DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 15	List of Drawing Sheets	07-15
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	11-15
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	04-13
01 33 23	Shop Drawings, Product Data, and Samples	02-17
01 35 26	Safety Requirements	02-17
01 42 19	Reference Standards	05-16
01 91 00	General Commissioning Requirements	10-15
	DIVISION 02 - EXISTING CONDITIONS	
00 41 00	Paradittian	00.15
02 41 00 02 82 11	Demolition Traditional Asbestos Abatement	02-15
02 83 33.13	Lead-Based Paint Removal and Disposal	09-13
02 83 33.13	Lead-Based Paint Removal and Disposal	08-16
	DIVISION 03 - CONCRETE	
03 30 53	(Short-Form) Cast-in-Place Concrete	02-16
	DIVISION 04 - MASONRY	
04 20 00	Unit Masonry	02-16
	DIVIDION OF MEMALO	
	DIVISION 05 - METALS	
05 40 00	Cold-Formed Metal Framing	05-16
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	10-15
06 16 63	Cementitious Sheathing	02-16
06 20 00	Finish Carpentry	08-16
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 00 00	Spray Applied Insulation	
07 84 00	Firestopping	02-16
07 92 00	Joint Sealants	10-15
	DIVISION 08 - OPENINGS	
	DIAIDION OO - OLUMINGO	

08 11 13	Hollow Metal Doors and Frames	08-16
08 14 00	Interior Wood Doors	02-16
08 31 13	Access Doors and Frames	02-16
08 41 13	Aluminum-Framed Entrances and Storefronts	08-16
08 71 00	Door Hardware	01-16
08 71 13	Automatic Door Operators	02-16
	-	
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	02-15
09 06 00	Schedule for Finishes	04-15
09 22 16	Non-Structural Metal Framing	05-16
09 29 00	Gypsum Board	11-14
09 51 00	Acoustical Ceilings	12-16
09 65 19	Resilient Tile Flooring	12-15
09 67 23.20	Resinous Epoxy Base With Vinyl Chip Broadcast (RES 2)	07-14
09 68 00	Carpeting	10-15
09 91 00	Painting	01-16
09 91 00	Turnering	01 10
	DIVISION 10 - SPECIALTIES	
	DIVISION TO SPECIALITES	
10 21 13	Toilet Compartments	12-15
10 44 13	Fire Extinguisher Cabinets	08-14
10 44 13	Fire Excinguisher Cabinets	00-14
	DIVISION 11 - EQUIPMENT	
	DIVISION II - EQUIPMENI	
	DIVISION 12 - FURNISHINGS	
	DIVISION 12 - FORNISHINGS	
12 24 00	Window Shades	09-15
12 32 00	Manufactured Wood Casework	09-15
12 36 00		12-15
12 30 00	Countertops	12-13
	DIVISION 13 - SPECIAL CONSTRUCTION	
	DIVISION 13 - SPECIAL CONSTRUCTION	
	DIVISION 14- CONVEYING EQUIPEMENT	
	DIVISION 14 CONVEIING EQUIFEMENT	+
	DIVISION 21- FIRE SUPPRESSION	+
	DIVISION ZI- FIRE SUFFRESSION	+
21 08 00	Commissioning of Fire Suppression System	11-16
21 13 13	Wet-Pipe Sprinkler Systems	06-15
21 13 13	Wet-ripe Sprinkier Systems	00-13
	DIVICION 22 DIUMPING	
 	DIVISION 22 - PLUMBING	+
22 05 11	Common Work Doculto for Dismbins	07.16
22 05 11	Common Work Results for Plumbing	07-16
22 07 11	Plumbing Insulation	09-15
22 11 00	Facility Water Distribution	09-15
22 13 00	Facility Sanitary and Vent Piping	09-15
22 33 00	Electric Domestic Water Heaters	09-15
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	-
00.05.11		00.15
23 05 11	Common Work Results for HVAC	02-15

22 05 02	Masting Adiusting and Palancing for IVIAC	00 15
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-15
23 07 11	HVAC and Boiler Plant Insulation	02-15
23 08 00	Commissioning of HVAC Systems	11-16
23 09 23	Direct-Digital Control System for HVAC	09-11
23 22 13	Steam and Condensate Heating Piping	02-15
23 23 00	Refrigerant Piping	02-15
23 36 00	Air Terminal Units	02-15
	DIVISION 25 - INTEGRATED AUTOMATION	-
	DIVISION 26 - ELECTRICAL	1
06 05 11		01 16
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17
26 05 33	Raceway and Boxes for Electrical Systems	05-14
26 09 23	Lighting Controls	05-14
26 24 16	Panelboards	05-14
26 51 00	Interior Lighting	08-14
26 56 00	Exterior Lighting	05-14
		1
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	06-15
27 05 26	Grounding and Bonding for Communications Systems	06-15
27 05 33	Raceways and Boxes for Communications Systems	06-15
27 31 00	Voice Communications Switching and Routing Equipment	06-15
	STL OIT Communications Technology	
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
20 05 00	Common World Provides for Plantage of Coffee and Consults	0.0 1.1
28 05 00	Common Work Results for Electronic Safety and Security	09-11
28 05 13	Conductors and Cables for Electronic Safety and Security	09-11
28 05 26	Grounding and Bonding for Electronic Safety and	09-11
20 03 20	Security	09-11
28 05 28.33	Conduits and Backboxes for Electronic Safety and	09-11
20 03 20.33	Security	
28 13 00	Physical Access Control System	10-11
28 16 00	Intrusion Detection System	10-11
28 31 00	Fire Detection and Alarm	10-11
20 01 00	Title Becoeffer and Mark	10 11
	DIVISION 31 - EARTHWORK	+
31 20 11	Earthwork (Short Form)	10-12
		1
	DIVISION 32 - EXTERIOR IMPROVEMENTS	†
		†
32 05 23	Cement and Concrete for Exterior Improvements	08-16
32 90 00	Planting	08-16
32 30 00	1	00 10
	DIVISION 33 - UTILITIES	+
	2112211 33	+

	DIVISION 34 - TRANSPORTATION	
34 71 13	Vehicle Barriers	08-16
	DIVISION 48 - Electrical Power Generation	

SECTION 00 01 15 LIST OF DRAWING SHEETS

Title

The drawings listed below accompanying this specification form a part of the contract.

GI001 GI002	COVER SHEET INDEX OF DRAWINGS/SYMBOLS/GEN NOTES/ABBREVIATION
LIFE SAFETY	OVERALL LIFE SAFETY PLAN
ARCHITECTURAL	
AD100	OVERALL DEMOLITION FLOOR PLAN
AD101	DEMOLITION BUILDING 6 1 ST FLOOR PLAN
AD102	DEMOLITION BUILDING 6A 1 ST FLOOR PLAN
AD103	DEMOLITION BUILDING 6A 2^{ND} FLOOR PLAN
AD104	DEMOLITION BUILDING 6A PENTHOUSE
AD105	RENOVATION BUILDING 6 1^{ST} REFLECTED CEILING PLAN
AD106	RENOVATION BUILDING 6A 1^{ST} REFLECTED CEILING PLAN
AD107	RENOVATION BUILDING 6A 2^{ND} REFLECTED CEILING PLAN
AE401	PLAN DETAILS, INT ELEVATIONS & TYP CASEWORK ELEVATIONS

MECHANICAL

AF100

AF601

M001

Drawing No.

M100	OVERALL	DUCT	PLAN					
M101	PARTIAL	HVAC	DUCTWORK	PLAN	LEVEL	01	BUILDING	6
M102	PARTIAL	HVAC	DUCTWORK	PLAN	LEVEL	01	BUILDING	6A
M103	PARTIAL	HVAC	DUCTWORK	PLAN	LEVEL	02	BUILDING	6A
M104	PARTIAL	HVAC	DUCTWORK	PLAN	PENTHO	DUSI	E BUILDING	6 6 A

RENOVATION FINISH PLAN

RENOVATION FINISH SCHEDULE

MECHANICAL NOTES, SYMBOLS & ABBREVIATIONS

ELECTRICAL

E001	ELECTRICAL NOTES, SYMBOLS & ABBREVIATIONS	
E100	ELECTRICAL PARTIAL OVERALL EXISTING PLANS	
E101	ELECTRICAL PARTIAL BUILDING 6 1 ST FLR RENOVATION PLAN	
E102	ELECTRICAL PARTIAL BUILDING 6A 1^{ST} FLR RENOVATION PLAN	

E103 ELECTRICAL PARTIAL BUILDING 6A 2^{ND} FLR RENOVATION PLAN

E104 ELECTRICAL PARTIAL BUILDING 6A PENTHOUSE RENO PLAN

TD100 TELECOM PARTIAL OVERALL DEMOLITION PLAN
T100 TELECOM PARTIAL OVERALL RENOVATION PLAN

PLUMBING

P100 PLUMB OVERALL DEMO&RENO PLANS, NOTES, SYMBOLS&ABBREVIATIONS.

FIRE PROTECTION

FP001 PARTIAL SPRINKLER SCHEMATIC BLDG 6&6A, LEVELS 01-PENTHOUSE FX501 PARTIAL SPRINKLER SCHEMATIC BLDG 6&6A, LEVELS 01-PENTHOUSE

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 SAFETY REQUIREMENTS	1
1.2 GENERAL INTENTION	1
1.3 STATEMENT OF BID ITEM(S)	1
1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	2
1.5 CONSTRUCTION SECURITY REQUIREMENTS	2
1.6 OPERATIONS AND STORAGE AREAS	7
1.7 ALTERATIONS	12
1.8 DISPOSAL AND RETENTION	13
1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS	14
1.10 RESTORATION	15
1.11 PHYSICAL DATA	16
1.12 PROFESSIONAL SURVEYING SERVICES	16
1.13 LAYOUT OF WORK	16
1.14 AS-BUILT DRAWINGS	16
1.15 USE OF ROADWAYS	17
1.16 RESIDENT ENGINEER'S FIELD OFFICE	17
1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	17
1.18 TEMPORARY USE OF EXISTING ELEVATORS	17
1.19 TEMPORARY USE OF NEW ELEVATORS	17
1.20 TEMPORARY TOILETS	17
1.21 AVAILABILITY AND USE OF UTILITY SERVICES	17
1 22 NEW TELEPHONE FOILTPMENT	10

1.23	TESTS	19
1.24	INSTRUCTIONS	.21
1.25	GOVERNMENT-FURNISHED PROPERTY	22
1.26	EQUIPMENT ITEMS	22
	STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT	
	CONSTRUCTION SIGN	
	SAFETY SIGN	
	PHOTOGRAPHIC DOCUMENTATION	
	FINAL ELEVATION Digital Images	
	HISTORIC PRESERVATION	
1.33	NOT APPLCABLE	23

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work identified in the contract documents for Project "657-17-105JC Restore Utility Systems, B6A".
- B. A prebid site visit date for bidders will be identified in the solicitation. No additional prebid site visits will be conducted.
- C. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

1.3 STATEMENT OF BID ITEM(S)

Project overview and SOW summary:

Bid Item 2: Building 6A is an unoccupied building next to an active medical center. All utilities were shutdown 1.5 years ago and all accessible porous materials were removed, such as insulation, ACT and drywall, from walls, piping, ductwork etc. In addition the majority of electrical components/materials and flooring were also removed. Potential asbestos and lead remains in/on wall cavities and any demo shall be performed under proper containments and supervision. This project will restore all utility systems to operation once again to fit the needs of the medical center within 240 calendar days of notice to proceed. Work shall include, but not limited to the following:

- o Construction Containments
 - Provide construction containment and precautions as called out in the contract document and as required throughout the life of the project.
- o Abatement:
 - Provide CPIH services for asbestos and lead abatement.
 - Provide asbestos and lead abatement in various locations, including wall cavities, within Building 6 at JC.
- o Life Safety
 - Install a fire protection notification system and fire suppression system.

• There is an existing sprinkler and fire alarm system in the building that will be modified to meet the needs of the buildings intended occupancy.

o Architectural

- Wall demolition and various removals of panels, piping, etc throughout the facility. Project will repair these areas and install new finishes such paint, flooring, ceilings, etc... Project will also construct new chemical storage.
- o Plumbing
 - Various demolition, repair and installation of new utilities through the building. See contract documentation for specifics.

o Mechanical

The rigid main duct lines to the original system remain in place. All flex ducts and insulation was removed by a previous project. This project will repair penetration, install additional duct work, insulate, adjust/add controls, repair/replace equipment, commission, test and balance the entire system.

o Electrical

Main power feeds to panels remain in place. All branch wiring and majority of conduit installations have been removed and shall be replaced as part of this project. All lighting, outlets, etc. have also been removed and required to be replaced with new. Contractor is required to coordinate the installation of system to provided panels.

o Security

- Door security shall be installed on exterior door openings as identified on the contract documents
- o Telecommunication
 - An existing data closet and telephone closet are in place. Project will install new data and telephone outlets through the facility as identified on the contract documents.
- o As-Builts After project completion the contractor shall submit an updated complete set of as-built in electronic AUTOCAD and pdf formats.
- o Work will be performed during normal working hours
 - Monday through Friday, 7:00am to 5:00pm CST

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. Electronic Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.
- B. Throughout the contract documents the terms "resident Engineer", "Project Engineer", "Project Manager", and "COR" are all synonymous.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project. Submit the security plan before work begins in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Work will not be authorized to begin without the Security Plan being approved by the COR.
- 2. The General Contractor is responsible for assuring that all sub-contractors working on the project and their employees also comply with these regulations.

B. Security Procedures:

- 1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- (a) Except for initiating registration with the PIV Sponsor, personnel conducting business pursuant to this contract shall not enter VA owned or leased property without a current and valid VA issued badge.

 Personnel may also be subject to inspection of their personal effects, including tool boxes, lockers, vehicle, or any other container, whilst on VA owned or leased property upon request from VA Police.
- (b) To be processed for a VA ID badge, contact the VA-StLHCS-JC,
 Engineering Service PIV Sponsor to arrange for an appointment and to
 receive information on the required documentation. The appropriate
 contact information will be issued during the Pre-Construction
 meeting with the Contracting Officer and the Contracting Officer's
 Representative (COR). Applicants may be subject to the following
 classifications of badging:
 - (i) Flash Badge: common physical access and no biometric information required
 - (ii) Non-PIV Badge: common physical, restricted physical, and sensitive records access; subject to submitting fingerprints; subject to submitting to a Special Agreement Check (SAC) for a background investigation (allow for 14 calendar days to adjudicate)

(iii) Full PIV Badge: common physical, restricted physical, sensitive records, and logical/data access; subject to submitting fingerprints; subject to submitting to a Special Agreement Check (SAC) for a background investigation (allow for 14 calendar days to adjudicate); subject to submitting to a National Agency Check with Written Inquiries (NACI) background investigation (allow for 60 days to adjudicate).

The level of badging and its corresponding duration of investigation are directly dependent on the level of security access required to perform contract tasks. Refer to the contract drawings for security level access assessments.

- 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- 5. Normal working hours are Monday through Friday, 7:00 a.m. through 5:00 p.m., except during Federal Holidays. For working outside the normal working hours, a request must be submitted at least five (5) days in advance of the requested work date and in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Guards: NOT APPLICABLE
- D. Key Control:
 - 1. For any door controlling entrance to the construction area(s), the VA will supply to the contractor a door lock and/or its corresponding key. The General Contractor will be responsible for ensuring the

construction site remains under lock and key to prevent the general population from entering the site. Upon project completion, the General Contractor must return the lock and key to the COR.

2. Reference Medical Center Memorandum FES-138-10 for Key Control requirements

E. Document Control:

- 1. Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
- 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.

- b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions
 - 1. N/A
 - 2. N/A
- 3. John Cochran: There is no contractor parking on hospital property at the John Cochran (JC) division bounded by Grand, Enright, Spring and Bell avenues. Contractor parking is permitted in parking lot K (VA lot across grand from the medical center) in designated marked spaces. Contractor may load and unload materials in unrestricted areas only. Access to the Building 1 loading dock shall be restricted to picking up and dropping off materials and supplies, and no such activity may leave a vehicle unattended.

G. Roll Listing

- 1. Before work begins, the General Contractor must submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES, a roll listing all personnel, including administrators and subcontractors, conducting business pursuant to this contract. The role must show, at a minimum, the following:
- (a) Contractor Tier (General, Subcontractor Tier I, Subcontractor Tier II, etc.)
- (b) Contractor's company name
- (c) Contractor's legal last name
- (d) Contractor's legal first name
- (e) Contractor's trade (corresponding to trade listed in General Conditions for Labor Wage Determination) or position (if administrator or managerial)
- (f) Infection Prevention training certification date
- (q) Infection Prevention training certification submittal date

- (h) Contractor's Safety Briefing date
- (i) Contractor's Safety Briefing submittal date
- (j) OSHA Construction Safety certification level (10-hour, 30-hour)
- (k) OSHA Construction Safety certification number
- (1) OSHA Construction Safety certification submittal date
- (m) Designation as OSHA Competent Person (CP)
- (n) Designation as OSHA Competent Person (CP) submittal date
- (o) Personal Identification Verification (PIV) badge issuance date
- (p) Designated as person requiring issuance of a VA key for work site entry control.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings, Sheds, Storage Containers, etc.. will not be permitted.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be within the project boundary. If no boundary is shown on contract drawings contractor shall store all materials and equipment inside construction site and/or space.
- E. Workmen are subject to rules of Medical Center applicable to their conduct. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
 - F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas. $\,$
 - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- F. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. All such actions shall be coordinated with the COR:

1. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.

G. Phasing:

The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:

To insure such executions, Contractor shall furnish the COR with a schedule of dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR three weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to COR and Contractor, as follows:

H. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc to facilitate patient and staff access. Coordinate alteration work in

areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.

I. Construction Fence: NOT APPLICABLE

- J. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- K. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment deenergized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY for additional requirements.

- 2. Contractor shall submit a complete request to interrupt any such services to COR 21 days In advance of proposed interruption. Request shall state location, reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - 1. Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever

excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times with approval.

- 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- N. NOT APPLICABLE
- O. NOT APPLICABLE

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR of which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both to the Contracting Officer. This report shall list by rooms and spaces:
 - 1. Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building.
 - 2. Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
 - 3. Shall note any discrepancies between drawings and existing conditions at site.
 - 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).

- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - 2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - 1. Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which

would be detrimental to re-installation and reuse. Store such items where directed by COR.

- 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
- 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.
- 4. PCB Transformers and Capacitors: (Not applicable)

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. NOT APPLICABLE

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 PHYSICAL DATA - NOT APPLICABLE

1.12 PROFESSIONAL SURVEYING SERVICES - NOT APPLICABLE

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

- B. NOT APPLICABLE
- C. NOT APPLICABLE
- D. NOT APPLICABLE
- E. NOT APPLICABLE
- F. NOT APPLICABLE

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15

calendar days after each completed phase and after the acceptance of the project by the COR.

D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 USE OF ROADWAYS

- A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work.

 Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
- B. NOT APPLICABLE
- C. NOT APPLICABLE
- 1.16 RESIDENT ENGINEER'S FIELD OFFICE NOT APPLICABLE
- 1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT NOT APPLICABLE
- 1.18 TEMPORARY USE OF EXISTING ELEVATORS NOT APPLICABLE ELEVATOR IS OUT OF SERVICE
- 1.19 TEMPORARY USE OF NEW ELEVATORS NOT APPLICABLE

1.20 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations (portable toilets and hygiene stations). Keep such places clean and free from flies and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.21 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. All utility feeds inside the building have been removed / demoed to main feed location from exterior. Contractor is responsible for providing all temporary and permanent feed as necessary.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting

Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.

C. NOT APPLICABLE

- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
- E. Electricity for Construction: Furnish all temporary electric services.
 - 1. Obtain electricity by connecting to the Medical Center electrical distribution system located on the south side of building 6. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - 1. Obtain water by connecting to the Medical Center water distribution system on the south side of building (main feed from exterior). Provide reduced pressure backflow preventer at each connection as per code.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR discretion) of use of water from Medical Center's system.
- G. Fuel: NOT APPLICABLE NOT AVAILABLE

1.22 NEW TELEPHONE EQUIPMENT

The contractor shall coordinate with the work of installation of telephone equipment by others. This work shall be completed before the building is turned over to VA.

1.23 TESTS & INSPECTIONS

- A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation.
- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a

reasonably period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.

F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

G. Inspections:

1. The general contractor shall coordinate and submit construction administration Logs or 'Action Logs' during construction period services on a weekly basis. Logs shall include but not be limited to:

RFI's

Submittals (Per Specifications)
Utility Outages
ICRA's (Include Dust Control)
ILSM's (Include Hot Work)
Equipment (VV / VC / CC)
Inspections
Schedules

- 3 week look ahead
- Detailed shutdown/outage requests a minimum of 21 days in advance.

Miscellaneous Inquiries

- 2. The general contractor shall coordinate 'In-Wall' & 'Overhead Ceiling' Inspections with VA Project Engineer / COR prior to the installation of finishes. In-Wall inspections require 48 hour notification to COR. Overhead Ceiling inspections require 48 hour notification to COR. Contractor to supply a cart with a log sheet and full set of half size hard copy drawings for all inspections. Log sheet shall be itemized by type of inspection and by room. No such finishes shall be installed without inspection approval from Project Engineer / COR.
- 3. Submittal and RFI Response Times. Contractor shall coordinate Submittals and RFI's so that the VAMC has 14 calendar days to respond accordingly. Contractor shall identify within 'Action

Log' (As Mentioned Above) the level of priority (Low-Medium-High) for each submittal and RFI.

1.24 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- Manuals: Maintenance and operating manuals and one compact disc В. (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the Resident Engineer COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed.

This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.25 GOVERNMENT-FURNISHED PROPERTY - NOT APPLICABLE

1.26 EQUIPMENT ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.
- E. NOT APPLICABLE

1.27 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT - NOT APPLICABLE

1.28 CONSTRUCTION SIGN

- A. At each entrance to the Construction Site, a sign must be posted
 - 1. Sign is to be a CAUTION type in compliance with either OSHA or ANSI

- 2. The message panel must indicate the following:
 - a. The presence of a WORK ZONE
 - b. ICRA & ILSM's (To include hot work Permits if applicable)
 - c. Emergency Contacts
 - d. RESTRICTED ACCESS
 - e. PPE Requirements with text and graphics
- B. Before posting sign(s), submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

1.29 SAFETY SIGN

- A. See construction sign requirements.
- B. Required signage must be posted when Hazardous work taking place.

1.30 PHOTOGRAPHIC DOCUMENTATION

- A. Contractor shall include progress photos with daily reports.
- 1.31 FINAL ELEVATION DIGITAL IMAGES NOT APPLICABLE
- 1.32 HISTORIC PRESERVATION NOT APPLICABLE
- 1.33 VA TRIRIGA CPMS NOT APPLICABLE

- - - E N D - - -

SECTION 01 32 16.15 PROJECT SCHEDULES

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another

consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish

date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents.

These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - 1. Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:

- a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
- b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
- c. Interruption of VA Facilities utilities (shutdowns), delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
- e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
- 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
- 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:

- 1. The appropriate project calendar including working days and holidays.
- 2. The planned number of shifts per day.
- 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit an application and certificate for payment using VA Form 10-6001a or the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

A. Monthly schedule update meetings will be held on dates mutually agreed to by the COR and the Contractor. Contractor and their CPM consultant

(if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:

- Actual start and/or finish dates for updated/completed activities/events.
- 2. Remaining duration for each activity/event started, or scheduled to start, but not completed.
- 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
- 4. Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
- 5. Completion percentage for all completed and partially completed activities/events.
- 6. Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update.

Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.

D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - 2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COR for the proposed schedule changes. If such actions are approved, the representative schedule

revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - 1. Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.
 - 4. When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.

- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.
- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and (MSDS) concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

- A. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying submittals required by the contract documents but which have been omitted from the submittal register.
- B. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- C. The VA will provide the initial submittal register in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.
- D. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- E. The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.

1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be

- accepted for expedition of construction effort. Submittal will be returned without review if incomplete.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. Provide a transmittal form for each submittal with the following information:
 - 1. Project title and location.
 - 2. Construction contract number.
 - 3. Date of the drawings and revisions.
 - 4. Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
 - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - 6. When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
 - 7. Product identification and location in project.

							Chad Markus (COR)			
				j			×		and the second sections of	
		CTION NAME TILLEAND SIGNATURE OF A PROVING AUTHORITY	ID SIGNATURE OF A	CTION NAME TILEAN	OVAL A	SECTION II - APPROVAL ACTION			ENCLOSURES RETURNED (List by Item No.)	NCL OSURE
	RACTOR	NAME AND SIGNATURE OF CONTRA	NAME A							
of this contract.	Approval by the s or omissions c he requirements	In accordance with FAR 52:23:21, I undestand that Approval by the Government shall not relieve the Contractor from responsibility for any errors or omissions contained with the submittal, nor from responsibility for complying with the requirements of this contract.	with FAR 52.23 ntractor from res	In accordance relieve the Co submittal, nor						
In accordance with FAR 52.236-21, Specifications and Drawings for Construction, I certify that the above submitted items have been coordinated and reviewed in detail and are correct and in strict conformance with the contract drawings and specifications except as other wise stated.	ad Drawings for C d and reviewed in and specificatio	In accordance with FAR 52.236-21, Specifications and Drawings for Construction, I certify that the above submitted items have been coordinated and reviewed in detail and are corn and in strict conformance with the contract drawings and specifications except as other vistated.	with FAR 52.23 submitted items onformance with	In accordance that the above and in strict c stated.					, and the second	REMARKS:
(Select from drop dow n menu by clicking on this cell.)		(Select from drop dow n menu by clicking on this cell.)								5
(Select from drop dow n menu by clicking on this cell.)		(Select from drop dow n menu by clicking on this cell.)								4
(Select from drop dow n menu by clicking on this cell.)		(Select from drop dow n menu by clicking on this cell.)								ы
(Select from drop dow n menu by clicking on this cell.)		(Select from drop dow n menu by clicking on this cell.)								2
(Select from drop down menu by clicking on this cell.)	•	(Select from drop dow n menu by clicking on this cell.)								
7.	h.	g.	f.	e.	d.	c.		b.		a.
FOR VA ACTION CODE (See instruction no. 9 on the reverse side of this form)	VARIATION (See instruction No.6 on the reverse side of this form)	FOR CONTRACTOR ACTION CODE (See instruction no. 9 on the reverse side of this form)	CONTRACT REFERENCE DOCUMENT PEC. DRAWING ARA. NO. ITEM NO.	CONTRACT DOC SPEC. PARA. NO.	OPES OF	MFG OR CONTR CAT., CURVE DRAWING OR BROCHURE NO. (See instruction no. 8 on the reverse side of this form)		DESCRIPTION OF ITEM SUBMITTED (Type size, model number/etc.)	DESCRIPTION (Type size,	Ö.
		ROBCI III E AND LOCA ION	this cell.)	J by clicking or	own men	(Select from drop down menu by clicking on this cell.)	TYPE	(Enter Spec. No. or Drawing No. Here)	(Cover only one section with each transmital)	Cover only
				CT NO.	PROJECT NO				cc:	
TRANSMITTAL	W TRANSMITTAL SUBMITTAL OF 1	THIS IS A NEW TRANSMITTAL IT THIS IS A RESUBMITTAL OF TRANSMITTAL		TASK ORDER NO.	TASK C					
		SELECT ONE:		CONTRACT NO.	CONTR		FROM:	CC:	C	
		d by the contractor)	າ will be initiate	(This section	SITEMS	THE FOLLOWING	PPROVAL OF	SECTION I - REQUEST FOR APPROVAL OF THE FOLLOWING ITEMS (This section will be initiated by the contractor)		
				mm/dd/yyyy			g this form)	(Read instruction on the reverse side prior to initiating this form)	(Read instruction on	
(enter in order; 1,2,3, etc.)		on end for resubmittals)		ļ.				CERTIFICATES OF COMPLIANCE	CER	

INSTRUCTIONS	г	
INSTRUCTIONS	 	
Section 1 will be initiated by the Contractor in the required number	of conies	
1. Couldn't will be illitated by the contractor in the required number	От сорісо.	
2. Each transmittal shall be numbered consecutively in the space pro	vided for "Transmittal N	lo.". This number, in addition to the contract number, will form a serial
number for identifying each submittal. For new submittals or resubmit		
well as the new submittal number.		
3. The "Item No." will be the same "Item No." as indicated on ENG FOR	M 4288 for each entry of	on this form.
4. Submittals requiring expeditious handling will be submitted on a se	parate form.	
5. Separate transmittal form will be used for submittals under separa	te sections of the speci	ifications.
	is not in accordance w	ith the plans and specificationsalso, a written statement to that effect
shall be included in the space provided for "Remarks".		
7. Form is self-transmittal, letter of transmittal is not required.		
When a sample of material or Manufacturer's Certificate of Complia	nce is transmitted, indic	ate "Sample" or "Certificate" in column c, Section I.
O VA approving outbority will engine action and a indicated below	u in anges provided to	Postion Lockwan i to each item submitted in
9. VA approving authority will assign action codes as indicated below		Section I, column i to each item submitted. In the contractor. The Contractor will assign action codes as indicated below
in Section I, column g, to each item submitted.	Tomphor to return to t	the contractor. The Contractor will assign action codes as indicated below
in Section i, column y, to each item submitted.	 	
THE FOLLOWING ACTION CODES ARE GIVEN TO ITEMS SUBMITTED	THE FOLLOWING ARE	SUBMITTAL TYPES
Select from drop down menu by clicking on this cell.		n menu by clicking on this cell.
A Approved as submitted.	SD-01-Data	Submittals which provide calculations, descriptions, or documentation regarding
		the work.
B Approved, except as noted on drawings.	SD-04-Draw ings	Submittals which graphically show relationship of various components of the work,
January Company		schematic diagrams of systems, details of fabrication, layouts of particular
		elements, connections, and other relational aspects of the work.
C Approved, except as noted on drawings.	SD-06-Instructions	Preprinted material describing installation of a product, system or material,
Refer to attached sheet resubmission required		including special notices and material safety data sheets, if any, concerning
		impedances, hazards, and safety precautions.
D Will be returned by separate correspondence.	SD-07-Schedules	rabular lists snowing location, reatures, or other pertinent information regarding
		products, materials, equipment, or components to be used in the work.
E Disapproved (See attached).	SD-08-Statements	A designment resulted of the Continue to a three cab the Continue to a continue
E Disapproved (See attached).	3D-00-Statements	A document, required of the Contractor, or through the Contractor, from a supplier,
		installer, manufacturer, or other lower tier Contractor, the purpose of which is to
		confirm the quality or orderly progression of a portion of the work by documenting
		procedures, acceptability of methods or personnel, qualifications, or other
		verifications of quality.
F Receipt acknow ledge.	SD-09-Reports	Reports of inspections or tests, including analysis and interpretation of test results.
		analysis and morphisms of tour rooms.
FX Receipt acknow ledged, does not comply	SD-13-Certificates	Statement signed by an official authorized to certify on behalf of the manufacturer
as noted with contract requirements.		of a product, system or material, attesting that the product, system or material
		meets specified requirements. The statement must be dated after the award of the
		· · · ·
		contract, must state the Contractor's name and address, must name the project
		and location, and must list the specific requirements, which are being certified.
G Other (Specify)	SD-14-Samples	Samples, including both fabricated and unfabricated physical examples of
		materials, products, and units of work as complete units or as portions of units of
		work.
	SD-18-Records &	
	RFIs	Documentation to record compliance with technical or administrative requirements.
	SD-19-O&M Manuals	Data which forms a part of an operation and maintenance manual.
10. Approval of items does not relieve the contractor from complying	w ith all the requirement	s of the contract plans and specifications.
		T .
vellow fields are for Contractor to insert information		
y		J.

- E. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of item being proposed against item specified. Failure to point out deviations will result in the VA requiring removal and replacement of such work at the Contractor's expense.
- F. Stamp, sign, and date each submittal transmittal form indicating action

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the Contracting Officer. All submittal shall have "Transmittal Sheet" depicted above.
- B. Compile the electronic submittal file as a single, complete document.

 Name the electronic submittal file specifically according to its

 contents.
- C. Electronic files must be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text included in the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required.
- D. E-mail electronic submittal documents smaller than 5MB in size to e-mail addresses as directed by the Contracting Officer.
- E. Provide electronic documents over 5MB through an electronic FTP file sharing system. Confirm that the electronic FTP file sharing system can be accessed from the VA computer network. The Contractor is responsible for setting up, providing, and maintaining the electronic FTP file sharing system for the construction contract period of performance.
- F. Provide hard copies of submittals when requested by the Contracting Officer. Up to 3 additional hard copies of any submittal may be requested at the discretion of the Contracting Officer, at no additional cost to the VA.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.

- D. VA review period is 30 working days for submittals.
- E. VA review period is 14 working days for RFIs.
- F. The VA will return submittals to the Contractor with the notations identified on the "Transmittal Sheet Instructions" (see above)

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS	3
1.2	DEFINITIONS	4
1.3	REGULATORY REQUIREMENTS	6
1.4	ACCIDENT PREVENTION PLAN (APP)	6
1.5	ACTIVITY HAZARD ANALYSES (AHAs)	12
1.6	PRECONSTRUCTION CONFERENCE	13
1.7 (CP)	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON"	14
1.8	TRAINING	15
1.9	INSPECTIONS	16
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS	16
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE)	17
1.12	INFECTION CONTROL	18
1.13	TUBERCULOSIS SCREENING	26
1.14	FIRE SAFETY	27
1.15	ELECTRICAL	29
1.16	FALL PROTECTION	30
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS	31
1.18	EXCAVATION AND TRENCHES	32
1.19	CRANES	34
1.20	CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)	35
1.21	CONFINED SPACE ENTRY	35
1 22	WELDING AND CUTTING	35

657-17-	-104JC Restore Utility Systems, B6	02-01-17
657-17-	-105JC Restore Utility Systems, B6A	
1.23	LADDERS	36
1.24	FLOOR & WALL OPENINGS	36

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011......Pre-Project & Pre-Task Safety and Health
Planning

A10.34-2012......Protection of the Public on or Adjacent to Construction Sites

A10.38-2013......Basic Elements of an Employer's Program to

Provide a Safe and Healthful Work Environment

American National Standard Construction and

Demolition Operations

- C. American Society for Testing and Materials (ASTM):
 - E84-2013......Surface Burning Characteristics of Building Materials
- D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of
Healthcare Facilities

- E. National Fire Protection Association (NFPA):
 - 10-2013.....Standard for Portable Fire Extinguishers
 - 30-2012.....Flammable and Combustible Liquids Code
 - 51B-2014......Standard for Fire Prevention During Welding,
 Cutting and Other Hot Work
 - 70-2014.....National Electrical Code
 - 70B-2013......Recommended Practice for Electrical Equipment

 Maintenance

70E-2015Standard for Electrical Safety in the Workplace

99-2012.....Health Care Facilities Code

241-2013......Standard for Safeguarding Construction,
Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification

Manual

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1904Reporting and Recording Injuries & Illnesses

29 CFR 1910Safety and Health Regulations for General Industry

29 CFR 1926Safety and Health Regulations for Construction Industry

CPL 2-0.124.....Multi-Employer Citation Policy

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees,

and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).

- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:

No impact - near miss incidents that should be investigated but are not required to be reported to the VA;

Minor incident/impact - incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;

Moderate incident/impact - Any work-related injury or illness that results in:

- 1. Days away from work (any time lost after day of injury/illness onset);
 - 2. Restricted work;
 - 3. Transfer to another job;
 - 4. Medical treatment beyond first aid;
 - 5. Loss of consciousness;
 - 6. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
 - 7. any incident that leads to major equipment damage (greater than \$5000).

These incidents must be investigated and are required to be reported to the VA;

Major incident/impact - Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.

02-01-17

E. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer Representative.

1.4 ACCIDENT PREVENTION PLAN (APP):

A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working

conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.

- B. The APP shall be prepared as follows:
 - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET.** Title, signature, and phone number of the following:
 - 1) Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - 2) Plan approver (company/corporate officers authorized to
 obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional).

 Provide concurrence of other applicable corporate and project personnel (Contractor).
 - b. BACKGROUND INFORMATION. List the following:
 - Contractor;
 - 2) Contract number;
 - 3) Project name;

- 4) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. **RESPONSIBILITIES AND LINES OF AUTHORITIES.** Provide the following:
 - 1) A statement of the employer's ultimate responsibility for the implementation of his SOH program;
 - 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
 - 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
 - 4) Requirements that no work shall be performed unless a designated competent person is present on the job site;
 - 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
 - 6) Lines of authority;
 - 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- **e. SUBCONTRACTORS AND SUPPLIERS.** If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);

2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- 1) Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

- 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- 2) Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Project Manager:

- 1) Exposure data (man-hours worked);
- 2) Accident investigationreports;
- 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention;
 - 4) Medical Support;
 - 5) Posting of emergency telephone numbers;
 - 6) Prevention of alcohol and drug abuse;
 - 7) Site sanitation(housekeeping, drinking water, toilets);
 - 8) Night operations and lighting;
 - 9) Hazard communication program;
- 10) Welding/Cutting "Hot" work;
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety;
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;

- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) PreCast Concrete;
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Project Manager for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, Accident Prevention, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer Representative. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove

the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
 - 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type

of work involved in the AHA and familiar with current site safety issues.

- b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract.

This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in

accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing

shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.

G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.

B. NOT APPLICABLE

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer Representative determine whether a government investigation will be conducted.

- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent), and provide the report to the Contracting Officer Representative within 5 calendar days of the accident. The Contracting Officer Representative will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.

B. Mandatory PPE includes:

- 1. Hard Hats unless written authorization is given by the Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
- 2. Safety glasses unless written authorization is given by the Contracting Officer Representative in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.

- 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative in circumstances of no foot hazards.
- 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL - SEE DRAWINGS FOR REQUIREMENTS

- A. Infection Control is critical in all medical center facilities.

 Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.

 Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. See drawings if required An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Contracting Officer Representative before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Project Engineer. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: See contract drawings for Class.
- C. Class III, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:

- 1) Notify the Contracting Officer Representative.
- 2) Execute work by methods to minimize raising dust from construction operations.
- 3) Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.

b. Upon Completion:

- 1) Clean work area upon completion of task
- 2) Notify the Contracting Officer Representative

2. Class II requirements:

- a. During Construction Work:
 - 1) Notify the Contracting Officer Representative
 - 2) Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
 - 3) Water mist work surfaces to control dust while cutting.
 - 4) Seal unused doors with duct tape.
 - 5) Block off and seal air vents.
 - 6) Remove or isolate HVAC system in areas where work is being performed.

b. Upon Completion:

- 1) Wipe work surfaces with cleaner/disinfectant.
- 2) Contain construction waste before transport in tightly covered containers.
- 3) Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
- 4) Upon completion, restore HVAC system where work was performed $\ensuremath{\mathsf{NVAC}}$

5) Notify the Contracting Officer Representative

3. Class III requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Contracting Officer Representative
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.
 - 5) Contain construction waste before transport in tightly covered containers.
 - 6) Cover transport receptacles or carts. Tape covering unless solid lid.

b. Upon Completion:

- 1) Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative and thoroughly cleaned by the VA Environmental Services Department.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.

- 3) Vacuum work area with HEPA filtered vacuums.
- 4) Wet mop area with cleaner/disinfectant.
- 5) Upon completion, restore HVAC system where work was performed.
- 6) Return permit to the Contracting Officer Representative

4. Class IV requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Contracting Officer Representative
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.
 - 5) Seal holes, pipes, conduits, and punctures.
 - 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.

7) All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.

b. Upon Completion:

- 1) Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative with thorough cleaning by the VA Environmental Services Dept.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Contain construction waste before transport in tightly covered containers.
- 4) Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- 8) Return permit to the Contracting Officer Representative

Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:

- 1. Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
- 2. Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical

- Center) Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
- b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
- c. Class III & IV Seal all penetrations in existing barrier airtight
- d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
- e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.

D. Products and Materials:

- 1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
- 2. Barrier Doors: Self Closing One-hour and Two-hour fire-rated solid core wood in steel frame, painted
- 3. Dust proof one-hour fire-rated drywall
- 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
- 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose

- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches ${\tt x}$ 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product
- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be establish and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to Project Engineer for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
 - H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - 1. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.

- 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
- 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
- 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

I. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.

3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- 1. Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- 2. Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
 - 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
 - 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.

3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
 - C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
 - D. Temporary Construction Partitions: NOT APPLICABLE
 - E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
 - F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer Representative.
 - G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative.
 - H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.

- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241. Do not charge wet standpipes subject to freezing until weather protected.
- K. Sprinklers: Install, test and activate new automatic sprinklers.
 - L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
 - M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Contracting Officer Representative.
 - N. Hot Work: Request work permit to perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
 - O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
 - P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
 - Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Contracting Officer Representative with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.
 - 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
 - 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters

Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.

- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the The Contracting Officer Representative.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30-ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30-ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E 2015, Chapter 1, Article 110.4(C)(2)..

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.

- 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
- 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - 1. Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be colorcoded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.

E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.
- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the Project Manager prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall be closed out and provided to the Project Manager. The permit shall be maintained onsite and the first section of the permit shall include the following:
 - 1. Estimated start time & stop time
 - 2. Specific location and nature of the work.
 - 3. Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
 - 4. Indication of whether soil or concrete removal to an offsite location is necessary.
 - 5. Indication of whether soil samples are required to determined soil contamination.

- 6. Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment.
- 7. Indication of review of site drawings for proximity of utilities to digging/drilling.

The second section of the permit for excavations greater than five feet in depth shall include the following:

- 1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetrometer will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 Type B, greater than 1.5 Tons/FT2 Type A without condition to reduce to Type B).
- 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
- 3. Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
- 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.

- C. As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - 1. The planned dig site will be outlined/marked in white prior to locating the utilities.
 - 2. Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
 - 3. 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
 - 4. Digging will not commence until all known utilities are marked.
 - 5. Utility markings will be maintained
- D. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 to 5 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- E. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Project Manager 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift

meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.

- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Project Manager.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Project Manager for permit. Obtain permits from Project Manager

at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - 1. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - 2. In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
 - G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart ${\rm M.}$
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.

- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or color-coded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc. http://www.aluminum.org

AABC Associated Air Balance Council

http://www.aabchq.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AAN American Nursery and Landscape Association

http://www.anla.org

AASHTO American Association of State Highway and Transportation

Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America http://www.agc.org

AGMA American Gear Manufacturers Association, Inc. http://www.agma.org

AHAM Association of Home Appliance Manufacturers http://www.aham.org

AIA American Institute of Architects

http://www.aia.org

AISC American Institute of Steel Construction $\frac{http://www.aisc.org}{}$

AISI American Iron and Steel Institute http://www.steel.org

AITC American Institute of Timber Construction http://www.aitc-glulam.org

AMCA Air Movement and Control Association, Inc. http://www.amca.org

ANLA American Nursery & Landscape Association http://www.anla.org

ANSI American National Standards Institute, Inc. http://www.ansi.org

APA The Engineered Wood Association http://www.apawood.org

ARI Air-Conditioning and Refrigeration Institute http://www.ari.org

ASAE American Society of Agricultural Engineers http://www.asae.org

ASCE American Society of Civil Engineers http://www.asce.org

ASHRAE American Society of Heating, Refrigerating, and

Air-Conditioning Engineers

http://www.ashrae.org

ASME American Society of Mechanical Engineers

http://www.asme.org

ASSE American Society of Sanitary Engineering

http://www.asse-plumbing.org

ASTM American Society for Testing and Materials

http://www.astm.org

AWI Architectural Woodwork Institute

http://www.awinet.org

AWS American Welding Society

http://www.aws.org

AWWA American Water Works Association

http://www.awwa.org

BHMA Builders Hardware Manufacturers Association

http://www.buildershardware.com

BIA Brick Institute of America

http://www.bia.org

CAGI Compressed Air and Gas Institute

http://www.cagi.org

CGA Compressed Gas Association, Inc.

http://www.cganet.com

CI The Chlorine Institute, Inc.

http://www.chlorineinstitute.org

CISCA Ceilings and Interior Systems Construction Association

http://www.cisca.org

CISPI Cast Iron Soil Pipe Institute

http://www.cispi.org

657-17-105JC Restore Utility Systems, B6A CLFMI Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org CPMB Concrete Plant Manufacturers Bureau http://www.cpmb.org California Redwood Association CRA http://www.calredwood.org CRSI Concrete Reinforcing Steel Institute http://www.crsi.org Cooling Technology Institute CTI http://www.cti.org Door and Hardware Institute DHI http://www.dhi.org EGSA Electrical Generating Systems Association http://www.egsa.org EEI Edison Electric Institute http://www.eei.org EPA Environmental Protection Agency http://www.epa.gov ETL ETL Testing Laboratories, Inc. http://www.et1.com Federal Aviation Administration FAA http://www.faa.gov Federal Communications Commission FCC http://www.fcc.gov FPS The Forest Products Society http://www.forestprod.org Glass Association of North America GANA http://www.cssinfo.com/info/gana.html/

Factory Mutual Insurance
http://www.fmglobal.com

FΜ

GA Gypsum Association

http://www.gypsum.org

GSA General Services Administration

http://www.gsa.gov

HI Hydraulic Institute

http://www.pumps.org

HPVA Hardwood Plywood & Veneer Association

http://www.hpva.org

ICBO International Conference of Building Officials

http://www.icbo.org

ICEA Insulated Cable Engineers Association Inc.

http://www.icea.net

\ICAC Institute of Clean Air Companies

http://www.icac.com

IEEE Institute of Electrical and Electronics Engineers

http://www.ieee.org\

IMSA International Municipal Signal Association

http://www.imsasafety.org

IPCEA Insulated Power Cable Engineers Association

NBMA Metal Buildings Manufacturers Association

http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings

Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers

http://www.naamm.org

NAPHCC Plumbing-Heating-Cooling Contractors Association

http://www.phccweb.org.org

NBS National Bureau of Standards

See - NIST

NBBPVI National Board of Boiler and Pressure Vessel Inspectors

http://www.nationboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association

http://www.nema.org

NFPA National Fire Protection Association

http://www.nfpa.org

NHLA National Hardwood Lumber Association

http://www.natlhardwood.org

NIH National Institute of Health

http://www.nih.gov

NIST National Institute of Standards and Technology

http://www.nist.gov

NLMA Northeastern Lumber Manufacturers Association, Inc.

http://www.nelma.org

NPA National Particleboard Association

18928 Premiere Court Gaithersburg, MD 20879

(301) 670-0604

NSF National Sanitation Foundation

http://www.nsf.org

NWWDA Window and Door Manufacturers Association

http://www.nwwda.org

OSHA Occupational Safety and Health Administration

Department of Labor http://www.osha.gov

PCA Portland Cement Association

http://www.portcement.org

PCI Precast Prestressed Concrete Institute

http://www.pci.org

PPI The Plastic Pipe Institute

http://www.plasticpipe.org

PEI Porcelain Enamel Institute, Inc.

http://www.porcelainenamel.com

PTI Post-Tensioning Institute

http://www.post-tensioning.org

RFCI The Resilient Floor Covering Institute

http://www.rfci.com

RIS Redwood Inspection Service

See - CRA

RMA Rubber Manufacturers Association, Inc.

http://www.rma.org

SCMA Southern Cypress Manufacturers Association

http://www.cypressinfo.org

SDI Steel Door Institute

http://www.steeldoor.org

IGMA Insulating Glass Manufacturers Alliance

http://www.igmaonline.org

SJI Steel Joist Institute

http://www.steeljoist.org

SMACNA Sheet Metal and Air-Conditioning Contractors

National Association, Inc.

http://www.smacna.org

SSPC The Society for Protective Coatings

http://www.sspc.org

STI Steel Tank Institute

http://www.steeltank.com

SWI Steel Window Institute

http://www.steelwindows.com

TCA Tile Council of America, Inc.

http://www.tileusa.com

TEMA Tubular Exchange Manufacturers Association

http://www.tema.org

TPI Truss Plate Institute, Inc.

583 D'Onofrio Drive; Suite 200

Madison, WI 53719 (608) 833-5900

UBC The Uniform Building Code

See ICBO

UL Underwriters' Laboratories Incorporated

http://www.ul.com

ULC Underwriters' Laboratories of Canada

http://www.ulc.ca

WCLIB West Coast Lumber Inspection Bureau

6980 SW Varns Road, P.O. Box 23145

Portland, OR 97223 (503) 639-0651

WRCLA Western Red Cedar Lumber Association

P.O. Box 120786

New Brighton, MN 55112

(612) 633-4334

WWPA Western Wood Products Association

http://www.wwpa.org

- - - E N D - - -

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup,

control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Resident Engineer as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA Resident Engineer and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the Resident Engineer and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the Resident Engineer.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to

the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort

- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and Resident Engineer. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the Resident Engineer and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the Resident Engineer to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or Resident Engineer will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the Resident Engineer of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or Resident Engineer, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 32 16.01 NOT APPLICABLE
- C. Section 01 32.16 NOT APPLICABLE
- D. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- E. Section 01 32.16.16 NOT APPLICABLE
- F. Section 01 32.16.17 NOT APPLICABLE
- G. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- H. Section 01 81 13 NOT APPLICABLE
- I. Section 07 08 00 NOT APPLICABLE
- J. Section 21 08 00 COMMISSIONING OF FIRE PROTECTION SYSTEMS.
- K. Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- L. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- M. Section 26 08 00 NOT APPLICABLE
- N. Section 27 08 00 NOT APPLICABLE
- O. Section 28 08 00 NOT APPLICABLE.
- P. Section 33 08 00 NOT USED

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. NOT APPLICABLE
- D. NOT APPLICABLE

1.5 ACRONYMS

List of Acronyms	
Acronym	Meaning
A/E	Architect / Engineer Design Team
AHJ	Authority Having Jurisdiction
ASHRAE	Association Society for Heating Air Condition and
	Refrigeration Engineers
BOD	Basis of Design
BSC	Building Systems Commissioning
CCTV	Closed Circuit Television

Acronym Meaning CD Construction Documents CMMS Computerized Maintenance Management System CO Contracting Officer (VA) COR Contracting Officer's Representative (see also VA-RE) COBie Construction Operations Building Information Exchange CPC Construction Phase Commissioning Cx Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau OGM Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer USGBC United States Green Building Council	List of Acronyms		
CMMS Computerized Maintenance Management System CO Contracting Officer (VA) COR Contracting Officer's Representative (see also VA-RE) COBie Construction Operations Building Information Exchange CPC Construction Phase Commissioning Cx Commissioning CxA Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau OGM Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA FM VA Project Manager VA-RE VA Resident Engineer	Acronym	Meaning	
CO Contracting Officer (VA) COR Contracting Officer's Representative (see also VA-RE) COBie Construction Operations Building Information Exchange CPC Construction Phase Commissioning Cx Commissioning CxA Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau OGM Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	CD	Construction Documents	
COR Contracting Officer's Representative (see also VA-RE) COBie Construction Operations Building Information Exchange CPC Construction Phase Commissioning Cx Commissioning CxA Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	CMMS	Computerized Maintenance Management System	
COBie Construction Operations Building Information Exchange CPC Construction Phase Commissioning Cx Commissioning CxA Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	CO	Contracting Officer (VA)	
CPC Construction Phase Commissioning Cx Commissioning CxA Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau OGM Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	COR	Contracting Officer's Representative (see also VA-RE)	
Cx Commissioning CxA Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	COBie	Construction Operations Building Information Exchange	
CxA Commissioning Agent CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau OGM Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	CPC	Construction Phase Commissioning	
CxM Commissioning Manager CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	Сх	Commissioning	
CxR Commissioning Representative DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau OGM Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	CxA	Commissioning Agent	
DPC Design Phase Commissioning FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	CxM	Commissioning Manager	
FPT Functional Performance Test GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	CxR	Commissioning Representative	
GBI-GG Green Building Initiative - Green Globes HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	DPC	Design Phase Commissioning	
HVAC Heating, Ventilation, and Air Conditioning LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA PM VA Project Manager VA-RE VA Resident Engineer	FPT	Functional Performance Test	
LEED Leadership in Energy and Environmental Design NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	GBI-GG	Green Building Initiative - Green Globes	
NC Department of Veterans Affairs National Cemetery NCA Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	HVAC	Heating, Ventilation, and Air Conditioning	
Department of Veterans Affairs National Cemetery Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	LEED	Leadership in Energy and Environmental Design	
NCA Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	NC	Department of Veterans Affairs National Cemetery	
Administration NEBB National Environmental Balancing Bureau O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	NCA	Department of Veterans Affairs National Cemetery	
O&M Operations & Maintenance OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	14011	Administration	
OPR Owner's Project Requirements PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	NEBB	National Environmental Balancing Bureau	
PFC Pre-Functional Checklist PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	O&M	Operations & Maintenance	
PFT Pre-Functional Test SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	OPR	Owner's Project Requirements	
SD Schematic Design SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	PFC	Pre-Functional Checklist	
SO Site Observation TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	PFT	Pre-Functional Test	
TAB Test Adjust and Balance VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	SD	Schematic Design	
VA Department of Veterans Affairs VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	SO	Site Observation	
VAMC VA Medical Center VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	TAB	Test Adjust and Balance	
VA CFM VA Office of Construction and Facilities Management VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	VA	Department of Veterans Affairs	
VACO VA Central Office VA PM VA Project Manager VA-RE VA Resident Engineer	VAMC	VA Medical Center	
VA PM VA Project Manager VA-RE VA Resident Engineer	VA CFM	VA Office of Construction and Facilities Management	
VA-RE VA Resident Engineer	VACO	VA Central Office	
<u> </u>	VA PM	VA Project Manager	
USGBC United States Green Building Council	VA-RE	VA Resident Engineer	
	USGBC	United States Green Building Council	

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training.

Accuracy: The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines.

Benchmarks: Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument.

<u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>COBie:</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate

facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

<u>Commissionability:</u> Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned

Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists:</u> Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation).

<u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

<u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

<u>Commissioning Process:</u> A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report:</u> The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

<u>Commissioning Representative (CxR)</u>: An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

<u>Commissioning Specifications:</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning:</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD):</u> Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC):</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

Coordination Drawings: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel,

ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

<u>Data Logging:</u> The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

<u>Deferred System Test:</u> Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

<u>Design Criteria:</u> A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR.

<u>Design Intent:</u> The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

<u>Design Narrative:</u> A written description of the proposed design solutions that satisfy the requirements of the OPR.

Design Phase Commissioning (DPC): All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Industry Accepted Best Practice:</u> A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

<u>Installation Verification:</u> Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems

Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process.

Lessons Learned Workshop: A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability:</u> A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment.

Maintainability also includes components that have readily obtainable repair parts or service.

Manual Test: Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation').

Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

<u>Peer Review:</u> A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

<u>Precision:</u> The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

Pre-Design Phase Commissioning: Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project

<u>Pre-Functional Checklist (PFC):</u> A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.

Pre-Functional Test (PFT): An inspection or test that is done before
functional testing. PFT's include installation verification and system
and component start up tests.

<u>Procedure or Protocol:</u> A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

Range: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated.

Resolution: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

<u>Special System Inspections:</u> Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

Static Tests: Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

Start Up Tests: Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

Systems Manual: A system-focused composite document that includes all information required for the owners operators to operate the systems.

<u>Test Procedure:</u> A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Testing:</u> The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC.

Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

<u>Training Plan:</u> A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

<u>Trending:</u> Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

<u>Verification:</u> The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning:</u> Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit:</u> A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.

B. The following systems will be commissioned as part of this project:

Noise and Vibration Control Control Control Coling Towers, Boilers, Generators, etc. will be commissioned as part of the system commissioning Direct Digital Control System** Chilled Water System** Chilled Water System** Cooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Boilers, Generators, etc. will be commissioned work System* Chilled Water System** Chillers (centrifugal, rotary screw, aircooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC Ventilation/Exhaust Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU Integrated Heat Recovery	HVAC	
Cooling Towers, Boilers, Generators, etc. will be commissioned as part of the system commissioning Direct Digital Control System** Station (including graphics, point mapping, trends, alarms), Network Communications Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, air- cooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Water System** Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC Ventilation/Exhaust Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Noise and Vibration	Noise and vibration levels for critical
be commissioned as part of the system commissioning Direct Digital Control Operator Interface Computer, Operator Work System** Station (including graphics, point mapping, trends, alarms), Network Communications Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, air- cooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Water System** Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Control	equipment such as Air Handlers, Chillers,
Direct Digital Control Operator Interface Computer, Operator Work System** Station (including graphics, point mapping, trends, alarms), Network Communications Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, air- cooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC Ventilation/Exhaust Systems PVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		Cooling Towers, Boilers, Generators, etc. will
Direct Digital Control System** Operator Interface Computer, Operator Work Station (including graphics, point mapping, trends, alarms), Network Communications Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, aircooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Water System** Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		be commissioned as part of the system
System** Station (including graphics, point mapping, trends, alarms), Network Communications Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, aircooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Water System** Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		commissioning
trends, alarms), Network Communications Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, air- cooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems PVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Direct Digital Control	Operator Interface Computer, Operator Work
Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, aircooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	System**	Station (including graphics, point mapping,
Control panels will be commissioned with the systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, aircooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory Ventilation/Exhaust Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		trends, alarms), Network Communications
Systems controlled by the panel] Chilled Water System** Chillers (centrifugal, rotary screw, aircooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Water System** Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		Modules and Wiring, Integration Panels. [DDC
Chilled Water System** Chillers (centrifugal, rotary screw, aircooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		Control panels will be commissioned with the
cooled), pumps (primary, secondary, variable primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		systems controlled by the panel]
primary), VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Chilled Water System**	Chillers (centrifugal, rotary screw, air-
system components, DDC Control Panels (including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		cooled), pumps (primary, secondary, variable
(including integration with Building Control System) Condenser Water Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		primary), VFDs associated with chilled water
Condenser Water System** Cooling Towers, Fluid Coolers, heat exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		system components, DDC Control Panels
Condenser Water System** Exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		(including integration with Building Control
System** exchangers/economizers, pumps, VFDs associated with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		System)
with condenser water system components, DDC control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust exhaust, isolation exhaust, room Systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Condenser Water	Cooling Towers, Fluid Coolers, heat
Control panels. Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	System**	exchangers/economizers, pumps, VFDs associated
Steam/Heating Hot Boilers, boiler feed water system, economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		with condenser water system components, DDC
Water System** economizers/heat recovery equipment, condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		control panels.
condensate recovery, water treatment, boiler fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Steam/Heating Hot	Boilers, boiler feed water system,
fuel system, controls, interface with facility DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory Ventilation/Exhaust exhaust, isolation exhaust, room Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Water System**	economizers/heat recovery equipment,
DDC system. HVAC Air Handling Air handling Units, packaged rooftop AHU, Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory Ventilation/Exhaust exhaust, isolation exhaust, room Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		condensate recovery, water treatment, boiler
HVAC Air Handling Air handling Units, packaged rooftop AHU, Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory ventilation/Exhaust exhaust, isolation exhaust, room pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		fuel system, controls, interface with facility
Systems** Outdoor Air conditioning units, humidifiers, DDC control panels HVAC General exhaust, toilet exhaust, laboratory exhaust, isolation exhaust, room Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		DDC system.
DDC control panels HVAC General exhaust, toilet exhaust, laboratory Ventilation/Exhaust exhaust, isolation exhaust, room Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	HVAC Air Handling	Air handling Units, packaged rooftop AHU,
HVAC General exhaust, toilet exhaust, laboratory Ventilation/Exhaust exhaust, isolation exhaust, room Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Systems**	Outdoor Air conditioning units, humidifiers,
Ventilation/Exhaust exhaust, isolation exhaust, room Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU		DDC control panels
Systems pressurization control systems HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	HVAC	General exhaust, toilet exhaust, laboratory
HVAC Energy Recovery Heat Wheels, Heat Recovery Loops, AHU	Ventilation/Exhaust	exhaust, isolation exhaust, room
	Systems	pressurization control systems
Systems** Integrated Heat Recovery	HVAC Energy Recovery	Heat Wheels, Heat Recovery Loops, AHU
· · · · · · · · · · · · · · · · · · ·	Systems**	Integrated Heat Recovery

HVAC Terminal Unit	VAV Terminal Units, CAV terminal units, fan
Systems**	coil units, fin-tube radiation, unit heaters
Decentralized Unitary	Split-system HVAC systems, controls, interface
HVAC Systems*	with facility DDC
Unitary Heat Pump	Water-source heat pumps, controls, interface
Systems**	with facility DDC
Humidity Control	Humidifiers, de-humidifiers, controls,
Systems	interface with facility DDC
Hydronic Distribution	Pumps, DDC control panels, heat exchangers,
Systems	

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - 1. Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.

C. Members Appointed by VA:

- Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
- 2. User: Representatives of the facility user and operation and maintenance personnel.
- 3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

A. Appoint an individual, company or firm to act as the Commissioning Agent.

- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - 3. Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.

- 6. Participate in meetings to coordinate Systems Functional Performance Testing.
- 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
- 8. Provide information to the Commissioning Agent for developing commissioning plan.
- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.

- F. Observe construction and report progress, observations and issues.

 Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents.

 Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation

requirements of the commissioning process, and shall include, but is not limited, to the following:

- 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
- 2. Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
- 3. Identification of systems and equipment to be commissioned.
- 4. Schedule of Commissioning Coordination meetings.
- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test

procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:

- 1. Name and identification code of tested system.
- 2. Test number.
- 3. Time and date of test.
- 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
- 5. Dated signatures of the person performing test and of the witness, if applicable.
- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the

Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.

- 1. Creating an Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - g. Include information that may be helpful in diagnosing or evaluating the issue.
 - h. Note recommended corrective action.
 - i. Identify commissioning team member responsible for corrective action.
 - j. Identify expected date of correction.
 - $\boldsymbol{k}\text{.}$ Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning

Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents and those that do not meet requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:

- Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
- 2. Commissioning plan.
- 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5, Commissioning Issues Log.
- 6. Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - 2. Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.
 - 4. Updated Commissioning Issues Log, including status of unresolved issues
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.

- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - 1. Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
 - 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
 - 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide

- guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary step-by-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA Resident Engineer with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final

commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.

I. Data for Commissioning:

- The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
- 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 20 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 15 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals.

 Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.

- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing.

 Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment.
 Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Construction Ph	ase	CxA = Commissioning Agent					L = Lead
		RE = R	Residen	t Eng:	ineer		P = Participate
		A/E =	Design	eer	A = Approve		
Commissioning F	Roles & Responsibilities	PC = F	rime C	ontra	ctor		R = Review
		O&M =	Gov't	Facil	ity O&I	M	O = Optional
Category	Task Description	CxA	RE	A/E	PC	M&O	Notes
Meetings	Construction Commissioning Kick Off meeting	L	А	Р	Р	0	
	Commissioning Meetings	L	A	P	P	0	
	Project Progress Meetings	P	А	P	L	0	
	Controls Meeting	L	А	Р	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	A	P	P	N/A	
Cy Plan & Snec	Final Commissioning Plan	T.	A	R	R	0	
on rian a spec	Time commissioning I tun			10	1		
Schedules	Duration Schedule for Commissioning Activities	L	А	R	R	N/A	
		<u> </u>					
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	

Construction Ph	ase	CxA =	Commis	sionir	ng Ager	nt	L = Lead
		RE = R	esiden		P = Participate		
		A/E =	Design	Arch	eer	A = Approve	
Commissioning F	Roles & Responsibilities	PC = P	rime C	ontrad	ctor		R = Review
		O&M =	Gov't	Facili	ty 0&1	M	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document Reviews	TAB Plan Review	L	A	R	R	0	
	Submittal and Shop Drawing Review	R	А	R	L	0	
	Review Contractor Equipment Startup Checklists	L	A	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	А	R	R	N/A	
Site Observations	Witness Factory Testing	P	A	P	L	0	
Observations	Construction Observation Site Visits	L	А	R	R	0	
Functional Test Protocols	Final Pre-Functional Checklists	L	А	R	R	0	
lest Protocors	Final Functional Performance Test Protocols	L	А	R	R	0	
Technical Activities	Issues Resolution Meetings	P	A	P	L	0	
Reports and	Status Reports	T,	A	R	R	0	
Logs		T.	ļ -	ļ - ·	R	0	
	Maintain Commissioning Issues Log	L	A	R	K	O	

Construction Ph	ase	CxA =	Commis	sionin	g Ager	nt	L = Lead
		RE = R	esident	Engi	neer		P = Participate
Commissioning Roles & Responsibilities	A/E =	Design	Arch/	Engine	eer	A = Approve	
Commissioning R					tor		R = Review
					ty O&M	1	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phas	Se	CxA =	Commi	ssion	ing Ag	ent	L = Lead	
		RE = I	Reside	nt En	gineer		P = Participate	
		A/E =	Desig	n Arcl	n/Engi:	neer	A = Approve	
Commissioning H	Roles & Responsibilities	PC = Prime Contractor				R = Review		
		O&M =	Gov't	Faci	Lity O	M&	O = Optional	
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes	
Meetings	Commissioning Meetings	L	А	P	Р	0		
Meetings	Project Progress Meetings	P	A	P	L	0		
	Pre-Test Coordination Meeting	L	А	Р	Р	0		
	Lessons Learned and Commissioning Report Review Meeting	L	А	Р	Р	0		
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	P	P	0		
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	А	R	R	0		

Acceptance Phas	se	CxA =	Commi	ssion	ent	L = Lead	
		RE = F	Reside	ent Eng	gineer		P = Participate
		A/E =	Desig	n Arcl	A = Approve		
Commissioning F	Roles & Responsibilities	PC = E	Prime	Contra	actor		R = Review
		O&M =	Gov't	Facil	lity O	&M	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Schedules	Durant Duranting I Have Calculate						
Schedules	Prepare Functional Test Schedule	L	A	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	А	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists		A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	
	Review Operations & Maintenance Manuals	L	А	R	R	R	
	Training Plan Review	L	А	R	R	R	
	Warranty Review	L	А	R	R	0	
	Review TAB Report	L	А	R	R	0	
Site	Construction Observation Site Visits	T,	A	R	R	0	
Observations	Witness Selected Equipment Startup	L	А	R	R	0	
Functional Test Protocols	TAB Verification	L	A	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	A	P	P	P	
	Retesting	L	А	P	P	P	
Technical	Issues Resolution Meetings	P	A	P	L	0	
Activities	Systems Training	L	S	R	P	P	

657-17-104JC Restore Utility Systems, B6 657-17-105JC Restore Utility Systems, B6A

10-01-15

Acceptance Pha	ase	CxA =	Commi	ssion	ing Ag	ent	L = Lead
		RE =	Reside	nt Eng	gineer		P = Participate
		A/E =	Desig	n Arcl	n/Engi	neer	A = Approve
Commissioning	Roles & Responsibilities	PC =	Prime	Contra	actor		R = Review
		O&M =	Gov't	Facil	M.	O = Optional	
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Reports and	Status Reports	L	А	R	R	0	
Logs	Maintain Commissioning Issues Log	L	А	R	R	0	
	Final Commissioning Report	L	А	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase		CxA =	Commi	ssion	ent	L = Lead	
		RE = R	eside	nt En	gineer		P = Participate
Q)-l (Dibiliti	A/E =	Desig	n Arcl	neer	A = Approve	
Commissioning F	Roles & Responsibilities	PC = P	rime	Contra	actor		R = Review
		O&M =	Gov't	Faci	lity O	M.3	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Post-Occupancy User Review Meeting	L	А	0	Р	Р	
Site Observations	Periodic Site Visits	L	A	0	0	P	
Functional	Deferred and/or seasonal Testing	L	A	0	P	P	
Test Protocols							
Technical Activities	Issues Resolution Meetings	L	S	0	0	Р	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	А		R	Р	
Reports and	Final Commissioning Report Amendment	L	А		R	R	
Logs	Status Reports	L	A		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - 1. Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.
 - c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.

d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.

3. Sensor and Actuator Calibration

- a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
- b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.

4. Execution of Equipment Startup

- a. Two weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
- b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
- c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
- d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall

correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.

C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.4 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers Critical, Priority, and Maintenance.
 - 1. Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
 - 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report

automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.

- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the Resident Engineer and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the Resident Engineer. Any pretest trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the Resident Engineer, prior to the execution of Systems Functional Performance Testing.
 - 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.

