000 mm (80 feet) in any horizontal direction, except slabs on grade which shall have construction joints shown. Allow 48 hours to elapse between pouring adjacent sections unless this requirement is waived by Resident Engineer.
- B. Locate construction joints in suspended floors near the quarter-point of spans for slabs, beams or girders, unless a beam intersects a girder at center, in which case joint in girder shall be offset a distance

equal to twice width of beam. Provide keys and inclined dowels as shown. Provide longitudinal keys as shown.

- C. Place concrete for columns slowly and in one operation between joints. Install joints in concrete columns at underside of deepest beam or girder framing into column.
- D. Allow 2 hours to elapse after column is cast before concrete of supported beam, girder or slab is placed. Place girders, beams, grade beams, column capitals, brackets, and haunches at the same time as slab unless otherwise shown.
- E. Install polyvinyl chloride or rubber water seals, as shown in accordance with manufacturer's instructions, to form continuous watertight seal.

3.6 EXPANSION JOINTS AND CONTRACTION JOINTS:

- A. Clean expansion joint surfaces before installing premolded filler and placing adjacent concrete.
- B. Install polyvinyl chloride or rubber water seals, as shown in accordance with manufacturer's instructions, to form continuous watertight seal.
 - C. Provide contraction (control) joints in floor slabs as indicated on the contract drawings. Joints shall be either formed or saw cut, to the indicated depth after the surface has been finished. Complete saw joints within 4 to 12 hours after concrete placement. Protect joints from intrusion of foreign matter.

3.7 PLACING CONCRETE:

- A. Preparation:
 - Remove hardened concrete, wood chips, shavings and other debris from forms.
 - Remove hardened concrete and foreign materials from interior surfaces of mixing and conveying equipment.
 - 3. Have forms and reinforcement inspected and approved by Resident Engineer before depositing concrete.
 - 4. Provide runways for wheeling equipment to convey concrete to point of deposit. Keep equipment on runways which are not supported by or bear on reinforcement. Provide similar runways for protection of vapor barrier on coarse fill.
- B. Bonding: Before depositing new concrete on or against concrete which has been set, thoroughly roughen and clean existing surfaces of laitance, foreign matter, and loose particles.

- 1. Preparing surface for applied topping:
 - a. Remove laitance, mortar, oil, grease, paint, or other foreign material by sand blasting. Clean with vacuum type equipment to remove sand and other loose material.
 - b. Broom clean and keep base slab wet for at least four hours before topping is applied.
 - c. Use a thin coat of one part Portland cement, 1.5 parts fine sand, bonding admixture; and water at a 50: 50 ratio and mix to achieve the consistency of thick paint. Apply to a damp base slab by scrubbing with a stiff fiber brush. New concrete shall be placed while the bonding grout is still tacky.
- C. Conveying Concrete: Convey concrete from mixer to final place of deposit by a method which will prevent segregation. Method of conveying concrete is subject to approval of Resident Engineer.
- D. Placing: For special requirements see Paragraphs, HOT WEATHER and COLD WEATHER.
 - Do not place concrete when weather conditions prevent proper placement and consolidation, or when concrete has attained its initial set, or has contained its water or cement content more than 1 1/2 hours.
 - Deposit concrete in forms as near as practicable in its final position. Prevent splashing of forms or reinforcement with concrete in advance of placing concrete.
 - 3. Do not drop concrete freely more than 3000 mm (10 feet) for concrete containing the high-range water-reducing admixture (superplasticizer) or 1500 mm (5 feet) for conventional concrete. Where greater drops are required, use a tremie or flexible spout (canvas elephant trunk), attached to a suitable hopper.
 - Discharge contents of tremies or flexible spouts in horizontal layers not exceeding 500 mm (20 inches) in thickness, and space tremies such as to provide a minimum of lateral movement of concrete.
 - 5. Continuously place concrete until an entire unit between construction joints is placed. Rate and method of placing concrete shall be such that no concrete between construction joints will be deposited upon or against partly set concrete, after its initial set has taken place, or after 45 minutes of elapsed time during concrete placement.

- 6. On bottom of members with severe congestion of reinforcement, deposit 25 mm (1 inch) layer of flowing concrete containing the specified high-range water-reducing admixture (superplasticizer). Successive concrete lifts may be a continuation of this concrete or concrete with a conventional slump.
- 7. Concrete on metal deck:
 - a. Concrete on metal deck shall be minimum thickness shown. Allow for deflection of steel beams and metal deck under the weight of wet concrete in calculating concrete quantities for slab.
 - The Contractor shall become familiar with deflection characteristics of structural frame to include proper amount of additional concrete due to beam/deck deflection.
- E. Consolidation: Conform to ACI 309. Immediately after depositing, spade concrete next to forms, work around reinforcement and into angles of forms, tamp lightly by hand, and compact with mechanical vibrator applied directly into concrete at approximately 450 mm (18 inch) intervals. Mechanical vibrator shall be power driven, hand operated type with minimum frequency of 5000 cycles per minute having an intensity sufficient to cause flow or settlement of concrete into place. Vibrate concrete to produce thorough compaction, complete embedment of reinforcement and concrete of uniform and maximum density without segregation of mix. Do not transport concrete in forms by vibration.
 - 1. Use of form vibration shall be approved only when concrete sections are too thin or too inaccessible for use of internal vibration.
 - 2. Carry on vibration continuously with placing of concrete. Do not insert vibrator into concrete that has begun to set.

3.8 HOT WEATHER:

Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.9 COLD WEATHER:

Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.10 PROTECTION AND CURING:

- A. Conform to ACI 308: Initial curing shall immediately follow the finishing operation. Protect exposed surfaces of concrete from premature drying, wash by rain and running water, wind, mechanical injury, and excessively hot or cold temperatures. Keep concrete not covered with membrane or other curing material continuously wet for at least 7 days after placing, except wet curing period for high-earlystrength concrete shall be not less than 3 days. Keep wood forms continuously wet to prevent moisture loss until forms are removed. Cure exposed concrete surfaces as described below. Other curing methods may be used if approved by Resident Engineer.
 - Liquid curing and sealing compounds: Apply by power-driven spray or roller in accordance with the manufacturer's instructions. Apply immediately after finishing. Maximum coverage 10m²/L (400 square feet per gallon) on steel troweled surfaces and 7.5m²/L (300 square feet per gallon) on floated or broomed surfaces for the curing/sealing compound.
 - Plastic sheets: Apply as soon as concrete has hardened sufficiently to prevent surface damage. Utilize widest practical width sheet and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with tape.
 - 3. Paper: Utilize widest practical width paper and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with sand, wood planks, pressure-sensitive tape, mastic or glue.

3.11 REMOVAL OF FORMS:

- A. Remove in a manner to assure complete safety of structure after the following conditions have been met.
 - Where structure as a whole is supported on shores, forms for beams and girder sides, columns, and similar vertical structural members may be removed after 24 hours, provided concrete has hardened sufficiently to prevent surface damage and curing is continued without any lapse in time as specified for exposed surfaces.

- 2. Take particular care in removing forms of architectural exposed concrete to insure surfaces are not marred or gouged, and that corners and arises are true, sharp and unbroken.
- B. Control Test: Use to determine if the concrete has attained sufficient strength and curing to permit removal of supporting forms. Cylinders required for control tests taken in accordance with ASTM C172, molded in accordance with ASTM C31, and tested in accordance with ASTM C39. Control cylinders cured and protected in the same manner as the structure they represent. Supporting forms or shoring not removed until strength of control test cylinders have attained at least 70 percent of minimum 28-day compressive strength specified. For post-tensioned systems supporting forms and shoring not removed until stressing is completed. Exercise care to assure that newly unsupported portions of structure are not subjected to heavy construction or material loading.
- C. Reshoring: Reshoring is required if superimposed load plus dead load of the floor exceeds the capacity of the floor at the time of loading. In addition, for flat slab/plate, reshoring is required immediately after stripping operations are complete and not later than the end of the same day. Reshoring accomplished in accordance with ACI 347 at no additional cost to the Government.

3.12 CONCRETE SURFACE PREPARATION:

- A. Metal Removal: Unnecessary metal items cut back flush with face of concrete members.
- B. Patching: Maintain curing and start patching as soon as forms are removed. Do not apply curing compounds to concrete surfaces requiring patching until patching is completed. Use cement mortar for patching of same composition as that used in concrete. Use white or gray Portland cement as necessary to obtain finish color matching surrounding concrete. Thoroughly clean areas to be patched. Cut out honeycombed or otherwise defective areas to solid concrete to a depth of not less than 25 mm (1 inch). Cut edge perpendicular to surface of concrete. Saturate with water area to be patched, and at least 150 mm (6 inches) surrounding before placing patching mortar. Give area to be patched a brush coat of cement grout followed immediately by patching mortar. Cement grout composed of one part Portland cement, 1.5 parts fine sand, bonding admixture, and water at a 50:50 ratio, mix to achieve consistency of thick paint. Mix patching mortar approximately 1 hour before placing and remix occasionally during this period without

addition of water. Compact mortar into place and screed slightly higher than surrounding surface. After initial shrinkage has occurred, finish to match color and texture of adjoining surfaces. Cure patches as specified for other concrete. Fill form tie holes which extend entirely through walls from unexposed face by means of a pressure gun or other suitable device to force mortar through wall. Wipe excess mortar off exposed face with a cloth.

C. Upon removal of forms, clean vertical concrete surface that is to receive bonded applied cementitious application with wire brushes or by sand blasting to remove unset material, laitance, and loose particles to expose aggregates to provide a clean, firm, granular surface for bond of applied finish.

3.13 CONCRETE FINISHES:

- A. Vertical and Overhead Surface Finishes:
 - Unfinished areas: Vertical and overhead concrete surfaces exposed in pipe basements, elevator and dumbwaiter shafts, pipe spaces, pipe trenches, above suspended ceilings, manholes, and other unfinished areas will not require additional finishing.
 - 2. Interior and exterior exposed areas to be painted: Remove fins, burrs and similar projections on surfaces flush, and smooth by mechanical means approved by Resident Engineer, and by rubbing lightly with a fine abrasive stone or hone. Use ample water during rubbing without working up a lather of mortar or changing texture of concrete.
 - 3. Interior and exterior exposed areas finished: Give a grout finish of uniform color and smooth finish treated as follows:
 - a. After concrete has hardened and laitance, fins and burrs removed, scrub concrete with wire brushes. Clean stained concrete surfaces by use of a hone stone.
 - b. Apply grout composed of one part of Portland cement, one part fine sand, smaller than a 600 μ m (No. 30) sieve. Work grout into surface of concrete with cork floats or fiber brushes until all pits, and honeycombs are filled.
 - c. After grout has hardened slightly, but while still plastic, scrape grout off with a sponge rubber float and, about 1 hour later, rub concrete vigorously with burlap to remove any excess grout remaining on surfaces.

- d. In hot, dry weather use a fog spray to keep grout wet during setting period. Complete finish of area in same day. Make limits of finished areas at natural breaks in wall surface. Leave no grout on concrete surface overnight.
- 4. Textured: Finish as specified. Maximum quantity of patched area 0.2 \mbox{m}^2 (2 square feet) in each 93 \mbox{m}^2 (1000 square feet) of textured surface.

B. Slab Finishes:

- 1. Monitoring and Adjustment: Provide continuous cycle of placement, measurement, evaluation and adjustment of procedures to produce slabs within specified tolerances. Monitor elevations of structural steel in key locations before and after concrete placement to establish typical deflection patterns for the structural steel. Determine elevations of cast-in-place slab soffits prior to removal of shores. Provide information to Resident Engineer and floor consultant for evaluation and recommendations for subsequent placements.
- 2. Set perimeter forms to serve as screed using either optical or laser instruments. For slabs on grade, wet screeds may be used to establish initial grade during strike-off, unless Resident Engineer determines that the method is proving insufficient to meet required finish tolerances and directs use of rigid screed guides. Where wet screeds are allowed, they shall be placed using grade stakes set by optical or laser instruments. Use rigid screed guides, as opposed to wet screeds, to control strike-off elevation for all types of elevated (non slab-on-grade) slabs. Divide bays into halves or thirds by hard screeds. Adjust as necessary where monitoring of previous placements indicates unshored structural steel deflections to other than a level profile.
- 3. Place slabs monolithically. Once slab placement commences, complete finishing operations within same day. Slope finished slab to floor drains where they occur, whether shown or not.
- 4. Use straightedges specifically made for screeding, such as hollow magnesium straightedges or power strike-offs. Do not use pieces of dimensioned lumber. Strike off and screed slab to a true surface at required elevations. Use optical or laser instruments to check concrete finished surface grade after strike-off. Repeat strike-off

as necessary. Complete screeding before any excess moisture or bleeding water is present on surface. Do not sprinkle dry cement on the surface.

- 5. Immediately following screeding, and before any bleed water appears, use a 3000 mm (10 foot) wide highway straightedge in a cutting and filling operation to achieve surface flatness. Do not use bull floats or darbys, except that darbying may be allowed for narrow slabs and restricted spaces.
- 6. Wait until water sheen disappears and surface stiffens before proceeding further. Do not perform subsequent operations until concrete will sustain foot pressure with maximum of 6 mm (1/4 inch) indentation.
- 7. Scratch Finish: Finish base slab to receive a bonded applied cementitious application as indicated above, except that bull floats and darbys may be used. Thoroughly coarse wire broom within two hours after placing to roughen slab surface to insure a permanent bond between base slab and applied materials.
- 8. Float Finish: Slabs to receive unbonded toppings, steel trowel finish, fill, mortar setting beds, or a built-up roof, and ramps, stair treads, platforms (interior and exterior), and equipment pads shall be floated to a smooth, dense uniform, sandy textured finish. During floating, while surface is still soft, check surface for flatness using a 3000 mm (10 foot) highway straightedge. Correct high spots by cutting down and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections and re-float to a uniform texture.
- 9. Steel Trowel Finish: Concrete surfaces to receive resilient floor covering or carpet, monolithic floor slabs to be exposed to view in finished work, future floor roof slabs, applied toppings, and other interior surfaces for which no other finish is indicated. Steel trowel immediately following floating. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure to compact cement paste and form a dense, smooth surface. Finished surface shall be smooth, free of trowel marks, and uniform in texture and appearance.
- 10. Broom Finish: Finish exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after surfaces have been

	fl	pated. Brush in a direction transverse t	o main traffic. Match
	texture approved by Resident Engineer from sample panel.		
11.	Fi	nished slab flatness (FF) and levelness	(FL) values comply with
	th	e following minimum requirements:	
	a. Areas covered with carpeting, or not specified otherwise in b.		
	below:		
		1) Slab on Grade:	
		a) Specified overall value	F_{F} 25/ F_{L} 20
		b) Minimum local value	F_{F} 17/ F_{L} 15
		2) Level suspended slabs (shored until	after testing) and topping
		slabs:	
		a) Specified overall value	FF 25/FL 20
		b) Minimum local value	FF 17/FL 15
		3) Unshored suspended slabs:	
		a) Specified overall value	FF 25
		b) Minimum local value	FF 17
		4) Level tolerance such that 80 percent	of all points fall within
		a 20 mm (3/4 inch) envelope +10 mm,	-10 mm (+3/8 inch, -3/8
		inch) from the design elevation.	
	b. Areas that will be exposed, receive thin-set tile or resilient		
	flooring, or roof areas designed as future floors:		
		1) Slab on grade:	
		a) Specified overall value	FF 36/FL 20
		b) Minimum local value	FF 24/FL 15
		2) Level suspended slabs (shored until	after testing) and topping
		slabs	
		a) Specified overall value	FF 30/FL 20
		b) Minimum local value	FF 24/FL 15
		3) Unshored suspended slabs:	
		a) Specified overall value	FF 30
		<pre>b) Minimum local value 4) Local television much that 00 means that</pre>	FF 24
		4) Level tolerance such that 80 percent	-
		a 20 mm (3/4 inch) envelope +10 mm,	-10 mm (+3/8 inch, -3/8
	C	inch) from the design elevation.	he composite of all
	Ċ.	"Specified overall value" is based on t	
		measured values in a placement derived	in accordance with ASIM
		E1155.	

- d. "Minimum local value" (MLV) describes the flatness or levelness below which repair or replacement is required. MLV is based on the results of an individual placement and applies to a minimum local area. Minimum local area boundaries may not cross a construction joint or expansion joint. A minimum local area will be bounded by construction and/or control joints, or by column lines and/or half-column lines, whichever is smaller.
- 12. Measurements
 - a. Department of Veterans Affairs retained testing laboratory will take measurements as directed by Resident Engineer, to verify compliance with FF, FL, and other finish requirements. Measurements will occur within 72 hours after completion of concrete placement (weekends and holidays excluded). Make measurements before shores or forms are removed to insure the "as-built" levelness is accurately assessed. Profile data for above characteristics may be collected using a laser level or any Type II apparatus (ASTM E1155, "profileograph" or "dipstick"). Contractor's surveyor shall establish reference elevations to be used by Department of Veterans Affairs retained testing laboratory.
 - b. Contractor not experienced in using FF and FL criteria is encouraged to retain the services of a floor consultant to assist with recommendations concerning adjustments to slab thicknesses, finishing techniques, and procedures on measurements of the finish as it progresses in order to achieve the specific flatness and levelness numbers.
- 13. Acceptance/ Rejection:
 - a. If individual slab section measures less than either of specified minimum local F_F/F_L numbers, that section shall be rejected and remedial measures shall be required. Sectional boundaries may be set at construction and contraction (control) joints, and not smaller than one-half bay.
 - b. If composite value of entire slab installation, combination of all local results, measures less than either of specified overall F_F/F_L numbers, then whole slab shall be rejected and remedial measures shall be required.
- 14. Remedial Measures for Rejected Slabs: Correct rejected slab areas by grinding, planing, surface repair with underlayment compound or

repair topping, retopping, or removal and replacement of entire rejected slab areas, as directed by Resident Engineer, until a slab finish constructed within specified tolerances is accepted.

3.14 SURFACE TREATMENTS:

- A. Use on exposed concrete floors and concrete floors to receive carpeting except those specified to receive non-slip finish.
- B. Liquid Densifier/Sealer: Apply in accordance with manufacturer's directions just prior to completion of construction.
- C. Non-Slip Finish: Except where safety nosing and tread coverings are shown, apply non-slip abrasive aggregate to treads and platforms of concrete steps and stairs, and to surfaces of exterior concrete ramps and platforms. Broadcast aggregate uniformly over concrete surface at rate of application of 8% per 1/10th m² (7.5 percent per square foot) of area. Trowel concrete surface to smooth dense finish. After curing, rub treated surface with abrasive brick and water to slightly expose abrasive aggregate.

3.15 APPLIED TOPPING:

- A. Separate concrete topping on floor base slab of thickness and strength shown. Topping mix shall have a maximum slump of 200 mm (8 inches) for concrete containing a high-range water-reducing admixture (superplasticizer) and 100 mm (4 inches) for conventional mix. Neatly bevel or slope at door openings and at slabs adjoining spaces not receiving an applied finish.
- B. Placing: Place continuously until entire section is complete, struck off with straightedge, leveled with a highway straightedge or highway bull float, floated and troweled by machine to a hard dense finish. Slope to floor drains as required. Do not start floating until free water has disappeared and no water sheen is visible. Allow drying of surface moisture naturally. Do not hasten by "dusting" with cement or sand.

3.16 RESURFACING FLOORS:

Remove existing flooring areas to receive resurfacing to expose existing structural slab and extend not less than 25 mm (1 inch) below new finished floor level. Prepare exposed structural slab surface by roughening, broom cleaning, and dampening. Apply specified bonding grout. Place topping while the bonding grout is still tacky.

3.17 RETAINING WALLS:

- A. Use air-entrained concrete.
- B. Expansion and contraction joints, waterstops, weep holes, reinforcement and railing sleeves installed and constructed as shown.
- C. Exposed surfaces finished to match adjacent concrete surfaces, new or existing.
- D. Place porous backfill as shown.

3.18 PRECAST CONCRETE ITEMS:

Precast concrete items, not specified elsewhere. Cast using 25 MPa (3000 psi) air-entrained concrete to shapes and dimensions shown. Finish to match corresponding adjacent concrete surfaces. Reinforce with steel for safe handling and erection.

- - - E N D - - -

SECTION 13 05 41 SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide seismic restraint in accordance with the requirements of this section in order to maintain the integrity of nonstructural components of the building so that they remain safe and functional in case of seismic event.
- B. The design to resist seismic load shall be based on Seismic Design Categories per section 4.0 of the VA Seismic Design Requirements (H-18-8) dated August 2013,http://www.cfm.va.gov/til/etc/seismic.pdf.
- C. Definitions: Non-structural building components are components or systems that are not part of the building's structural system whether inside or outside, above or below grade. Non-structural components of buildings include:
 - 1. Architectural Elements: Facades that are not part of the structural system and its shear resistant elements; cornices and other architectural projections and parapets that do not function structurally; glazing; nonbearing partitions; suspended ceilings; stairs isolated from the basic structure; cabinets; bookshelves; medical equipment; and storage racks.
 - 2. Electrical Elements: Power and lighting systems; substations; switchgear and switchboards; auxiliary engine-generator sets; transfer switches; motor control centers; motor generators; selector and controller panels; fire protection and alarm systems; special life support systems; and telephone and communication systems.
 - 3. Mechanical Elements: Heating, ventilating, and air-conditioning systems; medical gas systems; plumbing systems; sprinkler systems; pneumatic systems; boiler equipment and components.
 - Transportation Elements: Mechanical, electrical and structural elements for transport systems, i.e., elevators and dumbwaiters, including hoisting equipment and counterweights.

1.2 NOT USED.

1.3 QUALITY CONTROL:

- A. Shop-Drawing Preparation:
 - Have seismic-force-restraint shop drawings and calculations prepared by a professional structural engineer experienced in the area of seismic force restraints. The professional structural engineer shall be registered in the state where the project is located.

- 2. Submit design tables and information used for the design-force levels, stamped and signed by a professional structural engineer registered in the State where project is located.
- B. Coordination:
 - 1. Do not install seismic restraints until seismic restraint submittals are approved by the Resident Engineer.
 - 2. Coordinate and install trapezes or other multi-pipe hanger systems prior to pipe installation.
- C. Seismic Certification:

In structures assigned to IBC Seismic Design Category C, D, E, or F, permanent equipments and components are to have Special Seismic Certification in accordance with requirements of section 13.2.2 of ASCE 7 except for equipment that are considered rugged as listed in section 2.2 OSHPD code application notice CAN No. 2-1708A.5, and shall comply with section 13.2.6 of ASCE 7.

1.4 SUBMITTALS:

- A. Submit a coordinated set of equipment anchorage drawings prior to installation including:
 - 1. Description, layout, and location of items to be anchored or braced with anchorage or brace points noted and dimensioned.
 - Details of anchorage or bracing at large scale with all members, parts brackets shown, together with all connections, bolts, welds etc. clearly identified and specified.
 - 3. Numerical value of design seismic brace loads.
 - 4. For expansion bolts, include design load and capacity if different from those specified.
- B. Submit prior to installation, a coordinated set of bracing drawings for seismic protection of piping, with data identifying the various supportto-structure connections and seismic bracing structural connections, include:
 - 1. Single-line piping diagrams on a floor-by-floor basis. Show all suspended piping for a given floor on the same plain.
 - Type of pipe (Copper, steel, cast iron, insulated, non-insulated, etc.).
 - 3. Pipe contents.
 - 4. Structural framing.
 - 5. Location of all gravity load pipe supports and spacing requirements.
 - 6. Numerical value of gravity load reactions.
 - 7. Location of all seismic bracing.
 - 8. Numerical value of applied seismic brace loads.

- 9. Type of connection (Vertical support, vertical support with seismic brace etc.).
- 10. Seismic brace reaction type (tension or compression): Details illustrating all support and bracing components, methods of connections, and specific anchors to be used.
- C. Submit prior to installation, bracing drawings for seismic protection of suspended ductwork and suspended electrical and communication cables, include:
 - 1. Details illustrating all support and bracing components, methods of connection, and specific anchors to be used.
 - Numerical value of applied gravity and seismic loads and seismic loads acting on support and bracing components.
 - 3. Maximum spacing of hangers and bracing.
 - 4. Seal of registered structural engineer responsible for design.
- D. Submit design calculations prepared and sealed by the registered structural engineer specified above in paragraph 1.3A.
- E. Submit for concrete anchors, the appropriate ICBC evaluation reports, OSHPD pre-approvals, or lab test reports verifying compliance with OSHPD Interpretation of Regulations 28-6.

1.5 APPLICABLE PUBLICATIONS:

- A. The Publications listed below (including amendments, addenda revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI): 355.2-07.....Qualification for Post-Installed Mechanical

Anchors in Concrete and Commentary

- C. American Institute of Steel Construction (AISC): Load and Resistance Factor Design, Volume 1, Second Edition
- D. American Society for Testing and Materials (ASTM): A36/A36M-12.....Standard Specification for Carbon Structural Steel A53/A53M-10.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A307-12....Standard Specification for Carbon Steel Bolts and Studs; 60,000 PSI Tensile Strength. A325-10....Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile
 - Strength A325M-09.....Standard Specification for High-Strength Bolts for Structural Steel Joints [Metric]

	A490-10for Heat-Treated Steel
	Structural Bolts, 150 ksi Minimum Tensile
	Strength
	A490M-10firstandard Specification for High-Strength Steel
	Bolts, Classes 10.9 and 10.9.3, for Structural
	Steel Joints [Metric]
	A500/A500M-10Standard Specification for Cold-Formed Welded
	and Seamless Carbon Steel Structural Tubing in
	Rounds and Shapes
	A501-07 Specification for Hot-Formed Welded and Seamless
	Carbon Steel Structural Tubing
	A615/A615M-12Standard Specification for Deformed and Plain
	Billet-Steel Bars for Concrete Reinforcement
	A992/A992M-11Standard Specification for Steel for Structural
	Shapes for Use in Building Framing
	A996/A996M-09Standard Specification for Rail-Steel and Axel-
	Steel Deformed Bars for Concrete
	Reinforcement
	E488-96(R2003)Standard Test Method for Strength of Anchors in
	Concrete and Masonry Element
Е.	American Society of Civil Engineers (ASCE 7) Latest Edition.
F.	International Building Code (IBC) Latest Edition

- G. VA Seismic Design Requirements, H-18-8, February 2011
- H. National Uniform Seismic Installation Guidelines (NUSIG)
- I. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Seismic Restraint Manual - Guidelines for Mechanical Systems, 1998 Edition and Addendum

1.6 REGULATORY REQUIREMENT:

- A. IBC 2003.
- B. Exceptions: The seismic restraint of the following items may be omitted:
 - 1. Equipment weighing less than 400 pounds, which is supported directly on the floor or roof.
 - 2. Equipment weighing less than 20 pounds, which is suspended from the roof or floor or hung from a wall.
 - 3. Gas and medical piping less than 2 $\frac{1}{2}$ inches inside diameter.
 - 4. Piping in boiler plants and equipment rooms less than 1 ¼ inches inside diameter.
 - 5. All other piping less than 2 ½ inches inside diameter, except for automatic fire suppression systems.

- All piping suspended by individual hangers, 12 inches or less in length from the top of pipe to the bottom of the support for the hanger.
- 7. All electrical conduits, less than 2 ½ inches inside diameter.
- 8. All rectangular air handling ducts less than six square feet in cross sectional area.
- 9. All round air handling ducts less than 28 inches in diameter.
- 10. All ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of support for the hanger.

PART 2 - PRODUCTS

2.1 STEEL:

- A. Structural Steel: ASTM A36.
- B. Structural Tubing: ASTM A500, Grade B.
- C. Structural Tubing: ASTM A501.
- D. Steel Pipe: ASTM A53/A53M, Grade B.
- E. Bolts & Nuts: ASTM A307.

2.2 CAST-IN-PLACE CONCRETE:

- A. Concrete: 28 day strength, f'c = 25 MPa (3,000 psi) xx MPa 5000 psi
- B. Reinforcing Steel: ASTM A615/615M or ASTM A996/A996M deformed.

PART 3 - EXECUTION

3.1 CONSTRUCTION, GENERAL:

- A. Provide equipment supports and anchoring devices to withstand the seismic design forces, so that when seismic design forces are applied, the equipment cannot displace, overturn, or become inoperable.
- B. Provide anchorages in conformance with recommendations of the equipment manufacturer and as shown on approved shop drawings and calculations.
- C. Construct seismic restraints and anchorage to allow for thermal expansion.
- D. Testing Before Final Inspection:
 - Test 10-percent of anchors in masonry and concrete per ASTM E488, and ACI 355.2 to determine that they meet the required load capacity. If any anchor fails to meet the required load, test the next 20 consecutive anchors, which are required to have zero failure, before resuming the 10-percent testing frequency.
 - Before scheduling Final Inspection, submit a report on this testing indicating the number and location of testing, and what anchor-loads were obtained.

3.2 EQUIPMENT RESTRAINT AND BRACING:

A. See drawings for equipment to be restrained or braced.

3.3 MECHANICAL DUCTWORK AND PIPING; BOILER PLANT STACKS AND BREACHING; ELECTRICAL BUSWAYS, CONDUITS, AND CABLE TRAYS; AND TELECOMMUNICATION WIRES AND CABLE TRAYS

- A. Support and brace mechanical ductwork and piping; electrical busways, conduits and cable trays; and telecommunication wires and cable trays including boiler plant stacks and breeching to resist directional forces (lateral, longitudinal and vertical).
- B. Brace duct and breeching branches with a minimum of 1 brace per branch.
- D. Provide supports and anchoring so that, upon application of seismic forces, piping remains fully connected as operable systems which will not displace sufficiently to damage adjacent or connecting equipment, or building members.
- E. Seismic Restraint of Piping:
 - 1. Design criteria:
 - a. Piping resiliently supported: Restrain to support 120 -percent of the weight of the systems and components and contents.
 - b. Piping not resiliently supported: Restrain to support 60 -percent of the weight of the system components and contents.
 - 2. Provide seismic restraints according to one of the following options:
- F. Piping Connections: Provide flexible connections where pipes connect to equipment. Make the connections capable of accommodating relative differential movements between the pipe and equipment under conditions of earthquake shaking.

3.4 PARTITIONS

- A. In buildings with flexible structural frames, anchor partitions to only structural element, such as a floor slab, and separate such partition by a physical gap from all other structural elements.
- B. Properly anchor masonry walls to the structure for restraint, so as to carry lateral loads imposed due to earthquake along with their own weight and other lateral forces.

3.5 CEILINGS AND LIGHTING FIXTURES

- A. At regular intervals, laterally brace suspended ceilings against lateral and vertical movements, and provide with a physical separation at the walls.
- B. Independently support and laterally brace all lighting fixtures. Refer to applicable portion of lighting specification, Section 26 51 00, INTERIOR LIGHTING.

3.6 FACADES AND GLAZING

A. Do not install concrete masonry unit filler walls in a manner that can restrain the lateral deflection of the building frame. Provide a gap

with adequately sized resilient filler to separate the structural frame from the non-structural filler wall.

- B. Tie brick veneers to a separate wall that is independent of the steel frame as shown on construction drawings to ensure strength against applicable seismic forces at the project location.
- C. Install attachments to structure for all façade materials as shown on construction drawings to ensure strength against applicable seismic forces at the project location.

3.7 STORAGE RACKS, CABINETS, AND BOOKCASES

- A. Install storage racks to withstand earthquake forces and anchored to the floor or laterally braced from the top to the structural elements.
- B. Anchor medical supply cabinets to the floor or walls and equip them with properly engaged, lockable latches.
- C. Anchor filing cabinets that are more than 2 drawers high to the floor or walls, and equip all drawers with properly engaged, lockable latches.
- D. Anchor bookcases that are more than 30 inches high to the floor or walls, and equip any doors with properly engaged, lockable latches.

- - - E N D - - -

SECTION 31 20 00 EARTHWORK

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

- A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
 - 1. Site preparation.
 - 2. Excavation.
 - 3. Underpinning.
 - 4. Filling and backfilling.
 - 5. Grading.
 - 6. Soil Disposal.
 - 7. Clean Up.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - 1. Fills: Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM D698.
 - Existing Subgrade (Except Footing Subgrade): Same materials as
 1.2.A.1, that are not capable of direct support of slabs, pavement,
 and similar items with possible exception of improvement by
 compaction, proofrolling, or similar methods.
 - 3. Existing Subgrade (Footings Only): Same as paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings.
- C. Trench Earthwork: Trenchwork required for utility lines.
- D. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above.

- E. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D6938.
- F. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
- G. Backfill: Soil materials or controlled low strength material used to fill an excavation.
- H. Unauthorized excavation: Removal of materials beyond indicated sub-grade elevations or indicated lines and dimensions without written authorization by the Resident Engineer. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
- I. Authorized additional excavation: Removal of additional material authorized by the Resident Engineer based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.
- J. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
- K. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- L. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- M. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- N. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe.
- O. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk.
- P. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.
- Q. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building

materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.

R. Contaminated soils: Soil that contains contaminates as defined and determined by the Resident Engineer or the Government's testing agency.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.

C. Rock Excavation:

- 1. Trenches and Pits: Removal and disposal of solid, homogenous, interlocking crystalline material with firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be excavated with a late-model, track-mounted hydraulic excavator; equipped with a 1050 mm (42 inch) wide, short-tip-radius rock bucket; rated at not less than 103 kW (138 hp) flywheel power with bucket-curling force of not less than 125 kN (28,090 lbf) and stick-crowd force of not less than 84.5 kN (19,000 lbf); measured according to SAE J-1179. Trenches in excess of 3000 mm (10 feet) wide and pits in excess of 9000 mm (30 feet) in either length or width are classified as open excavation.
- 2. Open Excavation: Removal and disposal of solid, homogenous, interlocking crystalline material firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be dislodged and excavated with a late-model, track-mounted loader; rated at not less than 157 kW (210 hp) flywheel power and developing a minimum of 216 kN (48,510 lbf) breakout force; measured according to SAE J-732.
- 3. Other types of materials classified as rock are unstratified masses, conglomerated deposits and boulders of rock material exceeding 0.76

m3 (1 cubic yard) for open excavation, or 0.57 m3 (3/4 cubic yard) for footing and trench excavation that cannot be removed by rock excavating equipment equivalent to the above in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted.

- 4. Blasting: Removal and disposal of solid, homogenous, interlocking crystalline material firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be removed with conventional methods may be performed by blasting.
- 5. Definitions of rock and guidelines for equipment are presented for general information purposes only. The Contractor is expected to use the information presented in the Geotechnical Engineering Report to evaluate the extent and competency of the rock and to determine both guantity estimations and removal equipment and efforts.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

A. Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION:

- A. Measurement: Cross section and measure uncovered and separated materials, and compute quantities by Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. Do not measure quantities beyond the following limits:
 - 600 mm (24 inches) from outside face of concrete work for which forms are required, except for footings.
 - 2. 300 mm (12 inches) from outside of perimeter of formed footings.

- 3. 150 mm (6 inches) below bottom of pipe and not more than pipe diameter plus 600 mm (24 inches) in width for pipe trenches.
- From outside dimensions of concrete work for which no forms are required (trenches, conduits, and similar items not requiring forms).

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.
 - 2. Excavation method.
 - 3. Labor.
 - 4. Equipment.
 - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
 - 6. Plot plan showing elevation.
- C. Furnish to Resident Engineer:
 - Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size.
 - 2. Soil samples.
 - a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - b. Laboratory compaction curve in accordance with ASTM D698 for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - c. Test reports for compliance with ASTM D2940 requirements for subbase material.
 - d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations.
 - e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated.
 - Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material.
 Notification of encountering rock in the project. Advance notice on

the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): T99-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-10....Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb) Rammer and a 457 mm (18 inch) Drop
 C. American Society for Testing and Materials (ASTM): C33-03.....Concrete Aggregate D448-08....Standard Classification for Sizes of Aggregate for Road and Bridge Construction D698-07e1....Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft. lbf/ft³ (600 kN m/m³))
 - D1140-00.....Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve
 - D1556-07.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand Cone Method D1557-09.....Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort

 - Purposes (Unified Soil Classification System) D2940-09.....Standard Specifications for Graded Aggregate Material for Bases or Subbases for Highways or Airports
 - D6938-10.....Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth
- D. Society of Automotive Engineers (SAE): J732-07.....Specification Definitions - Loaders

2.1 MATERIALS:

- A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
- B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
- C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2inch) sieve and not more than 12 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;.
- D. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940; except with 100 percent passing a 25 mm (1 inch) sieve and not more than 8 percent passing a 75-µm (No. 200) sieve.
- E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.
- F. Granular Fill:
 - Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C 33 with a maximum of 3 percent by weight passing ASTM D 1140, 75 micrometers (No. 200) sieve, and no more than 2 percent by weight passing the 4.75 mm (No. 4).
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No 4), per ASTM D2940.
- G. Requirements for Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including

ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method 5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site.

H. Buried Warning and Identification Tape: Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

//Red:	Electric//
//Yellow:	Gas, Oil, Dangerous Materials//
//Orange:	Telephone and Other Communications//
//Blue:	Water Systems//
//Green:	Sewer Systems//
//White:	Steam Systems//
//Gray:	Compressed Air//

- I. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- J. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m (3 feet) deep. Encase metallic

element of the tape in a protective jacket or provide with other means of corrosion protection.

K. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from areas within 4500 mm (15 feet) of new construction and 2250 mm (7.5 feet) of utility lines when removal is approved in advance by Resident Engineer. Remove materials from Medical Center . Trees and shrubs, shown to be transplanted, shall be dug with a ball of earth and burlapped in accordance with latest issue of, "American Standard for Nursery Stock" of the American Association of Nurserymen, Inc. Transplant trees and shrubs to a permanent or temporary position within two hours after digging. Maintain trees and shrubs held in temporary locations by watering as necessary and feeding semiannually with liquid fertilizer with a minimum analysis of 5 percent nitrogen, 10 percent phosphorus, and 5 percent potash. Maintain plants moved to permanent positions as specified for plants in temporary locations until conclusion of contract. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in construction area. Immediately repair damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Do not store building materials closer to trees and shrubs, that are to remain, than farthest extension of their limbs.
- D. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by Resident Engineer. Eliminate foreign

materials, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed.