- 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.
- 4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

Dual-Path Air B	Dual-Path Air Handling Unit Trending and Alarms											
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
OA Temperature	AI	15 Min	24 hours	3 days	N/A							
RA Temperature	AI	15 Min	24 hours	3 days	N/A							
RA Humidity	AI	15 Min	24 hours	3 days	Р	>60% RH	10 min					
Mixed Air Temp	AI	None	None	None	N/A							
SA Temp	AI	15 Min	24 hours	3 days	С	±5°F from SP	10 min					
Supply Fan Speed	AI	15 Min	24 hours	3 days	N/A							
Return Fan Speed	AI	15 Min	24 hours	3 days	N/A							

Dual-Path Air	Handlin	ng Unit Tren	nding and Ala	rms			
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm
RA Pre-Filter Status	AI	None	None	None	N/A		
OA Pre-Filter Status	AI	None	None	None	N/A		
After Filter Status	AI	None	None	None	N/A		
SA Flow	AI	15 Min	24 hours	3 days	С	±10% from SP	10 min
OA Supply Temp	AI	15 Min	24 hours	3 days	Р	±5°F from SP	10 min
RA Supply Temp	AI	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA Flow	AI	15 Min	24 hours	3 days	Р	±10% from SP	5 min
RA Flow	AI	15 Min	24 hours	3 days	Р	±10% from SP	5 min
Initial UVC Intensity (%)	AI	None	None	None	N/A		
Duct Pressure	AI	15 Min	24 hours	3 days	С	±25% from SP	6 min
CO2 Level	AI	15 Min	24 hours	3 days	P	±10% from SP	10 min
Supply Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Return Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 Min
High Static Status	DI	COV	24 hours	3 days	Р	True	1 min
Fire Alarm Status	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 1	DI	COV	24 hours	3 days	С	True	10 min
Freeze Stat Level 2	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 3	DI	COV	24 hours	3 days	Р	True	1 min
Fire/Smoke Damper Status	DI	COV	24 hours	3 days	Р	Closed	1 min
Emergency AHU Shutdown	DI	COV	24 hours	3 days	P	True	1 min

Dual-Path Air	Handlin	g Unit Tren	nding and Ala	rms			
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Exhaust Fan #1 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Exhaust Fan #2 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Exhaust Fan #3 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
OA Alarm	DI	COV	24 hours	3 days	С	True	10 min
High Static Alarm	DI	COV	24 hours	3 days	С	True	10 min
UVC Emitter Alarm	DI	COV	24 hours	3 days	P	True	10 min
CO2 Alarm	DI	COV	24 hours	3 days	Р	True	10 min
Power Failure	DI	COV	24 hours	3 days	Р	True	1 min
Supply Fan							
Speed	AO	15 Min	24 hours	3 days	N/A		
Return Fan Speed	AO	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AO	15 Min	24 hours	3 days	N/A		
Supply Fan	DO	COV	24 hours	3 days	N/A		
Return Fan S/S	DO	COV	24 hours	3 days	N/A		
Fire/Smoke Dampers	DO	COV	24 hours	3 days	N/A		
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A		
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A		
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A		
AHU Energy	Calc	1 Hour	30 day	N/A	N/A		

Terminal Unit	Terminal Unit (VAV, CAV, etc.) Trending and Alarms											
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
Space Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min					
Air Flow	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min					
SA Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min					
Local Setpoint	AI	15 Min	12 hours	3 days	М	±10°F from SP	60 min					
Space Humidity	AI	15 Min	12 hours	3 days	Р	> 60% RH	5 min					
Unoccupied Override	DI	COV	12 hours	3 days	М	N/A	12 Hours					
Refrigerator Alarm	DI	COV	12 hours	3 days	С	N/A	10 min					
Damper Position	AO	15 Minutes	12 hours	3 days	N/A							
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A							

4-Pipe Fan Coi	4-Pipe Fan Coil Trending and Alarms										
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	P	±5°F from SP	10 min				
SA Temperature	AI	15 Minutes	12 hours	3 days	P	±5°F from SP	10 min				
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour				
Water Sensor	DI	COV	12 hours	3 days	М	N/A	30 Min				
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

2-Pipe Fan Coi	2-Pipe Fan Coil Unit Trending and Alarms											
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min					
SA Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min					
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour					
Water Sensor	DI	COV	12 hours	3 days	М	N/A	30 Min					
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A							
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min					

Unit Heater Trending and Alarms											
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
Heating Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Unit Heater ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

Steam and Condensate Pumps Trending and Alarms

Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Steam Flow (LB/HR)	AI	15 Minutes	12 hours	3 days	N/A		
Condensate Pump Run Hours	AI	15 Minutes	12 hours	3 days	N/A		
Water Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A		
Electric Meter (KW/H)	AI	15 Minutes	12 hours	3 days	N/A		
Irrigation Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A		
Chilled Water Flow (TONS)	AI	15 Minutes	12 hours	3 days	N/A		
Condensate Flow (GPM)	AI	15 Minutes	12 hours	3 days	N/A		
High Water Level Alarm	DI	COV	12 hours	3 days	С	True	5 Min
Condensate Pump Start/Stop	DO	COV	12 hours	3 days	Р	Status <> Command	10 min

Domestic Hot Wa	Domestic Hot Water Trending and Alarms										
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Domestic HW Setpoint WH-1	AI	15 Minute	12 Hours	3 days	N/A						
Domestic HW Setpoint WH-2	AI	15 Minute	12 Hours	3 days	N/A						
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	С	> 135 oF	10 Min				
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	Р	±5°F from SP	10 Min				
Dom. Circ. Pump #1 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min				
Dom. Circ. Pump #2 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min				
Dom. Circ. Pump #1 Start/Stop	DO	COV	12 Hours	3 days	N/A						

Domestic Hot Water Trending and Alarms									
Point	Type	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Dom. Circ. Pump #2 Start/Stop	DO	COV	12 Hours	3 days	N/A				
Domestic HW Start/Stop	DO	COV	12 Hours	3 days	N/A				

Hydronic Hot W	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
System HWS Temperature	AI	15 min	12 hours	3 days	С	±5°F from SP	10 Min
System HWR Temperature	AI	15 min	12 hours	3 days	М	±15°F from SP	300 Min
HX-1 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Leaving Temperature	AI	15 min	12 hours	3 days	P	±5°F from SP	10 Min
System Flow (GPM)	AI	15 min	12 hours	3 days	N/A		
System Differential Pressure	AI	15 min	12 hours	3 days	Р	±10% from SP	8 Min
				3 days			
HW Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 1 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
HW Pump 2 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		

Hydronic Hot Wa	Hydronic Hot Water Trending and Alarms										
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Steam Station #1 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station #2 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station #2 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station Bypass Valve Position	AO	15 Min	12 Hours	3 days	N/A						
HW Pump 1 Start/Stop	DO	COV	12 Hours	3 days	N/A						
HW Pump 2 Start/Stop	DO	COV	12 Hours	3 days	N/A						
HWR #1 Valve	DO	COV	12 Hours	3 days	N/A						
HWR #2 Valve	DO	COV	12 Hours	3 days	N/A						

Chilled Water	Chilled Water System Trending and Alarms										
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Chiller 1 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min				
Chiller 1 Flow	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 2 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A						

Chilled Water System Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm			
Chiller 2 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min			
Chiller 2 Flow	AI	15 Minutes	12 Hours	3 days	N/A					
Chiller 2 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A					
Chiller 2 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A					
Chiller 2 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A					
Primary Loop Decoupler Flow	AI	15 Minutes	12 Hours	3 days	N/A					
Primary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A					
Primary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A					
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min			
Secondary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A					
Secondary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A					
Secondary Loop Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A					
Secondary Loop Tonnage	AI	15 Minutes	12 Hours	3 days	N/A					
Primary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min			
Primary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min			
Secondary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min			
Secondary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min			
Chiller 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min			

Chilled Water	System	Trending ar	nd Alarms				
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 1 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Chiller 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 2 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Detector	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Exhaust Fan Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Emergency Shutdown	DI	COV	12 Hours	3 days	P	True	1 Min
Primary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		

Chilled Water System Trending and Alarms											
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A						
Chiller 1 Enable	DO	COV	12 Hours	3 days	N/A						
Chiller 1 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A						
Chiller 2 Enable	DO	COV	12 Hours	3 days	N/A						
Chiller 2 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A						
Refrigerant Exhaust Fan Start / Stop	DO	COV	12 Hours	3 days	N/A						

Condenser Water System Trending and Alarms										
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Chiller 1 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Chiller 1 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Chiller 2 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Chiller 2 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Cooling Tower 1 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Cooling Tower 1 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Cooling Tower 1 Basin Temp	AI	15 Minutes	12 Hours	3 days	Р	< 45 of	10 Min			
Cooling Tower 2 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Cooling Tower 2 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A					
Cooling Tower 2 Basin Temp	AI	15 Minutes	12 Hours	3 days	Р	< 45 oF	10 Min			

Condenser Water		I					
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Condenser Water Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Condenser Water Return Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Outdoor Air Wet Bulb	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Fan Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Cooling Tower 1 Basin Heat	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 1 Heat Trace	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 2 Fan Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Cooling Tower 2 Basin Heat	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 2 Heat Trace	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Isolation Valve	DI	COV	12 Hours	3 days	P	Status <> Command	1 min
Chiller 2 Isolation Valve	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Condenser Water Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Condenser Water Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min
Chiller 1 Condenser Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Condenser By- Pass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A		

Condenser Water System Trending and Alarms							
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Cooling Tower 2 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 2 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A		
Cooling Tower 2 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A		
Condenser Water Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Condenser Water Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		

Steam Boiler Sy	Steam Boiler System Trending and Alarms								
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Boiler 1 Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min		
Boiler 1 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A				
Boiler 1 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A				
Boiler 2 Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min		
Boiler 2 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A				
Boiler 2 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A				
System Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min		
Boiler 1 Enable	DI	COV	12 Hours	3 days	N/A				

Steam Boiler System Trending and Alarms							
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Boiler 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 1 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 1 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 1 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 1 Feed Pump	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Status	DI	COV	12 Hours	3 days	P	Status <> Command	10 min
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 2 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 2 Feed Pump	DI	COV	12 Hours	3 days	N/A		
Combustion Damper Status	DI	COV	12 Hours	3 days	Р	Status <> Command	5 min
Condensate Recovery Pump Status	DI	COV	12 Hours	3 days	Р	Status <> Command	5 min
Boiler 1 Feed Pump Start / Stop	DO	COV	12 Hours	3 days	N/A		
Boiler 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Combustion Damper Command	DO	COV	12 Hours	3 days	N/A		
Condensate Recovery Pump Start / Stop	DO	COV	12 Hours	3 days	N/A		

Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Outside Air	AI	15	12 Hours	3 days	N/A		
Temperature	711	Minutes	12 110415	3 days	14/21		
Boiler 1 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Entering Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Leaving Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Entering Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Leaving Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Hot Water Supply Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5 oF from SP	10 Min
Hot Water Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	С	±5% from SP	10 Min
Lead Boiler	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 1 Isolation Valve	DI	COV	12 Hours	3 days	N/A		
Boiler 1 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		

Hot Water Boil	er syst	em Trending	and Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm
Boiler 1 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 2 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 2 Isolation Valve	DI	COV	12 Hours	3 days	N/A		
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Combustion Dampers Open	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Secondary Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Secondary Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Primary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Hot Water	D0	GOLI	10 11-	2 1	DI / 7		
System Enable Combustion Dampers	DO	COV	12 Hours	3 days	N/A N/A		
Command Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		

Hot Water Boiler System Trending and Alarms								
Point	Type	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A			

- E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the Resident Engineer and Commissioning Agent.
 - 1. Point-to-Point checkout documentation;
 - Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
 - 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM						
Sensor	Calibration Frequency	O&M Calibration Procedure Reference				
Discharge air temperature	Once a year	Volume I Section D.3.aa				
Discharge static pressure	Every 6 months	Volume II Section A.1.c				

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve

temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1						
Control	Proportional	Integral	Derivative	Interval		
Reference	Constant	Constant	Constant			
Heating Valve Output	1000	20	10	2 sec.		

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance
 Testing is to demonstrate that each system is operating according to
 the Contract Documents. Systems Functional Performance Testing
 facilitates bringing the systems from a state of substantial completion
 to full dynamic operation. Additionally, during the testing process,
 areas of noncompliant performance are identified and corrected, thereby
 improving the operation and functioning of the systems. In general,
 each system shall be operated through all modes of operation (seasonal,
 occupied, unoccupied, warm-up, cool-down, part- and full-load, fire
 alarm and emergency power) where there is a specified system response.
 The Contractor shall verify each sequence in the sequences of
 operation. Proper responses to such modes and conditions as power
 failure, freeze condition, low oil pressure, no flow, equipment
 failure, etc. shall also be tested.
- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as

requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.

- D. Purpose of Test Procedures: The purpose of each specific Systems
 Functional Performance Test is to verify and document compliance with
 the stated criteria of acceptance given on the test form.
 Representative test formats and examples are found in the Commissioning
 Plan for this project. (The Commissioning Plan is issued as a separate
 document and is available for review.) The test procedure forms
 developed by the Commissioning Agent will include, but not be limited
 to, the following information:
 - System and equipment or component name(s)
 - 2. Equipment location and ID number
 - 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
 - 4. Date
 - 5. Project name
 - 6. Participating parties
 - 7. A copy of the specification section describing the test requirements
 - 8. A copy of the specific sequence of operations or other specified parameters being verified
 - 9. Formulas used in any calculations
 - 10. Required pretest field measurements
 - 11. Instructions for setting up the test.
 - 12. Special cautions, alarm limits, etc.
 - 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
 - 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
 - 15. A section for comments.
 - 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.

- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
 - 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
 - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
 - 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
 - 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
 - 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent

actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.

- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance
 Testing will be conducted only after Pre-Functional Checklists have
 been satisfactorily completed. The control system shall be sufficiently
 tested and approved by the Commissioning Agent and the VA before it is
 used to verify performance of other components or systems. The air
 balancing and water balancing shall be completed before Systems

Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.

K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
 - 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems

Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.

- b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings.
 The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
 - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's Resident Engineer, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.

- 6. Review course materials (including operation and maintenance manuals).
- 7. Review and discuss locations and other facilities required for instruction.
- 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
- 9. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded.

Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

- e. Submit two copies within seven days of end of each training
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.

D. Quality Assurance:

- 1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
- 2. Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
- 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.

E. Training Coordination:

- 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
- 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.

F. Instruction Program:

- 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.

- b. Intrusion detection systems.
- c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
- d. Medical equipment, including medical gas equipment and piping.
- e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
- f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
- g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
- h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
- i. HVAC instrumentation and controls.
- j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
- k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
- 1. Lighting equipment and controls.
- m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.
- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.

- f. Operating characteristics.
- g. Limiting conditions.
- H, Performance curves.
- 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.

- c. Noise and vibration adjustments.
- d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

H. Training Execution:

 Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.

2. Instruction:

- a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
- b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.

- 2) The VA will furnish an instructor to describe VA's operational philosophy.
- 3) The VA will furnish the Contractor with names and positions of participants.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
- I. Demonstration and Training Recording:
 - 1. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - 2. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - 3. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training.

 Display continuous running time.
 - 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

---- END ----

01 91 00 - 75

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Demolition and removal of roads, walks, curbs, and on-grade slabs outside buildings to be demolished: Section 31 20 11, EARTH MOVING (SHORT FORM).
- B. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Asbestos Removal: Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- F. Lead Paint: Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- G. Environmental Protection: NOT APPLICABLE
- H. Construction Waste Management: NOT APPLICABLE
- I. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures.

 Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.

- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - 1. No wall or part of wall shall be permitted to fall outwardly from structures.
 - 2. NOT APPLICABLE
 - 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 4. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement

for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.

- H. NOT APPLICABLE
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - 2. To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center Property to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously.
- D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump

sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.

E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer.

When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer.

Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 02 82 11 TRADITIONAL ASBESTOS ABATEMENT

TABLE OF CONTENTS

1.1 SUMMARY OF THE WORK
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS
1.1.2 EXTENT OF WORK
1.1.3 RELATED WORK
1.1.4 TASKS
1.1.5 CONTRACTORS USE OF PREMISES
1.2 VARIATIONS IN QUANTITY
1.3 STOP ASBESTOS REMOVAL
1.4 DEFINITIONS
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS9
1.5 APPLICABLE CODES AND REGULATIONS
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS11
1.5.2 Asbestos Abatement CONTRACTOR RESPONSIBILITY11
1.5.3 FEDERAL REQUIREMENTS
1.5.4 STATE REQUIREMENTS
1.5.5 LOCAL REQUIREMENTS
1.5.6 STANDARDS
1.5.7 EPA GUIDANCE DOCUMENTS
1.5.8 NOTICES
1.5.9 PERMITS/LICENSES
1.5.10 POSTING AND FILING OF REGULATIONS
1.5.11 VA RESPONSIBILITIES
1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS
1.5.13 PRE-CONSTRUCTION MEETING
1.6 PROJECT COORDINATION
1.6.1 PERSONNEL
1.7 RESPIRATORY PROTECTION
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR
1.7.3 SELECTION AND USE OF RESPIRATORS
1.7.4 MINIMUM RESPIRATORY PROTECTION

1.7.5 MEDICAL WRITTEN OPINION	.16
1.7.6 RESPIRATOR FIT TEST	.17
1.7.7 RESPIRATOR FIT CHECK	.17
1.7.8 MAINTENANCE AND CARE OF RESPIRATORS	.17
1.7.9 SUPPLIED AIR SYSTEMS	.17
1.8 WORKER PROTECTION	.17
1.8.1 TRAINING OF ABATEMENT PERSONNEL	.17
1.8.2 MEDICAL EXAMINATIONS	.17
1.8.3 REGULATED AREA ENTRY PROCEDURE	.18
1.8.4 DECONTAMINATION PROCEDURE	.18
1.8.5 REGULATED AREA REQUIREMENTS	.18
1.9 DECONTAMINATION FACILITIES	.19
1.9.1 DESCRIPTION	.19
1.9.2 GENERAL REQUIREMENTS	.19
1.9.3 TEMPORARY FACILITIES TO THE PDF and W/EDF	.19
1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)	.19
1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)	.21
1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES	.22
PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT	. 22
2.1 MATERIALS AND EQUIPMENT	.22
2.1.1 GENERAL REQUIREMENTS	.22
2.2 MONITORING, INSPECTION AND TESTING	.23
2.2.1 GENERAL	.23
2.2.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT	. 24
2.2.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH	.25
2.3 ASBESTOS hAZARD aBATEMENT pLAN	.26
2.4 SUBMITTALS	.26
2.4.1 PRE-START MEETING SUBMITTALS	.26
2.4.2 SUBMITTALS DURING ABATEMENT	.28
2.4.3 SUBMITTALS AT COMPLETION OF ABATEMENT	.28
2.5 ENCAPSULANTS	.29
2.5.1 TYPES OF ENCAPSULANTS	.29
2.5.2 PERFORMANCE REQUIREMENTS	.29
2.5.3 CERTIFICATES OF COMPLIANCE	.29
PART 3 - EXECUTION	.29
3.1 REGULATED AREA PREPARATIONS	.29
3.1.3.1 DESIGN AND LAYOUT	.30

3.1.3.2 NEGATIVE AIR MACHINES (HEPA UNITS)	31
3.1.3.3 PRESSURE DIFFERENTIAL	32
3.1.3.4 MONITORING	32
3.1.3.5 AUXILIARY GENERATOR	32
3.1.3.6SUPPLEMENTAL MAKE-UP AIR INLETS	32
3.1.3.7 TESTING THE SYSTEM	33
3.1.3.8 DEMONSTRATION OF THE NEGATIVE PRESSURE Filtration SYSTEM	33
3.1.3.9 USE OF THE NEGATIVE PRESSURE FILTRATION SYSTEM DURING ABATEMENT OPERATIONS	33
3.1.3.10 DISMANTLING THE SYSTEM	34
3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA	34
3.1.4.1 GENERAL	34
3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA	34
3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA	34
3.1.4.4 CRITICAL BARRIERS	34
3.1.4.5 PRIMARY BARRIERS	35
3.1.4.6 SECONDARY BARRIERS	35
3.1.4.7 EXTENSION OF THE REGULATED AREA	35
3.1.4.8 FIRESTOPPING	35
3.1.5 Sanitary facilities	36
3.1.6 PERSONAL PROTECTIVE EQUIPMENT	36
3.1.7 Pre-cleaning	36
3.1.8 PRE-ABATEMENT ACTIVITIES	37
3.1.8.1 PRE-ABATEMENT Meeting	37
3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	37
3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	38
3.2 REMOVAL OF ACM	38
3.2.1 WETTING acm	38
3.2.2 SECONDARY BARRIER AND WALKWAYS	39
3.2.3 WET REMOVAL OF ACM	39
3.2.4 WET REMOVAL OF AMOSITE	40
3.2.5 REMOVAL OF ACM/DIRT FLOORS AND OTHER SPECIAL PROCEDURES	40
3.3 LOCKDOWN ENCAPSULATION	40
3.3.1 GENERAL	40
3.3.2 DELIVERY AND STORAGE	40
3.3.3 WORKER PROTECTION	40
3.3.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING	41
3.3.5 SEALING EXPOSED EDGES	41

3.4 DISPOSAL OF ACM WASTE MATERIALS4	. 1
3.4.1 GENERAL	1
3.4.2 PROCEDURES	1
3.5 PROJECT DECONTAMINATION4	2
3.5.1 GENERAL4	2
3.5.2 REGULATED AREA CLEARANCE4	2
3.5.3 WORK DESCRIPTION4	2
3.5.4 PRE-DECONTAMINATION CONDITIONS4	2
3.5.5 FIRST CLEANING4	2
3.5.6 PRE-CLEARANCE INSPECTION AND TESTING4	: 3
3.5.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES4	3
3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING4	3
3.6.1 GENERAL4	3
3.6.2 FINAL VISUAL INSPECTION4	3
3.6.3 FINAL AIR CLEARANCE TESTING4	3
3.6.4 FINAL AIR CLEARANCE PROCEDURES4	4
3.6.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF:4	
3.6.8 LABORATORY TESTING OF TEM SAMPLES4	5
3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE4	
3.7.1 COMPLETION OF ABATEMENT WORK4	
3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR4	
3.7.3 WORK SHIFTS4	6
3.7.4 RE-INSULATION	6
ATTACHMENT #14	7
ATTACHMENT #24	8
ATTACHMENT #4	0

INSTRUCTIONS TO ARCHITECT/ENGINEER AND INDUSTRIAL HYGIENE CONSULTANT SECTION 02 82 11

CLASS I NEGATIVE PRESSURE ENCLOSURE ASBESTOS ABATEMENT SPECIFICATIONS

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of asbestos containing materials (ACM) and asbestos/waste contaminated elements in an appropriate regulated area for the following approximate quantities;

The quantity identified below represents the amount of wall demo to be performed. All wall demolition shall be performed under containments for asbestos and lead. It is known that asbestos and lead or in/on the walls but unknown the exact quantities inside the walls.

Building 6A: 4122 square feet of block wall with miscellaneous quantities of piping and insulation internal to wall.

C. Encapsulation of ACM in the following quantities:

Contractor shall coordinate required encapsulation within containment s constructed for abatement activities.

1.1.3 RELATED WORK

A. Section 07 84 00, FIRESTOPPING.

- B. Section 02 41 00, DEMOLITION.
- C. Division 09, FINISHES
- D. Division 22, PLUMBING.
- E. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION / Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING / Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- F. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION / Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING / Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION
- G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- H. NOT APPLICABLE
- I. Section 23 21 13, HYDRONIC PIPING / Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- J. Section 23 31 00, HVAC DUCTS AND CASINGS / Section 23 37 00, AIR OUTLETS AND INLETS.

1.1.4 TASKS

- A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and standard operating procedures for asbestos abatement work.
- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 CONTRACTORS USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. VA Design and Construction Procedures drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings:

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and

those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos. Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some sates require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel. Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA.

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place. Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur
if the employee were not wearing respiratory protection equipment.
Encapsulant - A material that surrounds or embeds asbestos fibers in an

adhesive matrix and prevents the release of fibers. **Encapsulation** - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

 ${\bf Filter}$ - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60×60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise
deteriorated so that the asbestos is no longer likely to be bound with
its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Personal protective equipment (PPE) - equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b).

Professional TH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) or Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs. Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) - The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material. Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420

- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400
- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900
- G. CS Commercial Standard of the National Institute of Standards and Technology (NIST)
 U. S. Department of Commerce
 Government Printing Office
 Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- J. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000
- K. NEC National Electrical Code (by NFPA)
- L. NEMA National Electrical Manufacturer's Association 2101 L Street, N.W. Washington, DC 20037
- M. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555

- N. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- O. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- P. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910 Subpart I Personal Protective Equipment

- 3. Title 29 CFR 1910.134 Respiratory Protection
- 4. Title 29 CFR 1926 Construction Industry Standards
- 5. Title 29 CFR 1910.1020 Access to Employee Exposure and Medical Records
- 6. Title 29 CFR 1910.1200 Hazard Communication
- 7. Title 29 CFR 1910 Subpart K Medical and First Aid
- B. Environmental Protection Agency (EPA):
 - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT)
 Title 49 CFR 100 185 Transportation

1.5.4 STATE REQUIREMENTS

Contractor shall follow all State requirements that apply to the asbestos abatement work, disposal, clearance, etc.

1.5.5 LOCAL REQUIREMENTS

If local requirements are more stringent than federal or state standards, the local standards are to be followed.

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - 1. American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI Z88.2 Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA Filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry ${\tt EPA-560-OPTS-86-001}$
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

1.5.9 PERMITS/LICENSES

A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

1.5.10 POSTING AND FILING OF REGULATIONS

A. Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each in the clean room at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

- A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment and personal possessions to avoid unauthorized access into the regulated area. Note:

 Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
- B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.

- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the standard operating procedures during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.13 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the prestart meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - 2. Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);

- 3. Decontamination area set-up/layout and decontamination procedures for employees;
- 4. Abatement methods/procedures and equipment to be used;
- 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized onsite shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive standard operating procedures for asbestos work; has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete standard operating procedure for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA

AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.

4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the standard operating procedures of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a full face powered air purifying respirator when fiber levels are maintained consistently at or below $0.5\ f/cc$. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written

determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit tests shall be done for PAPRs which have been put into a motor/blower failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.

1.7.9 SUPPLIED AIR SYSTEMS

If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 - Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m) (4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing

personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.4 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
- D. Shower and wash body completely with soap and water. Rinse thoroughly.
- E. Rinse shower room walls and floor to drain prior to exiting.
- F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.5 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

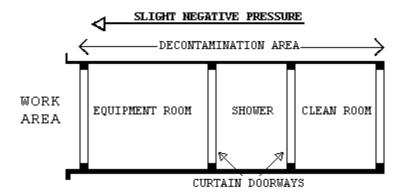
Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

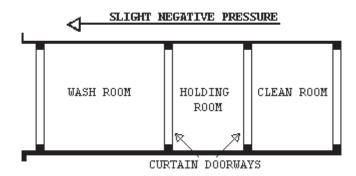
The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain $70^{\circ}F$ throughout the PDF and W/EDF.


1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room which is connected to the regulated area. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from

outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.


- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.
- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in regulated area.
- 4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide an W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- 5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES

At the washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.

- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 Hazard Communication in the pre-start meeting submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 MONITORING, INSPECTION AND TESTING

2.2.1 GENERAL

A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the employee exposure to asbestos must not exceed 0.1 fiber per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.

- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.
- C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.

2.2.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - 1. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.

- 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
- 6. Task 6: Issue certificate of decontamination for each regulated area and project report.
- B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.2.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be accredited EPA AHERA/State an Contractor/Supervisor or Abatement Worker and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings

within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.3 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established an Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP shall be submitted for review and approval to the VA prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAPs are:

- A. Minimum Personnel Qualifications
- B. Emergency Action Plan/Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Negative Pressure Systems Requirements
- I. Monitoring, Inspections, and Testing
- J. Removal Procedures for ACM
- K. Removal of Contaminated Soil (if applicable)
- L. Encapsulation Procedures for ACM
- M. Disposal of ACM waste/equipment
- N. Regulated Area Decontamination/Clean-up
- O. Regulated Area Visual and Air Clearance
- P. Project Completion/Closeout

2.4 SUBMITTALS

2.4.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:

- 1. Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
- 2. Waste water filtration system, shower system, containment barriers.
- 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.
- 4. Respirators, protective clothing, personal protective equipment.
- 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. Area or clearance air monitoring shall be conducted in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - 1. Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; Completion Date
 - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - 1. CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAPs developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as

Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.

- 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAPs incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and standard operating procedures; and copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS and application instructions.

2.4.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; and representative air monitoring and results/TWA's/EL's. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - 4. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.4.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the

project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.5 ENCAPSULANTS: NOT APPLICABLE

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

3.1.1 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police should be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.

3.1.2. SIGNAGE AND POWER MANAGEMENT

- A. Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed the PEL. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.
- B. Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.
- C. Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil polyethylene disposal bags for staging and eventual disposal as asbestos waste.

3.1.3 NEGATIVE PRESSURE FILTRATION SYSTEM

The Contractor shall provide enough HEPA negative air machines to effect > - 0.02" WCG pressure. The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to effect > - 0.02" WCG pressure. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. NIOSH has done extensive studies and has determined that negative air machines typically operate at $\sim 50\%$ efficiency. The contractor shall consider this in their determination of number of units needed to provide > - 0.02" WCG pressure. The contractor shall use double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

3.1.3.1 DESIGN AND LAYOUT

- A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1. Method of supplying power to the units and designation/location of the panels.
 - Description of testing method(s) for correct air volume and pressure differential.
 - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of

the power supply and manufacturer's data on the generator and switch.

3.1.3.2 NEGATIVE AIR MACHINES (HEPA UNITS)

- A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.
- B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
- C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97%. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.
- D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 μm or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 μm or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.
- E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate

- normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- H. It is essential that replacement HEPA filters be tested using an "in-line" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location. Contractor will provide written documentation of test results for negative air machine units with HEPA filters changed by the contractor or documentation when changed and tested by the contractor filters

3.1.3.3 PRESSURE DIFFERENTIAL

The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.

3.1.3.4 MONITORING

The pressure differential shall be continuously monitored and recorded between the regulated area and the area outside the regulated area with a monitoring device that incorporates a strip chart recorder. The strip chart recorder shall become part of the project log and shall indicate at least -0.02" water column gauge for the duration of the project.

3.1.3.5 AUXILIARY GENERATOR

If the building is occupied during abatement, provide an auxiliary gasoline/diesel generator located outside the building in an area protected from the weather. In the event of a power failure of the general power grid and the VAMC emergency power grid, the generator must automatically start and supply power to a minimum of 50% of the negative air machines in operation.

3.1.3.6 SUPPLEMENTAL MAKE-UP AIR INLETS

Provide, as needed for proper air flow in the regulated area, in a location approved by the VA, openings in the plastic sheeting to allow outside air to flow into the regulated area. Auxiliary makeup air inlets must be located as far from the negative air machines as possible, off the floor near the ceiling, and away from the barriers that separate the regulated area from the occupied clean areas. Cover the inlets with weighted flaps which will seal in the event of failure of the negative pressure system.

3.1.3.7 TESTING THE SYSTEM

The negative pressure system must be tested before any ACM is disturbed in any way. After the regulated area has been completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative pressure system to the VA using smoke tubes and a negative pressure gauge. Verification and documentation of adequate negative pressure differential across each barrier must be done at the start of each work shift.

3.1.3.8 DEMONSTRATION OF THE NEGATIVE PRESSURE FILTRATION SYSTEM

The demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following:

- A. Plastic barriers and sheeting move lightly in toward the regulated area.
- B. Curtains of the decontamination units move in toward regulated area.
- C. There is a noticeable movement of air through the decontamination units. Use the smoke tube to demonstrate air movement from the clean room to the shower room to the equipment room to the regulated area.
- D. Use smoke tubes to demonstrate air is moving across all areas in which work is to be done. Use a differential pressure gauge to indicate a negative pressure of at least -0.02" across every barrier separating the regulated area from the rest of the building. Modify the system as necessary to meet the above requirements.

3.1.3.9 USE OF THE NEGATIVE PRESSURE FILTRATION SYSTEM DURING ABATEMENT OPERATIONS

writing.

- A. Start units before beginning any disturbance of ACM occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a negative pressure differential of -0.02" water column gauge, for the duration of the work until a final visual clearance and final air clearance has been successfully completed. No negative air units shall be shut down at any time unless authorized by the VA Contracting Officer, verbally and in
- B. Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.
- C. Abatement work shall begin at a location farthest from the units and proceed towards them. If an electric failure occurs, the Competent Person shall stop all abatement work and immediately begin wetting all exposed asbestos materials for the duration of the power outage. Abatement work shall not resume until power is restored and all units are operating properly again.

D. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air clearance has been successfully completed for that regulated area.

3.1.3.10 DISMANTLING THE SYSTEM

After completion of the final visual and final air clearance has been obtained by the VPIH/CIH, the units may be shut down. The unit exterior surfaces shall have been completely decontaminated; pre-filters are not to be removed and the units inlet/outlet sealed with 2 layers of 6 mil poly immediately after shut down. No filter removal shall occur at the VA site following successful completion of site clearance. OSHA/EPA/DOT asbestos shall be attached to the units.

3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

3.1.4.1 GENERAL

Seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, shall immediately stop work and clean up the contamination at no additional cost to the VA. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 3.1.4.8; FIRESTOPPING.

3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.

3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

3.1.4.4 CRITICAL BARRIERS

Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6 mil fire retardant

poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly.

3.1.4.5 PRIMARY BARRIERS

- A. Cover the regulated area with two layers of 6 mil fire retardant poly on the floors and two layers of 4 mil, fire retardant poly on the walls, unless otherwise directed in writing by the VA representative. Floor layers must form a right angle with the wall and turn up the wall at least 300 mm (12"). Seams must overlap at least 1800 mm (6') and must be spray glued and taped. Install sheeting so that layers can be removed independently from each other. Carpeting shall be covered with three layers of 6 mil poly. Corrugated cardboard sheets must be placed between the bottom and middle layers of poly. Mechanically support and seal with duct tape and glue all wall layers.
- B. If stairs and ramps are covered with 6 mil plastic, two layers must be used. Provide 19 mm (3/4") exterior grade plywood treads held in place with duct tape/glue on the plastic. Do not cover rungs or rails with any isolation materials.

3.1.4.6 SECONDARY BARRIERS

A loose layer of 6 mil shall be used as a drop cloth to protect the primary layers from debris generated during the abatement. This layer shall be replaced as needed during the work and at a minimum once per work day.

3.1.4.7 EXTENSION OF THE REGULATED AREA

If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

3.1.4.8 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves, conduits, etc. must be firestopped with a firerated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA representative immediately. All walls, floors and

- ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

3.1.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.1.6 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, gloves and foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

3.1.7 PRE-CLEANING

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

Contractor shall perform Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. All workers performing pre-cleaning activities must don appropriate personal protective equipment (PPE), as specified throughout this document and as approved in the Contractor's work plan. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Contractor shall perform Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location. Drapes, clothing, upholstered furniture and other fabric items should be disposed of as asbestos contaminated waste. Cleaning these asbestos contaminated items utilizing HEPA vacuum techniques and off-premises steam cleaning is very difficult and cannot guarantee decontamination. Carpeting will be disposed of prior to abatement if in the regulated area. If ACM floor tile is attached to the carpet while the Contractor is removing the carpet that section of the carpet will be disposed of as asbestos waste.

Contractor shall perform Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed

objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

Contractor shall perform Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.1.8 PRE-ABATEMENT ACTIVITIES

3.1.8.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.
- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify

the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of AEQA 10-95 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawlspaces (previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.2 REMOVAL OF ACM

3.2.1 WETTING ACM

- A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.
- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.

C. Removal Encapsulant: When authorized by VA, provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during removal.

3.2.2 SECONDARY BARRIER AND WALKWAYS

- A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet (3 meters) of the area where work is to done. Secure the secondary barrier with duct tape to prevent it from moving or debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
- B. Install walkways using 6 mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.