- E. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center F. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades.
 - 1. Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
 - 2. Locations of existing and proposed elevations indicated on plans , except spot elevations, are approximate. from a site survey that measured spot elevations and subsequently generated existing contours and spot elevations. Contractor is responsible to notify Resident Engineer of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify Resident Engineer of any differences between existing or constructed grades, as compared to those shown on the plans.
 - 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans.
 - 4. Finish grading is specified in Section 32 90 00, PLANTING.
- G. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals

shall be in accordance with all applicable Federal, State and local regulations.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the Resident Engineer, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
 - 1. Design of the temporary support of excavation system is the responsibility of the Contractor. The Contractor shall submit a Shoring and Sheeting plan for approval 15 days prior to starting work. Submit drawings and calculations, certified by a registered professional engineer, describing the methods for shoring and sheeting of excavations. Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving.
 - Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the Resident Engineer.
 - Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.
 - 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall provide a concrete fill support in compliance with specifications Section 31 23 23.33, FLOWABLE FILL, under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
 - 5. The Contractor is required to hire a Professional Geotechnical Engineer to provide inspection of excavations and soil/groundwater conditions throughout construction. The Geotechnical Engineer shall be responsible for performing pre-construction and periodic site visits throughout construction to assess site conditions. The Geotechnical Engineer shall update the excavation, sheeting and dewatering plans as construction progresses to reflect changing conditions and shall submit an updated plan if necessary. A written report shall be submitted, at least monthly, informing the Contractor and Resident Engineer of the status of the plan and an accounting of

the Contractor's adherence to the plan addressing any present or potential problems. The Geotechnical Engineer shall be available to meet with the Resident Engineer at any time throughout the contract duration.

- B. Excavation Drainage: Operate pumping equipment , and/or provide other materials, means and equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material.
- C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the Resident Engineer.

F. Building Earthwork:

- 1. Excavation shall be accomplished as required by drawings and specifications.
- 2. Excavate foundation excavations to solid undisturbed subgrade.
- 3. Remove loose or soft materials to a solid bottom.
- Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings.
- 5. Do not tamp earth for backfilling in footing bottoms, except as specified.

- Slope grades to direct water away from excavations and to prevent ponding.
- 7. Capillary water barrier (granular fill) under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor.
- 8. Ensure that footing subgrades have been inspected and approved by the Resident Engineer prior to concrete placement. Excavate to bottom of pile cap prior to placing or driving piles, unless authorized otherwise by the Resident Engineer. Backfill and compact over excavations and changes in grade due to pile driving operations to 95 percent of ASTM D698 maximum density.
- G. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell holes scooped out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. Length of open trench in advance of piping laying shall not be greater than is authorized by Resident Engineer.
 - e. Provide buried utility lines with utility identification tape.Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

- 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of pipe shall be 600 mm (24 inches) maximum for pipe up to and including 300 mm (12 inches) diameter, and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - Bed bottom quadrant of pipe on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.1) Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
 - 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one sixth of pipe diameter below pipe to 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.
 - c. Place and compact as specified remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
 - d. Use granular fill for bedding where rock or rocky materials are excavated.
 - e. Provide buried utility lines with utility identification tape.
 Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
 - g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly

on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

- Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- H. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. Excavation shall be accomplished as required by drawings and specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by Resident Engineer as unsuitable, and replace with acceptable material. When unsuitable material is encountered and removed, contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on volume in cut section only.
 - 1. Site Grading:
 - a. Provide a smooth transition between adjacent existing grades and new grades.

- b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances:
 - 1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch).
 - 2) Walks: Plus or minus 25 mm (1 inch).
 - 3) Pavements: Plus or minus 13 mm (1 inch).
- d. Grading Inside Building Lines: Finish subgrade to a tolerance of 13 mm (1/2 inch) when tested with a 3000 mm (10 foot) straightedge.

3.4 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, foundation drainage, and pipes coming in contact with backfill have been installed and work inspected and approved by Resident Engineer.
- B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost.
- C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without prior approval of Resident Engineer. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90

percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure. Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below:

1. Fills, Embankments, and Backfill

- a. Under proposed structures, building slabs, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material in accordance with AASHTO .
- b. Curbs, curbs and gutters, AASHTO.
- c. Under Sidewalks, scarify and recompact top 150 mm (6 inches) below subgrade and compact each layer of backfill or fill material in accordance with AASHTO
- d. Landscaped areas, top 400 mm (16 inches), AASHTO.
- e. Landscaped areas, below 400 mm (16 inches) of finished grade, AASHTO
- 2. Natural Ground (Cut or Existing)
 - a. Under building slabs, steps and paved areas, top 150 mm (6 inches), AASHTO
 - b. Curbs, curbs and gutters, top 150 mm (6 inches), AASHTO.
 - c. Under sidewalks, top 150 mm (6 inches), AASHTO.
- D. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas within the limits of the project site, selected by the Contractor or . Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- E. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated

providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.5 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet).
- D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean.
- E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
- F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.
- G. Finish subgrade in a condition acceptable to Resident Engineer at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather.
- H. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off // Medical Center // Cemetery // property.

- B. Disposal: Transport surplus satisfactory soil to designated storage areas on Medical Center property. Stockpile or spread soil as directed by Resident Engineer.
 - 1. Remove waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center.
 - C. Place excess excavated materials suitable for fill and/or backfill on site where directed.
 - D. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
 - E. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center.

----- E N D -----

SECTION 31 20 11 EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1 **DESCRIPTION**:

A. This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 **DEFINITIONS**:

- A. Unsuitable Materials:
 - 1. Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
 - 2. Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
 - 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to COR's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trench work throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in AASHTO T180.
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other manmade obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Classified Excavation: Removal and disposal of all material not defined as rock.
- C. Rock Excavation:
 - 1. Solid ledge rock (igneous, metamorphic, and sedimentary rock).
 - 2. Bedded or conglomerate deposits so cemented as to present characteristics of solid rock which cannot be excavated without blasting; or the use of a modern power excavator (shovel, backhoe, or similar power excavators) of no less than 0.75 m3 (1 cubic yard) capacity, properly used, having adequate power and in good running condition.
 - 3. Boulders or other detached stones each having a volume of 0.4 m3 (1/2 cubic yard) or more.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

A. Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material; will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- C. Furnish to COR, soil samples, suitable for laboratory tests, of proposed off site or on site fill material.

D. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

1.7 APPLICABLE PUBLICATIONS:

A.	Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.		
В.	American Nursery and Landscape Association (ANLA):		
	2004	. American Standard for Nursery Stock	
C.	American Association	o of State Highway and Transportation Officials (AASHTO):	
	T99-10	. Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop	
	T180-10	. Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10 lb) Rammer and a 457 mm (18 inch) Drop	
D.	D. American Society for Testing and Materials (ASTM):		
	C33-03	. Concrete Aggregate	
	D698-e1	. Laboratory Compaction Characteristics of Soil Using Standard Effort	
	D1140-00	. Amount of Material in Soils Finer than the No. 200 (75- micrometer) Sieve	
	D1556-00	. Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method	
	D1557-09	. Laboratory Compaction Characteristics of Soil Using Modified Effort	
	D2167-94 (2001)	. Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method	
	D2487-06	. Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System)	
	D6938-10	. Standard Test Methods for Density of Soil and Soil- Aggregate in Place by Nuclear Methods Shallow Depth	
E.	Standard Specifications of CALTRAN, of California State.		

F. Department of Transportation, latest revision.

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Fills: Materials approved from on site and off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 6, and a maximum Liquid Limit of 30.
- B. Granular Fill:
 - Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, 75 micrometers (No. 200) sieve and no more than 2 percent by weight passing the 4.75 mm (No. 4) size sieve.
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No. 4).
- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 19 mm to 32 mm (3/4 inch to 1 1/4 inches) excluding top growth. There shall be no broken pads and torn or uneven ends
- F. Requirements For Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX)and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site. Material shall not be brought on site until tests have been approved by the COR.
- G. Buried Warning and Identification Tape: Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines.

- Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED intended service LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:
 - 1. Red: Electric
 - 2. Yellow: Gas, Oil, Dangerous Materials
 - 3. Orange: Telephone and Other Communications
 - 4. Blue: Water Systems
 - 5. Green: Sewer Systems
 - 6. White: Steam Systems
 - 7. Gray: Compressed Air
- I. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- J. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastictape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m(3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- K. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

A. Clearing: Clearing within the limits of earthwork operations as described or designated by the COR. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Medical Center.

- B. Grubbing: Remove stumps and roots 75 mm (3 inches) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inches) diameter, and nonperishable solid objects which will be a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 4500 mm (15 feet) of new construction and 2250 mm (7'-6") of utility lines if such removal is approved in advance by the COR. Remove materials from the Medical Center. Trees and shrubs, shown to be transplanted, shall be dug with a ball of earth and burlapped in accordance with the latest issue of the, "American Standard for Nursery Stock", of the American Association of Nurserymen, Inc. Transplant trees and shrubs to a permanent or temporary position within two hours after digging. Maintain trees and shrubs held in temporary locations by watering as necessary and feeding semi-annually with liquid fertilizer with a minimum analysis of 5 percent nitrogen, 10 percent phosphorus and 5 percent potash. Maintain plants moved to permanent positions as specified for plants in temporary locations until the conclusion of the contract. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.
- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the COR. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.
 - 1. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs.

Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.

E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to its angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - 1. Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.
 - 2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill, under disturbed foundations, as directed by COR, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by COR.
- B. Excavation Drainage: Operate pumping equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from COR. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 2 feet below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. Submit performance records weekly. Measure and record performance of dewatering system at same time each day by use of observation wells or piezometers installed in conjunction with the dewatering system. Relieve hydrostatic head in pervious zones below subgrade elevation in layered soils to prevent uplift.
- C. Blasting shall be not permitted.

- D. Building Earthwork:
 - 1. Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft material to solid bottom.
 - 4. Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete, poured separately from the footings.
 - 5. Do not tamp earth for backfilling in footing bottoms, except as specified.
- E. Trench Earthwork:
 - 1. Utility trenches except sanitary and storm sewer:
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the COR.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

- g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - 1) Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D 2487.
- 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of the pipe shall be 600 mm (24 inches) for up to and including 300 mm (12 inches) diameter and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (I2 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - b. The bottom quadrant of the pipe shall be bedded on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
 - Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one-sixth of pipe diameter below the pipe of 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.

- c. Place and compact as specified the remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- d. Use granular fill for bedding where rock or rocky materials are excavated.
- e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade.
- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - 1) Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the COR as unsuitable, and replace with acceptable material.

If there is a question as to whether material is unsuitable or not, the Contractor shall obtain samples of the material, under the direction of the COR, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not.

- G. Finished elevation of subgrade shall be as follows:
 - 1. Pavement Areas bottom of the pavement or base course as applicable.
 - 2. Planting and Lawn Areas 100 mm (4 inches) below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Uses excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, and pipes coming in contact with backfill have been installed, and inspected and approved by COR.
- B. Proof-rolling Existing Subgrade: Proof rolling shall be done on an exposed subgrade free of surface water wet conditions resulting from rainfall which would promote degradation of an otherwise acceptable subgrade.
- C. Placing: Place material in horizontal layers not exceeding 200 mm (8 inches) in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment hand or mechanical well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without the prior approval of the COR. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer to not less than 95 percent of the maximum density determined in accordance with the following test method AASHTO T180 Method A. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesive materials to prevent wedging action or eccentric loading upon or against the structure.
- E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas, selected by the Contractor.

Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.

F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the COR sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 3048 mm (10 feet)at a minimum five percent (5%) slope.
- D. The finished grade shall be 150 mm (6 inches) below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 150 mm (6 inches), unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the COR at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.

G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 100 mm (4 inches), new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by COR before seeding or sodding operation begins.
- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 100 mm (4 inches). Apply topsoil so that after normal compaction, dragging and raking operations to bring surface to indicated finish grades there will be a minimum of 100 mm (4 inches) of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.
- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 100 mm (4 inches) at a rate of 12 kg/100 m2 (25 pounds per 1000 square feet).
- D. Seeding: Seed at a rate of 2 kg/100 m2 (4 pounds per 1000 square feet) and accomplished only during periods when uniform distribution may be assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 225 kg/m (150 pounds per foot) of roller width.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 225 kg/m (150 pounds per foot) of the roller width to improve contact of sod with the soil.
- F. Watering: The COR is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. COR will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.

- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the COR from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

A. Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

END OF SECTION 31 20 11

SECTION 32 12 16 ASPHALT PAVING

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall cover the composition, mixing, construction upon the prepared subgrade, and the protection of hot asphalt concrete pavement. The hot asphalt concrete pavement shall consist of an aggregate or asphalt base course and asphalt surface course constructed in conformity with the lines, grades, thickness, and cross sections as shown. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course.

1.2 RELATED WORK

- A. Laboratory and field testing requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Paragraph 3.3 and Section 31 20 00, EARTH MOVING.
- C. Pavement Markings: Section 32 17 23, PAVEMENT MARKINGS.

1.3 INSPECTION OF PLANT AND EQUIPMENT

The Contracting Officer Representative shall have access at all times to all parts of the material producing plants for checking the mixing operations and materials and the adequacy of the equipment in use.

1.4 ALIGNMENT AND GRADE CONTROL

The Contractor's Registered Professional Land Surveyor shall establish and control the pavement (aggregate or asphalt base course and asphalt surface course) alignments, grades, elevations, and cross sections as shown on the Drawings.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Data and Test Reports:
 - Aggregate Base Course: Sources, gradation, liquid limit, plasticity index, percentage of wear, and other tests required by State Highway Department.
 - Asphalt Base/Surface Course: Aggregate source, gradation, soundness loss, percentage of wear, and other tests required by State Highway Department.
 - 3. Job-mix formula.

- C. Certifications:
 - Asphalt prime and tack coat material certificate of conformance to State Highway Department requirements.
 - 2. Asphalt cement certificate of conformance to State Highway Department requirements.
 - 3. Job-mix certification Submit plant mix certification that mix equals or exceeds the State Highway Specification.
- D. One copy of State Highway Department Specifications.
- E. Provide MSDS (Material Safety Data Sheets) for all chemicals used on ground.

PART 2 - PRODUCTS

2.1 GENERAL

A. Aggregate base, Asphaltic base and asphalt concrete materials shall conform to the requirements of the following and other appropriate sections of the latest version of the State Highway Material Specifications, including amendments, addenda and errata. Where the term "Engineer" or "Commission" is referenced in the State Highway Specifications, it shall mean the VA Resident Engineer or VA Contracting Officer.

2.2 AGGREGATES

- A. Provide aggregates consisting of crushed stone, gravel, sand, or other sound, durable mineral materials processed and blended, and naturally combined.
- B. Subbase aggregate (where required) maximum size: 38mm(1-1/2").
- C. Base aggregate maximum size:
 - 1. Base course over 152mm(6") thick: 38mm(1-1/2");
 - 2. Other base courses: 19mm(3/4").
- D. Asphaltic base course:
 - 1. Maximum particle size not to exceed 25.4mm(1").
 - 2. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.
- E. Aggregates for asphaltic concrete paving: Provide a mixture of sand, mineral aggregate, and liquid asphalt mixed in such proportions that the percentage by weight will be within:

Sieve Sizes	Percentage Passing
19mm(3/4")	100
9.5mm(3/8")	67 to 85
6.4mm(1/4")	50 to 65
2.4mm(No. 8 mesh)	37 to 50
600µm(No. 30 mesh)	15 to 25
75µm(No. 200 mesh)	3 to 8

plus 50/60 penetration liquid asphalt at 5 percent to 6-1/2 percent of the combined dry aggregates.

2.3 ASPHALTS

- A. Comply with provisions of Asphalt Institute Specification SS2:
 - 1. Asphalt cement: Penetration grade 50/60
 - 2. Prime coat: Cut-back type, grade MC-250
 - 3. Tack coat: Uniformly emulsified, grade SS-1H

2.4 SEALER

- A. Provide a sealer consisting of suitable fibrated chemical type asphalt base binders and fillers having a container consistency suitable for troweling after thorough stirring, and containing no clay or other deleterious substance.
- B. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.

PART 3 - EXECUTION

3.1 GENERAL

The Asphalt Concrete Paving equipment, weather limitations, job-mix formula, mixing, construction methods, compaction, finishing, tolerance, and protection shall conform to the requirements of the appropriate sections of the State Highway Specifications for the type of material specified.

3.2 MIXING ASPHALTIC CONCRETE MATERIALS

- A. Provide hot plant-mixed asphaltic concrete paving materials.
 - Temperature leaving the plant: 143 degrees C(290 degrees F) minimum, 160 degrees C(320 degrees F) maximum.
 - Temperature at time of placing: 138 degrees C(280 degrees F) minimum.

3.3 SUBGRADE

A. Shape to line and grade and compact with self-propelled rollers.

- B. All depressions that develop under rolling shall be filled with acceptable material and the area re-rolled.
- C. Soft areas shall be removed and filled with acceptable materials and the area re-rolled.
- D. Should the subgrade become rutted or displaced prior to the placing of the subbase, it shall be reworked to bring to line and grade.
- E. Proof-roll the subgrade with maximum 45 tonne (50 ton) gross weight dump truck as directed by VA Resident Engineer or VA Contracting Officer. If pumping, pushing, or other movement is observed, rework the area to provide a stable and compacted subgrade.

3.4 BASE COURSES

- A. Subbase (when required)
 - 1. Spread and compact to the thickness shown on the drawings.
 - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
 - 3. After completion of the subbase rolling there shall be no hauling over the subbase other than the delivery of material for the top course.

B. Base

- 1. Spread and compact to the thickness shown on the drawings.
- 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
- 3. After completion of the base rolling there shall be no hauling over the base other than the delivery of material for the top course.
- C. Thickness tolerance: Provide the compacted thicknesses shown on the Drawings within a tolerance of minus 0.0mm (0.0") to plus 12.7mm (0.5").
- D. Smoothness tolerance: Provide the lines and grades shown on the Drawings within a tolerance of 5mm in 3m (3/16 inch in ten feet).
- E. Moisture content: Use only the amount of moisture needed to achieve the specified compaction.

3.5 PLACEMENT OF ASPHALTIC CONCRETE PAVING

- A. Remove all loose materials from the compacted base.
- B. Apply the specified prime coat, and tack coat where required, and allow to dry in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- C. Receipt of asphaltic concrete materials:

- Do not accept material unless it is covered with a tarpaulin until unloaded, and unless the material has a temperature of not less than 130 degrees C(280 degrees F).
- Do not commence placement of asphaltic concrete materials when the atmospheric temperature is below 10 degrees C (50 degrees F), not during fog, rain, or other unsuitable conditions.
- D. Spreading:
 - 1. Spread material in a manner that requires the least handling.
 - 2. Where thickness of finished paving will be 76mm (3") or less, spread in one layer.
- E. Rolling:
 - After the material has been spread to the proper depth, roll until the surface is hard, smooth, unyielding, and true to the thickness and elevations shown own the drawings.
 - 2. Roll in at least two directions until no roller marks are visible.
 - 3. Finished paving smoothness tolerance:
 - a. No depressions which will retain standing water.
 - b. No deviation greater than 3mm in 1.8m (1/8" in six feet).

3.6 APPLICATION OF SEAL COAT

- A. Prepare the surfaces, mix the seal coat material, and apply in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- B. Achieve a finished surface seal which, when dry and thoroughly set, is smooth, tough, resilient, of uniform black color, and free from coarse textured areas, lap marks, ridges, and other surface irregularities.
- C. When sealing new asphalt paving wait an entire year to allow for the expansion and contraction of a year's cycle of both warm and cool temperatures. This allows for the asphalt's oils to properly cure and begin oxidation before applying a seal coat.
- D. When seal coating in less than a year apply two coats, spray applied. This application method is preferred for less than a year application when there is still plenty of asphalt cement present for the seal coat to bond to.
- E. When seal coating existing paving that has new asphalt patches, apply two coats sprayed to the existing asphalt and a single lighter coat on new patch work, just enough to make the color of the new patches match the rest of the reseal coated paving.

F. When resealing existing paving 5, 10, 15 years and older, that is oxidized and is very light in color, squeegee apply the first coat of seal coat and spray on a second coat. Two coats are preferred in older paving when the asphalt cement has oxidized leaving the seal coat with nothing to bond to other than the aggregate that in many cases has polished over time leaving less than a desirable surface to bond to.

3.7 PROTECTION

Protect the asphaltic concrete paved areas from traffic until the sealer is set and cured and does not pick up under foot or wheeled traffic.

3.8 FINAL CLEAN-UP

Remove all debris, rubbish, and excess material from the work area.

- - - E N D - - -

SECTION 32 17 23 PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall consist of furnishing and applying paint and/ or reflective glass beads on pavement surfaces, in the form of traffic lanes, parking bays, areas restricted to handicapped persons, crosswalks, and other detail pavement markings, in accordance with the details as shown or as prescribed by the Contracting Officers Representative . Conform to the Manual on Uniform Traffic Control Devices for Streets and Highways, published by the U.S. Department of Transportation, Federal Highway Administration, for details not shown.

1.2 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish Manufacturer's Certificates and Data certifying that the following materials conform to the requirements specified.
- B. Paint.
- C. Reflective Glass Beads

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.): TT-B-1325C.....Beads (Glass Spheres); Retro-Reflective TT-P-1952D.....Paint, Traffic Black, and Airfield Marking, Waterborne
- C. Master Painters Institute (MPI): Approved Product List - 2010

PART 2 - PRODUCTS

2.1 PAINT

Paint for marking pavement (parking lot and zone marking) shall conform to MPI No. 97, color as shown. Paint for obliterating existing markings shall conform to Fed. Spec. TT-P-1952D. Paint shall be in containers of at least 18 L (5 gallons). A certificate shall accompany each batch of paint stating compliance with the applicable publication.

2.2 REFLECTIVE GLASS BEADS

Beads shall conform to Fed. Spec. TT-B-1325C, Type I, Gradation A. When used in regions of high humidity, coat beads with silicone or other suitable waterproofing material to assure free flow. Furnish the glass

32 17 23 - 1

beads in containers suitable for handling and strong enough to prevent loss during shipment. A certificate shall accompany each batch of beads stating compliance with this section.

2.3 PAINT APPLICATOR

Apply all marking by approved mechanical equipment. The equipment shall provide constant agitation of paint and travel at controlled speeds. Synchronize one or more paint "guns" to automatically begin and cut off paint flow in the case of skip lines. The equipment shall have manual control to apply continuous lines of varying length and marking widths as shown. Provide pneumatic spray guns for hand application of paint in areas where a mobile paint applicator cannot be used. If the equipment does not have a glass bead dispenser, use a separate piece of equipment. Adjust and synchronize the equipment with the paint applicator so that the reflective beads are distributed uniformly on the paint lines within ten seconds without any waste. An experienced technician that is thoroughly familiar with equipment, materials, and marking layouts shall control all painting equipment and operations.

2.4 SANDBLASTING EQUIPMENT

Sandblasting equipment shall include an air compressor, hoses, and nozzles of proper size and capacity as required for cleaning surfaces to be painted. The compressor shall furnish not less than 0.08 m^3/s (150 cfm) of air at a pressure of not less than 625 kPa (90 psi) at each nozzle used.

PART 3 - EXECUTION

3.1 SURFACE PREPARATION

- A. Allow new pavement surfaces to cure for a period of not less than 14 days before application of marking materials.
- B. Thoroughly clean all surfaces to be marked before application of paint. Remove dust, dirt, and other granular surface deposits by sweeping, blowing with compressed air, rinsing with water, or a combination of these methods. Completely remove rubber deposits, existing paint markings, and other coatings adhering to the pavement with scrapers, wire brushings, sandblasting, mechanical abrasion, or approved chemicals as directed by the Resident Engineer. The application of paint conforming to Fed. Spec. TT-P-1952D is an option to removal of existing paint markings on asphalt pavement. Apply the black paint in as many coats as necessary to completely obliterate the existing markings. Where oil or grease are present on old pavements to be marked, scrub affected areas with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinse thoroughly after each

application. After cleaning, seal oil-soaked areas with cut shellac to prevent bleeding through the new paint. Pavement marking shall follow as closely as practicable after the surface has been cleaned and dried, but do not begin any marking until the Resident Engineer has inspected the surface and gives permission to proceed. The Contractor shall establish control points for marking and provide templates to control paint application by type and color at necessary intervals. The Contractor is responsible to preserve and apply marking in conformance with the established control points.

3.2 APPLICATION

Apply uniformly painted and reflective pavement marking of required color(s), length, and width with true, sharp edges and ends on properly cured, prepared, and dried surfaces in conformance with the details as shown and established control points. The length and width of lines shall conform within a tolerance of plus or minus 75 mm (3 inches) and plus or minus 3 mm (1/8 inch), respectively, in the case of skip markings. The length of intervals shall not exceed the line length tolerance. Temperature of the surface to be painted and the atmosphere shall be above $10^{\circ}C$ ($50^{\circ}F$) and less than $35^{\circ}C$ ($95^{\circ}F$). Apply the paint at a wet film thickness of 0.4 mm (0.015 inch). Disperse reflective glass beads evenly on the wet paint at a rate of 720 g/L (6 pounds per gallon) of paint. Apply paint in one coat. At the direction of the Resident Engineer, markings showing light spots may receive additional coats. The maximum drying time requirements of the paint specifications will be strictly enforced, to prevent undue softening of asphalt, and pick-up, displacement, or discoloration by tires of traffic. If there is a deficiency in drying of the marking, discontinue paint operations until cause of the slow drying is determined and corrected. Remove and replace marking that is applied at less than minimum material rates; deviates from true alignment; exceeds stipulated length and width tolerances; or shows light spots, faulty distribution of beads, smears, or other deficiencies or irregularities. Use carefully controlled sand blasting, approved grinding equipment, or other approved method to remove marking so that the surface to which the marking was applied will not be damaged.

3.3 PROTECTION

Conduct operations in such a manner that necessary traffic can move without hindrance. Protect the newly painted markings so that, insofar as possible, the tires of passing vehicles will not pick up paint. Place warning signs at the beginning of the wet line, and at points well in advance of the marking equipment for alerting approaching traffic from both directions. Place small flags or other similarly effective small objects near freshly applied markings at frequent intervals to reduce crossing by traffic. Efface and replace damaged portions of markings at no additional cost to the Government.

3.4 DETAIL PAVEMENT MARKING

Use Detail Pavement Markings, exclusive of actual traffic lane marking, at exit and entrance islands and turnouts, on curbs, at crosswalks, at parking bays, and at such other locations as shown. Show the International Handicapped Symbol at indicated parking spaces. Color shall be as shown. Apply paint for the symbol using a suitable template that will provide a pavement marking with true, sharp edges and ends. Place detail pavement markings of the color(s), width(s) and length(s), and design pattern at the locations shown.

3.5 TEMPORARY PAVEMENT MARKING

When shown or directed by the Resident Engineer, apply Temporary Pavement Markings of the color(s), width(s) and length(s) shown or directed. After the temporary marking has served its purpose and when so ordered by the Resident Engineer, remove temporary marking by carefully controlled sandblasting, approved grinding equipment, or other approved method so that the surface to which the marking was applied will not be damaged. As an option, an approved preformed pressure sensitive, reflective, adhesive tape type of temporary pavement marking of the required color(s), width(s) and length(s) may be furnished and used in lieu of temporary painted and reflective marking. The Contractor shall be fully responsible for the continued durability and effectiveness of such marking during the period for which its use is required. Remove any unsatisfactory tape type marking and replace with painted and reflective markings at no additional cost to the Government.

3.6 FINAL CLEAN-UP

Remove all debris, rubbish and excess material from the Station.

- - - E N D - - -

SECTION 33 63 00

STEAM ENERGY DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of underground steam distribution and condensate return piping system, including manholes, outside the buildings. System shall be: concrete shallow trenches.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. Concrete Work, Reinforcing, Placement and Finishing: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Painting exposed steel and other surfaces: Section 09 91 00, PAINTING.
- E. Steel for trench and tunnel pipe supports: Section 05 50 00, METAL FABRICATIONS.
- F. Cathodic Protection of DDT Pre-Engineered Direct-Buried Systems: Section 26 42 00, CATHODIC PROTECTION.
- G. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- H. Metering: SECTION 25 10 10, ADVANCED UTILITY METERING SYSTEM.
- I. Erosion and Sediment Controls: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

- A. System: The complete underground steam and condensate distribution system including all components such as carrier piping, pipe supports, insulation, protective enclosures, anchors, corrosion protection and accessories.
- B. Pre-Engineered Direct-Buried System: The factory-fabricated system.
- C. Drainable-Dryable-Testable (DDT) Pre-Engineered Direct-Buried System: A factory-fabricated system.
- D. Concrete Shallow Trench: A system with removable concrete covers located at grade.

- E. Walk-through Concrete Tunnels: A system located below grade with sufficient space for carrier pipes, other services, and space to walk upright along the entire length of the system.
- F. Carrier Pipe: Pipe carrying the steam or condensate.
- G. Encasement Pipe: Outer protective pipe on any main line pipe. Carrier pipe and insulation are within the casing.
- H. HP Systems: High-pressure piping operating at more than 15 psi (104 kPa) as required by ASME B31.1.
- I. LP Systems: Low-pressure piping operating at 15 psi (104 kPa) or less as required by ASME B31.9.

1.4 ABBREVIATIONS

- A. HDPE: high-density polyethylene
- B. RTRP: reinforced thermosetting resin plastic
- C. RTRF: reinforced thermosetting resin fittings
- D. WOG: water, oil and gas

1.5 DELIVERY, STORAGE AND HANDLING

- A. The Contractor is solely responsible for the protection of equipment and material against damage. Protect piping systems against the entry of water, mud or other foreign substances by installing watertight covers on open ends at all times. Protect direct-buried system coatings from ultraviolet light (sunlight). Existing equipment worked on by the Contractor or in the Contractor's working area shall be considered to be in the custody and responsibility of the Contractor.
- B. All insulated piping systems exposed to water must be replaced prior to installation.

1.6 COORDINATION

A. Coordinate exterior steam lines and connections to building services up to the actual extent of building wall.

1.7 QUALITY ASSURANCE:

A. Products Criteria:

- When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

- B. Contractor shall restore damaged items to as-new operating condition or replace damaged items as directed by the Contracting Officer's Representative, at no additional cost to the Government.
- C. Fiberglass Pipe and Fitting Installers: Installers of RTRF and RTRP shall be certified by manufacturer of pipes and fittings as having been trained and qualified to join fiberglass piping with manufacturerrecommended adhesive.
- D. Welding Qualifications: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31.9, Building Services Piping.
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- E. ASME Compliance: Comply with ASME B31.9, Building Services Piping, for materials, products, and installation.
- F. ASME Compliance: Safety valves and pressure vessels shall bear appropriate ASME labels.

1.8 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings and appurtenances, including jointing materials, insulation, hangars and other miscellaneous items.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

A-A-60005 NOT 1.....Frames, Covers, Grating, Steps, Sump and Catch Basin, Manhole

L-S-125..... Screening, Insect, Nonmetallic

C. American Society for Testing and Materials (ASTM):

A36/A36M-08.....Carbon Structural Steel

A47/A47M-99(2009).....Ferritic Malleable Iron Castings

A53/A53M-10.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

A105/A105M-10a.....Carbon Steel Forgings for Piping Applications

A106/A106M-10.....Seamless Carbon Steel Pipe for High-Temperature Service A126-04(2009).....Gray Iron Castings for Valves, Flanges, and Pipe Fittings A139/A139M-04(2010).....Electric-Fusion (Arc)-Welded Steel Pipe (NPS 4 and Over) A167-99(2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A193/A193M-10a.....Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications A194/A194M-10a.....Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both A197/A197M-00(2006)Cupola Malleable Iron A234/A234M-10b.....Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service A240/A240M-10b.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications A307-10.....Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength A666-10.....Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar A733-03(2009).....Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B61-08..... Steam or Valve Bronze Castings C177-10.....Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus C411-05..... Hot-Surface Performance of High-Temperature Thermal Insulation

	C449-07	.Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement
	C450-08	.Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging
	C533-09	.Calcium Silicate Block and Pipe Thermal Insulation
	C547-07	.Mineral Fiber Pipe Insulation
	C552-07	.Cellular Glass Thermal Insulation
	C585-10	.Inner and Outer Diameters of Thermal Insulation for Nominal Sizes of Pipe and Tubing
	C591-09	.Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation
	C655-09	.Reinforced Concrete D-Load Culvert, Storm Drain, and Sewer Pipe
	C920-10	.Elastomeric Joint Sealants
	C1126-10a	.Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Flexible, Low Permeance Vapor Retarders for Thermal Insulation
	D2996-01(2007)	.Filament-Wound Fiberglass (Glass-Fiber- Reinforced Thermosetting-Resin) Pipe
	D4024-05	.Machine Made Fiberglass (Glass-Fiber-Reinforced Thermosetting Resin) Flanges
	E84-10b	.Surface Burning Characteristics of Building Materials
D.	American Society of Mech	nanical Engineers (ASME):
	B1.20.1-2006	.Pipe Threads, General Purpose (Inch)
	B16.3-2006	.Malleable Iron Threaded Fittings: Classes 150 and 300
	B16.4-2006	.Gray Iron Threaded Fittings: (Classes 125 and 250)

B16-5-2009.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2007......Factory-Made Wrought Buttwelding Fittings B16.11-2009.....Forged Fittings, Socket-Welding and Threaded B16.21-2005......Nonmetallic Flat Gaskets for Pipe Flanges B18.2.1-2010......Square, Hex, Heavy Hex, and Askew Head Bolts and Hex, Heavy Hex, Hex Flange, Lobed Head, and Lag Screws (Inch Series) B31.1-2010.....Power Piping B31.9-2008.....Building Services Piping B40.1000-2009.....Pressure Gauges and Gauge Attachments E. American Welding Society (AWS): B2.1-B2.1M-BMG-2009.....Base Metal Grouping for Welding Procedures and Performance Qualification D10.12/D10.12M-2000....Guide for welding Mild Steel Pipe F. American Association of State Highway and Transportation Officials (AASHTO): M300-03.....Inorganic Zinc-Rich Primer G. Manufacturer's Standardization Society (MSS): MSS SP 58.....Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application and Installation H. NACE International (NACE): SP0169-2007.....Control of External Corrosion on Underground or Submerged Metallic Piping Systems I. National Fire Protection Agency (NFPA): 255-2006 Ed.....Test Burning Characteristics of Building Materials

1.10 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting there from

33 63 00-6

within a period of one year from final acceptance. Further, the Contractor will provide all manufacturer's and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 STEEL PIPES AND FITTINGS

- A. Steel Pipe: ASTM A53, Type E, Grade A, wall thickness as indicated in "Piping Application" Article; black with plain ends.
- B. Cast-Iron, Threaded Fittings: ASME B16.4, Class 125 and Class 250, standard pattern.
- C. Malleable-Iron, Threaded Fittings shall be ASME B16.3, Class 150 and Class 300 .
- D. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- E. Steel Welding Fittings: ASME B16.9 and ASTM A234, seamless or welded.
 - Welding Filler Metals shall comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Nipples: ASTM A733, Standard Weight, seamless, carbon-steel pipe.
- G. Pipe-Flange Gasket Materials: ASME B16.21, suitable for chemical and thermal conditions of piping system contents, nonmetallic, flat, asbestos free, 1/8 inch (3.2 mm) maximum thickness unless thickness or specific material is indicated.
 - 1. For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - 2. For raised-face, Class 250, cast-iron and steel flanges.
- H. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

2.2 FIBERGLASS PIPE AND FITTINGS

- A. RTRP: ASTM D2996, filament-wound pipe with tapered bell and spigot ends for adhesive joints.
- B. RTRF: Compression or spray-up/contact molded of same material, pressure class, and joining method as pipe.

33 63 00-7

- C. Fiberglass Pipe Adhesive: Furnished or as recommended by the pipe manufacturer.
- D. Flanges: ASTM D4024, full-face gaskets suitable for the service, minimum 1/8 inch (3.2 mm) thick, 60-70 durometer. ASTM A307, Grade B, hex-head bolts with washers.

2.3 CONDUIT PIPING SYSTEM

- A. Conduit Piping System: Factory-fabricated and assembled, airtight and watertight, drainable, pressure-tested piping with conduit, inner pipe supports, and insulated carrier piping. Fabricate so insulation can be dried in place by forcing dry air through conduit.
- B. Carrier Pipe Insulation:
 - Mineral-Wool Pipe Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547, Type I, 850 deg F (454 deg C) Type II, 1200 deg F (649 deg C), Grade A.
 - a. Bands shall be ASTM A666, Type 304, stainless steel, 3/4 inch (19 mm) wide, 0.020 inch (0.5 mm) thick.
 - 2. Calcium Silicate Pipe Insulation: ASTM C533, Type 1, flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement.
 - a. Bands: ASTM A666, Type 304, stainless steel, 3/4 inch (19 mm) wide, 0.020 inch (0.5 mm) thick.
 - 3. Polyisocyanurate Foam Pipe Insulation: Unfaced, preformed, rigid cellular polyisocyanurate material intended for use as thermal insulation.
 - a. Comply with ASTM C591, Type I or Type IV, except thermal conductivity (k-value) shall not exceed 0.19 Btu x in./h x sq. ft. x deg F (0.027 W/m x K) at 75 deg F (24 deg C) after 180 days of aging.
 - b. Flame-spread index: ASTM E84, 25 or less and smoke-developed index shall be 50 or less for thickness up to 1-1/2 inches (38 mm).c. Fabricate shapes: ASTM C450 and ASTM C585.
 - Polyurethane Foam Pipe Insulation: Un-faced, preformed, rigid cellular polyurethane material intended for use as thermal insulation.
 - a. Comply with ASTM C591, Type I or Type IV, except thermal conductivity (k-value) shall not exceed 0.19 Btu x in./h x sq. ft. x deg F (0.027 W/m x K) at 75 deg F (24 deg C) after 180 days of aging.