3.2.3 WET REMOVAL OF ACM

- A. Adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time (at a minimum two hours) must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present.
- B. If ACM does not wet well with amended water due to composition, coating or jacketing, remove as follows:
 - 1. Mist work area continuously with amended water whenever necessary to reduce airborne fiber levels.
 - 2. Remove saturated ACM in small sections. Do not allow material to dry out. As material is removed, bag material, while still wet into disposal bags. Twist the bag neck tightly, bend over (gooseneck) and seal with a minimum of three tight wraps of duct tape. Clean /decontaminate the outside of the bag of any residue and move to washdown station adjacent to W/EDF.
 - 3. Fireproofing or Architectural Finish on Scratch Coat: Spray with a fine mist of amended water or removal encapsulant. Allow time for saturation to the substrate. Do not over saturate causing excess dripping. Scrape material from substrate. Remove material in manageable quantities and control falling to staging or floor. If the falling distance is over 20 feet (6M), use a drop chute to contain material through descent. Remove residue remaining on the scratch coat after scraping is done using a stiff bristle hand

brush. If a removal encapsulant is used, remove residue completely before the encapsulant dries. Periodically re-wet the substrate with amended water as needed to prevent drying of the material before the residue is removed from the substrate.

- 4. Fireproofing or Architectural Finish on Wire Lath: Spray with a fine mist of amended water or removal encapsulant. Allow time to completely saturate the material. Do not over saturate causing excess dripping. If the surface has been painted or otherwise coated, cut small holes as needed and apply amended water or removal encapsulant from above. Cut saturated wire lath into 2' x 6' (50mm x 150mm) sections and cut hanger wires. Roll up complete with ACM, cover in burlap and hand place in disposal bag. Do not drop to floor. After removal of lath/ACM, remove any overspray on decking and structure using stiff bristle nylon brushes. Depending on hardness of overspray, scrapers may be needed for removal.
- 5. Pipe/Tank/Vessel/Boiler Insulation: Remove the outer layer of wrap while spraying with amended water in order to saturate the ACM. Spray ACM with a fine mist of amended water or removal encapsulant. Allow time to saturate the material to the substrate. Cut bands holding pre-formed pipe insulation sections. Slit jacketing at the seams, remove and hand place in a disposal bag. Do not allow dropping to the floor. Remove molded fitting insulation/mud in large pieces and hand place in a disposal bag. Remove any residue on pipe or fitting with a stiff bristle nylon brush. In locations where pipe fitting insulation is removed from fibrous glass or other non-asbestos insulated straight runs of pipe, remove fibrous material at least 6" from the point it contacts the ACM.

3.2.4 WET REMOVAL OF AMOSITE: NOT APPLICABLE

3.3 LOCKDOWN ENCAPSULATION

3.3.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, the contractor shall encapsulate all surfaces with a bridging encapsulant.

3.3.2 DELIVERY AND STORAGE

Deliver materials to the job site in original, new and unopened containers bearing the manufacturer's name and label as well as the following information: name of material, manufacturer's stock number, date of manufacture, thinning instructions, application instructions and the MSDS for the material.

3.3.3 WORKER PROTECTION

Before beginning work with any material for which an MSDS has been submitted, provide workers with any required personal protective equipment. The required personal protective equipment shall be used whenever exposure to the material might occur. In addition to OSHA/specification requirements for respiratory protection, a paint pre-filter and an organic vapor cartridge, at a minimum, shall used in addition to the HEPA filter when an organic solvent based encapsulant is used. The CPIH/CIH shall be responsible for provision of adequate respiratory protection. Note: Flammable and combustible encapsulants shall not be used, unless authorized in writing by the VA.

3.3.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING

- A. Apply two coats of lockdown encapsulant to the scratch coat plaster or piping after all ACM has been removed. Apply in strict accordance with the manufacturer's instructions. Any deviation from the instructions must be approved by the VA's representative in writing prior to commencing the work.
- B. Apply the lockdown encapsulant with an airless sprayer at a pressure and using a nozzle orifice as recommended by the manufacturer. Apply the first coat while the while the scratch coat is still damp from the asbestos removal process, after passing the visual inspection. If the surface has been allowed to dry, wet wipe or HEPA vacuum prior to spraying with encapsulant. Apply a second coat over the first coat in strict conformance with the manufacturer's instructions. Color the lockdown encapsulant and contrast the color in the second coat so that visual confirmation of completeness and uniform coverage of each coat is possible. Adhere to the manufacturer's instructions for coloring. At the completion of the encapsulation, the surface must be a uniform third color produced by the mixture.

3.3.5 SEALING EXPOSED EDGES

Seal edges of ACM exposed by removal work which is inaccessible, such as a sleeve, wall penetration, etc., with two coats of bridging encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the bridging encapsulant. Apply in accordance with $3.3.4\ (B)$.

3.4 DISPOSAL OF ACM WASTE MATERIALS

3.4.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.4.2 PROCEDURES

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment.
- B. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures is this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.

- C. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped or HEPA vacuumed.
- D. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.5 PROJECT DECONTAMINATION

3.5.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.5.2 REGULATED AREA CLEARANCE

Clearance air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.5.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.5.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be collected and removed, and the loose 6 mil layer of poly removed while being adequately wetted with amended water and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Primary barriers consisting of 2 layers of 6 mil poly on the floor and 4 mil poly on the walls.
 - 2. Critical barriers consisting of 2 layers of 6 mil poly which is the sole barrier between the regulated area and openings to the rest of the building or outside.
 - 4. Decontamination facilities for personnel and equipment in operating condition and the negative pressure system in operation.

3.5.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding,

ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.5.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

3.5.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES

With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification. Negative pressure shall be maintained in the regulated area during the lockdown application.

3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING

3.6.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH starting after the final cleaning.

3.6.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.6.3 FINAL AIR CLEARANCE TESTING

A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a

minimum of one field blank. If work is equal to or more than $260\ lf/160\ sf/35\ cf$, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. **All Additional inspection and testing costs will be borne by the Contractor**.

B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.6.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, or 70 AHERA structures per square millimeter (s/mm²) by AHERA TEM.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8μ MCE filters for PCM analysis and 0.45μ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.
 - 3. Final clearance for soil that is not encapsulated, samples will be collected on 0.8μ MCE filters for PCM analysis and 0.45μ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Air clearance of work areas where contaminated soil has been removed is in addition to the requirement for clearance by bulk sample analysis discussed within these specifications. There will be no aggressive air sampling for the clearance of soil due to the fact that aggressive air sampling may overload the cassettes.
 - 4. Random samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 SF of soil 3 samples; >1000 to <5000 SF of soil 5 samples; and >5000 SF of soil 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1% asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1% asbestos, the areas shall be re-cleaned until the sample results are <1%.

3.6.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF:

- A. The VPIH/CIH will perform clearance samples as indicated by the specification.
- B. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.
- C. Random samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 SF of soil 3 samples; >1000 to <5000 SF of soil 5 samples; and >5000 SF of soil 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1% asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1% asbestos, the areas shall be re-cleaned until the sample results are <1%.

3.6.6 CLEARANCE SAMPLING USING TEM - EQUAL TO OR MORE THAN 260LF/160SF: TEM

- A. Clearance requires 13 samples be collected; 5 inside the regulated area; 5 outside the regulated area; and 3 field blanks.
- B. The TEM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 13 clearance samples shall be collected. All samples must be equal to or less than 70 AHERA structures per square millimeter (s/mm²) AHERA TEM.

3.6.7 LABORATORY TESTING OF PCM CLEARANCE SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be sent daily by the VPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.6.8 LABORATORY TESTING OF TEM SAMPLES

Samples shall be sent by the VPIH/CIH to a NIST accredited laboratory for analysis by TEM. The laboratory shall be successfully participating in the NIST Airborne Asbestos Analysis (TEM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor.

3.6.9 LABORATORY TESTING OF BULK SAMPLES

Samples shall be sent by the VPIH/CIH or CPIH/CIH to a NIST accredited laboratory for analysis by PLM. The laboratory shall be successfully participating in the NIST Bulk Asbestos Analysis (PLM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor.

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.7.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- A. Remove all equipment and materials from the project area.
- B. Dispose of all packaged ACM waste as required.
- C. Repair or replace all interior finishes damaged during the abatement work, as required.
- D. Fulfill other project closeout requirements as required in this specification.

3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.7.3 WORK SHIFTS

All work with the exception of work above 90bd shall be done during administrative hours (8:00 AM to 4:30 PM) Monday -Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

3.7.4 RE-INSULATION

If required as part of the contract, replace all asbestos containing insulation/fire-proofing with suitable non-asbestos material. Provide MSDS's for all replacement materials in advance of installation for VA approval. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

CERTIFICATE OF COMPLETION

	DATE:	_ VA Projec	:t #:		
	PROJECT NAME:	Abatement Contr	cactor:		
	VAMC/ADDRESS:				
1.	-	ave personally inspect (specify regulated are			ed the
	which took place fro	m / /	to	/ /	
2.	That throughout the VA's specification	work all applicable as were met.	requirements/	regulations an	nd the
3.	appropriate person followed the prop	o entered the regula nal protective equipm er entry and exit pro e duration of the work	ent and respin	rator and that	they
4.	That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.				work, their
5.		d supervised all inspeable regulations and			ed and
6.		inside the regulated condition and the maximescribed below.			
7.	That all abatement the manufacturer's	work was done in acco s recommendations.	rdance with OS	SHA requirement	ts and
CPI	IH/CIH Signature/Date	:	· · · · · · · · · · · · · · · · · · ·	<u></u>	
CPI	IH/CIH Print Name:		· · · · · · · · · · · · · · · · · · ·	<u></u>	
Aba	atement Contractor Sig	gnature/Date:		<u></u>	• • •
Aba	atement Contractor Pr	int Name:			

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT
PROJECT NAME:DATE:
PROJECT ADDRESS:
ABATEMENT CONTRACTOR'S NAME:
WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.
Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.
RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.
TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:
Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal
MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.
Signature:
Printed Name:
Social Security Number:

Witness:

AFFIDAVIT OF MEDICAL TRAINING/ACCREDITATION	SURVEILLANCE,	RESPIRATORY	PROTECTION	AND
VA PROJECT NAME AND NUMBER:_				
VA MEDICAL FACILITY:				
ABATEMENT CONTRACTOR'S NAME	AND ADDRESS:			
1. I verify that the follow	ing individual			
Name:	Social S	ecurity Number:_		
who is proposed to be e the above project by medical surveillance p that complete records 29 CFR 1926.1101(m)(n) Abatement Contractor a	the named Abates program in accord of the medical s and 29 CFR 1910	ment Contractor, ance with 29 CF urveillance prod .20 are kept at	, is included R 1926.1101(m) gram as requir	in a , and ed by
Address:				
2. I verify that this indi in the use of all appropr person is capable of work required in the expected wor	iate respiratory ing in safe and	protection sys	stems and that	the
3. I verify that this inc 1926.1101(k). This accreditation certific	individual has	s also obtaine	ed a valid	
4. I verify that I meet specifications for a C		alifications c	riteria of th	e VA
Signature of CPIH/CIH:			_Date:	
Printed Name of CPIH/CIH:			_	
Signature of Contractor:			_Date:	
Printed Name of Contractor:_				

ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS
VA Project Location:
VA Project #:
VA Project Description:
This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.
I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.
At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.
Abatement Contractor Owner's SignatureDate
Abatement Contractor Competent Person(s)Date

SECTION 02 83 33.13 LEAD-BASED PAINT REMOVAL AND DISPOSAL

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Removing and disposal of lead-based paint at interior locations.
 All walls & hangers shall be considered lead or lead paint containing for removal.

1.2 RELATED REQUIREMENTS

- A. Hazardous Material Abatement: Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- B. Demolition Disturbing Lead-Based Paint: Section 02 41 00, DEMOLITION.
- C. Surface Preparation Disturbing Lead-Based Paint: NOT APPLICABLE

1.3 DEFINITIONS

- A. Action Level: Employee exposure, without regard to use of respirator, to lead airborne concentration of 30 micrograms per cubic meter (0.03 parts per million) of air averaged over 8-hour period. As used in this section, "30 micrograms per cubic meter of air (0.03 parts per million)" refers to action level.
- B. Area Monitoring: Sampling of lead concentrations within lead control area and inside physical boundaries which are representative of airborne lead concentrations which may reach breathing zone of personnel potentially exposed to lead.
- C. Breathing Zone: Area within hemisphere, forward of shoulders, with 150 mm to 225 mm (6 to 9 inches) radius and center at nose or mouth of employee.
- D. Certified Industrial Hygienist (CIH): As used in this section, refers to an Industrial Hygienist employed by Contractor.
- E. Change Rooms and Shower Facilities: Rooms within designated physical boundary around lead control area equipped with separate storage facilities for clean protective work clothing and equipment and for street clothes which prevent cross- contamination.
- F. Competent Person: Person capable of identifying lead hazards in work area and authorized by contractor to take corrective action.
- G. Decontamination Room: Room for removal of contaminated personal protective equipment (PPE).

- H. Eight-Hour Time Weighted Average (TWA): Airborne concentration of lead averaged over 8-hour workday to which an employee is exposed.
- I. High Efficiency Particulate Air (HEPA) Filter Equipment: HEPA filtered vacuuming equipment with UL 586 filter system capable of collecting and retaining lead-contaminated paint dust. HEPA filter means 99.97 percent efficient against 0.3 micron (0.012 mil) size particles.
- J. Lead: Metallic lead, inorganic lead compounds, and organic lead soaps. Excluded from this definition are other organic lead compounds.
- K. Lead Control Area: Enclosed area or structure with full containment to prevent spreading lead dust, paint chips, and debris from lead-based paint removal operations. Lead control area is isolated by physical boundaries to prevent unauthorized entry of personnel.
- L. Lead Permissible Exposure Limit (PEL): Fifty micrograms per cubic meter (0.05 parts per million) of air as 8-hour time weighted average as determined by 29 CFR Part 1910.1025. When employee is exposed for more than 8 hours per work day, determine PEL by following formula. PEL micrograms/cubic meter (parts per million) of air = 400/No. of hrs. worked per day.
- M. Personnel Monitoring: Sampling of lead concentrations within employee breathing zone to determine 8-hour time weighted average concentration according to 29 CFR Part 1910.1025. Take samples representative of employee's work tasks.
- N. Physical Boundary: Area physically roped or partitioned off around enclosed lead control area to limit unauthorized entry of personnel. As used in this section, "inside boundary" shall mean same as "outside lead control area."

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute (ANSI):
 - 1. Z9.2-12 Fundamentals Governing the Design & Operation of Local Exhaust Ventilation Systems.
- C. Code of Federal Regulations (CFR):
 - 1. 29 CFR Part 1910 Occupational Safety and Health Standards.
 - 2. 29 CFR Part 1926 Safety and Health Regulations for Construction.
 - 3. 40 CFR Part 260 Hazardous Waste Management System: General.
 - 4. 40 CFR Part 261 Identification and Listing of Hazardous Waste.

- 5. 40 CFR Part 262 Standards Applicable to Generators of Hazardous Waste.
- 6. 40 CFR Part 263 Standards Applicable to Transporters of Hazardous Waste.
- 7. 40 CFR Part 264 Standards for Owners and Operations of Hazardous Waste Treatment, Storage, and Disposal Facilities.
- 8. 40 CFR Part 265 Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.
- 9. 40 CFR Part 268 Land Disposal Restrictions.
- 10. 49 CFR Part 172 Hazardous Material Table, Special Provisions,
 Hazardous Material Communications, Emergency Response Information,
 and Training Requirements, and Security Plans.
- 11.49 CFR Part 178 Specifications for Packagings.
- D. Underwriters Laboratories (UL):
 - 1. 586-09 High-Efficiency, Particulate, Air Filter Units.

1.5 PRE-REMOVAL MEETINGS

- A. Conduct pre-removal meeting at project site minimum 15 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Certified Industrial Hygienist. (CPIH and VPIH)
 - c. Contractor.
 - d. Paint removal contractor.
 - e. Other installers responsible for finishing resulting surfaces.
 - 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Respiratory protection program.
 - b. Hazard communication program.
 - c. Hazardous waste management plan.
 - d. Safety and health regulation compliance.
 - e. Employee training.
 - f. Removal schedule.
 - g. Removal sequence.
 - h. Preparatory work.
 - i. Protection before, during, and after removal.
 - i. Removal.
 - k. Inspecting and testing.
 - 1. Other items affecting successful completion.

3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - a. Paint removal products.
 - b. Vacuum filters.
 - c. Respirators.
 - 2. Safety data sheet for each paint removal product.
 - 3. Installation instructions.
 - a. Paint removal products.
- C. Test Reports: Submit testing laboratory reports.
 - 1. Submit air monitoring results within three working days, signed by testing laboratory employee performing air monitoring, employee analyzing sample, and CIH.
- D. Certificates: Certify completed training.
 - 1. Submit certificate for each employee signed and dated by CIH and employee stating employee was trained.
- E. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Paint removal contractor.
 - 2. Testing laboratory.
 - a. Name, address, and telephone number.
 - b. Current evidence of participation in NIOSH PAT Program.
 - c. Copy of current AIHA accreditation certificate.
 - 3. Industrial hygienist.
 - a. Name, address, and telephone number.
 - b. Resume showing previous experience.
 - c. Copy of current ABIH CIH certification.
 - 4. Paint disposal facility.
 - a. Name, address, and telephone number.
 - b. Current license or authorization to receive and dispose lead contaminated waste.
- F. Record Documents:
 - Completed and signed hazardous waste manifest from waste transporter.
 - 2. Paint disposal facility receipts and disposition reports.

- 3. Certification of medical examinations.
- 4. Employee training certification.

1.7 QUALITY ASSURANCE

- A. Safety and Health Regulation Compliance:
 - 1. Comply with laws, ordinances, rules, and regulations of federal, state, and local authorities having jurisdiction regarding removing, handling, storing, transporting, and disposing lead waste materials.
 - a. Comply with applicable requirements of 29 CFR Part 1910.1025.
 - b. Notify Contracting Officer's Representative and request resolution of conflicts between regulations and specified requirements before starting work.
 - 2. Comply with the following local laws, ordinances, criteria, rules and regulations regarding removing, handling, storing, transporting, and disposing lead-contaminated materials:
- B. Paint Removal Contractor: Experienced contractor, registered or licensed by applicable state agency regulating lead-based paint removal.
- C. Testing Laboratory: State certified independent testing laboratory experienced in airborne lead monitoring, testing, and reporting.
 - 1. Successful participant in NIOSH Proficiency Analytical Testing (PAT) Program within prior 12 months.
 - 2. Accredited by American Industrial Hygiene Association (AIHA).
- D. Certified Industrial Hygienist: Certified as CIH by American Board of Industrial Hygiene in comprehensive practice and responsible for:
 - 1. Certify Training.
 - 2. Review and approve lead-based paint removal plan for conformance to applicable referenced standards.
 - 3. Inspect lead-based paint removal work for conformance with approved plan.
 - 4. Direct monitoring.
 - 5. Ensure work is performed according to specifications.
 - 6. Ensure personnel and environment hazardous exposures are adequately controlled.
- E. Paint Disposal Facility: State certified disposal facility qualified to receive and dispose lead-based paint.
- F. Lead-based Paint Removal Plan:
 - 1. Submit detailed, site-specific plan describing lead-based paint removal procedures.

- 2. Include sketch showing location, size, and details of lead control areas, decontamination rooms, change rooms, shower facilities, and mechanical ventilation system.
- 3. Include eating, drinking, and restroom procedures, interface of trades, work sequencing, collected wastewater and paint debris disposal plan, air sampling plan, respirators, protective equipment, and detailed description of containment methods ensuring airborne lead concentrations do not exceed action level outside lead control area.
 - a. Eating, drinking, and smoking are not acceptable within lead control area.
- 4. Include air sampling, training and strategy, sampling methodology, frequency, duration, and qualifications of air monitoring personnel.
- G. Respiratory Protection Program: Establish and implement program required by 29 CFR Part 1910.134, 29 CFR Part 1910.1025, and 29 CFR Part 1926.62.
 - 1. Provide each employee negative pressure or other appropriate respirator.
 - a. Test fit each employee's respirator at initial fitting and maximum 6 month intervals, as required by 29 CFR Part 1926.62.
- H. Hazard Communication Program: Establish and implement program required by 29 CFR Part 1910.1200.
- I. Hazardous Waste Management Plan: Establish and implement plan according to applicable requirements of Federal, State, and local hazardous waste regulations including the following:
 - 1. Identification of hazardous wastes associated with work.
 - 2. Estimated quantities of generated and disposed waste.
 - 3. Names and qualifications of each contractor transporting, storing, treating, and disposing wastes. Include facility location and 24-hour point of contact.
 - 4. Names and qualifications (experience and training) of personnel working on-site with hazardous wastes.
 - 5. List of required waste handling equipment including cleaning, volume reduction, and transport equipment.
 - 6. Spill prevention, containment, and cleanup contingency implementation measures.
 - 7. Work plan and schedule for waste containment, removal, and disposal with daily waste cleaned up and containerization.

8. Hazardous waste disposal cost.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PAINT REMOVAL PRODUCTS

A. Chemical Stripper: Biodegradable, non-toxic, capable of removing existing paint layers in one application, and acceptable to CIH.

2.2 ACCESSORIES

- A. Waste Collection Drums: 49 CFR Part 178; Type 1A2, steel, removable head, 200 L (55 gal.) capacity, capable of containing waste without loss.
- B. Vacuum Cleaner: HEPA filtered type.
- C. Scrapers:
 - 1. Metal type for use on metal, concrete, and masonry surfaces.
 - Plastic type for use on wood, plaster, gypsum board, and other surfaces.
- D. Rinse Water: Potable.
- E. Cleaning Cloths: Cotton.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before exposure to lead-contaminated dust, provide workers with comprehensive medical examination required by 29 CFR Part 1926.62 (I)(1) (i) and (ii).
 - 1. Exemption: Examination is not required when employee medical records show last examination required by 29 CFR Part 1926.62(I) was completed within previous 12 months.
- B. Maintain complete and accurate employee medical records according to 29 CFR Part 1910.20.
- C. Train each employee performing paint removal, disposal, and air sampling operations according to 29 CFR Part 1926.62.
 - 1. Certify training is completed before employee is permitted to work on project and enter lead control area.

3.2 PREPARATION

A. Protect existing work indicated to remain.

- 1. Perform paint removal work without damaging and contaminating adjacent work.
- 2. Restore damage and contamination to original condition.
- B. Notify Contracting Officer 20days before starting paint removal work.
- C. Lead Control Area Requirements:
 - 1. Establish lead control area by completely enclosing lead-based paint removal work area with containment screens.
 - 2. Contain removal operations using negative pressure full containment system with minimum one change room and HEPA filtered exhaust.
- D. Boundary Requirements: Provide physical boundaries around lead control area by providing curtains, portable partitions or other enclosures to ensure that airborne lead concentrations do not meet or exceed action level outside of lead control area.
- E. Heating, Ventilating and Air Conditioning (HVAC) Systems: Shut down, lock out, and isolate HVAC systems supplying exhausting, and passing through lead control areas. Seal HVAC inlets and outlet within lead control area with 6-mil plastic sheet and tape. Tape seal seams in HVAC components passing through lead control area.
- F. Change Room and Shower Facilities: Provide clean change rooms and shower facilities within physical boundary around lead control area according to 29 CFR Part 1926.62.
- G. Mechanical Ventilation System:
 - 1. Provide ventilation system to control personnel exposure to lead according to 29 CFR Part 1926.57.
 - Design, construct, install, and maintain HEPA filtered fixed local exhaust ventilation system according to ANSI Z9.2 and approved by CIH.
 - 3. Exhaust ventilation air to exterior wherever possible.
 - 4. When exhaust ventilation air must be recirculated into work area, provide HEPA filter with reliable back-up filter and controls to monitor lead concentration in return air and to bypass recirculation system automatically when system fails.
- H. Personnel Protection: Provide and use required protective clothing and equipment within lead control area.
- I. Warning Signs: Provide warning signs complying with 29 CFR Part 1926.62 at lead control area approaches. Locate signs so personnel read signs and take necessary precautions before entering lead control area.

WORK PROCEDURES 3.3

- A. Remove lead-based paint according to approved lead-based paint removal plan.
 - 1. Perform work only in presence of CIH or Industrial Hygienist (IH) Technician under direction of CIH ensuring continuous inspection of work in progress and direction of air monitoring activities.
 - 2. Handle, store, transport, and dispose lead or and lead contaminated waste according to 40 CFR Part 260, 40 CFR Part 261, 40 CFR Part 262, 40 CFR Part 263, 40 CFR Part 264, and 40 CFR Part 265. Comply with land disposal restriction notification requirements as required by 40 CFR Part 268.
- B. Use procedures and equipment required to limit occupational and environmental lead exposure when lead-based paint is removed according to 29 CFR Part 1926.62.
- C. Dispose removed paint and waste according to Environmental Protection Agency (EPA), federal, state, and local requirements.
- D. Personnel Exiting Procedures:
 - 1. When personnel exit lead control area, comply with the following procedures:
 - a. Vacuum exposed clothing surfaces.
 - b. Remove protective clothing and equipment in decontamination room. Place clothing in approved impermeable disposal bag.
 - c. Shower.
 - d. Dress in clean clothes before leaving lead control area.

E. Monitoring - General:

- 1. Monitor airborne lead concentrations according to 29 CFR Part 1910.1025by testing laboratory as directed by CIH.
- 2. Take personal air monitoring samples on employees anticipated to have greatest exposure risk as determined by CIH. Additionally, take air monitoring samples on minimum 25 percent of work crew or minimum of two employees, whichever is greater, during each work shift.
- 3. Submit results of air monitoring samples, signed by CIH, within 24 hours after taking air samples. Notify Contracting Officer's Representative immediately of lead exposure at or exceeding action level outside of lead control area.
- F. Monitoring During Paint Removal:
 - 1. Perform personal and area monitoring during entire paint removal operation.

- Conduct area monitoring at physical boundary daily for each work shift to ensure unprotected personnel are not exposed above action level anytime.
- 3. For outdoor operations, take at least one sample on each shift leeward of lead control area. When adjacent areas are contaminated, clean area of contamination and have CIH visually inspect and certify lead contamination is cleaned.
- 4. Stop work when outside boundary lead levels meet or exceed action level. Notify Contracting Officer's Representative, immediately.
- 5. Correct conditions causing increased lead concentration as directed by CIH.
- Review sampling data collected during work stoppage to determine if conditions require additional work method modifications as determined by CIH.
- 7. Resume paint removal when approved by CIH.

3.4 LEAD-BASED PAINT REMOVAL

- A. Remove paint within areas indicated on drawings completely exposing substrate. Minimize damage to substrate.
- B. Comply with paint removal processes described lead paint removal plan.
- C. Lead-Based Paint Removal: Select processes for each application to minimize work area lead contamination and waste.

3.5 SUBSTRATE SURFACE PREPARATION

- A. Protect substrates from deterioration and contamination until refinished.
 - 1. Protect metal substrates from flash rusting.
- B. Prepare and paint substrates according to Section 09 91 00, PAINTING.

3.6 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Perform sampling and testing for:
 - 1. Air monitoring.
 - 2. Lead based paint.

3.7 CLEANING AND DISPOSAL

- A. Cleaning:
 - Maintain lead control area surfaces free of accumulating paint chips and dust. Confine dust, debris, and waste to work area.

- 2. Vacuum clean work area daily, at end of each shift, and when paint removal operation is complete.
- B. CIH Certification: Certify in writing that inside and outside lead control area air monitoring samples are less than action level, employee respiratory protection was adequate, the work was performed according to 29 CFR Part 1926.62, and no visible accumulations of lead-based paint and dust remain on worksite.
 - Do not remove lead control area or roped-off boundary and warning signs before Contracting Officer's Representative's receipt of CIH's certification.
 - 2. Reclean areas showing dust or residual paint chips.
- C. Testing: Where indicated and when directed by Contracting Officer's Representative, test lead-based paint residue and used abrasive according to 40 CFR Part 261 for hazardous waste.

D. Waste Collection:

- Collect lead-contaminated materials including waste, scrap, debris, bags, containers, equipment, and clothing, which may produce airborne lead contamination.
- 2. Place lead contaminated materials in waste disposal drums. Label each drum identifying waste type according to 49 CFR Part 172 and date waste materials were first put into drum. Obtain and complete the Uniform Hazardous Waste Manifest forms. Comply with land disposal restriction notification requirements required by 40 CFR Part 268:
- 3. Coordinate temporary storage location on project site with Contracting Officer's Representative.

E. Waste Disposal:

- 1. Do not store hazardous waste drums in temporary storage location longer than 90 calendar days from drum label date.
- 2. Remove, transport, and deliver drums to paint disposal facility.
 - a. Obtain signed receipt including date, time, quantity, and description of materials received according to 40 CFR Part 262.
 - b. Obtain final report of materials disposition after disposal completion.

- - - E N D - - -

02-01-16

SECTION 03 30 53 (SHORT-FORM) CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cast-in-place structural concrete.
 - 2. Slab on grade infill.
 - 3. Suspended slab infill on metal deck.
 - 4. Foundation wall infill.
 - 5. Concrete for metal pan stair fill.
 - 6. Footings.
 - 7. Equipment pads.
 - 8. Preparation of existing surfaces to receive concrete.
 - 9. Preparation of existing surface to received concrete topping.

1.2 RELATED REQUIREMENTS

- A. Materials Testing and Inspection During Construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this Section.
- B. American Concrete Institute (ACI):
 - 1. 117-15 Tolerances for Concrete Construction, Materials and Commentary.
 - 117M-10(R2015) Tolerances for Concrete Construction, Materials and Commentary.
 - 211.1-91(R2009) Proportions for Normal, Heavyweight, and Mass Concrete.
 - 4. 211.2-98(R2004) Selecting Proportions for Structural Lightweight Concrete.
 - 5. 301/310M-10 Structural Concrete.
 - 6. 305.1-14 Hot Weather Concreting.
 - 7. 306.1-90(R2002) Cold Weather Concreting.
 - 8. 318/318M-14 Building Code Requirements for Structural Concrete and SP-66-04-ACI Detailing Manual.
 - 9. 347-04 Guide to Formwork for Concrete.
- C. ASTM International(ASTM):

02-01-16

- 1. A615/A615M-15ae1 Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.
- 2. A996/A996M-15 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
- 3. A1064/A1064M-15 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
- 4. C33/C33M-13 Concrete Aggregates.
- 5. C39/C39M-15a Compressive Strength of Cylindrical Concrete Specimens.
- 6. C94/C94M-15a Ready-Mixed Concrete.
- 7. C143/C143M-15 Slump of Hydraulic Cement Concrete.
- 8. C150/C150M-15 Portland Cement.
- 9. C171-07 Sheet Material for Curing Concrete.
- 10. C192/C192M-15 Making and Curing Concrete Test Specimens in the Laboratory.
- 11. C219-14a Terminology Relating to Hydraulic Cement.
- 12. C260/C260M-10a Air-Entraining Admixtures for Concrete.
- 13. C330/C330M-14 Lightweight Aggregates for Structural Concrete.
- 14. C494/C494M-15 Chemical Admixtures for Concrete.
- 15. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 16. C881/C881M-14 Epoxy-Resin-Base Bonding Systems for Concrete.
- 17. C989/C989M-14 Slag Cement for Use in Concrete and Mortars.
- 18. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 19. D1751-04(2013el) Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types).
- 20. E1155-14 Determining FF Floor Flatness and FL Floor Levelness Numbers.
- 21. E1745-11 Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs.
- D. International Concrete Repair Institute:
 - 1. 310.2R-2013 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair.

1.4 SUBMITTALS

A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

657-17-104JC Restore Utility Systems, Building 6

657-17-105JC Restore Utility Systems, Building 6A

Construction Documents

02-01-16

- B. Submittal Drawings:
 - 1. Large scale drawings of reinforcing steel.
- C. Manufacturer's Literature and Data:
 - 1. Concrete Mix Design.
 - 2. Air-entraining admixture, chemical admixtures, and curing compounds.
 - 3. Indicate manufacturer's recommendation for each application.
- D. Certificates: Certify products comply with specifications.
 - a. Each ready mix concrete batch delivered to site.

1.5 DELIVERY

A. Deliver each ready-mixed concrete batch with mix certification in duplicate according to ASTM C94/C94M.

1.6 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or II.

- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
- C. Slag: ASTM C989/C989M; Grade 80, Coarse Aggregate: ASTM C33/C33M.
 - 1. Size 467 for footings and walls over $300 \ \text{mm}$ (12 inches) thick.
 - 2. Size 7 for coarse aggregate for applied topping and metal pan stair fill.
 - 3. Size 67 for other applications.
- D. Fine Aggregate: ASTM C33/C33M.
- E. Lightweight Aggregate for Structural Concrete: ASTM C330/C330M, Table 1.
- F. Mixing Water: Fresh, clean, and potable.
- G. Air-Entraining Admixture: ASTM C260/C260M.
- H. Chemical Admixtures: ASTM C494/C494M.
- I. Vapor Barrier: ASTM E1745, Class A with a minimum puncture resistance of 2200 g (3000 lbs.); minimum 0.38 mm (15 mil) thick.

657-17-105JC Restore Utility Systems, Building 6A

Construction Documents

02-01-16

- J. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M, deformed.
- K. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer/COR, of grade or type suitable to obtain type of finish specified.
 - 1. Plywood: Exterior grade, free of defects and patches on contact surface.
 - 2. Lumber: Sound, grade-marked, S4S stress graded softwood.
 - 3. Form coating: As recommended by Contractor.
- L. Welded Wire Fabric: ASTM A1064/A1064M, plain;
- M. Expansion Joint Filler: ASTM D1751.
- N. Sheet Materials for Curing Concrete: ASTM C171.
- O. Abrasive Aggregates: Aluminum oxide grains or emery grits.
- P. Liquid Densifier/Sealer: 100 percent active colorless aqueous siliconate solution.
- Q. Grout, Non-Shrinking: Premixed ferrous or non-ferrous. Grout to show no settlement or vertical drying shrinkage at 3 days. Compressive strength for grout, at least 18 MPa (2500 psi) at 3 days and 35 MPa (5000 psi) at 28 days.

2.2 ACCESSORIES

- A. Bonding Agent: ASTM C 1059/C 1059M, Type II.
- B. Structural Adhesive: ASTM C881, 2-component material suitable for use on dry or damp surfaces. Provide material Type, Grade, and Class to suit Project requirements.
- C. Water Stops: Rubber base with self-healing properties. Expanding clay based products not acceptable.
- D. Weeps: Geotextile type as recommended by Contractor and approved by Contracting Officer.