- b. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less for thickness up to 1-1/2 inches (38 mm) as tested by ASTM E84.
- c. Fabricated shapes: ASTM C450 and ASTM C585.
- C. Minimum Clearance:
 - 1. Between Carrier Pipe Insulation and Conduit: 1 inch (25 mm)
 - 2. Between Insulation of Multiple Carrier Pipes: 3/16 inch (4.75 mm)
 - 3. Between Bottom of Carrier Pipe Insulation and Conduit: 1 inch (25 mm)

4. Between Bottom of Bare, Carrier Pipe and Casing: 1-3/8 inches (35 mm)D. Conduit shall be spiral wound, steel.

- Finish: Two coats of fusion-bonded epoxy, minimum 20 mils (0.50 mm) thick.
- 2. Cover: Polyurethane foam insulation with an HDPE jacket; thickness indicated in "Piping Application" Article.
- 3. Piping Supports within Conduit: Corrugated galvanized steel with a maximum spacing of 10 feet (3 m).
- 4. Fittings: Factory-fabricated and insulated elbows and tees. Elbows may be bent pipe equal to carrier pipe. Tees shall be factory fabricated and insulated, and shall be compatible with the carrier pipe.
- 5. Expansion Offsets and Loops: Size casing to contain piping expansion.
- 6. Accessories include the following:
 - a. Water Shed: Terminal end protector for carrier pipes entering building through floor, 3 inches (75 mm) deep and 2 inches (50 mm) larger than casing; terminate casing 20 inches (500 mm) above the floor level.
 - b. Guides and Anchors: Steel plate welded to carrier pipes and to casing, complete with vent and drainage openings inside casing.
 - c. End Seals: Steel plate welded to carrier pipes and to casing, complete with drain and vent openings on vertical centerline.
 - d. Gland Seals: Packed stuffing box and gland follower mounted on steel plate, welded to end of casing, permitting axial movement of carrier piping, with drain and vent connections on vertical centerline.
 - e.Joint Kit: Half-shell, pourable or split insulation and shrinkwrap sleeve.
- E. Manholes: Black steel with lifting eyes.
 - 1. Finish: Spray-applied urethane, minimum 30 mils (0.75 mm) thick.

- 2. Access: 30 inches (750 mm) with waterproof cover, gasket, ladder, and two 6 inch (150 mm) vents, one high and one low, extending above grade with rain caps.
- 3. Conduit Stub-Outs and Seals: Welded steel with drain and vent openings.
- 4. Sump: 12 inches (300 mm) in diameter, 12 inches (300 mm) deep.
- 5. Floatation anchor: Oversized bottom keyed into concrete base.
- F. Source Quality Control: Factory test the conduit to 15 psi (105 kPa) for a minimum of two minutes with no change in pressure. Factory test the carrier pipe to 150 percent of the operating pressure of system. Furnish test certificates.

2.4 LOOSE-FILL INSULATION

- A. Granular, loose-fill insulation: Inorganic, nontoxic, nonflammable, sodium potassium aluminum silicate with calcium carbonate filler. Include chemical treatment that renders insulation hydrophobic.
 - Thermal Conductivity (k-Value): 0.60 at 175 deg F (0.087 at 79 deg C) and 0.65 at 300 deg F (0.094 at 149 deg C).
 - 2. Application Temperature Range: 35 to 800 deg F (2 to 426 deg C).
 - 3. Dry Density: 40 to 42 lb/cu. ft. (640 to 672 kg/cu. m).
 - 4. Strength: 12,000 lb/sq. ft. (58,600 kg/sq. m).
- B. Powder, loose-fill insulation: Inert, nontoxic, nonflammable, calcium carbonate particles. Include chemical treatment that renders insulation hydrophobic.
 - 1. Thermal Conductivity (k-Value): ASTM C177, 0.58 at 100 deg F (0.084 at 37 deg C) and 0.68 at 300 deg F (0.098 at 149 deg C).
 - Application Temperature Range: Minus 273 to plus 480 deg F (Minus 169 to plus 250 deg C).
 - 3. Dry Density: Approximately 60 lb/cu. ft. (960 kg/cu.).
 - 4. Strength: 12,000 lb/sq. ft. (58,600 kg/sq. m).

2.5 PRE-ENGINEERED, FACTORY-FABRICATED, DIRECT-BURIED, DRAINABLE-DRYABLE-TESTABLE (DDT) SYSTEMS

A. Complete steam and condensate piping system with carrier pipes, carrier pipe insulation with jackets and banding, air space, 0.25 inch (6.35 mm) thick steel casing, fusion-bonded epoxy casing coatings, cathodic protection, accessories. Do not locate condensate pipes in casings (conduits) that contain steam pipes.

- B. All components of system shall be suitable for carrier pipe pressures and temperatures as follows:
 - 1. Steam System: 150 psi (1000 kPa); 366 deg F (185 deg C).
 - 2. Condensate System: 50 psi (345 kPa); 310 deg F (154 deg C).
- C. Steam Carrier Pipes and Condensate Carrier Pipes:
 - No piping joints are allowed in factory-fabricated straight sections of pre-engineered direct-buried systems.
 - 2. Factory-fabricated direct-buried piping sections that are a portion of an expansion loop or bend shall have all welded joints 100% radiograph inspected.
- D. Carrier Pipe Insulation shall:
 - Conform to minimum thickness and type of insulation listed in Tables
 1 and 2 below as required for service temperature in carrier pipe as
 listed below.
 - 2. Section A: Steam temperature is // ____deg F (_____deg C), steam
 pressure is ____psi (kPa) //. Pumped condensate temperature is 300
 deg F (93 deg C). Drip return temperature is 212 deg F (100 deg C).
 - 3. Section B: Steam temperature is // _____deg F (_____deg C), steam pressure is _____psi (kPa) //. Pumped condensate temperature is 200 deg F (93 deg C). Drip return temperature is 212 deg F (100 deg C).
 - 4. Allowable Carrier Pipe Insulation Type and Minimum Insulation Thickness:

TABLE 1					
Minimum Pipe Insulation Thickness mm (inches)					
For	For Steam 16 to 408 psi (110 to 2800 kPa) gage				
Nominal Pipe Diameter Inches (mm)	MPT-PC MPT-PF	Delta	Thermo-12 Super Caltemp		
1 (25)	2 (50)	2-1/2 (65)	4 (100)		
1-1/2 (40)	2 (50)	2-1/2 (65)	4 (100)		
2 (50)	2-1/2 (65)	3-1/2 (85)	4-1/2 (110)		
2-1/2 (65)	2-1/2 (65)	3-1/2 (85))	4-1/2 (110)		
3 (80)	3 (75)	4 (100)	5 (125)		
4 (100)	3 (75)	4 (100)	5 (125)		
5 (125)	3 (75)	4 (100)	5 (125)		
6 (150)	3-1/2 (85)	4-1/2 (110)	5-1/2 (135)		
8 (200)	3-1/2 (85)	4-1/2 (110)	5-1/2 (135)		
10 (250)	4 (100)	5 (125)	6 (150)		
12 (300)	4 (100)	5 (125)	6 (150)		
14 (350)	4 (100)	5 (125)	6 (150)		
16 (400)	4 (100)	5 (125)	6 (150)		
18 (450)	4 (100)	5 (125)	6 (150)		

Notes: Insulation listed has passed the 96-hour boiling water test. Pipes smaller than 1 inch (25 mm) shall have same insulation thickness as 1 inch (25 mm) pipe.

TABLE 2				
Minimum Pipe Insulation Thickness inches (mm)				
For Steam Less than 16 psi (110) gage, Condensate Return				
Nominal Pipe	Nominal Pipe	Nominal Pipe	Nominal Pipe	
Diameter inches	Diameter inches	Diameter inches	Diameter inches	
(mm)	(mm)	(mm)	(mm)	
1 (25)	1-1/2 (40)	2 (50)	3 (75)	
1-1/2 (40)	1-1/2 (40)	2 (50)	3 (75)	
2 (50)	1-1/2 (40)	2 (50)	3 (75)	
2-1/2 (65)	1-1/2 (40)	2 (50)	3 (75)	
3 (80)	2 (50)	2-1/2 (65)	3-1/2 (85)	
4 (100)	2 (50)	2-1/2 (65)	3-1/2 (85)	
5 (125)	2 (50)	2-1/2 (65)	3-1/2 (85)	
6 (150)	2-1/2 (65)	3 (80)	4-1/2 (110)	
8 (200)	2-1/2 (65)	3 (80)	4-1/2 (110)	
10 (250)	3 (80)	4 (100)	5 (125)	
12 (300)	3 (80)	4 (100)	5 (125)	
14 (350)	3 (80)	4 (100)	5 (125)	
16 (400)	3 (80)	4 (100)	5 (125)	
18 (450)	3 (80)	4 (100)	5 (125)	

Notes: Insulation listed has passed the 96-hour boiling water test which indicates that satisfactory performance in underground service can be expected. Pipes smaller than 1 inch (25 mm) shall have the same insulation thickness as required for 1 inch (25 mm) pipe.

- E. Insulation Banding and Jacket: ASTM A167, stainless steel bands and clips, at least 0.5 inches (13 mm) wide, (304 stainless steel), maximum spacing 18 inches (460 mm). A minimum of two bands is required for each 4 foot (1300 mm) section of insulation.
- F. Vinyl-coated fiberglass scrim jacket: Fed. Spec. L-S-125, Type II, Class 2, with 18 x 16 mesh (number of filaments per inch) and made of 0.013 inches (0.335 mm) diameter vinyl-coated fibrous glass yarn. Install bands over the jacket to secure the insulation to the carrier pipe.
- G. Casing: ASTM A139, smooth-wall steel, electric resistance welded. Plastic casings are not permitted. Use eccentric connectors as necessary between casing sections to provide continuous gravity drainage in bottom of casing between manholes and between manholes and buildings.

Casing Diameter in. (mm)	Minimum Thickness in. (mm)	
6 - 46 (150 - 1170)	0.250 (6.35)	

- H. Casing End Seal Plates with Vents and Drains: ASTM A36, steel, minimum thickness 0.375 inches (9.5 mm) for casings up thru 12 inches (300 mm) diameter and 0.5 inches (13 mm) for casings over 12 inches (300 mm) diameter. Provide 1 inch (25 mm) drain at the bottom and vent at the top. Construct with threaded steel half couplings. Install threaded brass plugs in drains.
- I. Vent Riser Pipes: ASTM A53, Schedule 40, galvanized, extending through top of manhole and terminate 12 inches (300 mm) above grade with 180degree bend.
- J. Gland Seals are not permitted because of the possibility of water entering the system thru the gland seal from a flooded manhole.
- K. Provide continuous 1 inch (25 mm) minimum air space between carrier pipe insulation and casing.
- L. Casing coating shall be dual layers of fusion-bonded epoxy, inner greencolored layer minimum thickness 0.020 inches (0.5 mm), outer blackcolored layer minimum thickness 0.010 inches (0.25 mm). Rated by coating manufacturer for continuous service for at least 25 years at minimum temperature of 230 deg F (110 deg C) and having a coefficient of expansion similar to that of steel. Coating shall be applied in accordance to recommendations of coating manufacturer including surface preparation. Factory-inspect for holidays and make repairs as necessary.
- M. Coating of end plates and casing (conduit) sections extending in manholes shall be zinc-rich coating that conforms to AASHTO M300, Type IA except that volatile organic compounds shall not exceed 2.8 pounds per gallon (0.34 kg per liter). The zinc rich coating shall be applied in accordance with the recommendations of the coating manufacturer including surface preparation. No additional top coat shall be applied.
- N. Carrier pipe guides and supports shall be maximum spacing 10 feet (3000 mm) on centers, no more than 5 feet (1500 mm) from pipe ends, minimum of three guides per elbow section. Designed to permit thermal expansion without damage, provide proper pipe guiding and support, and to allow horizontal movement in two directions as necessary at expansion loops and bends. Design of guides and supports must permit continuous drainage of water in bottom of casing. Pipe insulation shall extend thru the pipe guides and supports and be protected by steel sleeves. Design of guides and supports shall be such that no metal-to-metal contact exists between the casing and the carrier pipe. Insulation or non-metallic material

used to ensure no metal to metal contact shall be designed to not be compressed by the weight of the carrier pipe when full of water.

- O. Anchor plates shall be ASTM A36 steel, welded to carrier pipe and casing, 0.5 inches (13 mm) minimum thickness, passages for air flow and water drainage thru the annular air space in the system. Coated with same coating material as the casing. Locate 3 to 5 feet (900 to 1500 mm) from piping entrance to manhole or building wall. Walls of manholes and buildings cannot be utilized as anchor points.
- P. Field connection of casing sections shall be steel section conforming to casing specification, welded to casing sections, coated on all surfaces with system manufacturer's coating field repair compound, and covered with a 0.05 inch (1.3 mm) minimum thickness polyethylene shrink sleeve designed for a service temperature exceeding 176 deg F (80 deg C).
- Q. Manhole and building wall penetrations shall provide steel leak plates welded to wall sleeves or to casings. Where a wall sleeve is utilized, allow sufficient annular space between the sleeve and the casing and install a watertight seal, rated for 250 deg F (121 deg C) minimum. Manhole and building walls cannot be used as anchor points.
- R. Provide sacrificial anode type cathodic protection system with dielectric isolation devices and test stations for all systems. Design system for 25 years service, assume two percent bare metal. System shall comply with NACE SP0169.
- S. Provide embossed brass or stainless steel tag hung by a brass or stainless steel chain at each end of each conduit or insulated piping in the manholes and buildings. The tag shall identify system manufacturer's name, date of installation, government contract, and manufacturer's project number.
- T. All branch piping connections must be located in manholes. Manholes
- U. Reinforced concrete manholes: Not less than 8 inches (200 mm) thick. Pour monolithically where possible. Place waterproof membrane between mud slab and bottom concrete slab, and continue up sides to top of sidewalls. Joints between manhole walls and conduit casings or concrete trench sections shall be watertight. Steel manholes or prefabricated concrete manholes are not permitted.
- V. Accessories for Manholes: Cast iron manhole frames and solid covers, not less than 28 inch (700 mm) clear openings. Unless otherwise shown on the drawings, frames and covers shall be as follows:

06-01-13

- 1. For non traffic applications:
 - a. Fed Spec. A-A-60005 NOT1, Frame Type IV, Size 28
 - b. Fed Spec. A-A-60005 NOT1, Cover Type E, Size 28, cast identification "STEAM".
- 2. For traffic applications:
 - a. Fed Spec. A-A-60005 NOT1, Frame Type I, Style A, Size 27A
 - b.Fed Spec. A-A-60005 NOT1, Cover Type A, Size 27A, cast

identification "STEAM".

3. Manhole steps shall be standard, cast iron.

- W. Manhole ventilation: As indicated on Drawings. Construct ventilation ducts of galvanized steel sheet metal and in accordance with ASHRAE Handbook recommendations for low pressure ducts. Gravity ventilators shall be factory fabricated of aluminum or galvanized steel and arranged as indicated on drawings. Ventilating pipes shall be standard weight black steel and installed as shown on drawings.
- X. Drainage as shown on drawings. Provide a 24 inch (610 mm) square by 24 inch (610 mm) deep sump pit in each manhole where indicated on drawings. Provide larger sump pit if necessary to accommodate required electric sump pumps.
- Y. Electric Sump Pumps with Automatic Controls and High Water Alarm:
 - 1. Type: High temperature submersible duplex pumps and automatic controls.
 - 2. Service: Continuous operation at required flows and pressures while completely submerged at 200 deg F (93 deg C). All pumps and pump controls shall have demonstrated 200,000 cycles of operation at 200 deg F (93 deg C) and 100% relative humidity while totally submerged in water.
 - 3. Capacity and pressure: Pumps shall be capable of passing 0.375 inch (10 mm) spheres. Pumps and motors shall be capable of operating continuously without damage when not submerged.
 - 4. Pumps: Epoxy-coated cast iron casing, cast iron impeller, stainless steel shaft, carbon/ceramic shaft seal, stainless steel hardware, permanently lubricated bearings, screened inlets. Schedule 80 discharge pipe protected from corrosion.
 - 5. Motors: Non-overloading at all points on the pump performance curve. Include overload protection.
 - 6. Controls: Automatic alternating lead-lag, with damp-proof electrical service.

7. High water alarm switch: Set at level below lowest steam or condensate pipe in the manhole. Switch shall activate weatherproof red alarm light mounted above grade as shown. Provide contacts and connect to for future connection to engineering control center.

2.6 TUNNELS (WALK THRU)

- A. Reinforced concrete tunnel: Place waterproof membrane between mud slab and bottom concrete slab and continue up sides and over top of tunnel roof slab.
- B. Precast concrete tunnel: ASTM C655. Construct precast concrete pipe tunnel with straight runs of tunnel. Provide cast-in-place concrete tunnel sections at each bend and at each change in grade of the tunnel. Mortar shall be as recommended by the precast concrete tunnel manufacturer.
- C. Ventilation ducts: Galvanized sheet steel constructed in accordance with ASHRAE Handbook recommendations. Gravity ventilators shall be factory fabricated of aluminum or galvanized steel.
- D. Provide drainage system at all low points of tunnel systems as shown on the drawings.
- E. Waterproof manholes and below grade ventilation ducts.

2.7 CONCRETE SHALLOW TRENCHES

- A. Reinforced Cast-in-Place Trench: Reinforced concrete with minimum thickness 8 inches (200 mm).
 - Trench covers: Precast reinforced concrete sections, set to existing grade, flat and true at all points of contact on trench wall; trench and cover to form a watertight envelope when assembled.
 - 2. Waterproofing: Apply to all below grade portions of the trench.
 - 3. Gaskets and sealants: ASTM C920, 1/4 inch (6 mm) thick neoprene pads with a minimum width of 2 inches (50 mm) between covers and tops of walls; elastomeric sealants that are available as a one or two component system. Asphaltic sealants are not permitted. Sealants must resist 50% total joint movement. Non-sagging sealant must be used for vertical joints. Self-leveling sealant must be used for trench top butt joints.

2.8 STEAM CARRIER PIPING

- A. Pipe: ASTM A53, steel, seamless, Grade B. Standard weight permitted for pipe sizes 12 inches (300 mm) and above. Grade F, furnace butt-welded pipe, is not permitted.
- B. Joints:
 - 1. In trenches and direct-buried systems: Butt-weld; socket weld for pipe sizes 2 inches (DN 50) and below. Manufacturer's standard sliding gasketed joints are permitted between sections of WSL preengineered direct-buried systems. No joints are allowed in factoryfabricated straight sections of pre-engineered direct-buried systems. Factory-fabricated direct-buried piping sections that are a portion of an expansion loop or bend shall have all welded joints 100% radiograph inspected. All radiographs shall be reviewed and interpreted by a American Society for Non-Destructive Testing (ASNT) Certified Level III radiographer, employed by the testing firm, who shall sign the reading report. Dye penetrant testing may be utilized for pipe sizes 2 inches (50 mm) and below.
 - 2. In tunnels, manholes and open areas: Butt weld pipe sizes 2-1/2 inches (65 mm) and above; thread or socket weld pipe sized 2 inches (50 mm) and below.
- C. Fittings:
 - Butt welded joints: ASTM A234 or ASME B16.9, steel, Grade B, same schedule as adjoining pipe. All elbows shall be long radius unless otherwise indicated. Tees shall be full size or reducing as required, having interior surfaces smoothly contoured.
 - Threaded joints: ASTM A47 or ASTM A197 or ASME B16.3, malleable iron, 300 pound (2050 kPa) class.
 - 3. Socket welded joints: ASME B16.11, forged steel, 2000 psi (13,800 kPa) class.
- D. Flanges and bolts: ASME B16.5, weld neck, forged steel or ASTM A105, pressure class 150 psi (1025 kPa). Bolts shall be high strength ASTM A193, Class 2, Grade B8. Nuts shall be ASTM A194.
- E. Unions: Pipe 2 inches (50 mm) and smaller shall be threaded, malleable iron or steel, 300 psi (2050 kPa) class.

2.9 STEAM CONDENSATE CARRIER PIPING

A. Pipe: ASTM A53, seamless, Grade B or ASTM A106, Grade B or ASTM A53 electric resistance welded, Grade B; Schedule. Grade F, furnace buttwelded, pipe is not permitted.

- B. Joints:
 - 1. In Trenches and direct-buried systems: Butt weld joints. Socket weld is required for pipe sizes 2 inches (50 mm) and below. Manufacturer's standard sliding, gasketed joints are permitted between factoryfabricated sections of direct buried WSL system. No joints are allowed in factory-fabricated straight sections of pre-engineered direct-buried systems. Factory-fabricated direct-buried piping systems that are a portion of expansion loops or bends shall have all welded joints 100% radiograph inspected. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report. Dye penetrant testing may be utilized for pipe sizes 2 inches (50 mm) and below.
 - 2. In tunnels, manholes and open areas: Butt weld pipe sizes 2-1/2 inches (65 mm) and above; thread or socket weld pipe sizes 2 inches (50 mm) and below.
- C. Fittings:
 - 1. Welded joints: ASTM A234, steel, Grade B, or ASME B16.9, same schedule as adjoining pipe.
 - 2. Threaded joints: ASTM A47 or A197, malleable iron, or ASME B16.3, 300 psi (2050 kPa) class.
 - 3. Socket welded joints: ASME B16.11, forged steel, 2000 psi (13,800 kPa) class.
- D. Unions (Except in Trenches) are allowed on piping 2 inches (50 mm) and under, 300 psi (2050 kPa) malleable iron or steel.
- E. Flanges: Weld neck ASME B16.5 or ASTM A105, forged steel, 150 psi (1025 kPa).

2.10 EXPANSION LOOPS AND BENDS

A. Stresses: Less than the maximum allowable stress in the Power Piping Code (ASME B31.1). Submit shop drawings and stress and anchor force calculations for all loops and bends. Show locations of all anchors, guides and supports. Base calculations on 150 psi (1000 kPa) and 366 deg F (185 deg C) for steam line loops and bends and 50 psi (345 kPa) and 310 deg F (154 deg C) for condensate return line loops and bends. Base calculations on actual pressures and temperatures if they are higher than those listed above. B. Low pressure steam systems 15 psi (100 kPa) and less: ASME B31.9, base calculations for steam and condensate on 15 psi (100 kPa) and 250 deg F (121 deg C).

2.11 EXPANSION JOINTS

- A. Provide factory-built or field-fabricated guides located along the pipelines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 5-30 psi (35-200 kPa): Rated 50 psi (345 kPa) at 298 deg F (148 deg C)
 - b. Steam Service 31-125 psi (214-850 kPa): Rated 150 psi (1025 kPa)
 at 366 deg F (186 deg C)
 - c. Steam Service 126-150 psi (869-1025 kPa): Rated 200 psi (1375 kPa)
 at 382 deg F (194 deg C)
 - d. Condensate Service: Rated 100 psi (690 kPa) at 310 deg F (154 deg C)
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000
 - 3. Movement: Allowed as recommended safety factor of the manufacturer.
- C. Internally pressurized bellows shall have:
 - 1. ASTM A240, multiple corrugations, Type 304 or 321 stainless steel.
 - 2. Internal stainless steel sleeve running the entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 50 psi (340 kPa).
 - 4. Welded ends.
 - 5. External tie rods: Design to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline and integral external cover.
- D. Externally pressurized bellows shall have:
 - 1. ASTM A240, multiple corrugations, Type 304 stainless steel.
 - 2. Internal and external guides integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Include threaded connection at bottom, 1 inch (25 mm) minimum, for drain or drip point and integral external cover and internal sleeve.
- E. Slip Type Joints shall include:
 - 1. Steel construction, except guides.
 - 2. Base with integral anchor.

- 3. Internally and externally guided steel slip, chrome plated to reduce corrosion, ground to reduce friction.
- 4. Guides shall be non ferrous, non-corroding, low friction, designed to prevent scoring or binding of the slip.
- 5. Welded ends.
- 6. Limit stop to prevent slip disengagement if pipe anchor fails.
- 7. Semi plastic, self lubricating, injectable packing contained between sealing rings.
- 8. Injection devices to allow addition of packing under full line pressure. Provide one year supply of packing.
- 9. Threaded connection at bottom, 1 inch (25 mm) minimum, for drain or drip point.
- 2. Bolted packing gland permitting replacement of all packing and all sealing rings without removing joint from the line.
- F. Expansion Compensators are:
 - 1. Permitted for condensate lines where pipe expansion is within limits of compensator.
 - Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 3. Internal guides and anti torque devices.
 - 4. Threaded ends.
 - 5. External shroud.
- G. Stamped brass or stainless steel nameplate: Indicating on each expansion joint the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Provide factory-built guides along the pipeline to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15% of the axial force that will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings. Guide locations must conform to recommendations of expansion joint manufacturer.

2.12 BALL JOINTS

- A. Factory built devices, inserted in pipe line offsets in groups of two or three as shown to absorb cyclical pipe movement which results from thermal expansion and contraction.
- B. Minimum service requirements shall be rated 250 psi (1725 kPa), 450 deg F (232 deg C), continuous on steam and condensate.

- C. Submit independent certification that similar units have passed the following tests with no leaks.
 - Low Pressure Leakage Test: Minimum 6 psi (40 kPa) saturated steam for 60 days.
 - 2. Life Cycle Flex Test: Minimum 8000 flex cycles at 250 psi (1725 kPa) saturated steam.
 - 3. Thermal Cycling Test: Minimum 100 cycles from atmospheric pressure to operating pressure and back to atmospheric pressure with saturated steam.
 - 4. Environmental Shock Test: MIL S 901.
 - 5. Vibration Test: Test for 170 hours on each of three mutually perpendicular axes at 25 to 125 HZ; 0.05 to 0.10 inch (1 to 2 mm) double amplitude on a single ball joint and on a three ball joint offset.
- D. Joints: ASME B31.1:
 - 1. Cast or forged carbon steel with welded ends.
 - 2. Standard weight pipe wall thickness.
 - 3. Minimum angular movement capability: 15 degrees and 360 degrees rotational movement.
 - 4. Gaskets: Non asbestos.
 - 5. Packing injection devices, if provided: Allow injection under full line pressure. Provide one year supply of packing.

2.13 VALVES

- A. Gate Valves (ASTM A126):
 - 1. Type 101 shall have:
 - a. Cast steel body, rated 150 psi (1025 kPa) at 500 deg F (260 deg C), 11-1/2 to 13 percent chromium stainless steel flexible wedge and hard faced (stellite) or nickel copper alloy seats, 150 psi (1025 kPa) flanged ends, OS&Y, rising stem, bolted bonnet.
 - b. Factory installed globe valved bypass on all steam valves larger than 3 inches (80 mm).
 - c. Drill and tap bosses for connection of drains where shown.
 - 2. Type 102 is not used.
 - 3. Type 103 shall have:
 - a. Cast iron body, Class B, rated for 125 psi (850 kPa) saturated steam, 200 psi (1375 kPa) WOG, bronze or bronze faced wedge and seats, 125 psi (850 kPa) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.

- 4. Type 104 shall have:
 - a. Bronze body, rated for 200 psi (1375 kPa) saturated steam, 400 psi (2750 kPa) WOG, bronze wedges and Monel or stainless steel seats, threaded ends, rising stem, union bonnet.
- 5. Type 105 is not used.
- 6. Type 106 shall have:
 - a. Forged steel body, rated for 300 psi (2050 kPa) at 420 deg F (216 deg C) minimum Class 600 psi (4130 kPa) or Class 800 psi (5500 kPa), hardened stainless steel or satellite wedge and seats, threaded ends, OS&Y, rising stem, bolted bonnet.
- B. Globe Valves (ASTM A126):
 - 1. Type 201 shall have:
 - a. Cast steel body, rated 150 psi (1025 kPa) at 500 deg F (260 deg C), 11-1/2 to 13 percent chromium stainless steel or stellite disc and seat, 150 psi (1025 kPa) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings. Drill and tap bosses for connection of drains.
 - 2. Type 202 is not used.
 - 3. Type 203:
 - a. Cast iron body, rated for 125 psi (850 kPa) saturated steam, 200 psi (1375 kPa) WOG, bronze or bronze-faced disc (Teflon or composition facing permitted) and seat, 125 psi (850 kPa) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.
 - 4. Type 204:
 - a. ASTM B61, bronze body, rated for 200 psi (1375 kPa) saturated steam, 400 psi (2750 kPa) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, renewable seat rings.
- C. Check valves (ASTM A126):
 - 1. Type 401 shall have:
 - a. Cast steel body, swing-type, rated for 150 psi (1025 kPa) at 500 deg F (260 deg C), stainless steel or stainless steel - faced disc and seat, 150 psi (1025 kPa) ASME flanged ends, bolted cover, renewable disc.
 - 2. Type 402 is not used.
 - 3. Type 403 shall have:

- a. Cast iron body, Class B, swing-type, rated for 125 psi (850 kPa) saturated steam, 200 psi (1375 kPa) WOG, bronze or bronze-faced disc and seat, 125 psi (850 kPa) ASME flanged ends, bolted cover, renewable disc and seat.
- 4. Type 404 shall have:
 - a. Bronze body, swing-type, rated for 200 psi (1375 kPa) saturated steam, 400 psi (2750 kPa) WOG, bronze disc, threaded ends, regrinding disc.
- D. Ball valves (ASTM A126):
 - 1. Type 501 is not used.
 - 2. Type 502 shall have:
 - a. Bronze body, rated for 150 psi (1025 kPa) at 365 deg F (185 deg C), 250 psi (1725 kPa) at 250 deg F (121 deg C); reinforced TFE seat, stem seal and thrust washer; end entry, threaded ends, onefourth turn to open.
 - 3. Type 503 is not used.
 - 4. Type 504 shall have:
 - a. Carbon steel or ductile iron body, saturated steam service, rated for 150 psi (1030 kPa), stainless steel ball and stem, Polyfil seat, live-loaded stem seal, 150 psi (1025 kPa) ASME flanged ends. Manufacturer: American, Worcester, or equal.
- E. Butterfly valves (ASTM A126):
 - 1. Type 601 shall have:
 - a. Ductile iron body, wafer style, rated for 125 psi (850 kPa), 212 deg F (100 deg C), bronze disc, stainless steel stem, EPDM liner, EPDM stem seal and body seal, neck extending beyond pipe insulation, geared handwheel operator for valves 4 inch (100 mm) pipe size and larger, ratchet handle operator for smaller pipe sizes.
 - 2. Type 602:
 - a. Triple-offset, lug or flanged type, carbon steel body, steam service, rated for 150 psi (1025 kPa) at 500 deg F (260 deg C), stainless steel nitrided disc, stellite seat, stainless steel shaft, stainless steel/graphite-laminated seal ring, neck extending beyond pipe insulation, geared handwheel operator for valves 4 inch (100 mm) pipe size and larger, ratchet handle operator for smaller pipe size valves.
- F. Valve Applications (Steam Lines):

1. Gate valves, 2 inches (50 mm) and under: Type 106. 2. Gate valves, 2-1/2 inches (65 mm) and above: Type 101. 3. Globe valves, 2 inches (50 mm) and under: Type 204. 4. Globe valves, 2-1/2 inches (65 mm) and above: Type 201. 5. Check valves, 2 inches (50 mm) and under: Type 404. 6. Check valves, 2-1/2 inches (65 mm) and above: Type 401. 7. Ball valves, 2 inches (50 mm) and under: Type 502 8. Ball valves, 2-1/2 inches (65 mm) and above: Type 504. 9. Butterfly valves, all sizes: Type 602. G. Valve Applications (Condensate Lines): 1. Gate valves, 2 inches (50 mm) and under: Type 104. 2. Gate valves, 2-1/2 inches (65 mm) and above: Type 103. 3. Globe valves, 2 inches (50 mm) and under: Type 204. 4. Globe valves, 2-1/2 inches (65 mm) and above: 5. Type 203. Check valves, 2 inches (50 mm) and under: Type 404. 6. Check valves, 2-1/2 inches (65 mm) and above: Type 403. 7. Ball valves, 2 inches (50 mm) and under: Type 502.

8. Ball valves, 2-1/2 inches (65 mm) and above: Type 504.

9. Butterfly valves, all sizes: Type 601.

2.14 STEAM PRESSURE REDUCING VALVES

- A. Valves: Single seated, diaphragm operated, spring loaded, steam pilot controlled, normally closed, packless, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
- B. Controlled reduced pressure to steam piping systems: Design for saturated steam at pressures shown on drawings.
- C. Pressure control: Smooth, continuous. Maximum 10 percent deviation from set pressure over an 18/1 turndown. Refer to schedules on drawings for flow and pressure requirements. Maximum flow capability of each valve shall not exceed capacity of downstream safety valves.

D. Construction:

- Main Valve Pipe Sizes 2 inches (50 mm) and under: Cast iron body rated for 250 psi (1725 kPa), threaded ends. Valve plug and seat shall be replaceable, Type 316 stainless steel and include stainless steel stem.
- 2. Main Valves Pipe Sizes Above 2 Inches (50 mm): Cast steel body rated for 150 psi (1025 kPa) ASME flanged ends, or cast iron body 250 psi (1725 kPa) ASME flanged ends, valve plug and seat shall be

replaceable, Type 316 stainless steel and include stainless steel stem.

3. Pilot Valve: Valve plug and seat shall be replaceable, stainless steel.

2.15 STEAM TRAPS

- A. Apply at steam line drip points.
- B. Construct inverted bucket type with thermostatic vent in bucket, except closed-float-thermostatic on discharge side of pressure reducing stations. Each type furnished by a single manufacturer. Select the traps for pressures and capacities as shown or required. Fixed orifice or venturi type traps are not permitted.
- C. Traps: Cast iron or stainless steel bodies. Construction shall permit ease of removal and servicing working parts without disturbing connecting piping. Include stainless steel floats, hardened chrome steel valves, stainless steel mechanisms and bi-metallic air vent on inverted bucket traps.
- D. not used.
- E. All traps shall include ports for future installation of monitoring devices. To facilitate future removal of plugs, remove plugs, install Teflon tape on the threads, and reinstall the plugs.
- F. Label each trap at the factory with an identification number keyed to the contract drawings. Label shall be a metal tag permanently attached to the trap.

2.16 STRAINERS, Y TYPE

- A. Provide as shown on steam and condensate piping systems.
- B. Include open end removable cylindrical screen and threaded blow off connection.
- C. For steam service up to 150 psi (1025 kPa) and at drip traps, strainer shall be rated for minimum 150 psi (1025 kPa) saturated steam; rated for 150 psi (1025 kPa), flanged ends, cast steel, for pipe sizes above 2 inches (50 mm). Use cast iron or bronze, rated for 250 psi (1725 kPa) saturated steam, threaded ends, for pipe sizes 2 inches (50 mm) and under.
- D. For condensate service, strainer shall be rated for 125 psi (850 kPa) saturated steam, 175 psi (1200 kPa) WOG. Provide 125 psi (850 kPa), flanged ends, cast iron, for pipe sizes above 2 inches (50 mm). Provide cast iron or bronze, threaded ends, for pipe sizes 2 inches (50 mm) and under.

- E. Strainer screen shall be stainless steel, with a free area not less than 2 1/2 times flow area of pipe. Diameter of openings shall be 0.05 inch (1.3 mm) or less on steam service and 0.06 inch (1.5 mm) or less on water service.
- F. Include gate type valve and quick couple hose connection on all blowoff connections.

2.17 SAFETY VALVES AND VENT CONNECTORS

- A. Safety valves: Conform to the requirements of ASME Boiler and Pressure Vessel Code (Section VIII, Unfired Pressure Vessels) and be approved by the National Board of Boiler and Pressure Vessel Inspectors.
- B. Relieving capacity: Not less than that shown on the drawings with a pressure rise above set pressure not to exceed 10 percent of set pressure.
- C. Provide, at the discharge of each safety valve, a special flexible connector attached to the vent pipe and the safety valve. Multi-ply stainless steel bellows, full internal pipe liner, protective exterior shroud, drip catching configuration with drain, designed to prevent blow back of steam into space, pressure tested at not less than 15 psi (100 kPa). Drip pan ells not allowed in tunnels or constricted spaces because of "blow-back" of steam from the drip pan ell openings.

2.18 PRESSURE GAGES

- A. Provide gages immediately downstream of each steam line isolation valve, before and after each steam pressure reducing station and where shown on the drawings.
- B. Gages: ASME B40.100
 - Solid armored front between measuring element and dial, blowout back, bottom connection, phenol turret type.
 - Non corrosive, 4-1/2 inch (110 mm) diameter face with black markings on white background.
 - 3. Bourdon tube measuring element designed for service. Provide bellows for pressure ranges under 15 psi (100 kPa).
 - 4. Stainless steel, rotary movement.
 - 5. Micrometer adjustable, black color pointer.
 - 6. Plastic window.
 - 7. Provide liquid filled gages at outlet of all pumps.
- C. Accuracy: Grade 2A, 1/2 percent, on all gages; except Grade A, one percent permitted on diaphragm actuated gages, liquid filled gages, and compound gages.

D. Include:

- 1. Red set hands on gages located at automatic pressure regulator valve outlets.
- 2. Needle valve or gage cock rated for the service.
- 3. Syphon on all steam gages.
- 4. Overload stop on all pressure gages.
- E. Except where otherwise shown on the drawings, pressure ranges shall be as follows:

SERVICE	RANGE	
Steam to 15 psi (100 kPa)	0 to 30 psi (0 to 200 kPa)	
Steam to 59 psi (407 kPa)	0 to 100 psi (0 to 700 kPa)	
Steam above 59 psi (407 kPa)	0 to 200 psi (0 to 1500 kPa)	
Condensate Pump Discharge	0 to 100 psi (0 to 700 kPa)	
Vacuum Return	30 inches HG 0 - to 15 psi (100 kPa	
	vacuum to 100 kPa)	

2.19 THERMOMETERS, PIPE OR TANK MOUNTED

- A. Thermometer locations are shown on the drawings.
- B. Thermometers:
 - 1. Industrial type, separable well and socket, union connected.
 - Red reading mercury combination Fahrenheit/Celsius scale, 9 inches (220 mm) long.
 - 3. Corrosion resistant case with glass or plastic front.
 - 4. Straight or back form except those located more than 7 feet (2100 mm) above floor shall be adjustable angle.
 - 5. Wells sized to suit pipe diameter without restricting flow, or provide oversized pipe at well location. Snug sliding fit between socket and well.
 - 6. Accuracy shall be one percent of scale range.
 - 7.30 to 300 deg F (0 to 150 deg C).