2.3 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Compressive strength at 28 days: minimum 25 MPa (3,000 psi).
- C. Cement and Water Factor (See Table I):

TABLE I - CEMENT ANI	WATER FACTORS FOR CONCRETE	
Concrete: Strength	Non-Air-Entrained	Air-Entrained

02-01-16

Construc	tion	Documents
CONSCIUC	CTOIL	DOCUMENTS

Min. 28 Day Comp.	Min. Cement	Max. Water	Min. Cement	Max. Water
Str.	kg/cu. m	Cement Ratio	kg/cu. m	Cement Ratio
MPa (psi)	(lbs./cu.		(lbs./cu.	
	yd.)		yd.)	
35 (5000)1,3	375 (630)	0.45	385 (650)	0.40
30 (4000)1,3	325 (550)	0.55	340 (570)	0.50
25 (3000)1,3	280 (470)	0.65	290 (490)	0.55
25 (3000)1,2	300 (500)	*	310 (520)	*

Footnotes:

- 1. If trial mixes are used, achieve a compressive strength 8.3 MPa (1 200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve a compressive strength 9.7 MPa (1,400 psi) in excess of f'c.
- 2. Lightweight Structural Concrete: Pump mixes may require higher cement values as specified in ACI 318/318M.
- 3. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.
- * Laboratory Determined according to ACI 211.1 for normal weight concrete or ACI 211.2 for lightweight structural concrete.
 - D. Air-entrainment as specified, and conform with the following for air content table:

TABLE II - TOTAL AIR CONTENT		
FOR VARIOUS SIZES OF COARSE AGGREGATES		
Nominal Maximum Size of	Total Air Content, percent	
Coarse Aggregate		
10 mm (3/8 inches)	6 Moderate exposure; 7.5 severe	
	exposure	
13 mm (1/2 inches)	5.5 Moderate exposure; 7 severe	
	exposure	
19 mm (3/4 inches)	5 Moderate exposure; 6 severe exposure	
25 mm (1 inches)	4.5 Moderate exposure; 6 severe	
	exposure	
40 mm (1 1/2 inches)	4.5 Moderate exposure; 5.5 severe	
	exposure	

02-01-16

2.4 BATCHING AND MIXING

- A. Store, batch, and mix materials according to ASTM C94/C94M.
 - 1. Job-Mixed: Batch mix concrete in stationary mixers as specified in ASTM C94/C94M.
 - 2. Ready-Mixed Concrete: Comply with ASTM C94/C94M, except use of non-agitating equipment for transporting concrete to Site is not acceptable.
 - 3. Mixing Structural Lightweight Concrete: Charge mixer with 2/3 of total mixing water and total aggregate for each batch. Mix ingredients minimum 30 seconds in stationary mixer or minimum 10 revolutions at mixing speed in truck mixer. Add remaining mixing water and other ingredients and continue mixing. Above procedure may be modified as recommended by aggregate producer.
 - 4. When aggregate producer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Installation: Conform to ACI 347. Construct forms to obtain concrete of the shapes, dimensions and profiles indicated, with tight joints.
- B. Design and construct forms to prevent bowing-out of forms between supports and to be removable without prying against or otherwise damaging fresh concrete.
- C. When patching formed concrete, seal form edges against existing surface to prevent leakage; set forms so that patch is flush with adjacent surfaces.
- D. Treating and Wetting: Treat or wet concrete contact surfaces:
 - Wet wood forms thoroughly when they are not treated with form release agent.
 - 2. Prevent water from accumulating and remaining within forms.
 - 3. Clean and coat removable metal forms with light form oil before reinforcement is placed.
 - 4. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
 - 5. Prevent water from accumulating and remaining within forms.

02-01-16

- E. Inserts, Sleeves, and Similar Items: Install flashing reglets, masonry ties, anchors, inserts, wires, hangers, sleeves, boxes for floor hinges, and other cast-in items specified in other Sections. Place where indicated, square, flush and secured to formwork.
- F. Construction Tolerances General: Install and maintain concrete formwork to assure completion of work within specified tolerances.
- G. Adjust or replace completed work exceeding specified tolerances before placing concrete.

3.2 REINFORCEMENT

- A. Install concrete reinforcement according to ACI 318 and ACI SP-66.
- B. Support and securely tie reinforcing steel to prevent displacement during placing of concrete.
- C. Drilling for Dowels in Existing Concrete: Use sharp bits, drill hole slightly oversize, fill with epoxy grout, inset the dowel, and remove excess epoxy.

3.3 PLACING CONCRETE

- A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior of forms, and from inside of mixing and conveying equipment. Obtain approval from Contracting Officer's Representative before placing concrete.
- B. Install screeds at required elevations for concrete slabs.
- C. Roughen and clean free from laitance, foreign matter, and loose particles before placing new concrete on existing concrete.
 - 1. Blow-out areas with compressed air and immediately coat contact areas with adhesive in compliance with manufacturer's instructions.
- D. Place structural concrete according to ACI 301 and ACI 318.
- E. Convey concrete from mixer to final place of deposit by method that will prevent segregation or loss of ingredients. Do not deposit, in Work, concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 1500 mm (5 feet) in unexposed work nor more than 900 mm (3 feet) in exposed work.
- F. Place and consolidate concrete in horizontal layers not exceeding 300 mm (12 inches) in thickness. Consolidate concrete by spading,

02-01-16

- rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Continuously vibrate during placement of concrete.
- G. Concrete Fill in Stair Tread and Landing Pans: Coat steel with bonding agent and fill pans with concrete. Reinforce with 2 inch by 2 inch by 1.6 mm (0.06 inch) welded wire mesh at midpoint.
- H. Hot Weather Concrete Placement: As recommended by ACI 305.1 to prevent adversely affecting properties and serviceability of hardened concrete.
- I. Cold Weather Concrete Placement: As recommended by ACI 306.1, to prevent freezing of thin sections less than 300 mm (12 inches) and to permit concrete to gain strength properly.
 - Do not use calcium chloride without written approval from Contracting Officer's Representative.

3.4 TOLERANCES

- A. Slab on Grade Finish Tolerance: Comply with ACI 117, FF-number and FL-number method.
 - 1. Paragraph 4.8.3, Class A 3 mm (1/8 inches) for offset in form-work.
 - 2. Table R4.8.4, "Flat" 6 mm (1/4 inch) in 3 m (10 feet) for slabs.

3.5 PROTECTION AND CURING

- A. Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical damage, and excessive hot or cold temperatures.
- B. Curing Methods: Cure concrete with curing compound using wet method with sheets.
- C. Formed Concrete Curing: Wet the tops and exposed portions of formed concrete and keep moist until forms are removed.
 - 1. If forms are removed before 14 days after concrete is cast, install sheet curing materials as specified above.
- D. Concrete Flatwork Curing:
 - Install sheet materials according to the manufacturer's instructions.
 - a. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.6 FORM REMOVAL

A. Maintain forms in place until concrete is self-supporting, with construction operation loads.

02-01-16

- B. Remove fins, laitance and loose material from concrete surfaces when forms are removed. Repair honeycombs, rock pockets, sand runs, spalls, or otherwise damaged surfaces by patching with the same mix as concrete minus the coarse aggregates.
- C. Finish to match adjacent surfaces.

3.7 FINISHES

- A. Vertical and Overhead Surface Finishes:
 - 1. Surfaces Concealed in Completed Construction: As-cast; no additional finishing required.
 - 2. Surfaces Exposed in Unfinished Areas: As-cast; no additional finishing required.
 - a. Mechanical rooms.
 - b. Electrical rooms.
 - 3. Surfaces Exposed to View Scheduled for Paint Finish: Remove fins, burrs and similar projections by mechanical means approved by Contracting Officer's Representative flush with adjacent surface. Lightly rub with fine abrasive stone or hone. Use ample amount of water during rubbing without working up a lather of mortar or changing texture of concrete.
 - 4. Surfaces Exposed to View in Finished Areas: Grout finish, unless otherwise shown, for uniform color and smooth finish treated.
 - a. Remove laitance, fins and burrs.
 - b. Scrub concrete with wire brushes. Clean stained concrete surfaces with hone or stone.
 - c. Apply grout composed of 1 part Portland cement and 1 part clean, fine sand (smaller than 600 micro-m (No. 30) sieve). Work grout into surface of concrete with cork floats or fiber brushes until pits and honeycomb are filled.
 - d. After grout has hardened, but is still plastic, remove surplus grout with sponge rubber float and by rubbing with clean burlap.
 - e. In hot, dry weather fog spray surfaces with water to keep grout wet during setting period. Complete finished areas in same day. Confine limits of finished areas to natural breaks in wall surface. Do not leave grout on concrete surface overnight.

B. Slab Finishes:

1. Allow bleed water to evaporate before surface is finished. Do not sprinkle dry cement on surface to absorb water.

02-01-16

- Scratch Finish: Rake or wire broom after partial setting slab surfaces to received bonded applied cementitious application, within 2 hours after placing, to roughen surface and provide permanent bond between base slab and applied cementitious materials.
- 3. F
- 4. Steel Trowel Finish: Applied toppings, concrete surfaces to receive resilient floor covering or carpet, future floor roof and other monolithic concrete floor slabs exposed to view without other finish indicated or specified.
 - a. Delay final steel troweling to secure smooth, dense surface, usually when surface can no longer be dented by fingers. During final troweling, tilt steel trowel at slight angle and exert heavy pressure on trowel to compact cement paste and form dense, smooth surface.
 - b. Finished surface: Free from trowel marks. Uniform in texture and appearance.
- 5. **Broom Finish:** Finish exterior slabs, ramps, and stair treads with bristle brush moistened with clear water after surfaces have been floated.
- 6. Finished Slab Flatness (FF) and Levelness (FL):
 - a. Slab on Grade: Specified overall value FF 25/FL 20. Minimum local value FF 17/FL 15.
 - b. Test flatness and levelness according to ASTM E1155.

3.8 SURFACE TREATMENTS

- A. Mix and apply the following surface treatments according to manufacturer's instructions.
 - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Slip Resistant Finish:
 - 1. Except where safety nosing and tread coverings are shown, apply abrasive aggregate to treads and platforms of concrete steps and stairs, and to surfaces of exterior concrete ramps and platforms.
 - a. Broadcast aggregate uniformly over concrete surface. Trowel concrete surface to smooth dense finish. After curing, rub treated surface with abrasive brick and water sufficiently to slightly expose abrasive aggregate.

02-01-16

- - E N D - -

SECTION 04 20 00 UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: Concrete masonry unit (CMU) assemblies for:
 - 1. Interior walls and partitions .

1.2 RELATED REQUIREMENTS

A. Color and Texture of Masonry Units: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Concrete Institute (ACI):
 - 1. 315-99 Details and Detailing of Concrete Reinforcement.
 - 2. 530.1/ASCE 6/TMS 602-13 Specification for Masonry Structures.
- C. ASTM International (ASTM):
 - A615/A615M-15ae1 Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.
 - 2. A951/A951M-14 Steel Wire for Masonry Joint Reinforcement.
 - 3. A1064/A1064M-15 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
 - 4. C34-13 Structural Clay Load-Bearing Wall tile.
 - 5. C55-14a Concrete Building Brick.
 - 6. C56-13 Structural Clay Nonloadbearing Tile.
 - 7. C62-13a Building Brick (Solid Masonry Units Made from Clay or Shale).
 - 8. C67-14 Sampling and Testing Brick and Structural Clay Tile.
 - 9. C90-14 Load-Bearing Concrete Masonry Units.
 - 10. C126-15 Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units.
 - 11. C216-15 Facing Brick (Solid Masonry Units Made From Clay or Shale).
 - 12. C612-14 Mineral Fiber Block and Board Thermal Insulation.
 - 13. C744-14 Prefaced Concrete and Calcium Silicate Masonry Units.
 - 14. D1056-14 Flexible Cellular Materials Sponge or Expanded Rubber.
 - 15. D2240-05(2010) Rubber Property-Durometer Hardness.
 - 16. F1667-15 Driven Fasteners: Nails, Spikes, and Staples.
- D. American Welding Society (AWS):

657-17-105JC Restore Utility Systems, Building 6A

- 1. D1.4/D1.4M-11 Structural Welding Code Reinforcing Steel.
- E. Brick Industry Association (BIA):
 - 1. TN 11B-88 Guide Specifications for Brick Masonry, Part 3.
- F. Federal Specifications (Fed. Spec.):
 - 1. FF-S-107C(2) Screws, Tapping and Drive.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Fabrication, bending, and placement of reinforcing bars. Comply with ACI 315. Show bar schedules, diagrams of bent bars, stirrup spacing, lateral ties and other arrangements and assemblies.
 - 2. Special masonry shapes, profiles, and placement.
 - 3. Masonry units for typical window and door openings, and, for special conditions as affected by structural conditions.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
- D. Samples:
 - 1. Concrete masonry units, when exposed in finish work.
 - 2. Anchors and Ties: Each type.
 - Glazed Structural Facing Tile: Clipped panels (triplicate) of four wall units with base units, showing color range, each color and texture.
- E. Certificates: Certify products comply with specifications.
 - Solid and load-bearing concrete masonry units, including fire-resistant rated units.

1.5 QUALITY ASSURANCE

A. Welders and Welding Procedures Qualifications: AWS D1.4/D1.4M.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, /and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

A. Store products above grade, protected from contamination.

B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

A. Hot and Cold Weather Requirements: Comply with ACI 530.1/ASCE 6/TMS 602.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run.

2.2 UNIT MASONRY PRODUCTS

- A. Concrete Masonry Units (CMU):
 - 1. Hollow and Solid Load-Bearing Concrete Masonry Units: ASTM C90.
 - a. Lightweight .
 - 2. Sizes: Modular, 200 mm by 400 mm (8 inches by 16 inches) nominal face dimension; thickness as indicated on drawings.
 - 3. For molded faces used as a finished surface, use concrete masonry units with uniform fine to medium surface texture unless specified otherwise.
 - 4. Use bullnose concrete masonry units at corners exposed in finished work with 25 mm (1 inch) minimum radius rounded vertical exterior corners (bullnose units).

1)

2.3 ANCHORS, TIES, AND REINFORCEMENT

- A. Steel Reinforcing Bars: ASTM A615/A615M; Grade 60, deformed bars.
- B. Joint Reinforcement:
 - 1. Form from wire complying with ASTM A951/A951M.
 - 2. Hot dipped galvanized after fabrication.
 - 3. Width of joint reinforcement 40 mm (1.6 inches) less than nominal thickness of masonry wall or partition.
 - 4. Cross wires welded to longitudinal wires.
 - 5. Joint reinforcement minimum 3000 mm (10 feet) long, factory cut.

- 6. Joint reinforcement with crimp formed drip is not acceptable.
- 7. Maximum spacing of cross wires 400 mm (16 inch) to longitudinal wires.
- 8. Multiple Wythes and Cavity Wall Ties:
 - a. Longitudinal wires 4 mm (0.16 inch), two in each wythe with ladder truss wires 4 mm (0.16 inch) overlay, welded to each longitudinal wire.
 - b. Longitudinal wires 4 mm (0.16 inch) with U shape 4 mm (0.16 inch) rectangular ties extending into other wythe minimum 75 mm (3 inches) spaced 400 mm on center (16 inches). Adjustable type with U shape tie designed to receive 4 mm (0.16 inch) pintle projecting into other wythe 75 mm (3 inches min.).
- C. Adjustable Veneer Anchor for Framed Walls:
 - 1. Two piece, adjustable anchor and tie.
 - 2. Anchor and tie may be either loop or angle type; provide only one type throughout.
 - 3. Loop Type:
 - a. Anchor: Screw-on galvanized steel anchor strap 2.75 mm (0.11 inch) by 19 mm (3/4 inch) wide by 225 mm (9 inches) long, with 9 mm (0.35 inch) offset and 100 mm (4 inch) adjustment. Provide 5 mm (0.20 inch) hole at each end for fasteners.
 - b. Ties: Triangular tie, fabricated of 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Ties long enough to engage anchor and be embedded minimum 50 mm (2 inches) into bed joint of masonry veneer.

4. Angle Type:

- a. Anchor: Minimum 2 mm (16 gage) thick galvanized steel angle shaped anchor strap. Provide hole in vertical leg for fastener. Provide hole near end of outstanding leg to suit upstanding portion of tie.
- b. Tie: Fabricate from 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Form "L" shape to be embedded minimum 50 mm (2 inches) into the bed joint of masonry veneer and provide upstanding leg to fit through hole in anchor and be long enough to allow 50 mm (2 inches) of vertical adjustment.

D. Dovetail Anchors:

1. Corrugated steel dovetail anchors formed of 1.5 mm (0.06 inch) thick by 25 mm (1 inch) wide galvanized steel, 90 mm (3-1/2 inches) long

where used to anchor 100 mm (4 inch) nominal thick masonry units, 140 mm (5-1/2 inches) long for masonry units more than 100 mm (4 inches) thick.

- 2. Triangular wire dovetail anchor 100 mm (4 inch) wide formed of 4 mm (9 gage) steel wire with galvanized steel dovetail insert. Anchor length to extend minimum 75 mm (3 inches) into masonry, 25 mm (1 inch) into 40 mm (1-1/2 inch) thick units.
- 3. Form dovetail anchor slots from 0.6 mm (0.02 inch) thick galvanized steel (with felt or fiber filler).

E. Individual Ties:

- 1. Rectangular ties: Form from 5 mm (3/16 inch) diameter galvanized steel rod to rectangular shape minimum 50 mm (2 inches) wide by sufficient length for ends of ties to extend within 25 mm (1 inch) of each face of wall. Ties that are crimped to form drip are not acceptable.
- 2. Adjustable Cavity Wall Ties:
 - a. Adjustable wall ties may be furnished at Contractor's option.
 - b. Two piece type permitting up to 40 mm (1-1/2 inch) adjustment.
 - c. Form ties from 5 mm (3/16 inch) diameter galvanized steel wire.
 - d. Form one piece to rectangular shape 105 mm (4-1/8 inches) wide by length required to extend into bed joint 50 mm (2 inches).
 - e. Form other piece to 75 mm (3 inch) long by 75 mm (3 inch) wide shape, having 75 mm (3 inch) long bent section for engaging 105 mm (4-1/8 inch) wide piece to form adjustable connection.

F. Wall Ties, (Mesh or Wire):

- 1. Mesh wall ties formed of ASTM A1064/A1064M, W0.5, 2 mm, (0.08 inch) galvanized steel wire 13 mm by 13 mm (1/2 inch by 1/2 inch) mesh, 75 mm (3 inches) wide by 200 mm (8 inches) long.
- Rectangular wire wall ties formed of W1.4, 3 mm, (0.12 inch)
 galvanized steel wire 50 mm (2 inches) wide by 200 mm (8 inches)
 long.

G. Adjustable Steel Column Anchor:

- 1. Two piece anchor consisting of a 6 mm (1/4 inch) diameter steel rod to be welded to steel with offset ends, rod to permit 100 mm (4 inch) vertical adjustment of wire anchor.
- Triangular shaped wire anchor 100 mm (4 inches) wide formed from 5 (3/16 inch) diameter galvanized wire, to extend minimum 75 mm
 (3 inches) into joints of masonry.

- H. Adjustable Steel Beam Anchor:
 - 1. Z or C type steel strap, 30 mm (1 1/4 inches) wide, 3 mm (1/8 inch) thick.
 - 2. Flange hook minimum 38 mm (1 1/2 inches) long.
 - 3. Length to embed in masonry minimum 50 mm (2 inches) in 100 mm (4 inch) nominal thick masonry and 100 mm (4 inches) in thicker masonry.
 - 4. Bend masonry end minimum 40 mm (1 1/2 inches).

I. Ridge Wall Anchors:

- 1. Form from galvanized steel minimum 25 mm (1 inch) wide by 5 mm (3/16 inch) thick by 600 mm (24 inches) long, plus 50 mm (2 inch) bends.
- 2. Other lengths as indicated on drawings.

2.4 ACCESSORIES

- A. Shear Keys:
 - Solid extruded cross-shaped section of rubber, neoprene, or polyvinyl chloride, with durometer hardness of approximately 80 when tested according to ASTM D2240, and minimum shear strength of 3.5 MPa (500 psi).
 - 2. Shear Key Dimensions: Nominal 70 mm by 8 mm for long flange and 38 mm by 16 mm for short flange (2-3/4 inches by 5/16 inch for long flange, and 1-1/2 inches by 5/8 inch for short flange).

B. Weeps:

- 1. Weep Hole Wicks: Glass fiber ropes, 10 mm (3/8 inch) minimum diameter, 300 mm (12 inches) long.
- 2. Weep Tubing: Round, polyethylene, 9 mm (3/8 inch) diameter, 100 mm (4 inches) long.
- 3. Weep Hole: Flexible PVC louvered configuration with rectangular closure strip at top.
- C. Cavity Drain Material: Open mesh polyester sheets or strips to prevent mortar droppings from clogging the cavity.
- D. Preformed Compressible Joint Filler:
 - 1. Thickness and depth to fill joint.
 - 2. Closed Cell Neoprene: ASTM D1056, Type 2, Class A, Grade 1, B2F1.
 - 3. Non-Combustible Type: ASTM C612, Class 5, 1800 degrees F.
- E. Box Board:
 - 1. Mineral Fiber Board: ASTM C612, Class 1.
 - 2. 25 mm (1 inch) thickness.

3. Other spacing material having similar characteristics is acceptable subject to Contracting Officer's Representative's approval.

F. Masonry Cleaner:

- 1. Detergent type cleaner selected for each type masonry.
- 2. Acid cleaners are not acceptable.
- 3. Use soapless type specially prepared for cleaning brick or concrete masonry as appropriate.

G. Fasteners:

- 1. Concrete Nails: ASTM F1667, Type I, Style 11, 19 mm (3/4 inch) minimum length.
- 2. Masonry Nails: ASTM F1667, Type I, Style 17, 19 mm (3/4 inch) minimum length.
- 3. Screws: FS-FF-S-107, Type A, AB, SF thread forming or cutting.
- H. Welding Materials: AWS D1.4/D1.4M, type to suit application.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Keep finish work free from mortar smears or spatters, and leave neat and clean.

C. Wall Openings:

- 1. Fill hollow metal frames built into masonry walls and partitions solid with mortar as laying of masonry progresses.
- 2. When items are not available when walls are built, prepare openings for subsequent installation.

D. Tooling Joints:

- 1. Do not tool until mortar has stiffened enough to retain thumb print when thumb is pressed against mortar.
- Tool while mortar is soft enough to be compressed into joints and not raked out.
- 3. Finish joints in exterior face masonry work with jointing tool, and provide smooth, water-tight concave joint unless specified otherwise.

4. Tool Exposed interior joints in finish work concave unless specified otherwise.

E. Partition Height:

- 1. Extend partitions minimum 100 mm (4 inches) above suspended ceiling or to overhead construction where no ceiling occurs.
- 2. Extend following partitions to overhead construction.
 - a. Full height partitions, and fire partitions and smoke partitions indicated on drawings.
 - b. Both walls at expansion joints.
 - c. Corridor walls.
 - d. Walls at stairway and stair halls, elevators, dumbwaiters, trash and laundry chute shafts, and other vertical shafts.
 - e. Walls at refrigerator space.
 - f. Reinforced masonry partitions.
- 3. Extend finished masonry partitions minimum 100 mm (4 inches) above suspended ceiling and continue with concrete masonry units or structural clay tile to overhead construction:

F. Lintels:

- 1. Lintels are not required for openings less than 1000 mm (40 inches) wide that have hollow metal frames.
- 2. Openings 1025 mm (41 inches) wide to 1600 m (63 inches) wide without structural steel lintel or frames, require lintel formed of concrete masonry lintel or bond beam units or structural facing tile lintel units filled with grout and reinforced with one No. 16 (No. 5) rod top and bottom for each 100 mm (4 inches) of nominal thickness unless shown otherwise.
- 3. Precast concrete lintels of 25 MPa (3,000 psi) concrete, same thickness as partition, and with one No. 16 (No. 5) deformed bar top and bottom for each 100 mm (4 inches) of nominal thickness, is acceptable in lieu of reinforced CMU masonry lintels.
- 4. Use steel lintels, for openings greater than 1600 m (63 inches) wide, brick masonry openings and elevator openings unless shown otherwise.
- 5. Doors having overhead concealed door closers require steel lintel, and pocket for closer box.
- 6. Lintel Bearing Length: Minimum 100 mm (4 inches) at both ends.
- 7. Build masonry openings or arches over wood or metal centering and supports when steel lintels are not used.

- G. Wall, Furring, and Partition Units:
 - 1. Lay out field units to provide one-half running bond, unless indicated otherwise.
 - 2. Align head joints of alternate vertical courses.
 - 3. At sides of openings, balance head joints in each course on vertical center lines of openings.
 - 4. Minimum Masonry Unit Length: 100 mm (4 inches).
 - 5. On interior partitions provide 6 mm (1/4 inch) open joint for caulking between existing construction, exterior walls, concrete work, and abutting masonry partitions.
 - 6. Use minimum 100 mm (4 inches) nominal thick masonry for free standing furring, unless indicated otherwise.
 - 7. Do not abut existing plastered surfaces except suspended ceilings with new masonry partitions.
- H. Use minimum 100 mm (4 inches) nominal thick masonry for fireproofing steel columns unless indicated otherwise.
- I. Before connecting new masonry with previously laid masonry, remove loosened masonry or mortar, and clean and wet work in place as specified under wetting.
- J. When new masonry partitions start on existing floors, machine cut existing floor finish material down to concrete surface.

K. Chases:

- Do not install chases in masonry walls and partitions exposed to view in finished work, including painted or coated finishes on masonry.
- Masonry 100 mm (4 inch) nominal thick may have electrical conduits
 mm (1 inch) or less in diameter when covered with soaps, or other finishes.
- 3. Fill recess chases after installation of conduit, with mortar and finish flush.
- 4. When pipes or conduits, or both occur in hollow masonry unit partitions retain minimum one web of hollow masonry units.
- L. Wetting and Wetting Test:
 - Do not wet concrete masonry units or glazed structural facing tile before laying.
- M. Temporary Formwork: Provide formwork and shores as required for temporary support of reinforced masonry elements.

- N. Construct formwork to conform to shape, line and dimensions indicated on drawings. Make sufficiently tight to prevent mortar, grout, or concrete leakage. Brace, tie and support formwork as required to maintain position and shape during construction and curing of reinforced masonry.
- O. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other reasonable temporary construction loads.
- P. Minimum Curing Times Before Removing Shores and Forms:
 - 1. Girders and Beams: 10 days.
 - 2. Slabs: 7 days.
 - 3. Reinforced Masonry Soffits: 7 days.

3.2 INSTALLATION - ANCHORAGE

- A. Veneer to Concrete Walls:
 - 1. Install dovetail slots in concrete vertically at 400 mm (16 inches) on centers.
 - 2. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals.
 - 3. Anchor new masonry facing to existing concrete with adjustable cavity wall ties spaced at 400 mm, (16 inches) maximum vertical intervals, and at 400 mm (16 inches) maximum horizontal intervals. Fasten ties to concrete with power actuated fasteners or concrete nails.
- B. Masonry Facing to Backup and Cavity Wall Ties:
 - 1. Use individual ties for new work.
 - 2. Stagger ties in alternate courses, and space at 400 mm (16 inches) maximum vertically, and 400 mm (16 inches) horizontally.
 - At openings, provide additional ties spaced maximum 900 mm
 (36 inches) apart vertically around perimeter of opening, and within 300 mm (12 inches) from edge of opening.
 - 4. Anchor new masonry facing to existing masonry with adjustable cavity wall ties spaced at 400 mm (16 inch) maximum vertical intervals and at every second masonry unit horizontally. Fasten ties to masonry with masonry nails.
 - 5. Option: Install joint reinforcing for multiple wythes and cavity wall ties spaced maximum 400 mm (16 inches) vertically.
 - 6. Tie interior and exterior wythes of reinforced masonry walls together with individual ties. Provide ties at intervals maximum

400 mm (16 inches) on center horizontally, and 400 mm (16 inches) on center vertically. Lay ties in the same line vertically in order to facilitate vibrating of the grout pours.

C. Anchorage of Abutting Masonry:

- Anchor interior 100 mm (4 inch) thick masonry partitions to exterior masonry walls with wall ties. Space ties at 600 mm (24 inches) maximum vertical intervals. Extend ties 100 mm (4 inches) minimum into masonry.
- 2. Anchor interior masonry bearing walls or interior masonry partitions over 100 mm (4 inches) thick to masonry walls with rigid wall anchors spaced at 400 mm (16 inch) maximum vertical intervals.
- 3. Anchor abutting masonry walls and partitions to concrete with dovetail anchors. Install dovetail slots vertically in concrete at centerline of abutting wall or partition. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals. Secure anchors to existing wall with two 9 mm (3/8 inch) by 75 mm (3 inch) expansion bolts or two power-driven fasteners.
- 4. Anchor abutting interior masonry partitions to existing concrete and existing masonry construction, with adjustable wall ties. Extend ties minimum 100 mm (4 inches) into joints of new masonry. Fasten ties to existing concrete and masonry construction, with powder actuated drive pins, nail or other means that provides rigid anchorage. Install anchors at 400 mm (16 inch) maximum vertical intervals.

D. Masonry Furring:

- Anchor masonry furring less than 100 mm (4 inches) nominal thick to masonry walls or to concrete with adjustable wall ties or dovetail anchors.
- 2. Space at maximum 400 mm (16 inches) on center in both directions.
- E. Anchorage to Steel Beams or Columns:
 - 1. Use adjustable beam anchors on each flange.
 - At columns weld steel rod to steel columns at 300 mm (12 inch) intervals, and place wire ties in masonry courses at 400 mm (16 inches) maximum vertically.

3.3 INSTALLATION - REINFORCEMENT

A. Joint Reinforcement:

- 1. Install joint reinforcement in CMU wythe of combination brick and CMU, cavity walls, and single wythe concrete masonry unit walls or partitions.
- 2. Reinforcing is acceptable in lieu of individual ties for anchoring brick facing to CMU backup in exterior masonry walls.
- Locate joint reinforcement in mortar joints at 400 mm (16 inch) maximum vertical intervals.
- 4. Additional joint reinforcement is required in mortar joints at both 200 mm (8 inches) and 400 (16 inches) above and below windows, doors, louvers and similar openings in masonry.
- 5. Wherever brick masonry is backed up with stacked bond masonry, install multiple wythe joint reinforcement in every two courses of CMU backup, and in corresponding joint of facing brick.

B. Steel Reinforcing Bars:

 Install reinforcing bars in cells of hollow masonry units where required for vertical reinforcement and in bond beam units for horizontal reinforcement. Install in wall cavities of reinforced masonry walls where indicated on drawings.

2. Bond Beams:

- a. Form Bond beams of load-bearing concrete masonry units filled with grout and reinforced with two No. 15m (No. 5) reinforcing bars unless shown otherwise. Do not cut reinforcement.
- b. Brake bond beams only at expansion joints and at control joints, if shown.

3. Stack Bond:

- a. Locate additional joint reinforcement in vertical and horizontal joints as indicated on drawings.
- b. Anchor vertical reinforcement into foundation or wall or bond beam below.
- c. Provide temporary bracing for walls over 8 feet tall until permanent horizontal bracing is completed.

4. Grout openings:

- a. Leave cleanout holes in double wythe walls during construction by omitting units at base of one side of wall.
- b. Locate 75 mm by 75 mm (3 inches. by 3 inches.) min. cleanout holes at location of vertical reinforcement.
- c. Keep grout space clean of mortar accumulation and debris. Clean as work progresses and immediately before grouting.

3.4 INSTALLATION - BRICK EXPANSION AND CMU CONTROL JOINTS

- A. Keep joint free of mortar and other debris.
- B. Joints Occur In Masonry Walls:
 - 1. Install preformed compressible joint filler in brick wythe.
 - 2. Install cross shaped shear keys in concrete masonry unit wythe with preformed compressible joint filler on both sides of shear key.
- C. Use standard notched concrete masonry units (sash blocks) made in full and half-length units where shear keys are used to create a continuous vertical joint.
- D. Interrupt joint reinforcement at expansion and control joints.

3.5 INSTALLATION - BUILDING EXPANSION AND SEISMIC JOINTS

- A. Keep expansion and seismic joints open and free of mortar. Remove mortar and other debris.
- B. Install non-combustible, compressible type joint filler to fill space completely except where sealant is shown on joints in exposed finish work.

3.6 INSTALLATION - ISOLATION JOINT

- A. Where full height walls and partitions lie parallel or perpendicular to and under structural beams and shelf angles, provide minimum 9 mm (3/8 inch) separation between walls and partitions and bottom of beams and shelf angles.
- B. Insert continuous full width strip of non-combustible type compressible joint filler.

3.7 INSTALLATION - CONCRETE MASONRY UNITS

- A. Types and Uses:
 - Provide special concrete masonry shapes as required, including lintel and bond beam units, sash units, and corner units. Provide solid concrete masonry units, where full units cannot be installed, or where needed for anchorage of accessories.
 - 2. Provide solid load-bearing concrete masonry units or grout cell of hollow units at jambs of openings in walls, where structural members impose loads directly on concrete masonry, and where shown.
 - 3. Provide rounded corner (bullnose) shapes at opening jambs in exposed work and at exterior corners.
 - 4. Do not install brick jambs in exposed finish work.
 - 5. Install concrete building brick only as filler in backup material where not exposed.

- 6. Construct fire resistance in fire rated partitions meeting fire ratings indicated on drawings.
- 7. Where lead-lined concrete masonry unit partitions terminate below underside of overhead floor or roof deck, fill remaining open space between top of partition and underside of overhead floor or roof deck, with standard concrete masonry units of same thickness as lead lined units.

B. Laying:

- 1. Lay concrete masonry units with 9 mm (3/8 inch) joints, with a bond overlap of minimum 1/4 of unit length, except where stack bond is indicated on drawings.
- 2. Do not wet concrete masonry units before laying.
- 3. Bond external corners of partitions by overlapping alternate courses.
- 4. Lay first course in a full mortar bed.
- 5. Set anchorage items as work progress.
- 6. Where ends of anchors, bolts, and other embedded items, project into voids of units, completely fill voids with mortar or grout.
- 7. Provide 6 mm (1/4 inch) open joint for sealant between existing construction, exterior walls, concrete work, and abutting masonry partitions.
- 8. Lay concrete masonry units with full face shell mortar beds and fill head joint beds for depth equivalent to face shell thickness.
- 9. Lay concrete masonry units so cores of units, that are to be filled with grout, are vertically continuous with joints of cross webs of such cores completely filled with mortar. Unobstructed core openings minimum 50 mm (2 inches) by 75 mm (3 inches).
- 10. Do not wedge masonry against steel reinforcing. Minimum 13 mm (1/2 inch) clear distance between reinforcing and masonry units.
- 11. Install deformed reinforcing bars of sizes indicated on drawings.
- 12. At time of placement, ensure steel reinforcement is free of loose rust, mud, oil, and other contamination capable of affecting bond.
- 13. Place steel reinforcement at spacing indicated on drawings before grouting.
- 14. Minimum clear distance between parallel bars: One bar diameter.
- 15. Hold vertical steel reinforcement in place vertically by centering clips, caging devices, tie wire, or other approved methods.

- 16. Support vertical bars near each end and at maximum 192 bar diameter on center.
- 17. Splice reinforcement or attach reinforcement to dowels by placing in contact and securing with wire ties.
- 18. Stagger splices in adjacent horizontal reinforcing bars. Lap reinforcing bars at splices a minimum of 40 bar diameters.
- 19. Grout cells of concrete masonry units, containing reinforcing bars, solid as specified.
- 20. Install cavity and joint reinforcement as masonry work progresses.
- 21. Rake joints 6 to 10 mm (1/4 to 3/8 inch) deep for pointing with colored mortar when colored mortar is not full depth.

3.8 POINTING

- A. Fill joints with pointing mortar using rubber float trowel to apply mortar solidly into raked joints.
- B. Wipe off excess mortar from joints of glazed masonry units with dry cloth.
- C. Tool exposed joints to smooth concave joint.
- D. At joints with existing work, match existing joint.