2.20 PIPE HANGERS AND SUPPORTS

- A. Requirements: MSS SP 58 and ASME B31.1.
- B. Applies to all piping not in factory-fabricated direct-buried system. All systems shall be completely supported. Arrange supports so that all loads due to weight, thermal expansion, seismic shock (if applicable), and pressure are transferred from the support system to the structure. The design and location of supports shall at all times prevent excessive forces, moments, and stresses from being imposed on the equipment,

structure, supported system, and supports. Heated systems generally require resilient or roller/slide supports.

- C. Manufacturer Certification: Factory built products of a manufacturer whose principle business is pipe supports for 5 years. All components must have published load ratings. For concrete trenches, non-factory built products that comply with details may be utilized.
- D. Drawings:
 - 1. Types, sizes, locations, and spacing of all hangers and supports.
 - 2. Roller or slider supports for all horizontal steam and condensate piping.
 - 3. Special supports including anchors, guides and braces.
 - 4. If equipment and piping arrangement differs from that shown on the drawings, support locations and types shall be revised at no cost to the government.
 - 5. Supports to permit removal of valves and strainers from pipelines without disturbing supports.
 - 6. Spring hangers on all systems subject to vertical movement.
 - 7. Roller hangers and sliding supports on all systems subject to horizontal movement.
 - If vertical angle of hanger rod exceeds four degrees, rollers or sliders are required.
 - 9. Loads for all supports. On systems utilizing variable spring supports; show the loads at each support by calculating the forces and moments throughout the system.
 - 10. Vertical deflection: Shall not exceed 0.1 inch (2.5 mm) between supports when system is filled with fluid normally carried.
 - 11. Individual drawing for each hanger assembly showing all components, sizes, calculated loadings. Provide identification tags, on each hanger part, keyed to the layout drawings.
- E. Components:
 - 1. Roller supports: MSS SP 58, Type 41, 43 and 46. Provide vertical adjustment for Type 41 with threaded studs and nuts adjacent to the roller.
 - 2. Variable spring support assembly: MSS SP 58, Type 51 variable spring, Type 3 pipe clamp, or Type 1 clevis, Type 53 variable spring trapeze . Locate Type 51 variable spring within 1 foot (300 mm) above pipe attachment. Attach rod to top of variable spring with Type 14 clevis.

- F. Spring Cushion Support Assembly: MSS SP 58.
 - 1. Double rod assembly: Type 41 and 49.
 - 2. Single rod assembly: Type 48 spring cushion, Type 3 pipe clamp, or Type 1 clevis . Locate spring cushion within 1 foot (300 mm) above pipe attachment.
- G. Clevis supports: MSS SP 58, Type 1.
- H. Wall brackets: MSS SP 58, Type 31, 32, or 33.
- I. Pipe stands: MSS SP 58, Type 38.
- J.Riser clamp: MSS SP 58, Type 42.
- K. Alignment guides: Welded steel as shown to restrain movement perpendicular to the long axis of the piping. If not welded, provide steel spider clamped to pipe, enclosed within steel sleeve that is bolted or welded to structural support. Must provide lateral force equal to minimum of 15 percent of anchor loading.
- L. Trapeze supports: MSS SP 58, may be used where pipes are close together and parallel, structural steel channels or angles. Bolt roller supports to steel to support piping subject to horizontal thermal expansion. Attach other piping with "U" bolts.
- M. Pipe covering protection saddles: MSS SP 58, Type 39. Provide at all support points on insulated pipe except where Type 3 pipe clamp is provided.
- N. Sliding supports: MSS SP 58, Type 35. Welded steel attachments to pipe and structure with Teflon or graphite sliding surfaces bonded to the attachments. Provide steel guides, except at expansion bends, to prevent lateral movement of the pipe.
- O. Pipe racks and miscellaneous supports: ASTM A36, structural steel shapes. Manufactured strut systems are acceptable if they have the required load carrying ability.
- P. Supports, including all structural steel, in trenches and manholes: Hotdip galvanized.
- Q. Seismic Restraints:
 - 1. Provide bracing as required. Refer to details on drawings.
 - 2. Shock Absorbers: MSS SP 58, Type 50. Mechanical or hydraulic type rated for shock loads. Pipe attachments shall be MSS SP 58, Type 3.
 - Insulation Materials (In Manholes, Tunnels, Concrete Trenches, Open Areas)
- R. Calcium Silicate Insulation:
 - 1. Preformed piping insulation: ASTM C533, Type I.

- 2. Blocks: ASTM C533, Type I.
- 3. Fitting Insulation: ASTM C533, with polyvinyl chloride, Type II Grade GU, and Type III, premolded fitted covering 0.020 inches (0.5 mm) thick.
- S. Fiberglass Insulation:
 - 1. Preformed piping insulation: ASTM C547, 450 deg F (230 deg C).
 - 2. Fitting insulation: ASTM C547, 450 deg F (230 deg C), with polyvinyl chloride, Type II Grade GU, and Type III, premolded fitted covering 0.020 inches (0.5 mm) thick.
- T. Rigid closed cell phenolic foam: ASTM C1126, Type III, Grade 1, 250 deg F (121 deg C).
- U. Cellular glass insulation: ASTM C552.
- V. Insulating and finishing cements: ASTM C449, as recommended by the manufacturer for the type of insulation system and service conditions.
- W. Insulation bands: ASTM A167, minimum of 1/2 inch (12 mm) wide by 0.015 inch (0.4 mm) thick stainless steel.
- X. Aluminum jackets: Minimum of 0.016 inch (0.4 mm) thick aluminum, 3003 alloy, H-14 temper, with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory fabricated to match material and construction of the straight run jackets. Factory fabricated stainless steel bands shall be furnished and installed on all circumferential joints. Bands shall be 0.75 inch (20 mm) wide on 18 inch (450 mm) centers. Bands shall be applied with manufacturers recommended sealant. Entire system shall be watertight.
- Y. Service jackets: ASTM C1136, white kraft bonded to 0.001 inch (0.025 mm) thick aluminum foil, fiberglass reinforced, pressure sensitive adhesive closure, beach puncture tested to 50 units, suitable for painting without sizing. Jackets shall have a minimum 1-1/2 inch (40 mm) lap on longitudinal joints and not less than 4 inch (100 mm) butt strips on end joints. Butt strip material shall be same as the jacket. Lap and butt strips may be self-sealing type with factory-applied pressure sensitive adhesive.
- Z. Glass cloth jacket: A minimum 7.8 ounces per square yard (0.24 kg per square meter), 300 psi (2000 kPa) bursting strength, weathertight for outside service. Beach puncture test to 50 units.
- AA. Pipe covering protection saddles: MSS SP 58, Type 39 at all hanger points except where Type 3 pipe clamps are provided.

BB. Fire and smoke ratings of assembled insulation systems: ASTM C411 and NFPA 255, flame spread (25) and smoke developed (50) ratings.

2.21 BURIED UTILITY WARNING TAPE

A. Tape: 0.004 inch (0.1 mm) thick, 6 inches (150 mm) wide, yellow polyethylene with a ferrous metallic core, acid and alkali-resistant and shall have a minimum strength of 1750 psi (12,000 kPa) lengthwise and 1500 psi (10,300 kPa) crosswise with an elongation factor of 350 percent. Provide bold black letters on the tape identifying the type of system. Tape color and lettering shall be unaffected by moisture and other substances contained in the backfill material.

PART 3 - EXECUTION

3.1 GENERAL

- A. If the carrier pipe insulation has failed (disintegrated) in an existing buried piping system, but the system is otherwise sound, there is an alternative to total replacement of injecting foam insulation into the existing system from above grade.
- B. Connect new work to existing work in a neat and workmanlike manner. Where an existing structure must be cut or existing utilities interfere, such obstruction shall be bypassed, removed, replaced or relocated, patched and repaired. Piping connections shall be made only in manholes, tunnels or buildings.
- C. Coordinate the location of all items of equipment and work of all trades. Maintain operability and maintainability of the equipment and systems. The contractor at his cost shall perform any relocation of equipment or systems to comply with the requirement of operability and maintainability.
- D. Unless otherwise shown on drawings, steam lines shall be graded downward not less than 2 inches in 40 feet (50 mm in 12 meters) in direction of the flow. Provide eccentric reducing fittings on steam mains and branches, (except on vertical piping). Install said fittings to maintain continuity of grade in bottom of pipeline. Provide risers with drip pockets and steam traps on steam lines where space restrictions prevent continuous grading. All steam traps must be located in manholes or tunnels.

3.2 DEMOLITION

A. Perform work in accordance with requirements for phasing and the Drawings.

- B. Completely remove all pipe, valves, fittings, insulation, and all hangers including the connection to the structure and any fastenings.
- C. Seal all openings in manhole or building walls after removal of piping.
- D. All material and equipment removed shall become the property of the Contractor and shall be removed from Government property and shall not be stored in operating areas.
- E. All flame cutting shall be performed with adequate fire protection facilities available as required by safety codes and Contracting Officer's Representative.

3.3 PIPING APPLICATION

- A. LP Steam Piping:
 - NPS 2 (DN 50) and Smaller : Schedule 40, Schedule 80 , Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.
 - NPS 2-1/2 through NPS 12 (DN 65 through DN 300): Schedule 40, Schedule 80, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
 - 3. NPS 14 through NPS 18 (DN 350 through DN 450): Schedule 30, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
 - 4. NPS 20 (DN 500) and Larger: Schedule 20, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
 - 5. Conduit piping shall be Schedule 80 steel carrier pipe, with polyisocyanurate carrier-pipe insulation and with coated conduit. a. Piping Insulation Thickness shall be 1 inch (25 mm).
- B. HP Steam Piping:
 - 1. NPS 2 (DN 50) and Smaller: Schedule 40 Schedule 80, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.
 - 2. NPS 2-1/2 through NPS 12 (DN 65 through DN 300): Schedule 40, Schedule 80, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
 - 3. NPS 14 through NPS 18 (DN 350 through DN 450): Schedule 30, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.

- 4. NPS 20 (DN 500) and Larger: Schedule 20, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.
- 5. Conduit Piping shall be Schedule 80 steel carrier pipe, with polyisocyanurate carrier-pipe insulation and with coated conduit. a. Piping insulation thickness shall be 1 inch (25 mm).
- C. Condensate Piping:
 - 1. NPS 2 (DN 50) and smaller shall be the following:
 - a. Schedule 80, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.
 - b. RTRP and RTRF with adhesive or flanged joints.
 - 2. NPS 2-1/2 (DN 65) and larger shall be either of the following:
 - a. Schedule 80, Type E, Grade B, steel pipe; Class 150 wrought-steel fittings, flanges, and flange fittings; and welded and flanged joints.

3.4 RTRP AND RTRF WITH ADHESIVE OR FLANGED JOINTS.PIPING INSTALLATION

- A. Drawings indicate general location and arrangement of piping systems. Install piping insulation as indicated.
- B. Standing water in the bottom of trench: Remove all water.
- C. Pipe Bedding: Minimum 6 inch (150 mm) layer of sand.
- D. Clearance: Minimum 6 inch (150 mm) clearance between the pipes.
- E. Testing: Do not insulate piping or backfill piping trench until field quality-control testing has been completed and results approved.
- F. Grade:
 - 1. Install condensate piping at uniform grade of 0.4 percent downward in direction of flow.
 - 2. Install piping at uniform grade of 0.2 percent downward in direction of flow or as indicated on the Drawings.
- G. Drain Valves and Air Vents: In conduits, install at low points and air vents at high points.
- H. Install components with pressure rating equal to or greater than system operating pressure.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Secure anchors with concrete thrust blocks.
- L. Connect to steam and condensate piping where it passes through the building wall.

- M. Loose-Fill Insulation Installation:
 - 1. Form insulation trench by excavation or by installing drywall side forms to establish the required height and width of the insulation.
 - Support piping with proper pitch, separation, and clearance to backfill or side forms using temporary supporting devices that can be removed after back filling with insulation.
 - 3. Place insulation and backfill after field quality-control testing has been completed and results approved.
 - 4. Apply bitumastic coating to carbon-steel anchors and guides. Pour concrete thrust blocks and anchors.
 - 5. Wrap piping at expansion loops and offsets with mineral-wool insulation of thickness appropriate for calculated expansion amount.
 - Pour loose-fill insulation to required dimension agitating insulation to eliminate voids around piping.
 - 7. Remove temporary hangers and supports.
 - Cover loose-fill insulation with polyethylene sheet a minimum of 4 mils (0.10 mm) thick, and empty loose-fill insulation bags on top.
 - 9. Manually backfill with 6 inch (150 mm) lifts of clean backfill. If mechanical compaction is required, manually backfill with 12 inch (300 mm) lifts.

3.5 DRAIN VALVES AND VENT VALVES

A. Provide 1-1/2 inch (40 mm) minimum pipe size drain valves on condensate return carrier pipes at all low points in manholes. Provide 1 inch (25 mm) minimum air vent valves in manholes at all high points in condensate return carrier piping.

3.6 PIPE SUPPORT INSTALLATION (IN TRENCHES, TUNNELS, MANHOLES)

- A. Coordinate support locations prior to erection of piping. Hanger parts must be marked at the factory with a numbering system keyed to hanger layout drawings. Layout drawings must be available at the site during construction.
- B. Upper Attachments to Structure:
 - 1. New reinforced concrete construction shall have concrete inserts.
 - 2. For existing reinforced concrete construction, upper attachment shall be welded or clamped to steel clip angles (or other construction shown on the drawings) that are expansion bolted to the concrete. Expansion bolting shall be located so that loads place bolts in shear.

- 3. For steel deck and structural framing, upper attachments shall be welded or clamped to structural steel members.
- C. In existing concrete construction, expansion fasteners may be used for hanger loads up to one third the manufacturer's rated strength of the expansion fastener. Power set fasteners may be used for loads up to one fourth of rated load. When greater hanger loads are encountered, additional fasteners may be used and interconnected with steel members combining to support the hanger.
- D. Special Supports:
 - 1. Secure horizontal pipes where necessary to prevent vibration or excess sway.
 - Where hangers cannot be adequately secured as specified, make special provisions for hanging and supporting pipe as approved by the Contracting Officer's Representative.
 - 3. Do not attach pipe supports, hangers, clamps or anchors to equipment unless specified for that equipment or unless the Contracting Officer's Representative gives written permission.
- E.Locate spring hangar units within 1 foot (300 mm) of the pipe attachment, except in locations where spring assemblies interfere with pipe insulation.

SPEC WRITER NOTE: Delete paragraph if not required on Project.

- F. Seismic Braces and Restraints: Do not insulate piping within 1 foot (300 mm) of device until device has been inspected by Contracting Officer's Representative.
 - G. Minimum Clearances in Tunnels and Trenches:
 - 1. Floor to bottom of pipe support beam: 2 inches (50 mm)
 - 2. Floor to bottom of pipe insulation jacket: 6 inches (150 mm)
 - 3. Wall to side of pipe insulation jacket: 3 inches (75 mm)
 - 4. Ceiling to top of pipe insulation jacket: 1 inch (25 mm)

3.7 PAINTING EXPOSED STEEL SURFACES IN MANHOLES, TUNNELS AND CONCRETE SHALLOW TRENCHES

- A. For manholes and walk-through tunnels, provide surface cleaning and preparation and apply prime coat of rust resistant metal primer.
- B. For concrete shallow trenches, provide surface cleaning and preparation, apply primer and finish coat of zinc-rich paint.

3.8 DIRECT-BURIED SYSTEM INSTALLATION

- A. The Contractor shall oversee the deliver, store, install and test the system as per manufacturer's recommendations. All work shall be in strict accordance with the requirements specified by the manufacturer. Printed instructions must be available on site prior to delivery of system components. Any changes required to the design and layout of the system due to site conditions must be approved in writing by the Contracting Officer's Representative. All branch piping connections, valves and drip traps must be located within manholes.
- B. Excavation, Trenching, and Backfilling: Perform all excavation, trenching, and backfilling as required by the system manufacturer's design. Beach sand or any sand with large amounts of chlorides is not permitted. Place system on a 6 inch (150 mm) thick sand bed and backfill on all sides with 6 inch (150 mm) thick sand as measured from outside the carrier pipe/insulation. Foundation for system must be firm and stable. Foundation and backfill must be free from rocks. Concrete anchor and thrust blocks must be installed in undisturbed earth. Backfilling must not commence until elevations have been surveyed and accepted and system has been satisfactorily pressure tested including hydrostatic testing of carrier pipes and air testing of casings.
- C. Maintain constant slope of carrier pipes as shown or specified. Prior to backfilling over the top of the casing, but after removal of temporary supports, Contractor shall measure and record elevations of top of casing in the trench. Elevations shall be taken at every field joint, 1/3 points along each pipe section, and at tops of elbows. These measurements shall be checked against contract drawings and shall confirm that the conduit system has been installed to the elevations shown on the contract drawings unless approved by the Contracting Officer's Representative. Slope shall be uniform within 0.1 percent. Measurements shall be recorded by the Contractor, included in the direct buried system manufacturer representative's daily report, and given to the Contracting Officer's Representative prior to covering the top of the casing with backfill.
- D. Provide cathodic protection for all steel casing systems and all buried exposed metal. Provide dielectric pipe flanges and unions and isolation devices at all points necessary. Provide test stations at grade on each section of the piping system. Isolation flanges and unions shall be rated for the carrier pipe service temperature and pressure.

- E. Remove all dirt, scale, and other foreign matter from inside the piping by use of a pipe swab or pipe "pig" before connecting pipe sections, valves, or fittings.
- F. Sections of system that have been fully or partially submerged in water must be replaced. Moisture content of insulation during installation shall not exceed five percent by weight.
- G. At each casing termination (end plate) in buildings and manholes, plug the casing drain openings with brass plugs and extend 1 inch pipe size galvanized vent pipes (ASTM A53) from the casing vents through the tops of the manholes or 1 foot (300 mm) above the conduit in buildings. Terminate the outside vents in 180-degree bends.
- H. Provide reports to the Contracting Officer's Representative that include:
 - Daily written report: Prepared daily and signed by the Contractor. Submit the original report to the Contracting Officer's Representative on the same day it is prepared. Provide one set of field pictures of work daily.
 - 2. Report Contents: State whether or not the condition and quality of the materials used and the delivery, storage, installation and testing of the system are in accordance with the manufacturer's recommendations, changes to drawings and specifications, any corrective action that was taken of the system, identify any conditions that could result in an unsatisfactory installation.
 - Report Certification: Daily reports are to be reviewed, signed and sealed by the Professional Engineer responsible for the system installation.
 - 4. Report Submittals and Stop Order: Daily reports shall be submitted with the payment requests. All work must stop if daily reports are not furnished and requests for payments shall be denied if the daily reports are not furnished.
 - 5. Certification of Compliance: Upon completion of the work and 30 days prior to final acceptance, deliver to Contracting Officer's Representative a notarized Certificate of Compliance signed by principal officers of Contractor, stating that the installation is satisfactory and in accordance with plans, specifications, and manufacturer's instructions.

- 6. The Contractor shall retain copies of all the daily reports and the Certificate of Compliance for 5 years after final acceptance of the system by the Government.
- I. Sections of system that have been fully or partially submerged in water must be replaced. Moisture content of insulation during installation shall not exceed five percent by weight.
- J. At each casing termination (end plate) in buildings and manholes, plug the casing drain openings with brass plugs and extend 1 inch pipe size ASTM A53 galvanized vent pipes from the casing vents through the tops of the manholes or 1 foot (300 mm) above the conduit in buildings. Terminate the outside vents in 180-degree bends.

3.9 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded joints: ASME B1.20.1, tapered pipe threads. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified. Joints made with oil and graphite pipe joint compound shall have compound applied to male threads only.
 - 2. Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
 - 3. Pipe threads shall be cut to give proper engagement in threaded fittings. Clean pipe and fittings before installation and ream pipe after cutting threads. Threaded pipe shall have clean-cut threads; dull or damaged pipe dies shall not be used.
- D. Construct welded joints: AWS D10.12, using qualified processes and welding operators according to "Quality Assurance" Article. Branch connections shall be made with either welding tees or welding outlet fittings. Welding outlet fittings shall be forged, integrally reinforced to provide 100 percent pipe strength, beveled for full penetration welding and funneled at inlet for full fluid flow.
- E. Flanged joints: Select gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Gaskets and bolting shall be

applied in accordance with the recommendations of the gasket manufacturer and bolting standards of ASME B31.1. Strains shall be evenly applied without overstress of bolts. Gaskets shall cover entire area of mating faces of flanges.

- F. Location, spacing and cold set of ball joints: Conform to layout drawings approved by manufacturer of ball joints. Representative of manufacturer shall visit site and verify that installation is proper. Locate to allow access to all packing injection devices, when provided.
- G. Expansion Joints (Bellows And Slip Type):
 - Type, quantity and spacing of anchors and guides as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments that will be imposed.
 - 2. Cold setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
 - Prepare for service by cleaning all sliding surfaces, add packing as necessary. Remove all apparatus provided to restrain joint during shipping or installation.
 - 4. Expansion joints must be located in readily accessible manhole or in walk-through tunnel. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.
- H. Conduit piping joints shall be assembled in sections and finished with pourable or split insulation, exterior jacket sleeve, and apply shrinkwrap seals.
- I. All pipe intersections and changes in direction shall be made with factory-built-reinforced fittings. Field-fabricated fittings and miters are not permitted.

3.10 INSTALLATION - SAFETY VALVES

- A. Valves must be upright and oriented so that lifting levers are accessible from nearest walkway.
- B. Provide special flexible connector on each safety valve that is designed to avoid blow-back of steam into the tunnel or manhole. Slip joint to be arranged to prevent vent line from imposing any strain on safety valve and to prevent moisture accumulation in safety valve. Support vent line from above. Provide drain line to nearest floor drain from flexible connector. Provide separate vent line from each safety valve to

atmosphere unless otherwise shown. Piping weight on safety valve outlet shall not exceed that allowed by valve manufacturer.

C. Provide union or flanged connection at safety valve outlet to allow removal of safety valves without disassembling vents.

3.11 INSTALLATION - PRESSURE GAGES

A. Locate at inlet and outlet of each pressure reducing station, on each pump discharge and after main stop valves (gate and butterfly valves) on steam distribution lines. Orient gages so that dials are upright and visible from nearest walkway and from operating point of main steam stop valves. Provide gage cock. Provide siphon on steam service. Provide liquid filled gages on pump discharge.

3.12 INSTALLATION - THERMOMETERS

A. Orient thermometers so that scales are upright and visible from nearest walkway. Locate wells in flow stream.

3.13 INSTALLATION - VALVES

- A. Do not locate valve stems below the horizontal centerline of the pipe.
- B. Locate valves to permit access for operation, maintenance, and replacement.
- C. Provide 3/4 inch (19 mm) globe-valved warm-up bypasses at all steam gate and butterfly valves 3 inch (80 mm) pipe size and larger.
- D. Provide 3/4 inch (19 mm) gate or ball-valved drains at each side of steam gate and butterfly valves where condensate could collect, due to the slope of the pipeline, when the main valve is shut.

3.14 THERMAL INSULATION

- A. Steam, condensate and drip return piping, other than in pre-engineered direct buried systems, shall be insulated as follows:
 - Piping in concrete trenches and manholes: Insulated with calcium silicate, fiberglass, or cellular glass pipe insulation, glass cloth or aluminum jacket.
 - 2. Exposed piping in walk through tunnels: Insulated with calcium silicate, fiberglass, or cellular glass pipe insulation, all service jacket. Condensate return piping may be insulated with rigid cellular phenolic, all service jacket.
 - 3. Piping in manholes: Insulated with calcium silicate or cellular glass pipe insulation, glass cloth or aluminum jacket.
 - Minimum Insulation Thickness: Insulation thicknesses given in Table 5 and 6 are minimum nominal thickness.

		TABLE 5		
Minimum Pipe Insulation Thickness inches (mm)				
For Steam 16 to 250 psi (110 to 1724 kPa) gage				
Nominal Pipe	MPT-PC MPT-	Delta	Thermo-12	Foamglas
Diameter	PF		Super Caltemp	
inches (mm)				
1 (25)	2 (50)	2-1/2 (63)	4 (100)	4-1/2 (110)
1-1/2 (40)	2 (50)	2-1/2 (63)	4 (100)	4-1/2 (110)
2 (50)	2-1/2 (63)	3-1/2 (85)	4-1/2 (110)	5 (125)
2-1/2 (65)	2-1/2 (63)	3-1/2 (85)	4-1/2 (110)	5 (125)
3 (80)	3 (75)	4 (100)	5 (125)	6 (150)
4 (100)	3 (75)	4 (100)	5 (125)	6 (150)
5 (125)	3 (75)	4 (100)	5 (125)	6 (150)
6 (150)	3-1/2 (85)	4-1/2 (110)	5-1/2 (135)	6 (150)
8 (200)	6 (150)	3-1/2 (85)	5-1/2 (135)	6 (150)
10 (250)	4 (100)	5 (125)	6 (150)	6-1/2 (165)
12 (300)	4 (100)	5 (125)	6 (150)	6-1/2 (165)
14 (350)	4 (100)	5 (125)	6 (150)	6-1/2 (165)
16 (400)	4 (100)	5 (125)	6 (150)	6-1/2 (165)
18 (450)	4 (100)	5 (125)	6 (150)	6-1/2 (165)

TABLE 6				
Minimum Pipe Insulation Thickness inches (mm)				
For Stea	For Steam less than 16 psi (110 kPa) gage, Condensate Return			
Nominal Pipe	MPT-PC MPT-	Delta	Foamglas	Insul-phen
Diameter	PF		Thermo-12	
inches (mm)			Super Caltemp	
1 (25) and	1-1/2 (35)	2 (50)	3 (75)	1 (25)
under				
1-1/2 (40)	1-1/2 (35)	2 (50)	3 (75)	1 (25)
2 (50)	1-1/2 (35)	2 (50)	3 (75)	1 (25)
2-1/2 (65)	1-1/2 (35)	2 (50)	3 (75)	1 (25)
3 (80)	2 (50)	2-1/2 (63)	3-1/2 (85)	1 (25)
4 (100)	2 (50)	2-1/2 (63)	3-1/2 (85)	1-1/2 (38)
5 (125)	2 (50)	2-1/2 (63)	3-1/2 (85)	1-1/2 (38)
6 (150)	2-1/2 (63)	3 (76)	4-1/2 (110)	1-1/2 (38)
8 (200)	2-1/2 (63)	3 (76)	4-1/2 (110)	1-1/2 (38)

Parts not to be insulated are:

- a. Threaded valves
- b. Steam traps
- c.Check valves
- d. Unions
- e. Threaded strainers
- f. Strainer basket removal cover and bolting
- g. Dielectric flanges and unions
- h. Expansion joints
- i. Flexible connectors
- j. Ball joints except piping between joints

- 5. Installation of insulation:
 - a. Pressure Tests: Complete all pressure tests before installing.
 - b. Insulation material: New, clean, dry and stored in a clean dry environment; jacketing materials to be clean and unmarred; store adhesives in original containers. Materials shall not have exceeded the predicted shelf life as set by manufacturer.
 - c. Identify all materials incorporated in the job on manufacturer's container by name, type and description.
 - d. Apply materials on clean, dry surfaces from which all dirt, loose scale, construction debris has been removed by wire brushing.
 - e. The installation shall be neat, thermally and structurally tight without sag, neatly finished at all hanger or other penetrations and shall provide a smooth finished surface primed as required to receive specified painting.
 - f. Do not use scrap insulation. Repair any work damaged by welding, burning, compressing due to concentrated construction loads.
 - g. Apply pipe covering protection saddles, MSS SP 58, Type 39, at all hanger points. Fill space between saddle and piping with high density insulation, thoroughly packed. Terminate jacket clear of saddle bearing area.
 - h. Insulation and jacket shall terminate hard and tight at all anchor points.
 - i. Insulation termination at piping facilities not to be insulated shall stop short, and be finished with 45 degree chamfered section of insulating and finishing cement, and covered with jacket.
 - j. Flanged fittings and valves shall be insulated with sections of pipe insulation cut, fitted and arranged neatly, and firmly wired in place. Insulating cement shall fill all cracks, voids and outer surface for covering with glass cloth. Insulation of valve bonnet shall terminate on valve side of bonnet flange to permit valve repair.
 - k. On calcium silicate, cellular glass and rigid cellular phenolic insulated piping systems, fittings shall be insulated with field or factory-shaped sections of insulation, finished with specified insulating and finishing cements and covered with jacket or PVC premolded cover. On sizes 2 inches (50 mm) and smaller it is permissible to apply insulating and finishing cements, and cover with jacket or PVC premolded cover.

- Fiberglass insulated piping systems fittings over 2 inches (50 mm) shall be insulated with specified molded pipe fitting insulation or compressed blanket, finished with specified insulating and finishing cements and covered with specified PVC fitting jacket. On sizes 2 inches (50 mm) and under apply insulating and finishing cements and cover with PVC fitting jacket.
- m. Apply glass cloth jacket using an approved adhesive. Glass cloth shall be smooth, tight and neatly finished at all edges; prime cloth to receive paint.

3.15 WELDING (ASME B31.1 AND AWA B2.1-B)

- A. The Contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
 - 2. Perform all welding operations required for construction and installation of the distribution system.
- B. Welder Qualifications: All welders shall be qualified as per ASME B31.1 and AWS B2.1-B2.1M-BMG.
- C. Field bevels and shop bevels: Done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- D. Utilize split welding rings or approved alternate method for field joints on all carrier pipes above 2 inches (50 mm) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe. Make field joints 2 inches (50 mm) and smaller with welding sockets.
- E. Piping shall not be split, bent, flattened, or otherwise damaged either before, during, or after installation. Where the pipe temperature falls to 32 deg F (0 deg C) or lower, the pipe shall be heated to approximately 100 deg F (38 deg C) for a distance of 1 foot (300 mm) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 32 deg F (0 deg C).

- F. Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening will not be permitted. Welders responsible for defective welds must be requalified.
- G. Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during fabrication operations. Discard electrodes that have lost part of their coating.
- H. An approved independent testing firm regularly engaged in radiographic testing shall perform radiographic examination of all field welds in the carrier piping of the systems, in manholes and in walk-through tunnels, in accordance with ASME B31.1. Furnish a set of films or pictures showing each weld inspected, a report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project, prior to installing conduit field joints, trench covers, backfilling and hydrostatic testing. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report. The Contracting Officer's Representative reserves the right to review all inspection records, and if any welds inspected are found unacceptable they shall be removed, rewelded, and radiographically reexamined at no cost to the Government.

3.16 CLEANING OF PIPING:

A. Clean pipe and fittings inside and outside before and after assembly. Remove all dirt, scale, and other foreign matter from inside the piping by use of a pipe swab or pipe "pig" before connecting pipe sections, valves, equipment or fittings.

3.17 IDENTIFICATION

A. Install continuous plastic underground warning tapes during back filling of trenches for underground steam and condensate distribution piping. Locate tapes 12 inches (300 mm) below finished grade, directly over piping.

3.18 IDENTIFICATION SIGNS

- A. Valves: Provide laminated plastic signs, with engraved lettering not less than 3/16 inch (5 mm) high, on all isolating valves on steam and condensate return system, identifying building or area served. Attach to the valves with corrosion-resistant chains.
- B. Pipes: Label service of all pipes in manholes and walk-thru tunnels.

3.19 FIELD QUALITY CONTROL

- A. Demonstrate leak-tightness of all piping systems by performing hydrostatic and operational tests. All labor, material and test instruments must be furnished by the Contractor. All instruments must be approved by the Contracting Officer's Representative.
- B. Pressure test direct-buried systems in conformance with requirements stated in this specification and in printed instructions for the system supplied. Tests must include carrier piping and casing.
- C. Holiday testing of direct-buried system steel casings: Test entire surface of casings for faults in coating after installation in trench prior to backfilling. Use test method and voltage recommended by coating manufacturer. Repair any holidays found and retest. System shall not be backfilled until all holidays are eliminated.
- D. Before conducting steam system operating test, remove steam trap elements or use bypass connections around traps; then flush lines with high pressure water until discharge shows no foreign matter to the satisfaction of Contracting Officer's Representative.
- E. Steam and condensate carrier piping shall be tested hydrostatically before insulation is applied at field joints and shall be proved tight at a pressure 1 1/2 times distribution supply pressure for a period not less than 2 hours with no pressure decay.
 - 1. Test piping located in concrete trenches prior to installing trench covers. Test direct-buried systems prior to backfilling.
 - Remove or isolate any elements of the system such as expansion joints, which are not designed for the test pressure.
 - 3. Prior to acceptance of installation, Contractor shall subject system to operating tests as may be required by Contracting Officer's Representative to demonstrate satisfactory functional and operating efficiency. These operating tests shall cover a period of not less than six hours for each portion of system tested. Conduct tests at times as the Contracting Officer's Representative may direct.
 - Provide calibrated instruments, equipment, facilities and labor, at no additional cost to the Government. Test gage shall read in increments not exceeding 0.1 psi (1 kPa).
 - 5. Repeat tests when failures occur.
 - After completion of satisfactory test, replace all elements that have been removed prior to testing.
- F. Pneumatic Testing of DDT System Casings:

- 1. Perform test on all sections of the system before field-coating the field joints and before back-filling.
- 2. Test shall be with compressed air at 15 psi (100 kPa) for 24 hours with pressure source disconnected and with no decay in pressure. Corrections to the readings are permissible to compensate for significant ambient temperature changes during the test period.
- Pressure shall be measured with a gage with reading increments of 0.1 psi (1 kPa).
- 4. Each casing field joint shall be tested for leaks by means of soap solution or equivalent.
- G. NACE-accredited corrosion specialist shall test cathodic protection systems and demonstrate proper operation and protection in accordance with the recommendations and criteria in NACE SP0169.
- H. Deficiencies discovered shall be corrected at the Contractor's expense, to satisfaction of Contracting Officer's Representative. Major deficiencies or failure to correct deficiencies, to the satisfaction of the Contracting Officer's Representative, may be considered cause for rejecting the entire installation.
- I. Contractor will engage a qualified testing agency to perform tests and inspections.
- J. Tests and Inspections:
 - 1. Steam and condensate piping for testing: ASME B31.1 and ASME B31.9
 and as follows:
 - a. Leave joints, including welds, uninsulated and exposed for examination during test.
 - b. Isolate equipment. Do not subject equipment to test pressure.
 - c. Install relief valve set at pressure no more than one-third higher than test pressure.
 - d. Fill system with temperature water. Where there is risk of freezing, air or a safe, compatible liquid may be used.
 - e. Use vents installed at high points to release trapped air while filling system. Use drip legs installed at low points for complete removal of liquid.
 - 2. Test steam and condensate piping as follows:
 - a. Subject steam and condensate piping to hydrostatic test pressure that is not less than 1.5 times the design pressure.

- b. After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.
- 3. Test conduit as follows:
 - a. Seal vents and drains and subject conduit to 15 psi (105 kPa) for four hours with no loss of pressure. Repair leaks and retest as required.
- K. Prepare test and inspection reports.

3.20 APPENDIX II - CLASSIFICATIONS FOR DIRECT BURIED SYSTEMS

A. Groundwater conditions:

Site	General Conditions for Such Classifications		
Classification			
A - Severe	1. The water table is expected to be frequently above the		
	bottom of the system and surface water is expected to		
	accumulate and remain for long periods in the soil		
	surrounding the system, or		
	2. The water table is expected to be occasionally above		
	the bottom of the system and surface water is expected to		
	accumulate and remain for long periods in the soil		
	surrounding the system.		
B – Bad	1. The water table is expected to be occasionally above		
	the bottom of the system and surface water is expected to		
	accumulate and remain for short periods (or not at all)		
	in the soil surrounding the system, or		
	2. The water table is expected never to be above the		
	bottom of the system but surface water is expected to		
	accumulate and remain for long periods in the soil		
	surrounding the system.		
C - Moderate	The water table is expected never to be above the bottom		
	of the system but surface water is expected to accumulate		
	and remain for short periods in the soil surrounding the		
	system.		
D - Mild	The water table is expected never to be above the bottom		
	of the system and surface water is not expected to		
	accumulate or remain in the soil surrounding the system.		

- 1. System Temperature Classifications: High 261 to 450 deg F (127 to 232
 deg C); Medium 201 to 260 deg F (94 to 126 deg C); Low 200 deg F (93
 deg C) or lower.
- 2. Soil Conditions:
- B. Soil Corrosiveness Classification:
 - The soil at the site should be classified as corrosive or noncorrosive on the basis of the following criteria:
 - 2. Corrosive: The soil resistivity is less than 30,000 ohm-cm or stray direct currents can be detected underground.

- 3. Noncorrosive: The soil resistivity is 30,000 ohm-cm or greater and no stray direct currents can be detected underground.
- 4. The classification should be made by an experienced corrosion engineer based on a field survey of the site carried out in accordance with recognized guidelines for conducting such surveys.
- C. Soil pH:
 - 1. If there is any reason to suspect that the soil pH will be less than 5.0 anywhere along the proposed path of the system, pH measurements should be made at pipeline depth at close intervals along the proposed route, and all locations at which the pH is less than 5.0 should be indicated in the contract documents. An experienced soils engineer, preferably the same engineer responsible for other soil engineering work, should determine soil pH.
 - 2. Type of Underground System Allowed:
 - a. Drainable-Dryable-Testable (DDT) shall be allowed for Site Classifications A, B, C, D.

---- E N D ---