3.9 GROUTING

- A. Preparation:
 - 1. Clean grout space of mortar droppings before placing grout.
 - 2. Close cleanouts.
 - 3. Install vertical solid masonry dams across grout space for full height of wall at intervals of maximum 9000 mm (30 feet). Do not bond dam units into wythes as masonry headers.
 - 4. Verify reinforcing bars are installed as indicated on drawings.

B. Placing:

- 1. Place grout in grout space in lifts as specified.
- 2. Consolidate each grout lift after free water has disappeared but before plasticity is lost.
- 3. Do not slush with mortar or use mortar with grout.
- 4. Interruptions:
 - a. When grouting must be stopped for more than an hour, top off grout 40 mm (1-1/2 inches) below top of last masonry course.
 - b. Grout from dam to dam on high lift method.

c. Longitudinal run of masonry may be stopped off only by raking back one-half masonry unit length in each course and stopping grout 100 mm (4 inches) back of rake on low lift method.

C. Puddling Method:

- Consolidate by puddling with grout stick during and immediately after placing.
- Grout cores of concrete masonry units containing reinforcing bars solid as masonry work progresses.

D. Low Lift Method:

- 1. Construct masonry to 1.5 m (5 feet) maximum height before grouting.
- Grout in one continuous operation and consolidate grout by mechanical vibration and reconsolidate after initial water loss and settlement has occurred.

E. High Lift Method:

- 1. Do not pour grout until masonry wall has cured minimum of 4 hours.
- 2. Place grout in 1.5 m (5 feet) maximum lifts.
- 3. Exception:
 - a. Where following conditions are met, place grout in 3.86 m (12.67 feet) maximum lifts.
 - b. Masonry has cured minimum of 4 hours.
 - c. Grout slump is maintained between 250 and 275 mm (10 and 11 inches).
 - d. No intermediate reinforced bond beams are placed between top and bottom of grout lift.
- 4. When vibrating succeeding lifts, extend vibrator 300 to 450 mm (12 to 18 inches) into preceding lift.

3.10 PLACING REINFORCEMENT

- A. General: Clean reinforcement of loose rust, mill scale, earth, ice or other materials which will reduce bond to mortar or grout. Do not use reinforcement bars with kinks or bends not shown on drawings or approved submittal drawings, or bars with reduced cross-section due to excessive rusting or other causes.
- B. Position reinforcement accurately at spacing indicated on drawings. Support and secure vertical bars against displacement. Install horizontal reinforcement as masonry work progresses. Where vertical bars are shown in close proximity, provide clear distance between bars of minimum one bar diameter or 25 mm (1 inch), whichever is greater.

- C. Splice reinforcement bars only where indicated on drawings, unless approved by Contracting Officer's Representative. Provide lapped splices. In splicing vertical bars or attaching to dowels, lap ends, place in contact and wire tie.
- D. Provide minimum lap as indicated on approved submittal drawings, or if not indicated, minimum 48 bar diameters.

3.11 INSTALLATION OF REINFORCED CONCRETE UNIT MASONRY

- A. Do not wet concrete masonry units (CMU).
- B. Lay CMU units with full-face shell mortar beds. Fill vertical head joints (end joints between units) solidly with mortar from face of unit to distance behind face equal to thickness of longitudinal face shells. Solidly bed cross-webs of starting courses in mortar. Maintain head and bed 9 mm (3/8 inch) joint widths.
- C. Where solid CMU units are shown, lay with full mortar head and bed joints.

D. Walls:

- 1. Pattern Bond: Lay CMU wall units in 1/2-running bond with vertical joints in each course centered on units in courses above and below, unless otherwise indicated. Bond and interlock each course at corners and intersections. Use special-shaped units where shown, and as required for corners, jambs, sash, control joints, lintels, bond beams and other special conditions.
- 2. Maintain vertical continuity of core or cell cavities, which are to be reinforced and grouted, to provide minimum clear dimension indicated and to provide minimum clearance and grout coverage for vertical reinforcement bars. Keep cavities free of mortar. Solidly bed webs in mortar where adjacent to reinforced cores or cells.
- 3. Where horizontally reinforced beams (bond beams) are indicated on drawings, use special units or modify regular units to allow for placement of continuous horizontal reinforcement bars. Place small mesh expanded metal lath or wire screening in mortar joints under bond beam courses over cores or cells of non-reinforced vertical cells, or provide units with solid bottoms.

E. Columns, Piers and Pilasters:

 Use CMU units of size, shape and number of vertical core spaces shown. If not shown, use units which provide minimum clearances and grout coverage for number and size of vertical reinforcement bars shown. 2. Provide pattern bond shown, or if not shown, alternate head joints in vertical alignment.

F. Grouting:

- 1. Use fine grout for filling spaces less than 100 mm (4 inches) in one or both horizontal directions.
- 2. Use coarse grout for filling 100 mm (4 inch) spaces or larger in both horizontal directions.
- 3. Grouting Technique: At Contractor's option, use either low-lift or high-lift grouting techniques.

G. Low-Lift Grouting:

- 1. Provide minimum clear dimension of 50 mm (2 inches) and clear area of 5160 sq. mm (8 sq. inches) in vertical cores to be grouted.
- 2. Place vertical reinforcement before grouting of CMU. Extend above elevation of maximum pour height as required for splicing. Support in position at vertical intervals not exceeding 192 bar diameters nor 3 m (10 feet).
- 3. Lay CMU to maximum pour height. Do not exceed 1.5 m (5 feet) height, or if bond beam occurs below 1.5 m (5 feet) height, stop pour 38 mm (1-1/2 inches) below top of bond beam.
- 4. Rod or vibrate grout during placing. Place grout continuously; do not interrupt pouring of grout for more than one hour. Terminate grout pours 38 mm (1-1/2 inches) below top course of pour.
- 5. Bond Beams: Stop grout in vertical cells 38 mm (1-1/2 inches) below bond beam course. Place horizontal reinforcement in bond beams; lap at corners and intersections as indicated on drawings. Place grout in bond beam course before filling vertical cores above bond beam.

H. High-Lift Grouting:

- Do not use high-lift grouting technique for grouting of CMU unless minimum cavity dimension and area is 75 mm (3 inches) and 6450 sq. mm (10 sq. inches), respectively.
- Provide cleanout holes in first course at vertical cells which are to be filled with grout.
- 3. Use units with one face shell removed and provide temporary supports for units above, or use header units with concrete brick supports, or cut openings in one face shell.
- 4. Construct masonry to full height of maximum grout pour before placing grout.

- 5. Limit grout lifts to maximum height of 1.5 m (5 feet) and grout pour to maximum height of 7.3 m (24 feet), for single wythe hollow concrete masonry walls, unless otherwise indicated.
- 6. Place vertical reinforcement before grouting. Place before or after laying masonry units, to suit application. Tie vertical reinforcement to dowels at base of masonry where shown and thread CMU over or around reinforcement. Support vertical reinforcement at intervals not exceeding 192 bar diameters nor 3 m (10 feet).
- 7. Where individual bars are placed after laying masonry, place wire loops extending into cells as masonry is laid and loosen before mortar sets. After insertion of reinforcement bar, pull loops and bar to proper position and tie free ends.
- 8. Where reinforcement is prefabricated into cage units before placing, fabricate units with vertical reinforcement bars and lateral ties of the size and spacing indicated.
- 9. Place horizontal beam reinforcement as masonry units are laid.
- 10. Preparation of Grout Spaces: Before grouting, inspect and clean grout spaces. Remove dust, dirt, mortar droppings, loose pieces of masonry and other foreign materials from grout spaces. Clean reinforcement and adjust to proper position. Clean top surface of structural members supporting masonry to ensure bond. After final cleaning and inspection, close cleanout holes and brace closures to resist grout pressures.
- 11. Do not place grout until entire height of masonry to be grouted has attained sufficient strength to resist displacement of masonry units and breaking of mortar bond. Install shores and bracing, if required, before starting grouting operations.
- 12. Limit grout pours to sections which can be completed in one working day with maximum one hour interruption of pouring operation. Place grout in lifts which do not exceed 1.5 m (5 feet). Allow minimum 30 minutes and maximum one hour between lifts. Mechanically consolidate each lift.
- 13. Place grout in lintels or beams over openings in one continuous pour.
- 14. Where bond beam occurs more than one course below top of pour, fill bond beam course to within 25 mm (1 inch) of vertically reinforced cavities, during construction of masonry.

15. When more than one pour is required to complete a given section of masonry, extend reinforcement beyond masonry as required for splicing. Pour grout to within 38 mm (1-1/2 inches) of top course of first pour. After grouted masonry is cured, lay masonry units and place reinforcement for second pour section before grouting. Repeat sequence if more pours are required.

3.12 CONSTRUCTION TOLERANCES

- A. Lay masonry units plumb, level and true to line within tolerances according to ACI 530.1/ASCE 6/TMS 602 and as follows:
- B. Maximum variation from plumb:
 - 1. In 3000 mm (10 feet) 6 mm (1/4 inch).
 - 2. In 6000 mm (20 feet) 9 mm (3/8 inch).
 - 3. In 12,000 mm (40 feet) or more 13 mm (1/2 inch).
- C. Maximum variation from level:
 - 1. In any bay or up to 6000 mm (20 feet) 6 mm (1/4 inch).
 - 2. In 12,000 mm (40 feet) or more 13 mm (1/2 inch).
- D. Maximum variation from linear building lines:
 - 1. In any bay or up to 6000 mm (20 feet) 13 mm (1/2 inch).
 - 2. In 12,000 mm (40 feet) or more 19 mm (3/4 inch).
- E. Maximum variation in cross-sectional dimensions of columns and thickness of walls from dimensions shown:
 - 1. Minus 6 mm (1/4 inch).
 - 2. Plus 13 mm (1/2 inch).
- F. Maximum variation in prepared opening dimensions:
 - 1. Accurate to minus 0 mm (0 inch).
 - 2. Plus 6 mm (1/4 inch).

3.13 CLEANING AND REPAIR

- A. General:
 - 1. Clean exposed masonry surfaces on completion.
 - 2. Protect adjoining construction materials and landscaping during cleaning operations.
 - 3. Cut out defective exposed new joints to depth of approximately 19 mm (3/4 inch) and repoint.
 - 4. Remove mortar droppings and other foreign substances from wall surfaces.
- B. Concrete Masonry Units:

- 1. Immediately following setting, brush exposed surfaces free of mortar or other foreign matter.
- 2. Allow mud to dry before brushing.
- C. Glazed Structural Facing Tile or Brick Units:
 - 1. Clean as recommended manufacturer. Protect light colored mortar joints from discoloration during cleaning.
 - 2. Use on solid masonry walls.
 - 3. Prepare schedule of test locations.

3.14 FIELD QUALITY CONTROL

- - E N D - -

SECTION 05 40 00 COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. This section specifies materials and services required for installation of cold-formed steel, including tracks and required accessories as shown and specified. This Section includes the following:
 - 1.. Interior load-bearing steel stud walls.

1.2 RELATED WORK:

- C. Non-load-bearing metal stud framing assemblies: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- D. Gypsum board assemblies: Section 09 29 00, GYPSUM BOARD.

1.3 DESIGN REQUIREMENTS:

- A. Design steel in accordance with American Iron and Steel Institute Publication "Specification for the Design of Cold-Formed Steel Structural Members", except as otherwise shown or specified.
- B. Structural Performance: Engineer, fabricate and erect cold-formed metal framing with the minimum physical and structural properties indicated.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Shop and erection drawings showing steel unit layout, connections to supporting members, and information necessary to complete installation as shown and specified.
- C. Manufacturer's Literature and Data: Showing steel component sections and specifying structural characteristics.

1.5 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Iron and Steel Institute (AISI):

	±	2	
	Structural Members (199	6)	
С.	American Society of Testing and Materials (ASTM):		
	A36/A36M-08	.Standard Specifications for Carbon Structural Steel	
	A123/A123M-09	.Standard Specifications for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products	
	A153/A153M-09	.Standard Specifications for Zinc Coating (Hot- Dip) on Iron and Steel Hardware	
	A307-10	.Standard Specifications for Carbon Steel Bolts and Studs	
	A653/A653M-10	.Standard Specifications for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process	
	C955	Standard Specification for Load-Bearing (Transverse and Axial) Steel Studs, Runners (Tracks), and Bracing or Bridging for Screw Application of Gypsum Panel Products and Metal Plaster Bases	
	C1107/C1107M-08	.Standard Specifications for Packaged Dry, Hydraulic-Cement Grout (Non-shrink)	
	E488-96(R2003)	.Standard Test Methods for Strength of Anchors in Concrete and Masonry Elements	
	E1190-95 (R2007)	Standard Test Methods for Strength of Power-Actuated Fasteners Installed in Structural Members	
D.	American Welding Society	y (AWS):	
	D1.3/D1.3M-08	.Structural Welding Code-Sheet Steel	
Ε.	Military Specifications	(Mil. Spec.):	
	MIL-P-21035B	.Paint, High Zinc Dust Content, Galvanizing	

Repair

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Sheet Steel for joists, studs and accessories 16 gage and heavier: ASTM A653, structural steel, zinc coated CP60, with a yield of 340 MPa (50 ksi) minimum.
- B. Sheet Steel for joists, studs and accessories 18 gage and lighter: ASTM A653, structural steel, zinc coated G60, with a yield of 230 MPa (33 ksi) minimum.
- C. Galvanizing Repair Paint: MIL-P-21035B.
- D. Nonmetallic, Non-shrink Grout: Premixed, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, Portland cement, shrinkage-compensating agents, plasticizing and water-reducing agents, complying with ASTM C1107, with fluid consistency and a 30 minute working time.

2.2 WALL FRAMING:

- A. Steel Studs: Complying with ASTM C 955. Manufacturer's standard C-shaped steel studs of web depth indicated, with lipped flanges, and complying with the following:
 - 1. Minimum Base-Steel Thickness(uncoated):
 - 2.45 mm (0.0966 inch)
 - 2. Flange Width:

(2-1/2 inches)

- 3. Web: Punched.
- B. Steel Track: Manufacturer's standard U-shaped steel track, unpunched, of web depths indicated, with straight flanges, and complying with the following:
 - 1. Design Uncoated-Steel Thickness: Matching steel studs.

- 2. Flange Width: Manufacturer's standard deep flange where indicated, standard flange elsewhere.
- 3. Header track to be slotted.

2.3 FRAMING ACCESSORIES:

- A. Fabricate steel framing accessories of the same material and finish used for framing members, with a minimum yield strength of 230 MPa (33 ksi).
- B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:
 - 1. Supplementary framing.
 - 2. Bracing, bridging, and solid blocking.
 - 3. Deflection track and vertical slide clips.
 - 4. Stud kickers and girts.
 - 5. Joist hangers and end closures.
 - 6. Reinforcement plates.

2.5 ANCHORS, CLIPS, AND FASTENERS:

- A. Steel Shapes and Clips: ASTM A36, zinc coated by the hot-dip process according to ASTM A123.
- B. Cast-in-Place Anchor Bolts and Studs: ASTM A307, Grade A, zinc coated by the hot-dip process according to ASTM A153.
- C. Expansion Anchors: Fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 5 times the design load, as determined by testing per ASTM E488 conducted by a qualified independent testing agency.
- D. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 10 times the design load, as determined by testing per ASTM E1190 conducted by a qualified independent testing agency.
- E. Mechanical Fasteners: Corrosion-resistant coated, self-drilling, self-threading steel drill screws. Low-profile head beneath sheathing, manufacturer's standard elsewhere.

2.6 REQUIREMENTS:

- A. Welding in accordance with AWS D1.3
- B. Furnish members and accessories by one manufacturer only.

PART 3 - EXECUTION

3.1 FABRICATION:

- A. Framing components may be preassembled into panels. Panels shall be square with components attached.
- B. Cut framing components squarely or as required for attachment. Cut framing members by sawing or shearing; do not torch cut.
- C. Hold members in place until fastened.
- D. Fasten cold-formed metal framing members by welding or screw fastening, as standard with fabricator. Wire tying of framing members is not permitted.
 - 1. Comply with AWS requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - 2. Locate mechanical fasteners and install according to cold-formed metal framing manufacturer's instructions with screw penetrating joined members by not less than 3 exposed screw threads.
- E. Where required, provide specified insulation in double header members and double jamb studs which will not be accessible after erection.

3.2 ERECTION:

- A. Handle and lift prefabricated panels in a manner as to not distort any member.
- B. Securely anchor tracks to supports as shown.
- C. At butt joints, securely anchor two pieces of track to same supporting member or butt-weld or splice together.
- D. Plumb, align, and securely attach studs to flanges or webs of both upper and lower tracks.
- E. All axially loaded members shall be aligned vertically to allow for full transfer of the loads down to the foundation. Vertical alignment shall be maintained at floor/wall intersections.
- F. Install jack studs above and below openings and as required to furnish support. Securely attach jack studs to supporting members.

- G. Install headers in all openings that are larger than the stud spacing in that wall.
- H. Attach bridging for studs in a manner to prevent stud rotation. Space bridging rows as shown.
- I. Studs in one piece for their entire length, splices will not be permitted.
- N. Provide temporary bracing and leave in place until framing is permanently stabilized.

3.3 TOLERANCES:

- A. Vertical alignment (plumbness) of studs shall be within 1/960th of the span.
- B. Horizontal alignment (levelness) of walls shall be within 1/960th of their respective lengths.
- C. Spacing of studs shall not be more than 3 mm (1/8 inch) +/- from the designed spacing providing that the cumulative error does not exceed the requirements of the finishing materials.
- D. Prefabricated panels shall be not more than 3 mm (1/8 inch) +/- out of square within the length of that panel.

3.4 FIELD REPAIR:

Touch-up damaged galvanizing with galvanizing repair paint.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies wood blocking.

1.2 RELATED WORK:

- B. Milled woodwork: Section 06 20 00, FINISH CARPENTRY.
- C. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.
- D. Cement board sheathing: Section 06 16 63, CEMENTITIOUS SHEATHING.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings showing framing connection details, fasteners, connections and dimensions.
- C. Manufacturer's Literature and Data:
 - 1. Submit data for lumber, panels, hardware and adhesives.
 - 2. Submit data for wood-preservative treatment from chemical treatment manufacturer and certification from treating plants that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 3. Submit data for fire retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 4. For products receiving a waterborne treatment, submit statement that moisture content of treated materials was reduced to levels specified before shipment to project site.
- D. Manufacturer's certificate for unmarked lumber.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 152 mm (6 inches) above grade and cover with well-ventilated sheds having

657-17-104JC Restore Utility Systems, Building 6

657-17-105JC Restore Utility Systems, Building 6A

10-01-15

firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 QUALITY ASSURANCE:

A. Installer: A firm with a minimum of three (3) years' experience in the type of work required by this section.

1.6 GRADING AND MARKINGS:

A. Any unmarked lumber or plywood panel for its grade and species will not be allowed on VA Construction sites for lumber and material not normally grade marked, provide manufacturer's certificates (approved by an American Lumber Standards approved agency) attesting that lumber and material meet the specified the specified requirements.

1.7 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- NDS-15......National Design Specification for Wood

B. American Forest and Paper Association (AFPA):

- WCD1-01.....Details for Conventional Wood Frame
 Construction
- C. American Institute of Timber Construction (AITC):
 A190.1-07............Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME):
 B18.2.1-12(R2013)......Square and Hex Bolts and Screws
 B18.2.2-10......Square and Hex Nuts
 B18.6.1-81(R2008)......Wood Screws
- E. American Plywood Association (APA):
 E30-11.....Engineered Wood Construction Guide
- F. ASTM International (ASTM):
 - A653/A653M-13......Steel Sheet Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot Dip Process
 - C954-11.....Steel Drill Screws for the Application of

 Gypsum Board or Metal Plaster Bases to Steel

 Studs from 0.033 inch (2.24 mm) to 0.112-inch

 (2.84 mm) in thickness

657-1	7-104JC Restore Utility	Systems, Building 6	
657-17	7-105JC Restore Utility	Systems, Building 6A	10-01-15
	C1002-14	.Steel Self-Piercing Tapping Screws	for the
		Application of Gypsum Panel Product	s or Metal
		Plaster Bases to Wood Studs or Meta	al Studs
	D198-14	.Test Methods of Static Tests of Lum	mber in
		Structural Sizes	
	D2344/D2344M-13	.Test Method for Short-Beam Strength	n of Polymer
		Matrix Composite Materials and Their	r Laminates
	D2559-12a	.Adhesives for Structural Laminated	Wood
		Products for Use Under Exterior (We	et Use)
		Exposure Conditions	
	D3498-03 (R2011)	.Adhesives for Field-Gluing Plywood	to Lumber
		Framing for Floor Systems	
	D6108-13	.Test Method for Compressive Propert	cies of
		Plastic Lumber and Shapes	
	D6109-13	.Test Methods for Flexural Properties	es of
		Unreinforced and Reinforced Plastic	C Lumber and
		Related Products	
	D6111-13a	.Test Method for Bulk Density and $\ensuremath{\mathrm{Sp}}$	pecific
		Gravity of Plastic Lumber and Shape	es by
		Displacement	
	D6112-13	.Test Methods for Compressive and F	exural Creep
		and Creep-Rupture of Plastic Lumber	and Shapes
	F844-07a(R2013)	.Washers, Steel, Plan (Flat) Unharde	ened for
		General Use	
	F1667-13	.Nails, Spikes, and Staples	
G.	American Wood Protection Association (AWPA):		
	AWPA Book of Standards		
Н.	Commercial Item Descrip	tion (CID):	
	A-A-55615	.Shield, Expansion (Wood Screw and \boldsymbol{I}	Lag Bolt Self
		Threading Anchors)	
I.	Forest Stewardship Cour	cil (FSC):	
	FSC-STD-01-001(Ver. 4-0)FSC Principles and Criteria for For	rest
		Stewardship	
J.	Military Specification	(Mil. Spec.):	
	MIL-L-19140E	.Lumber and Plywood, Fire-Retardant	Treated
К.	Environmental Protection	on Agency (EPA):	
	40 CFR 59(2014)	.National Volatile Organic Compound	
		Standards for Consumer and Commercia	al Products

PART 2 - PRODUCTS

2.1 LUMBER:

A. Unless otherwise specified, each piece of lumber must bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.

(Guards and Handrails)

- Identifying marks are to be in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
- Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.

B. Lumber Other Than Structural:

- 1. Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
- 2. Furring, blocking, nailers and similar items 101 mm (4 inches) and narrower Standard Grade; and, members 152 mm (6 inches) and wider, Number 2 Grade.

c. Sizes:

- 1. Conforming to PS 20.
- 2. Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.

D. Moisture Content:

1. Maximum moisture content of wood products is to be as follows at the time of delivery to site.

- a. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
- b. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- E. Fire Retardant Treatment:
 - 1. Comply with Mil Spec. MIL-L-19140.
 - 2. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.

.

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA NDS for timber connectors.
 - 2. AITC A190.1 Timber Construction Manual for heavy timber construction.
 - 3. AFPA WCD1 for nailing and framing unless specified otherwise.
- E. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Provide longest lengths practicable.
 - 3. Provide fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 610 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 127 mm (5 inches) in width.

- - - E N D - - -

SECTION 06 16 63 CEMENTITIOUS SHEATHING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cement board sheathing at exterior framed wall construction.

1.2 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this Section.
- B. American National Standards Institute (ANSI):
 - 1. Al18.9-10 Cementitious Backer Units.
- C. ASTM International (ASTM):
 - C954-15 Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness
 - C1002-14 Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs.
 - 3. C1325-14 Non-Asbestos Fiber-Mat Reinforced Cementitious Backer Units.

1.3 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Warranty.

1.4 DELIVERY AND STORAGE

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.5 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.6 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant sheathing against material and manufacturing defects.
 - 1. Warranty Period: 10 years.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

A. Provide each product from one manufacturer.

2.2 SHEATHING

- A. Cement Boards: Meeting ANSI All8.9 and ASTM Cl325.
 - 1. Thickness: (1/2 inch).
 - 2. Width: 1219 mm (48 inches), minimum.

2.3 ACCESSORIES

- A. Steel Drill Screws: Corrosion-resistant, self-drilling.
 - 1. ASTM C1002, Type S for fastening to framing less than 0.8 mm (33 mils) thick.
 - 2. ASTM C954 for fastening to framing 0.8 mm (33 mils) thick and greater.
- B. Joint Reinforcement: Alkali resistant tape as recommended by sheathing manufacturer.
- C. Bonding Material: As recommended by sheathing manufacturer.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Verify framing is plumb, level and in plane.
- D. Correct substrate deficiencies.

3.2 SHEATHING INSTALLATION

- A. Install products according to manufacturer's instructions.
 - 1. Secure units to framing members with screws spaced maximum 200 mm (8 inches) o.c. and not closer than 13 mm (1/2 inch) from edge of unit.
 - 2. Install screw heads without penetrating cement board surface.

- 3. Install sheathing with 6 mm (1/4 inch) gap where sheathing abuts masonry or similar materials to prevent wicking of moisture.
- 4. Install sheathing with 10 mm (3/8 inch) gap where non-load-bearing construction abuts structural elements or building expansion joints.
- 5. Horizontal Installation: Abut ends of boards over centers of studs. Stagger end joints minimum one stud spacing for adjacent boards. Fasten boards at perimeter and within field of board to each stud.
- 6. Vertical Installation: Install board vertical edges centered over studs. Abut ends and edges of each board with those of adjacent boards. Fasten boards at perimeter and with fin field of board to each stud.
- 7. Apply bonding material to imbed tape and completely fill board joints, and gaps between each panel.

3.3 PROTECTION

- A. Remove loose or spalling joint finish. Patch areas missing joint finish.
- B. Replace broken or damaged boards.
- C. Protect boards from moisture using temporary coverings until finishes are applied.

- - E N D - -

SECTION 06 20 00 FINISH CARPENTRY

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior millwork for family prayer rooms (chapel) in hospitals.
- B. Items specified:
 - 1. Counter or Work Tops.
 - 2. Wall Paneling.
 - 3. Mounting Strips, Shelves, and Rods.

1.2 RELATED REQUIREMENTS

- A. Woodwork Finish and Color: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Framing, furring and blocking: Section 06 10 00, ROUGH CARPENTRY.
- C. Wood doors: Section 08 14 00, WOOD DOORS.
- D. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International:
 - 1. A36/A36M-14 Carbon Structural Steel.
 - 2. A53/A53M-12 Pipe, Steel, Black and Hot-Dipped Zinc Coated, Welded and Seamless.
 - 3. A240/A240M-15b Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
 - 4. B26/B26M-14e1 Aluminum-Alloy Sand Castings.
 - 5. B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 6. E84-15b Surface Burning Characteristics of Building Materials.
- C. American Hardboard Association (AHA):
 - 1. A135.4-04 Basic Hardboard.
- D. Architectural Woodwork Institute (AWI):
 - 1. AWI-09 Architectural Woodwork Quality Standards and Quality Certification Program.
- E. Builders Hardware Manufacturers Association (BHMA):
 - 1. A156.9-10 Cabinet Hardware.
 - 2. A156.11-14 Cabinet Locks.
 - 3. A156.16-13 Auxiliary Hardware.
- F. Federal Specifications (Fed. Spec.):
 - 1. A-A-1922A Shield Expansion (Calking Anchors, Single Lead).
 - 2. A-A-1936A Adhesive, Contact, Neoprene Rubber.

08-01-16

- 3. FF-N-836E- Nut: Square, Hexagon, Cap, Slotted, Castle, Knurled, Welding.
- 4. FF-S-111D(1) Screw, Wood (Notice 1 inactive for new design).
- 5. MM-L-736C(1) Lumber, Hardwood.
- G. Hardwood Plywood and Veneer Association (HPVA):
 - 1. HP1-09 Hardwood and Decorative Plywood.
- H. Military Specification (Mil. Spec):
 - 1. MIL-L-19140E Lumber and Plywood, Fire-Retardant Treated.
- I. National Particleboard Association (NPA):
 - 1. A208.1-09 Wood Particleboard.
- J. National Electrical Manufacturers Association (NEMA):
 - 1. LD 3-05 High-Pressure Decorative Laminates.
- K. U.S. Department of Commerce, Product Standard (PS):
 - 1. PS1-07 Construction and Industrial Plywood.
 - 2. PS20-10 American Softwood Lumber Standard.

1.4 PREINSTALLATION MEETINGS

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - a. Finish hardware.
 - 2. List of acceptable sealers for fire retardant materials.
- D. Certificates: Certify products complies with specifications.
 - 1. Fire retardant treatment of materials.
 - 2. Moisture content of materials.

1.6 QUALITY ASSURANCE

- A. Fabricator Qualifications:
 - 1. Regularly fabricates specified products.
- B. Installer Qualifications:
 - 1. Regularly installs specified products.

1.7 DELIVERY, STORAGE AND HANDLING

- A. Deliver products in manufacturer's original sealed packaging.
- B. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

- C. Store products indoors in dry, facility.
- D. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

A. Environment:

- 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
- 2. Work Area Ambient Conditions: HVAC systems are complete, operational, and maintaining facility design operating conditions continuously, beginning 48 hours before installation until Government occupancy.
- 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.
- 4. Do not install finish lumber or millwork in any room or space where wet process systems such as concrete, masonry, or plaster work is not complete and dry.
- B. Field Measurements: Verify field conditions affecting fabrication and installation.
 - Coordinate field measurement and fabrication schedule to avoid delay.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

A. Grading and Marking: Factory mark with grade stamp lumber and plywood of inspection agency approved by the Board of Review, American Lumber Standard Committee.

B. Lumber:

- 1. Sizes:
 - a. Lumber Size references, unless otherwise specified, are nominal sizes, and actual sizes within manufacturing tolerances allowed by the standard under which product is produced.
 - b. Millwork, standing and running trim, and rails: Actual size as shown or specified.
- 2. Hardwood: MM-L-736, species as specified for each item.

- 3. Softwood: PS-20, exposed to view appearance grades:
 - a. Use C select or D select, vertical grain for transparent finish including stain transparent finish.
 - b. Use Prime for painted or opaque finish.
- 4. Use edge grain Wood members exposed to weather.
- 5. Moisture Content:
 - a. 32 mm (1-1/4 inches) or less nominal thickness: 12 percent on 85 percent of the pieces and 15 percent on the remainder.
 - b. Other materials: According to standards under which the products are produced.
- 6. Fire Retardant Treatment: Mil. Spec. MIL-L-19140E.
 - a. Treatment and performance inspection by an independent and qualified testing agency that establishes performance ratings.
 - b. Each piece of treated material bear identification of the testing agency and indicate performance according to such rating of flame spread and smoke developed.
 - c. Treat wood for maximum flame spread of 25 and smoke developed of 25.
 - d. Fire Resistant Softwood Plywood:
 - 1) Grade A, Exterior, plywood for treatment.
 - 2) Surface Burning Characteristics: When tested according to ASTM E84.
 - a) Flame spread: 0 to 25.
 - b) Smoke developed: 100 maximum.
 - e. Fire Resistant Hardwood Plywood:
 - 1) Core: Fire retardant treated softwood plywood.
 - 2) Hardwood face and back veneers untreated.
 - 3) Factory seal panel edges.

C. Plywood:

- 1. Softwood Plywood: DOC PS1.
 - a. Plywood, 13 mm (1/2 inch) and thicker; minimum five ply construction, except 32 mm (1-1/4 inch) thick plywood minimum seven ply.
 - b. Plastic Laminate Plywood Cores:
 - 1) Exterior Type, and species group.
 - 2) Veneer Grade: A-C.
 - c. Shelving Plywood:
 - 1) Interior Type, any species group.

- 2) Veneer Grade: A-B or B-C.
- d. Other: As specified for item.
- 2. Hardwood Plywood: HPVA: HP.1.
 - a. Species of Face Veneer: As shown or as specified with each particular item.
 - b. Grade:
 - 1) Transparent Finish: Type II (interior) A grade veneer.
 - 2) Paint Finish: Type II (interior) Sound Grade veneer.

2.2 PRODUCTS - GENERAL

A. Provide each product from one manufacturer and from one production run .

2.3 FABRICATION

- A. General:
 - 1. AWI Custom Grade for interior millwork.
 - 2. Finish woodwork, free from pitch pockets.
 - 3. Trim, standard stock molding and members of same species, except where special profiles are shown.
 - 4. Plywood, minimum 13 mm (1/2 inch), unless otherwise shown on Drawings or specified.
 - 5. Edges of members in contact with concrete or masonry having a square corner caulking rebate.
 - 6. Fabricate members less than 4 m (14 feet) in length from one piece of lumber, back channeled and molded a shown.
 - 7. Fabricate interior trim and items of millwork to be painted from jointed, built-up, or laminated members, unless otherwise shown on Drawings or specified.
 - 8. Plastic Laminate Work:
 - a. Factory glued to either a plywood or a particle board core, thickness as shown on Drawings or specified.
 - b. Cover exposed edges with plastic laminate, except where aluminum, stainless steel, or plastic molded edge strips are shown on drawings or specified. Use plastic molded edge strips on 19 mm (3/4 inch) thick or thinner core material.
 - c. Provide plastic backing sheet on underside of countertops, vanity tops, thru-wall counter and sills including back splashes and end splashes of countertops.

d. Use backing sheet on concealed large panel surface when decorative face does not occur.

2.4 ACCESSORIES

A. Hardware:

- 1. Rough Hardware:
 - a. Provide rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electric-galvanizing process. Galvanized where specified.
 - b. Fasteners:
 - 1) Bolts with Nuts: FF-N-836.
 - 2) Expansion Bolts: A-A-1922A.
 - 3) Screws: Fed. Spec. FF-S-111.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect existing construction and completed work from damage.
- B. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.

3.2 INSTALLATION

- A. Installation:
 - Prime millwork receiving transparent finish and back-paint concealed surfaces.
 - 2. Fasten trim with fine finishing nails, screws, or glue as required.
 - 3. Set nails for putty stopping. Provide washers under bolt heads where no other bearing plate occurs.
 - 4. Seal cut edges of fire retardant treated wood materials with a certified acceptable sealer.
 - 5. Coordinate with plumbing and electrical work for installation of fixtures and service connections in millwork items.
 - 6. Plumb and level items unless shown otherwise.
 - 7. Nail finish at each blocking, lookout, or other nailer and intermediate points; toggle or expansion bolt in place where nails are not suitable.
 - 8. Apply adhesive uniformly for full contact between substrate.
- B. Wall Paneling:
 - 1. Solid Hardwood Boards:

- a. Install furring strips, 25 by 75 mm (1 by 3 inch) at 400 mm (16 inch) centers horizontally between top and bottom strips. Fasten each stud with two screws.
- b. Install paneling laid vertically with end joints staggered between adjacent boards.
- c. Tightly butt joints and blind nail each board at each furring strip.

2. Plywood Paneling:

- a. Install furring strips horizontally, 25 by 75 mm (1 by 3 inch) under end joints of plywood and 300 mm (16 inches) on center between end strips. Install cross furring strips centered vertically at side joints of plywood paneling less than 13 mm (1/2 inch) thick. Fasten each stud with two screws.
- b. Install panels with long edge vertically and end joints aligned where exposed to view.
- c. Align V-grooves where end joints meet and maintain continuity of pattern.
- d. Apply continuous bead of adhesive to each furring strip to securely bond panel according to adhesive manufacturer's specifications.

e. Nailing:

- 1) Nail in V-grooves to horizontal furring strips and at panel edges and within 25 mm (1 inch) of ends except within 50 mm (2 inches) of end when panel end abutts other surfaces. Do not space nails in V-groves over 150 mm (6 inches), on center.
- 2) Nail ungrooved panels at 400 mm (16 inches) centers to horizontal furring strips between end or edge nails. Set nails and fill hole with filler to match wood panel for panels thicker than 13 mm (1/2 inch). Set nails flush with surface of panel thinner than 13 mm (1/2 inch).
- 3) Use colored nails matching panel finish for prefinished panels or panels less than 13 mm (1/2 inch) thick.
- 3. Edge Trim and Base: Install solid wood as shown on Drawings, species same as wall paneling.

C. Shelves:

- 1. Install mounting strip at back wall and end wall for shelves in closets where shown secured with toggle bolts at each end, not over 600 mm (24 inch) centers between ends.
 - a. Nail Shelf to mounting strip at ends and to back wall strip at not over 900 mm (36 inches) on center.
 - b. Install metal bracket, ANSI A156.16, B04041, not over 1200 mm (4 feet) centers when shelves exceed 1800 mm (6 feet) in length.
 - c. Install metal bracket, ANSI A156.16, B04051, not over 1200 mm (4 feet) on centers where shelf length exceeds 1800 mm (6 feet) in length with metal rods, clothes hanger bars ANSI A156.16, L03131, of required length, full length of shelf.
- 2. Install vertical slotted shelf standards to studs with toggle bolts through each fastener opening. Double slotted shelf standards is acceptable where adjacent shelves terminate.
 - a. Install brackets providing supports for shelf not over 900 mm (36 inches) on center and within 13 mm (1/2 inch) of shelf end unless shown otherwise.
 - b. Install shelves on brackets so front edge is restrained by bracket.

D. Handrails:

- 1. Install in one piece and one length when practical.
- 2. Where rails change slope or direction, install special curved sections and ends of rails to return to wall, glue all field joints.
- 3. Secure rails with wood screws at 450 mm (18 inches) on centers to metal balustrades top rail.
- 4. Install brackets within 300 mm (12 inches) of ends of handrails and at every spaced intervals between not exceeding 1500 mm (5 feet) on centers at intervals between as shown. Anchor brackets as detailed and rails to brackets with screws.
- E. Install with butt joints in straight runs and miter at corners.

3.3 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed surfaces. Remove contaminants and stains.
- C. Touch up damaged factory finishes.
 - 1. Repair painted surfaces with touch up primer.

3.4 PROTECTION

A. Protect finish carpentry from and construction operations.

- B. Cover finish carpentry with reinforced kraft paper, and plywood or hardboard.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

- - - E N D - - -

07 00 00

Application of Spray Applied Insulation

March, 2017

INSULATION PAINTING SPECIFICATION

PART 1 GENERAL

1.1 GENERAL

A. Scope:

- 1. It is the intent of this specification to describe the requirements for the preparation and application of an approved spray applied insulation coating at VA-John Cochran Hospital (Owner) to noted areas.
- 2. The extent of the interior coating work is summarized in Schedule A at the end of this Section. Coating materials are summarized in Schedule B at the end of this Section.

B. References:

- Reference Standards: Comply with applicable provisions and recommendations of the following, except where otherwise shown or specified.
 - a. OSHA Safety Standards for the Construction Industry, Title
 29 Labor, Subtitle B Regulations Relating to Labor,
 Occupational Safety and Health Administration (OSHA)
 1926, 07/01/93 editions.
 - b. OSHA Worker Safety, Hazard Communications as described by the Occupational Safety and Health Act Regulation 29 CFR No. Parts 1900 through 1910.1499, 07/01/93 and later editions.
 - c. NACE Standards, Volume I and II, 1992 editions of the National Association of Corrosion Engineers International.
 - NACE Coatings and Lining Handbook, current edition of the National Association of Corrosion Engineers International.
- 2. Requirements of Regulatory Agencies, conform with the following:
 - a. Clean Air Act (CAA) Hazardous Air Emissions by U.S. EPA or State Agency under regulation 40 CFR 61 or state equivalent.
 - b. Clean Water Act (CWA) Hazardous Water Releases by U.S. EPA or State Agency under Regulation 40 CFR 116 through 117 or state equivalent.
 - c. Toxic substances Control Act (TSCA) Toxic substance by U.S. EPA under Regulation 40 CFR 761.
 - d. Comprehensive Environmental Response, Compensation and Liability Act (CERCLA or "Superfund") Uncontrolled Hazardous Waste Sites and Hazardous

- Substance Release by U.S. EPA under Regulation 40 CFR 302.
- e. Resource Conservation and Recovery Act (RCRA) Generation, Transportation, Treatment, Storage and Disposal of Hazardous Waste by U.S. EPA or State Agency under Regulation 40 CFR 260 through 267 or state equivalent.
- f. Hazardous and Solid Waste Amendments (HSWA) Further regulation of hazardous waste by U.S. EPA or State Agency under Regulation 40 CFR 260 through 267 or state equivalent.
- g. Hazardous Material Transportation Act (HMTA) –
 Transportation of Hazardous Material by DOT or State
 Agency under Regulation 40 CFR 171 through 179 or state
 equivalent.

1.2 DEFINITIONS

- A. Coatings and Linings: The term "coatings and/or linings" as used herein means all protective coating systems and materials. As a general rule, linings are for interior wet immersion and coatings are for atmospheric exposure.
- B. Coating Manufacturer: The manufacturer and source of the coatings and linings products furnished for this Contract.
- C. Coating Supplier: The coating and/or lining manufacturer's agent or technical representative who is supplying the material directly to the Contractor.
- D. Coating Superintendent: That employee of the coating and lining Contractor who is designated by the coating and lining Contractor as the supervisor of all coating and lining work and as the official representative of the coating and lining Contractor at any project meetings or discussions.
- E. Coating System: The combination of surface preparation, base (prime) coat, intermediate coat(s) and finish coat(s) for a specific substrate under specific exposure conditions.
- F. ASTM: American Society for Testing Material.
- G. NACE International: National Association of Corrosion Engineers.
- H. NWS: National Welding Society.

- I. SSPC: The Society for Protective Coatings.
- J. UL: Underwriters Laboratory.

1.3 QUALITY CONTROL

- A. Coating Contractor Qualifications:
 - 1. Contractor shall be regularly engaged in work requiring extensive surface preparation in accordance with AWWA, EPA, UL, SSPC and NACE standards.
 - 2. Contractor shall have a minimum of five (5) years experience in the mixing and application of high performance industrial coatings.
 - 3. See Section 1.4, B, 4 for other Contractor qualifications.
 - 4. Contractor shall be a certified SSPC-QP1, QP2, and/or QP3.
 - 5. Contractor shall have an independent, 3rd party NACE Level 3 inspector onsite during all surface prepration and application.
- B. Obtain coating and lining materials only from manufacturers who can provide the services of a qualified Coating Manufacturer's Technical Service Representative (TSR) at the project site for participation in the preconstruction meeting, at the commencement of work and other times as required. TSR shall be qualified as follows:
 - 1. The Coating Manufacturer's Technical Service Representative shall have five (5) years of high performance coating experience.
 - 2. The Coating Manufacturer's Technical Service Representative shall be experienced in the coating system and surface preparation required by these specifications.
 - 3. The Coating Manufacture's Technical Service Representative must be present at the pre-bid meeting (if applicable). If they are not present, the coating manufacture will not be considered to be a qualified material provider.

1.4 SUBMITTALS

- A. Pre-job Submittals:
 - 1. Work Plan indicating method of application, interior surface preparation system, staging details, site arrangement, site clean-up proposal, etc.
 - 2. Preliminary Bar Chart Schedule.
- B. Pre-job Submittals:
 - 1. <u>Construction Schedule</u>: Schedule shall allow for the necessary hold points and quality control inspections as specified herein.
 - 2. <u>Product Data</u>: Coating and lining manufacturer's product data sheets and Material Safety Data Sheets.

4. Contractor Qualifications:

- a. The Contractor shall submit <u>verifiable</u> documentation showing a minimum of 5 years of experience on similar projects.
- b. The Contractor must submit a list of personnel that will be assigned to this project and their qualifications.
- c. The Contractor shall supply documentation of all required training per local, state, and federal regulations for each personal that shall be on the project. The Contractor must keep a copy on-site for the duration of the project as well.

C. Maintenance Manual:

- 1. A copy of a completed QA/QC Coating Inspection Log shall be kept on-site at all times
- 2. Copies of all warranties and guarantees.
 - a. Manufacturer's written procedures for repairs.

1.5 GUARANTEE

A. Warranty:

- 1. Upon completion of the work the Contractor shall furnish to the Owner a warranty containing but not limited to the following:
 - a. Written assurance from the Contractor that all coatings and linings have been properly stored, handled, mixed and applied.
 - b. All pertinent inspection forms assuring that hold points were observed and released by the Quality Assurance Representative.
 - c. The Contractor shall guarantee his work for a period of one (1) year to the extent that he shall repair any defects due to faulty workmanship or materials which may appear on the surface during this period.
 - d. The remedial work shall include thorough surface preparation and coating/lining repair, or complete recoating of the defective area subject to approval of the Owner's representative.

1.6 POST-JOB INSPECTION

A. One Year Inspection:

- 1. An inspection of the structure shall be scheduled by the Owner prior to the one year anniversary of the accepted work.
- 2. The inspection shall be conducted with representatives of the Owner, the Coating Contractor and the Coating Manufacturer. Scheduling of this inspection shall be at the discretion of the Owner.

1.7 SUBSTITUTIONS

A. Substitutions for material will be considered but must be approved by the Owner or the Owners repasenative.

1.8 WORK INCLUDED

- A. Refer to SCHEDULES A and B at the end of this Section.
- B. The exterior and interior coating work shall be performed systematically as required by these specifications. In general, the repairs and protective coating work shall consist of the following:
 - 1. Pre-cleaning, modifications, repairs, surface preparation and application of interior coating in accordance with the Drawings and SCHEDULES.
 - 2. Other miscellaneous repairs shall be made in accordance with these specifications shown on the Drawings.
- C. The Owner will drain the tank and upon completion of coating application and acceptable work, the Owner will fill and place the tank back into service. The Owner will remove all sludge and debris.
- D. The construction schedule provided by the Contractor shall allow time for hold points, quality inspection and any required assistance by the Contractor.

1.9 SAMPLING AND ANALYSIS REQUIREMENTS

- A. Spent Abrasive (if any):
 - 1. The Contractor must properly dispose of spent abrasive and debris in accordance with all Local, State and Federal laws and regulations.

1.10 TEMPORARY UTILITIES

- A. The Contractor must provide portable sanitation facilities for their own employees.
- B. The Contractor must provide a generator to supply adequate electricity to complete the project, if needed.

PART 2 PRODUCTS

2.1 MATERIAL QUALITY

- A. These specifications call for the use of products supplied by an approved vendor (or approved equal) and the coatings specified are the minimum allowed standards for this project.
- B. Provide primers, intermediate and finish coating products produced by the same manufacturer. Where thinning is necessary to insure an acceptable application, use only thinners recommended and/or manufactured by the coating manufacturer, and use only to the manufacturer's recommended limits. Thinning of coating materials to be in contact with potable water shall not be permitted. Thinning shall not be permitted that exceeds allowable VOC limits or coating manufacturer's product data and detailed instructions.
- C. Coatings and linings shall have excellent adhesion and cohesion properties.
- D. Films shall dry and cure to uniform thickness and be free from pinholes, holidays, voids, discontinuities, dry spray, dry overspray, sags or runs. Finish coats shall be uniform in color, gloss and texture.
- E. Prohdect shall meet or exceed product specifications of Masoat Industrual DTI product number MI-DTI.

2.2 COLORS AND FINISHES

- A. Refer to Schedule B at the end of this Section.
- B. Color Selection and Color Scheme:
 - 1. Colors shall be the decision of the Owner based on available colors per material selection.
- C. Finish Quality:
 - 1. Finishes shall exhibit a high quality, commercial grade appearance of uniform thickness.
 - 2. Finishes shall be free of runs, sags, drips, waves, orange peel, dry spray, excessive brush or roller marks, fish eyes or other surface imperfections, voids, discontinuities, pinholes, holidays and overspray.
 - 3. Final coat shall be uniform in texture, color and gloss, and shall provide an acceptable match with the approved color standard.

2.3 COATINGS, FILLERS, AND SEAM SEALERS

A. Refer to and comply with Schedules B at the end of this Section.

PART 3 EXECUTION

3.1 EXAMINATION AND VERIFICATION OF CONDITION

- A. Contractor shall examine the areas and conditions under which the work is to be performed and notify the Owner in writing of conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until satisfactory conditions have been corrected.
- B. Do not coat over chalk, dust, dirt, rust, scale, moisture, oil, surface contaminants, coatings that have exceeded the manufacturer's recoat guidelines or conditions otherwise detrimental to the formation of a durable, high quality coating system.

3.2 SAFETY AND REGULATORY COMPLIANCE

- A. The Owner's rules, policies and OSHA safety requirements shall be followed including as a minimum, the following:
 - 1. Hard hats are required to be worn in the work place.
 - 2. Safety shoes and safety goggles/glasses are required to be worn in the work place.
 - 3. Smoking inside the tank is strictly prohibited.
 - 4. Contractor's safety policy in conformance with OSHA guidelines.
 - 5. Comply with SSPC and NACE painter safety guidelines.
- B. Comply with the Owner's Safety Compliance Program.
- Compliance with measures to prevent contamination that may lead to premature coating and lining failure is the Contractor's responsibility.
 The Contractor shall provide gloves and disposable shoe coverings for his employees, the Owner's representatives and the consultant representative.
- D. Display prominent warning signs indicating WARNING PAINTING AND ABRASIVE BLASTING WORK UNDERWAY throughout the job site whenever surface preparation or coating and lining operations are underway.

3.3 GENERAL PREPARATION

- A. Delivery of Materials
 - 1. Deliver all coating and lining materials, thinners and solvents to the job site in original, new and unopened packages and containers bearing the manufacturer's name and label.
- B. Storage of Materials

- 1. Store only materials which have been previously approved for this Project on the job site.
- 2. Store all materials in a clean, dry, lighted and environmentally controlled area, such as a storage trailer, which shall be furnished and maintained by the Contractor.
- 3. Maintain coating and lining material storage between 60°F and 90°F at all times.
- 4. In the event the storage area temperature drops to 40°F or below, all paint and coating materials shall be inspected to determine suitability of its use and compliance with project bid documents. Any unacceptable material shall be immediately removed from the job site and replaced by the Contractor at no additional cost to the Owner.

C. Handling of Materials

- 1. Handle materials carefully to prevent inclusion of foreign materials, including abrasive dust and abrasives.
- 2. Do not open containers or mix components until necessary preparatory work has been completed, the appropriate inspection performed and the inspection hold point released. Application shall immediately follow proper mixing and induction if required.

D. Protection

- Cover or protect all surfaces and equipment not scheduled to be coated or painted. This includes other private and public facilities within or adjacent to the area, and all publicly and privately owned vehicles. Remove protective coverings at the conclusion of the project.
- 2. The Contractor will be held directly responsible for such claims arising from falling debris, over-blast, abrasive accumulation, and dust and paint overspray on private property.
- 3. Take precautions necessary to prevent dust, dirt and moisture from coming in contact with surfaces cleaned for coating and lining and with surfaces freshly painted.
- 4. The tank entrance must be maintained as a "clean area" once the surface preparation is completed. This area must be kept clean during the entire application and subsequent inspections.
- 5. The Contractor shall provide 6 mil containment barriers or tarps under all equipment, which is located on the Owner's property. All organic compounds, solvents, oil or contaminants spilled on the Owner's property shall be immediately cleaned up, removed and disposed of in a responsible manner to the satisfaction of the Owner by the Contractor.

3.4 SURFACE PREPARATION – METAL SURFACES

A. General

1. The following surface preparation industry standards shall be used for this project.

NACE Number	SSPC Number	Cleaning Description
	SP 1	Solvent
	SP 3	Power Tool
	SP 11	Power Tool to Bare Metal
No. 1	SP 5	White Metal Abrasive Blast
No. 2	SP 10	Near-White Metal Abrasive Blast
No. 3	SP 6	Commercial Abrasive Blast
No. 4	SP 7	Brush-Off Blast
No. 5	SP 12	Water Jetting

B. Abrasive Blast Surface Preparation

- 1. Blast cleaning shall comply with the NACE And SSPC standards.
- 2. The abrasives shall be maintained free from oil, dust, chemicals, salts and other impurities.
- 3. The type and size of abrasive for a particular substrate shall be selected to give a properly prepared surface consistent with the anchor profile of the scheduled coating system.
- 4. Compressed air supply used for blasting shall be free of oil, water or other contaminants. Adequate separator traps and filters shall be provided and shall be purged of oil and water throughout the blasting operation.
- 5. All compressed air shall be diverted through a fan cooled after-cooler before attachment to the abrasive blasting pots.
- 6. Abrasive blasting shall not be conducted when the surface temperatures are less than 5°F above the dew point, or when the relative humidity of the surrounding air is greater than 85%. Abrasive blasting may continue in controlled environments that comply with the specified conditions.
- 7. Abrasive blasted surfaces shall be coated as soon after the blasting work is completed as possible. In no case shall blast cleaned surfaces be allowed to stand overnight without being coated unless the affected area is dehumidified and environmentally controlled.
- 8. Abrasive blasting shall not be permitted on any surfaces in close proximity to other surfaces which have recently been coated.
- 9. For job site abrasive blasting, protect all adjacent areas, surfaces and equipment not to be blast cleaned from blast overspray, overblast, grit and dust resulting from the blasting operations.
- 10. Abrasive blasted surfaces shall be blown down with dry, oil-free, filtered air, followed by vacuum cleaning. The surface shall be free of all residue, dust or other contamination that jeopardizes maximum adhesion of the coating. Follow the procedures in ISO Standard 8502-3, Preparation of Steel Substrates.

3.5 CONTAINMENT AND WASTE DISPOSAL

- A. Waste material generated by abrasive blasting operations is a solid waste and shall be handled in the following manner:
 - 1. Contained.
 - 2. Collected.
 - 3. Stored.
 - 4. Evaluated.
 - 5. Properly disposed.
- B. Laws, Regulations and Ordinances
 - 1. It is the responsibility of the Contractor to comply with applicable laws governing the containment, collection, storage and disposal of waste material generated during this project.
- C. All equipment shall be parked on ground covers free of cuts, tears or holes to prevent contamination of pavement or soil and to protect area under and around equipment.
- D. Hazardous Waste (if any)
 - 1. The Contractor shall abide by all local, state and federal regulations as they pertain to hazardous waste.
 - 2. All containers of waste material that have been classified as hazardous shall be stored in a secured location, until proper disposal.
 - 3. The Contractor shall arrange for hauling, disposal and payment of all hazardous waste.
 - 4. All hazardous waste shall be disposed of after the Owner has obtained a generator number from the state regulatory authority.
 - 5. All hazardous waste shall be disposed of within 60 days after it is generated.
 - a. Any fines or liens accessed by any government agency that has jurisdiction over the disposal of this material shall be the responsibility of the Contractor.
 - b. The hauling and disposal shall be by a firm licensed by U.S. EPA and who shall also be responsible for providing the Uniform Hazardous Waste Manifest (EPA Form 8700-22A).
 - 7. The Contractor shall decontaminate or dispose of all collection/containment equipment in accordance with EPA guidelines.
- E. Non-Hazardous Special Waste (if any)
 - 1. If the waste is determined to be non-hazardous as verified by test results that have been reviewed by the Owner, it shall be hauled

- and disposed of at a facility which is licensed to accept non-hazardous special waste.
- 2. Prior to disposal of any material, the Contractor shall submit the test results and the name and address of the proposed disposal facility to the Owner for approval.
- 3. The Contractor shall obtain and provide the Engineer with a receipt documenting disposal of waste material at the approved landfill.
- 4. The Contractor shall obtain and provide the Engineer with a receipt documenting the quantity of material disposed.

3.6 WELD AND METAL SURFACE REPAIR

A. General

- 1. The Contractor shall notify the Owner of any needed steel repair surface that shall be abrasive blasted, especially pits, welds and edges so that the surfaces are smoothly contoured and will not compromise the integrity or adhesion of the coating systems.
- 2. Remove all new or existing weld splatter, unevenness, sharp projections, etc. by a systematic and uniform method of grinding or power sanding in accordance with SSPC-SP3 to smooth welds and to enhance adhesion of the coating.
- 3. Weld area imperfections shall be corrected prior to abrasive blasting if directed by the Owner.
- 4. If imperfections are discovered after blasting they shall be corrected and re-blasted prior to coating application.

3.7 PREPARATION AND MIXING OF COATING MATERIALS

- A. Mix coating and lining materials only from properly stored containers bearing accurate product name and batch numbers of material being mixed or applied.
- B. Coating products with more than one component or part shall have each separate part thoroughly mixed prior to combining, mixing and allowing for induction of the combined coating.
- C. All coating materials shall be thoroughly mixed using a power mixer for sufficient time to thoroughly blend all components.
 - 1. Mixers shall be kept clean and free of dried or hardened coating and/or lining materials. Build-up of dried coating shall be removed prior to use.
- D. Only thinners recommended by the coating manufacturer shall be used. Thinning directions furnished by the coating manufacturer shall be strictly followed.
 - 1. Thinning of interior lining material is strictly prohibited.

E. Store materials in use in covered containers. Maintain all containers used in the storage, mixing and application of coatings in a clean condition, free of foreign materials, dust and residue.

3.8 APPLICATION OF INTERIOR LINING MATERIALS

A. General

- 1. Any surface to be coated shall be dust-free prior to the application of coating material. This shall be accomplished using oil-free, moisture-free, blow down air.
- 2. The topcoat shall be spray applied onto properly prepared surfaces at the specified film thickness in a single application which may be accomplished by one or more passes of the spray gun, all applied within the recommended recoat times, to a specific area.

B. Environmental Requirements

- 1. The Contractor is responsible for all ventilation, heating, electrical and plumbing requirements and connections.
 - a. All electrical connections between the power source and equipment shall be furnished by the Contractor.
- 2. The total ventilation system should include auxiliary blowers, heaters and/or dust connectors as the Contractor or the Owner deems necessary to provide adequate ventilation and nuisance dust control.

3.9 APPLICATION OF EXTERIOR COATINGS

A. General

- 1. Any surface to be coated shall be rendered dust-free prior to the application of coating material. This shall be accomplished using oil-free, moisture-free, blow down air or vacuum cleaning if blow down is found to not be adequate.
- 2. Apply coating materials by brush or roller in strict accordance with the manufacturer's detailed instructions and recommendations of Paint Application Specifications No. 1 in SSPC Vol. 2, where applicable. Use brushes, rollers or spray application systems best suited for the type of material being applied.
- 3. Exterior blast-cleaned surfaces shall be coated with the products specified within 4 hours of completion of surface preparation (or shorter time limits as may be required by the environmental conditions). However, initial or prime coating of such surfaces shall always be accomplished prior to the end of the workday and 4 hours prior to the substrate going into dew point conditions.

- 4. The total film thickness required is the same regardless of the application method. Do not apply succeeding coats until the previous coat has dried or cured, and has been inspected and approved.
- 5. Apply each material at not less than the coating manufacturer's recommended spreading rate and provide the total dry film thickness specified in Schedule B. Apply additional coats, if required, to obtain the specified dry film thickness of each coat and total dry film thickness.
- 6. Applicators shall frequently check wet film thickness (WFT) with approved gauges.
- 7. Allow sufficient time between successive coats to permit proper drying. Drying and curing of each coat and the entire coating system shall strictly follow the requirements of the coating manufacturer.

B. Environmental Requirements

- 1. Apply coating materials only when the temperature of surfaces to be painted and the surrounding air temperatures are in accordance with manufacturer's recommendations but, in no case, less than 50°F for conventional products and 35°F for temperature tolerant products.
- 2. Do not apply paint, coatings or linings to surfaces which have temperatures that are less than 5°F above the dew point.

3.10 INSPECTION

- A. The Owner's representative and the coating manufacturer's representative reserve the right to inspect the job site at any time. The Contractor shall provide safe access and assistance to those areas that have been selected for inspection.
- B. Contracto shall provide a third party inspector on this project to enforce the requirements of this specification. The cost of inspection must be included in the Contractor's bid; however, the Inspector will report to and take directions from the Owner. This inspector shall be a NACE level 3 certified coating inspector.
- C. The Inspector shall specify "hold points" in the work process to confirm that the requirements of this specification are being met. The Inspector shall have the authority to stop the work and consult with the Owner and/or the Contractor if, in his judgment, the Contractor is not complying with the specifications or if some other issue needs to be resolved for the completion of the work per the Owner's requirements. Failure to stop the work when requested may result in the Contractor having to re-do the work in part of completely at his own expense.

- D. The Contractor is completely responsible for the quality of the application and any defects that become apparent during the warranty period. The presence of a third party inspector does not in any way eliminate the Contractor's responsibility.
- E. The minimum and maximum allowable coating thickness shall be measured per SSPC-PA2. By reference, this standard becomes part of this specification.
- F. All corrective work shall be done at the Contractor's expense and reinspected to confirm that the deficiencies have been corrected.
- G. Quality Assurance/Quality Control shall conform to the NACE International Coating Inspectors Program.
- H. Coating Inspection Logs shall be completed as part of the coating work. See end of Section for sample logs.

3.11 CLEAN-UP

- A. During the progress of work, remove from the work site and work areas all discarded materials, abrasive bags, rubbish and rags at the end of each work day. This material may be stored in a covered container (dumpster) for removal weekly or at the frequency required to keep the site clean, neat and orderly.
- B. Proper containment, removal and disposal of coatings, linings, paints and thinners are the Contractor's responsibility.

End of Section-

Schedule A

Coating and Lining Work Required

A. GENERAL

- 1. The preparation and coating of ductwork(interior and exterior), hotwater (for equipement), steam and chilled water lines. (contractor to coordinate insulating of domestic water lines.)
- 2. See Schedule B for the specific coating systems.

B. SURFACES NOT PAINTED

- 1. The following surfaces shall not be painted:
 - a. Existing electrical equipment and instruments.
 - b. Flow meters, sensors, gauges and all other instruments.
 - c. Loading plaques and rating labels
 - d. Stainless steel items

D. OTHER RELATED WORK

- 1. Pit and Weld Repair
 - a. must be approved by the Owner
- 2. Caulking and Seam Sealing
 - a. Skip welds, butt, fillet or lap welds
 - b. Back-to-back metal angles
 - c. Lap joints
 - d. must be approved by the Owner

Schedule B

Coating and Lining Systems

A. <u>INTERIOR</u>

- 1. Surface Preparation
 - a. Remove all oil, grease, and any other contaminets
 - b. Abrasive blast or Power Tool Clean all steel surfaces to be painted to a White Metal Finish per SSPC-SP10, to achieve a 1.5 to 3 mil anchor profile.

2. Application

- a. Apply a prime coat of an approved novolac epoxy tank liner per the manufactures recommendation to all surfaces.
- b. Apply a stripe coat of an approved novolac epoxy tank liner per the manufactures recommendation to all welds and seams.
- c. Apply a finish coat of an approved novolac epoxy tank liner per the manufactures recommendation to all surfaces.

B. EXTERIOR

- 1. Surface Preparation
 - a. Abrasive blast all steel surfaces to be painted to a Commercial Finish per SSPC-SP6, to achieve a 1.5 to 3 mil anchor profile.
- 2. Application
 - a. Apply one primer coat of an approved zinc-rich epoxy per the manufactures recommedations to all surfaces.
 - b. Apply one intermedate coat of an approved epoxy mastic coating per the manufactures recommendations to all surfaces.
 - c. Apply one finish coat of an approved urethane per the manufactures reommendation to all surfaces.

ALTERNATE PRICE – EXTERIOR

- 1. Surface Preparation
 - a. Powerwash all surfaces of exterior in accordance with low-pressure washing, but use nothing less than 4,500 psi.
 - b. Spot clean any rusted areas that shall be painted to a Power Tool Clean per SSPC-SP3.

2. Application

- a. Spot apply one coat of primer to areas that were power tool cleaned per SP3 with an approved high solids aluminum epoxy-mastic per the manufcatures recommendation.
- b. Apply one full coat to all surfaces of the exterior with an approved epoxy per the manufactures recommendation.
- c. Apply one full coat to all surfaces of the exterior with an approved urethane per the manufactures recommendation.

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK:

- A. Spray applied fireproofing: Section 07 81 00, APPLIED FIREPROOFING
- B. Sealants and application: Section 07 92 00, JOINT SEALANTS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Installer qualifications.
- D. Inspector qualifications.
- E. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- F. List of FM, UL, or WH classification number of systems installed.
- G. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- H. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.4 DELIVERY AND STORAGE:

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE:

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.

C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):
 - E84-14.....Surface Burning Characteristics of Building Materials
 - E699-09......Standard Practice for Evaluation of Agencies

 Involved in Testing, Quality Assurance, and

 Evaluating of Building Components
 - E814-13a.....Fire Tests of Through-Penetration Fire Stops
 E2174-14.....Standard Practice for On-Site Inspection of
 Installed Firestops
 - E2393-10a......Standard Practice for On-Site Inspection of

 Installed Fire Resistive Joint Systems and

 Perimeter Fire Barriers
- C. FM Global (FM):

Annual Issue Approval Guide Building Materials
4991-13......Approval of Firestop Contractors

D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

723-10(2008)......Standard for Test for Surface Burning
Characteristics of Building Materials

1479-04(R2014)......Fire Tests of Through-Penetration Firestops

E. Intertek Testing Services - Warnock Hersey (ITS-WH):

Annual Issue Certification Listings

F. Environmental Protection Agency (EPA):

40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS:

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 in.) nominal pipe or 0.01 sq. m (16 sq. in.) in overall cross sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - 2. Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.

- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101 mm (4 in.) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS:

- A. Provide silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Provide mineral fiber filler and bond breaker behind sealant.
- C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION:

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION:

A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence

- 657-17-105JC Restore Utility Systems, Building 6A 03

 and bonding or application of the firestopping or smoke stopping
 - B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
 - C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
 - D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 INSTALLATION:

materials.

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP:

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

3.5 INSPECTIONS AND ACCEPTANCE OF WORK:

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- B. Sealing of Site Work Concrete Paving: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.
- C. Masonry Control and Expansion Joint: Section 04 20 00, UNIT MASONRY.
- D. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- ain Wall: Section 08 44 13, GLAZED ALUMINUM CURTAIN WALLS.
- H. Mechanical Work: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBINGSection 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Installer qualifications.
- D. Contractor certification.
- E. Manufacturer's installation instructions for each product used.
- F. Cured samples of exposed sealants for each color.
- G. Manufacturer's Literature and Data:
 - 1. Primers
 - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- H. Manufacturer warranty.

1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 degrees C (40 degrees F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F).

1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation
- B. ASTM International (ASTM):

C509-06	Elastomeric Cellular Preformed Gasket and
	Sealing Material
C612-14	Mineral Fiber Block and Board Thermal
	Insulation
C717-14a	Standard Terminology of Building Seals and
	Sealants
C734-06 (R2012)	Test Method for Low-Temperature Flexibility of
	Latex Sealants after Artificial Weathering
C794-10	Test Method for Adhesion-in-Peel of Elastomeric
	Joint Sealants
C919-12	Use of Sealants in Acoustical Applications.
C920-14aElastomeric Joint Sealants.	
C1021-08 (R2014)	Laboratories Engaged in Testing of Building
	Sealants

C1193-13......Standard Guide for Use of Joint Sealants.

657-17-104JC Restore Utility Systems, Building 6			
657-17-105JC Restore Utility Systems, Building 6A 10-01-15			
C1248-08(R2012)Test Method for Staining of Porous Substrate by			
Joint Sealants			
C1330-02(R2013)Cylindrical Sealant Backing for Use with Cold			
Liquid Applied Sealants			
C1521-13Standard Practice for Evaluating Adhesion of			
Installed Weatherproofing Sealant Joints			
D217-10Test Methods for Cone Penetration of			
Lubricating Grease			
D412-06a(R2013)Test Methods for Vulcanized Rubber and			
Thermoplastic Elastomers-Tension			
D1056-14Specification for Flexible Cellular Materials-			
Sponge or Expanded Rubber			
E84-09Surface Burning Characteristics of Building			
Materials			
C. Sealant, Waterproofing and Restoration Institute (SWRI).			
The Professionals' Guide			
. Environmental Protection Agency (EPA):			

PART 2 - PRODUCTS

2.1 SEALANTS:

- C. Interior Sealants:
 - 2. Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25,.

40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

- 4. Provide location(s) of interior sealant as follows:
 - a. Typical narrow joint 6 mm, (1/4 inch) or less at walls and adjacent components.
 - b. Perimeter of doors, windows, access panels which adjoin concrete or masonry surfaces.
 - c. Interior surfaces of exterior wall penetrations.
 - d. Joints at masonry walls and columns, piers, concrete walls or exterior walls.
 - e. Perimeter of lead faced control windows and plaster or gypsum wallboard walls.
 - f. Exposed isolation joints at top of full height walls.

- g. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplanar tile surfaces meet.
- h. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.

D. Acoustical Sealant:

- 1. Conforming to ASTM C919; flame spread of 25 or less; and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealant have a consistency of 250 to 310 when tested in accordance with ASTM D217; remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C734; and be non-staining.
- 2. Provide location(s) of acoustical sealant as follows:
 - a. Exposed acoustical joint at sound rated partitions.
 - b. Concealed acoustic joints at sound rated partitions.
 - c. Joints where item pass-through sound rated partitions.

2.2 COLOR:

- A. Sealants used with exposed masonry are to match color of mortar joints.
- B. Sealants used with unpainted concrete are to match color of adjacent concrete.
- C. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a

- 657-17-105JC Restore Utility Systems, Building 6A secondary seal, to control sealant depth, and otherwise contribute to
 - D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-

2.4 WEEPS: - NOT APPLICABLE

2.5 FILLER:

A. Mineral fiberboard: ASTM C612, Class 1.

adhesive tape where applicable.

B. Thickness same as joint width.

optimum sealant performance.

C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - 1. Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to

produce a clean, sound substrate capable of developing optimum bond with joint sealants.

- 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
- 3. Remove laitance and form-release agents from concrete.
- 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - 2. Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.

- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.
- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

A. General:

- 1. Apply sealants and caulking only when ambient temperature is between 5 degrees C and 38 degrees C (40 degrees and 100 degrees F).
- 2. Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
- 3. Do not install sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.
- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
- 8. Finish paving or floor joints flush unless joint is otherwise detailed.
- 9. Apply compounds with nozzle size to fit joint width.

- 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports.
- 11. Replace sealant which is damaged during construction process.
- C. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
- D. Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - 1. Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

- B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.
- C. Inspect tested joints and report on following:
 - Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate.
 - 2. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 - 3. Whether sealants filled joint cavities and are free from voids.
 - 4. Whether sealant dimensions and configurations comply with specified requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

- - - E N D - - -

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Hollow metal doors hung in hollow metal frames at interior and exterior locations.
 - 2. Hollow metal door frames for wood doors and borrowed lights at interior locations.

1.2 RELATED REQUIREMENTS

- A. Aluminum frames entrance work: Section 08 41 13, ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS.
- B. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- C. Card Readers and Biometric Devices: Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEM.
- D. Intrusion Alarm: Section 28 16 00, INTRUSION DETECTION SYSTEM.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standard Institute (ANSI):
 - 1. A250.8-2014 Standard Steel Doors and Frames.
- C. ASTM International (ASTM):
 - 1. A240/A240M-15b Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
 - 2. A653/A653M-15 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip.
 - 3. A1008/A1008M-15 Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy and High Strength Low Alloy with Improved Formability, Solution Hardened, and Bake Hardenable.
 - 4. B209-14 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 5. B209M-14 Aluminum and Aluminum-Alloy Sheet and Plate (Metric).
 - 6. B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 7. B221M-13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric).
 - 8. D3656/D3656M-13 Insect Screening and Louver Cloth Woven from Vinyl Coated Glass Yarns.

08-01-16

- 9. E90-09 Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. Federal Specifications (Fed. Spec.):
 - 1. L-S-125B Screening, Insect, Nonmetallic.
- E. Master Painters Institute (MPI):
 - 1. No. 18 Primer, Zinc Rich, Organic.
- F. National Association of Architectural Metal Manufacturers (NAAMM):
 - 1. AMP 500-06 Metal Finishes Manual.
- G. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
- H. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
 - 2. 1784-15 Air Leakage Tests of Door Assemblies and Other Opening Protectives.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Include schedule showing each door and frame requirements fire label and smoke control label for openings.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.

1.6 DELIVERY

- A. Fasten temporary steel spreaders across the bottom of each door frame before shipment.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store doors and frames at the site under cover..
- B. Protect products from damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design hollow metal doors and frames complying with specified performance:
 - 1. Fire Doors and Frames: UL 10C; NFPA 80 labeled.
 - a. Fire Ratings: See drawings.
 - 2. Stair Doors: Temperature rise rated fire doors.
 - 3. Smoke Control Doors and Frames: UL 1784; NFPA 80 labeled, maximum 0.15424 cu. m/s/sq. m (3.0 cfm/sf) at 24.9 Pa (0.10 inches water gage) pressure differential.

2.2 MATERIALS

- A. Sheet Steel: ASTM A1008, cold-rolled for panels (face sheets) of doors.
- A. Aluminum Sheet: ASTM B209M (ASTM B209).
- B. Aluminum Extrusions: ASTM B221M (ASTM B221).

2.3 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide hollow metal doors and frames from one manufacturer.
 - 1. HOLLOW METAL DOORS
 - 2. Hollow Metal Doors: ANSI A250.8; 44 mm (1-3/4 inches) thick.
 - 3.

2.4 FABRICATION

- A. Hardware Preparation: ANSI A250.8; for hardware specified in Section 08 71 00, DOOR HARDWARE.
- B. Hollow Metal Door Fabrication:
 - 1. Close top edge of exterior doors flush and seal to prevent water intrusion.
 - 2. Fill spaces between vertical steel stiffeners with insulation.
- C. Fire and Smoke Control Doors:
 - 1. Close top and vertical edges flush.
 - 2. Apply steel astragal to active leaf at pair and double egress doors.
 - 3. Fire and Smoke Control Door Clearances: NFPA 80.
- D. Hollow Metal Frame Fabrication:

- 1. Fasten mortar guards to back of hardware reinforcements, except on lead-lined frames.
- 2. Concealed Closers in Head Frame: Provide 1 mm (0.042 inch) thick steel removable stop sections for access to concealed face plates and control valves, except when cover plates are furnished with closer.
- 3. Terminated Stops: ANSI A250.8.
- 4. Frame Anchors:
 - a. Floor anchors:
 - 1) Provide extension type floor anchors to compensate for depth of floor fills.
 - 2) Provide 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive floor fasteners.
 - 3) Provide 50 mm by 50 mm by 9 mm (2 inch by 2 inch by 3/8 inch) clip angle for lead lined frames, drilled for floor fasteners.
 - 4) Provide mullion 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two floor fasteners and frame anchor screws.
 - 5) Provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for floor fasteners and frame anchor screws for sill sections.
 - a) Space floor bolts 50 mm (24 inches) on center.

b. Jamb anchors:

- 1) Place anchors on jambs:
 - a) Near top and bottom of each frame.
 - b) At intermediate points at maximum 600 mm (24 inches) spacing.
- 2) Form jamb anchors from steel minimum 1 mm (0.042 inch) thick.
- 3) Anchors set in masonry: Provide adjustable anchors designed for friction fit against frame and extended into masonry minimum 250 mm (10 inches). Provide one of following types:
 - a) Wire Loop Type: 5 mm (3/16 inch) diameter wire.
 - b) T-Shape type.
 - c) Strap and stirrup type: Corrugated or perforated sheet steel.
- 4) Anchors for stud partitions: Provide tabs for securing anchor to sides of studs. Provide one of the following:

- a) Welded type.
- b) Lock-in snap-in type.
- 5) Anchors for frames set in prepared openings:
 - a) Steel pipe spacers 6 mm (1/4 inch) inside diameter, welded to plate reinforcing at jamb stops, or hat shaped formed strap spacers 50 mm (2 inches) wide, welded to jamb near stop.
 - b) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass through frame and spacers.
 - c) Two piece frames: Subframe or rough buck drilled for 6 mm (1/4 inch) bolts.
- 6) Anchors for observation windows and other continuous frames set in stud partitions.
 - a) Weld clip anchors to sills and heads of continuous frames over 1200 mm (4 feet) long.
 - b) Space maximum 600 mm (24 inches) on centers.
- 7) Modify frame anchors to fit special frame and wall construction.
- 8) Provide special anchors where shown on drawings and where required to suit application.

2.5 FINISHES

- A. Steel and Galvanized Steel: ANSI A250.8; shop primed.
- B. Stainless Steel: NAAMM AMP 500; No. 4 polished finish.
 - 1. Blend welds to match adjacent finish.
- C. Finish exposed surfaces after fabrication.
- D. Aluminum Anodized Finish: NAAMM AMP 500.
 - 1. Clear Anodized Finish: AA-C22A41; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 2. Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 3. Clear Anodized Finish: AA-C22A31; Class II Architectural, 0.01 mm (0.4 mil) thick.
 - 4. Color Anodized Finish: AA-C22A32 or AA-C22A34; Class II Architectural, 0.01 mm (0.4 mil) thick.

2.6 ACCESSORIES

- A. Primers: ANSI A250.8.
- B. Barrier Coating: ASTM D1187/D1187M.

08-01-16

- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Clips Connecting Members and Sleeves: Match door faces.
- E. Fasteners: Galvanized steel stainless steel .
 - 1. Metal Framing: Steel drill screws.
- F. Anchors: Galvanized steel.
- G. Galvanizing Repair Paint: MPI No. 18.
- H. Insulation: Unfaced mineral wool.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Apply barrier coating to metal surfaces in contact with cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
 - 2. Install fire doors and frames according to NFPA 80.
 - 3. Install smoke control doors and frames according to NFPA 105.

3.3 FRAME INSTALLATION

- A. Apply barrier coating to concealed surfaces of frames built into masonry.
- B. Plumb, align, and brace frames until permanent anchors are set.
 - 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - 2. Use wood spreaders at bottom of frame when shipping spreader is removed.
 - 3. Where construction permits concealment, leave shipping spreaders in place after installation, otherwise remove spreaders when frames are set and anchored.
 - 4. Remove wood spreaders and braces when walls are built and jamb anchors are secured.

C. Floor Anchors:

- 1. Anchor frame jambs to floor with two expansion bolts.
 - a. Lead Lined Frames: Use 9 mm (3/8 inch) diameter bolts.

- b. Other Frames: Use 6 mm (1/4 inch) diameter bolts.
- 2. Power actuated drive pins are acceptable to secure frame anchors to concrete floors.

D. Jamb Anchors:

- 1. Masonry Walls:
 - a. Embed anchors in mortar.
 - b. Fill space between frame and masonry with grout or mortar as walls are built.
- 2. Metal Framed Walls: Secure anchors to sides of studs with two fasteners through anchor tabs.
- 3. Prepared Masonry and Concrete Openings:
 - a. Direct Securement: 6 mm (1/4 inch) diameter expansion bolts through spacers.
 - b. Subframe or Rough Buck Securement:
 - 1) 6 mm (1/4 inch) diameter expansion bolts on 600 mm (24 inch) centers.
 - 2) Power activated drive pins on 600 mm (24 inches) centers.
 - c. Secure two-piece frames to subframe or rough buck with machine screws on both faces.
- E. Frames for Sound Rated Doors: Fill frames with insulation.
- F. Lead Lined Frames:
 - 1. Extend jambs and anchor with clip angles to structure above.
 - a. Fasteners to Concrete: Minimum two, 9 mm (3/8 inch) diameter expansion bolts.
 - b. Connection to Structural Steel: Welded.
- G. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.4 DOOR INSTALLATION

- A. Install doors plumb and level.
- B. Adjust doors for smooth operation.
- C. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.5 CLEANING

A. Clean exposed door and frame surfaces. Remove contaminants and stains.

3.6 PROTECTION

- A. Protect doors and frames from construction operations.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.

- - - E N D - - -

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior flush wood doors with pre-finish, pre-fit option.
 - a. Fire rated doors.
 - b. Smoke rated doors.

1.2 RELATED REQUIREMENTS

- A. Door Hardware including hardware location (height): Section 08 71 00, DOOR HARDWARE.
- B. Installation of Doors and Hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES; Section 08 71 00, DOOR HARDWARE.
- C. Door Finish: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Window and Door Manufacturers
 Association (ANSI/WDMA):
 - 1. I.S. 1A-13 Architectural Wood Flush Doors.
 - 2. I.S. 6A-13 Interior Architectural Stile and Rails Doors.
- C. ASTM International (ASTM):
 - 1. E90-09 Laboratory Measurements of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
 - 2. 252-12 Fire Tests of Door Assemblies.
- E. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
- F. Window and Door Manufacturers Association (WDMA):
 - 1. TM 7-14 Cycle-Slam Test.
 - 2. TM 8-14 Hinge Loading Test.
 - 3. TM 10-14 Screw Holding Capacity.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.

- 2. Indicate project specific requirements not included in Manufacturer's Literature and Data submittal.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Fire rated doors showing conformance with NFPA 80 .
- D. Test Reports: Indicate each product complies comply with specifications.
 - 1. Screw Holding Capacity Test.
 - 2. Cycle-Slam Test.
 - 3. Hinge-Loading Test.
- E. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly and presently manufactures specified products.
 - 2. Manufactures specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
 - 1. Minimum 0.15 mm (6 mil) polyethylene bags or cardboard packaging to remain unbroken during delivery and storage.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
 - 1. Identify door opening corresponding to Door Schedule.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store doors according to ANSI/WDMA I.S. 1A.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
 - 2. Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.

- 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.
 - a. Comply with door manufacturer's instructions for relative humidity.

1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant interior factory finished flush / wood doors against material and manufacturing defects.
 - 1. Warranty Period: Lifetime of original installation.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer.

2.2 FLUSH WOOD DOORS

- A. General:
 - 1. ANSI/WDMA I.S. 1A, Extra Heavy Duty.
 - 2. Adhesive: Type II.
 - 3. Core: Structural composite lumber, except when mineral core is required for fire rating.
 - 4. Thickness: 44 mm (1-3/4 inches) unless otherwise shown or specified.

B. Faces:

- 1. ANSI/WDMA I.S. 1A.
- 2. One species throughout project unless scheduled or otherwise shown.
- 3. Transparent Finished Faces: Premium Grade. rotary cut, white birch.
 - a. AA Grade face veneer.
 - b. Match face veneers for doors for uniform effect of color and grain at joints.
 - c. Door Edges: Same species as door face veneer, except maple is acceptable for stile face veneer on birch doors.
 - d. In existing buildings, where doors are required to have transparent finish, use wood species, grade, and assembly of face veneers to match adjacent existing doors.
- 4. Painted Finishes: Custom Grade, mill option close grained hardwood, premium or medium density overlay.
- 5. Factory sand doors for finishing.

C. Fire-Rated Wood Doors:

- 1. Fire Resistance Rating:
 - a. B Label: 1-1/2 hours.
 - b. C Label: 3/4 hour.

2. Labels:

- a. Comply with NFPA 252, UL 10C, and labeled by qualified testing and inspection agency showing fire resistance rating.
- b. Metal labels with raised or incised markings.
- 3. Performance Criteria for Stiles of Doors Utilizing Standard Mortise Leaf Hinges:
 - a. Hinge Loading: WDMA TM 8. Average of 10 test samples for Extra Heavy Duty doors.
 - b. Direct Screw Withdrawal: WDMA TM 10 for Extra Heavy Duty doors. Average of 10 test samples using a steel, fully threaded #12 wood screw.
 - c. Cycle-Slam: 1,000,000 cycles with no loose hinge screws or other visible signs of failure when tested according to WDMA TM 7.

4. Hardware Reinforcement:

- a. Provide fire rated doors with hardware reinforcement blocking.
- b. Size of lock blocks as required to secure hardware specified.
- c. Top, Bottom and Intermediate Rail Blocks: Minimum 125 mm (5 inches) by full core width.
- d. Reinforcement blocking in compliance with labeling requirements.
- e. Mineral material similar to core is not acceptable.
- 5. Other Core Components: Manufacturer's standard as allowed by labeling requirements.
- 6. Astragal: Steel type for pairs of doors.

D. Smoke Barrier Doors:

- 1. Glazed Vision Panel Frame: Steel approved for use in labeled doors.
- 2. Astragal: Steel type for pairs of doors, including double egress doors.
- 3. F

2.3 FABRICATION

- A. Factory machine interior wood doors to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
 - 1. Factory fit fire rated doors according to NFPA 80.
- B. Rout doors for hardware using templates and location heights specified in Section 08 71 00, DOOR HARDWARE.

C. Factory fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (2 inches) of door thickness; undercut where shown .

- D. Clearances between Doors and Frames and Floors:
 - 1. Fire Rated Doors: Comply with NFPA 80.
 - a. Doors with Automatic Bottom Seal: Maximum clearance 10 mm (3/8 inch) at threshold.
 - b. Other Door Bottoms: Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.
 - 2. Door Jambs, Heads, and Meeting Stiles: Maximum 3 mm (1/8 inch).
- E. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- F. Identify each door on top edge.
 - Mark with stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, date of manufacture and quality.
 - 2. Mark door or provide separate certification including name of inspection organization.
 - 3. Identify door manufacturing standard, including glue type.
 - 4. Identify veneer and quality certification.

2.4 FINISHES

- A. Factory Transparent Finish:
 - 1. Factory finish flush wood doors.
 - a. ANSI/WDMA I.S. 1A Section F-3 Finish System Descriptions for System 5, Conversion Varnish or System 7, Catalyzed Vinyl.
 - b. Use stain when required to produce finish specified in Section 09 06 00, SCHEDULE FOR FINISHES.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify door frames are properly anchored.
 - 2. Verify door frames are plumb, square, in plane, and within tolerances for door installation.
- B. Protect existing construction and completed work from damage.
- C. Install astragal on active leaf of pair of smoke doors and one leaf of double egress smoke doors.

3.2 INSTALLATION

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - 1. Install fire rated doors according to NFPA 80.
 - 2. When manufacturer's instructions deviate from specifications, submit proposed resolution for COR consideration.

3.3 PROTECTION

- A. After installation, place shipping container over door and tape in place.
 - 1. Do not apply tape to door faces and edges.
- B. Provide protective covering over exposed hardware in addition to covering door.
- C. Maintain covering in good condition until removal is directed by COR.

- - E N D - -

SECTION 08 31 13 ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Access doors and panels installed in walls and ceilings.

1.2 RELATED REQUIREMENTS

- A. Lock Cylinders: Section 08 71 00, DOOR HARDWARE.
- B. Field Painting: Section 09 91 00, PAINTING.
- C. Finish Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Welding Society (AWS):
 - 1. D1.3/D1.3M-08 Structural Welding Code Sheet Steel.
- C. ASTM International (ASTM):
 - 1. A653/A653M-15 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Sip Process.
 - 2. A1008/A1008M-15 Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Baked Hardenable.
 - 3. A666-15 Annealed or Cold-Worked Austenitic Stainless Steel sheet, Strip, Plate, and Flat Bar.
 - 4. E119-15 Fire Test of Building Construction and Materials.
- D. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
 - 2. 251-12 Fire Tests of Door Assemblies.
- E. National Association of Architectural Metal Manufacturers (NAAMM):
 - 1. AMP 500-06 Metal Finishes Manual.
- F. UL LLC (UL):
 - 1. Listed Online Certifications Directory.
 - 2. 10B-08 Standard for Fire Tests of Door Assemblies.
 - 3. 263-11 Fire Tests of Building Construction and Materials.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.

02-01-16

- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.7 FIELD CONDITIONS

- A. Field Measurements: Verify field conditions affecting access door fabrication and installation. Show field measurements on Submittal Drawings.
 - Coordinate field measurement and fabrication schedule to avoid delay.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Steel Sheet: ASTM A1008/A1008M.
- B. Galvanized Steel: ASTM A 653/A 653M.
- C. Stainless Steel: ASTM A666; Type 302 or Type 304.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer.

2.3 ACCESS DOORS, FIRE-RATED

- A. Door Construction:
 - 1. Ceiling Access Door Construction: ASTM E119 or UL 263.
 - 2. Wall Access Doors: NFPA 252 or UL 10B.

- B. Label: Class B opening according to UL 10B or test by another nationally recognized laboratory. 1-1/2 hour fire-rated, with maximum temperature rise of 120 degrees C (216 degrees F).
- C. Door Panel: Minimum 0.9 mm (0.0359 inch) thick steel sheet, with mineral-fiber insulation core, insulated sandwich type construction.
- D. Frame: Minimum 1.5 mm (0.0598 inch) thick steel sheet, depth and configuration to suit material and construction type where installed.
 - 1. Frame Flange: Provide at units installed in concrete, masonry, or gypsum board.
 - 2. Exposed Joints in Flange: Weld and grind smooth.
 - 3. Provide expanded galvanized metal lath perimeter wings when installed in plaster, except veneer plaster.
- E. Provide automatic closing device.
- F. Hinge: Continuous stainless steel hinge with stainless steel pin.
- G. Lock: Self-latching, mortise type with provision for fitting flush a standard screw-in type lock cylinder.
 - 1. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 2. Latch release device operable from inside of door.
- H. Anchors for Fire-Rated Access Doors: Comply with requirements of applicable fire test.

2.4 ACCESS DOORS, FLUSH PANEL, NON-RATED

- A. Door Panel:
 - 1. 1.5 mm (0.06 inch) thick stainless steel sheet.
 - 2. Reinforce to maintain flat surface.
- B. Frame:
 - 1. 1.5 mm (0.06 inch) thick steel / sheet, depth and configuration to suit material and construction type where installed.
 - 2. Frame Flange: Provide at units installed in concrete, masonry, and gypsum board.
 - 3. Exposed Joints in Flange: Weld and grind smooth.
 - 4. Provide expanded galvanized metal lath perimeter wings when installed in plaster, except veneer plaster.
- C. Hinge:
 - 1. Concealed spring hinge, 175 degrees of opening.
 - 2. Removable hinge pin to allow removal of door panel from frame.
- D. Lock:
 - 1. Flush, screwdriver-operated cam lock.

2.5 ACCESS DOOR, RECESSED PANEL, NON-RATED

A. Door Panel:

- 1. 1.2 mm (0.05 inch) thick steel sheet to form a 25 mm (1 inch) deep recessed pan to accommodate installation of acoustical units and other materials where shown in walls and ceiling.
- 2. Reinforce to prevent sagging.

B. Frame:

- 1. 1.5 mm (0.06 inch) thick steel sheet of depth and configuration to suit installation in suspension system of ceiling or wall framing.
- 2. Extend sides of frame to protect edge of acoustical units when door panel is in open position.
- Provide shims, bushings, clips and other devices necessary for installation.
- C. Hinge: Continuous stainless steel hinge with stainless steel pin, or concealed hinge.

D. Lock:

- 1. Flush screwdriver-operated cam lock.
- 2. Plastic sleeve or stainless steel grommet to protect hole made in acoustical unit for screwdriver access to lock.
- 3. Tamper proof screws (spanner head locks) for access panels in Behavioral Health Areas.

2.6 FABRICATION - GENERAL

- A. Size: Minimum 600 mm (24 inches) square door unless otherwise shown or required to suit opening in suspension system of ceiling.
- B. Component Fabrication: Straight, square, flat and in same plane where required.
 - 1. Exposed Edges: Slightly rounded, without burrs, snags and sharp edges.
 - 2. Exposed Welds: Continuous, ground smooth.
 - 3. Welding: AWS D1.3/D1.3M.
- C. Locks and Non-Continuous Hinges: Provide in numbers required to maintain alignment of door panel with frame. For fire-rated doors, provide hinges and locks as required by fire test.
- D. Anchoring: Make provisions in frame for anchoring to adjacent construction. Provide anchors in size, number and location on four sides to secure access door to substrate. Provide anchors as required by fire test.

2.7 FINISHES

- A. Steel Paint Finish:
 - 1. Powder-Coat Finish: Manufacturer's standard two-coat finish system consisting of the following:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.
 - d. Color: Refer to Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Stainless Steel Exposed Surfaces: NAAMM AMP 500; No. 4 polished finish.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify access door locations and sizes provide required maintenance access to installed building services components.
- B. Protect existing construction and completed work from damage.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings .
 - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install access doors and panels permitting access to service valves, traps, dampers, cleanouts, and other mechanical, electrical and conveyor control items concealed in walls and partitions, and concealed above gypsum board and plaster ceilings.
- C. Install fire rated access door according to NFPA 80.
- D. Install fire-rated doors in fire-rated partitions and ceilings.
- E. Install flush access panels in partitions and in gypsum board and plaster ceilings.

3.3 ACCESS DOOR AND FRAME INSTALLATION

- A. Wall Installations: Install access doors in openings with sides vertical.
- B. Ceiling Installations: Install access doors parallel to ceiling suspension grid or room partitions.
- C. Frames without Flanges: Install frame flush with surrounding finish surfaces.

- D. Frames with Flanges: Overlap opening, with face uniformly spaced from finish surface.
- E. Recessed Panel Access Doors: Install with face of surrounding materials flush with door panel installed finish.
- F. Secure frames to adjacent construction with fasteners.
- G. Install type, size and quantity of anchoring device suitable for material surrounding opening to maintain alignment, and resist displacement, during normal use of access door.
- H. Field Painting Primed Access Doors: Comply with the requirements of Section 09 91 00, PAINTING.

3.4 ADJUSTMENT

- A. Adjust hardware so door panel opens freely.
- B. Adjust door when closed so door panel is centered in frame.

- - E N D - -

SECTION 08 41 13 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Aluminum-framed entrances and storefronts.

1.2 RELATED REQUIREMENTS

- A. Door Finish and Color: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Hardware: Section 08 71 00, DOOR HARDWARE.
- C. Automatic Door Actuators: Section 08 71 13, AUTOMATIC DOOR OPERATORS.
- D. Aluminum Finish and Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Architectural Manufacturers Associations (AAMA):
 - 1. 2603-15 Performance Requirements and Test Procedures for Pigmented Organic Coatings on Aluminum Extrusions and Panels.
 - 2. 2604-13 Performance Requirements and Test Procedures for High Performance Organic Coatings on Architectural Extrusions and Panels.
 - 3. 2605-13 Performance Requirements and Test Procedures for Superior Performing Organic Coatings on Aluminum Extrusions and Panels.
- C. American Welding Society (AWS):
 - 1. D1.2/D1.2M-14 Structural Welding Code Aluminum.
- D. ASTM International (ASTM):
 - 1. A240/A240M-15b Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
 - 2. B209-14 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 3. B209M-14 Aluminum and Aluminum-Alloy Sheet and Plate (Metric).
 - 4. B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 5. B221M 13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric).
 - 6. D1187/D1187M-97(2011)e1 Asphalt-Base Emulsions for Use as Protective Coatings for Metal.
 - 7. E283-04(2012) Rate of Air Leakage Through Exterior Windows,
 Curtain Walls, and Doors Under Specified Pressure Differences Across
 the Specimen.

- 8. E330/E330M-14 -Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference.
- 9. E331-00(2009) Water Penetration of Exterior Windows, Curtain Walls, and Doors by Uniform Static Air Pressure Difference.
- 10. E1886-13a Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missiles and Exposes to Cyclic Pressure Differentials.
- 11. E1996-14a Performance of Exterior Windows, Curtain Walls, Doors, and impact Protective Systems Impacted by Windborne Debris in Hurricanes.
- 12. F468-15 Nonferrous Bolts, Hex Cap Screws, and Studs for General Use.
- 13. F593-13a Stainless Steel Bolts, Hex Cap Screws, and Studs.
- E. National Association of Architectural Metal Manufacturers (NAAMM):
 - 1. AMP 500-06 Metal Finishes Manual.
- F. National Fenestration Rating Council (NFRC):
 - 1. 500-14(E1A0) Determining Fenestration Product Condensation Resistance Values.
- G. United States Veterans Administration (VA):
 - 1. PSDSDD Physical Security Design Standards Data Definitions.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show anchorage and reinforcement.
 - 3. Show interface and relationship to adjacent work, including thermal, air, and water barrier continuity.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Doors, each type.
 - 3. Entrance and Storefront construction.
 - 4. Installation instructions.
 - 5. Warranty.
- D. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
- B. Installer Qualifications: Product manufacturer.
 - 1. Regularly installs specified products.
- C. Welders and Welding Procedures Qualifications: AWS D1.2/D1.2M.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.
- D. Store products indoors in dry, facility.
- E. Protect products from damage during handling and construction operations.

1.7 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant painted finish against material and manufacturing defects.
 - 1. Warranty Period: 20 years.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- Minor deviations to details shown on drawings to accommodate manufacturer's standard products may be accepted by Contracting Officer's Representative when deviations do not affect design concept and specified performance.
- B. Design aluminum framed entrances and storefronts complying with specified performance:
 - 1. W
 - 2. Condensation Resistance: NFRC 500.
 - a. Fixed Framing: 45 CRF, minimum.
 - 3. Water Resistance: ASTM E331; No uncontrolled penetration at380 Pa (8 psf), minimum, pressure differential.

- 4. Fixed Framing Air Infiltration Resistance: ASTM E283; 0.30 L/s/sq. m (0.06 cfm/sf), maximum at 300 Pa (6.24 psf), minimum, pressure differential.
- 5. Entrance Doors Air Infiltration Resistance: ASTM E283; maximum allowable at 75 Pa (1.57 psf), minimum, pressure differential.
 - a. Single Doors: 2.5 L/s/sq. m (0.5 cfm/sf).
 - b. Paired Doors: 6 L/s/sq. m (1.2 cfm/sf).

2.2 MATERIALS

A. Aluminum:

- 1. Sheet Metal: ASTM B209M (ASTM B209), minimum 1.6 mm (0.063 inch) thick.
- 2. Extrusions: ASTM B221M (ASTM B221).
 - a. Framing: Minimum 3 mm (0.125 inch) wall thickness.
 - b. Glazing Beads, Moldings, and Trim: Minimum 1.25 mm (0.050 inch) thick.
- 3. Alloy 6063 temper T5 for doors, door frames, fixed glass sidelights and transoms.
- 4. Alloy 6061 temper T6 for guide tracks for sliding doors and other extruded structural members.
- 5. Color Anodized Aluminum: Provide aluminum alloy required to produce specified color.
- B. Stainless Steel: ASTM A240/A240M; Type 302 or Type 304.

2.3 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide aluminum framed entrances and storefronts from one manufacturer.
- C. Provide aluminum entrances, systems from same manufacturer.

2.4 FRAMES

- A. Framing Members: Extruded aluminum.
- B. Stops: Provide integral fixed stops and glass rebates and snap-on removable stops.
- C. Provide concealed screws, bolts and other fasteners.
- D. Secure cover boxes to frames in back of lock strike cutouts.

2.5 STILE AND RAIL DOORS

- A. Stiles and Rails: Extruded aluminum.
 - 1. Thickness: 45 mm (1-3/4 inch).
 - 2. Stiles and Head Rails: 90 mm (3-1/2 inches) wide.

- 3. Bottom Rails: 250 mm (10 inches) wide.
- B. Single-Acting Doors:
 - 1. Bevel: 3 mm (1/8 inch) at lock, hinge, and meeting stile edges.
 - 2. Clearances: 2 mm (1/16 inch) at hinge stiles, 3 mm (1/8 inch) at lock stiles and top rails, and 5 mm (3/16 inch) at floors and thresholds.
- C. Glass Rebates: Integral with stiles and rails.
- D. Glazing Beads: Extruded aluminum, 1.3 mm (0.050 inch) thick. Integral with stiles and rails or applied type, snap-fit secured.
- E. Stile and Rail Joints: Welded or interlocking dovetail joints between stiles and rails.
 - Clamp door together through top and bottom rails with 9 mm (3/8 inch) primed steel tie rod extending into stiles, and having self-locking nut and washer at both ends.
 - 2. Reinforce stiles and rails to prevent door distortion when tie rods are tightened.
 - 3. Provide compensating spring-type washer under each nut for stress relief.
 - 4. Construct joints to remain rigid and tight when door is operated.
- F. Weather-stripping: Removable, woven pile type (silicone-treated) weather-stripping attached to aluminum or vinyl holder.
 - 1. Make slots for applying weather-stripping integral with doors and door frame stops.
 - Apply continuous weather-stripping to heads, jambs, bottom, and meeting stiles of doors and frames so doors swing freely and close positively.

2.6 FLUSH PANEL DOORS

- A. Frames: Aluminum extrusions.
- B. Doors: 45 mm (1-3/4 inches) thick.
 - 1. Door Edges and Internal Reinforcing: Extruded aluminum tubes, single piece full height and width, welded joints.
 - 2. Core: Manufacturer's standard non-combustible insulation.
 - 3. Faces: Aluminum sheet metal with internal impact reinforcement, laminated to the door edges and core.

2.7 COLUMN COVERS AND TRIM

A. Column Covers and Trim: Sheet aluminum fabrications shown from sheet aluminum of longest available lengths.

- B. Provide concealed fasteners.
- C. Provide aluminum stiffeners and supporting members shown on drawings and as required to maintain component integrity and shape.

2.8 FABRICATION

- A. Form metal parts and fit and assemble joints, except joints designed to accommodate movement. Seal joints to resist air infiltration and water penetration.
- B. Welding:
 - 1. Make welds without distorting and discoloring exposed surfaces.
 - 2. Clean and dress welds. Remove welding flux and weld spatter.
- C. Prepare and reinforce doors and frames for hardware and accessories.
 - 1. Coordinate preparation with specified hardware. See Section 08 71 00, DOOR HARDWARE.
 - 2. Fabricate reinforcement from stainless steel plates.
 - a. Hinge and pivot reinforcing: Minimum 4.5 mm (0.179 inch) thick.
 - b. Lock Face, Flush Bolts, Concealed Holders, Concealed and Surface Mounted Closers Reinforcing: Minimum 2.6 mm (0.104 inch) thick.
 - c. Other Surface Mounted Hardware Reinforcing: Minimum 1.5 mm (0.059 inch) thick.
 - 3. Where concealed hardware is specified, provide space, cutouts, and reinforcement for installation and secure fastening.
- D. Factory assemble doors.

2.9 FINISHES

- A. Aluminum Anodized Finish: NAAMM AMP 500.
 - 1. Clear Anodized Finish: AA-C22A41; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 2. Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 3. Clear Anodized Finish: AA-C22A31; Class II Architectural, 0.01 mm (0.4 mil) thick.
 - 4. Color Anodized Finish: AA-C22A32 or AA-C22A34; Class II Architectural, 0.01 mm (0.4 mil) thick.
- B. Aluminum Paint finish:
 - 1. Baked Enamel or Powder Coat: AAMA 2603; polyester resin, minimum 0.4 mm (1.5 mil) film thickness.

2.10 ACCESSORIES

- A. Dielectric Tape: Plastic, non-absorptive, with pressure sensitive adhesive; 0.18 to 0.25 mm (7 to 10 mils) thick.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.2/D1.2M, type to suit application.
- D. Fasteners:
 - 1. Aluminum: ASTM F468, Alloy 2024.
 - 2. Stainless Steel: ASTM F593, Alloy Groups 1, 2 and 3.
- E. Anchors: Aluminum or stainless steel; type to suit application.
- F. Galvanizing Repair Paint: MPI No. 18.
- G. Touch-Up Paint: Match shop finish.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Coordinate floor closer installation recessed into concrete slabs.
 - 2. Coordinate anchor installation built into masonry and concrete.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
- D. Apply dielectric tape or barrier coating to aluminum surfaces in contact with dissimilar metals and cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions /.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install aluminum framed entrances and storefronts plumb and true, in alignment and to lines shown on drawings.
- C. Anchor frames to adjoining construction at heads, jambs and sills.
- D. Provide concealed aluminum clips to connect adjoining frame sections.
- E. Install door hardware and hang doors. See Section 08 71 00, DOOR ${\tt HARDWARE}$.
- F. Install door operators. See Section 08 71 13, AUTOMATIC DOOR OPERATORS.
- G. Adjust doors and hardware uniform clearances and proper operation.
- H. Touch up damaged factory finishes.

- 1. Repair galvanized surfaces with galvanized repair paint.
- 2. Repair painted surfaces with touch up primer.

I. Tolerances:

- 1. Variation from Plumb, Level, Warp, and Bow: Maximum 3 mm in 3 m (1/8 inch in 10 feet).
- 2. Variation from Plane: Maximum3 mm in 3.65 m (1/8 inch in 12 feet); 6 mm (1/4 inch) over total length.
- 3. Variation from Alignment: Maximum 1.5 mm (1/16 inch) in-line offset and maximum3 mm (1/8 inch) corner offset.
- 4. Variation from Square: Maximum 3 mm (1/8 inch) diagonal measurement differential.

3.3 PROTECTION, CLEANING AND REPAIRING

- A. Clean exposed aluminum and glass surfaces. Remove contaminants and stains.
- B. Protect aluminum-framed entrances and storefronts from construction operations.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

- - - E N D - - -

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- B. Application of Hardware: Section 08 14 00, WOOD DOORS Section 08 11 13, HOLLOW METAL DOORS AND FRAMES
- C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Painting: Section 09 91 00, PAINTING.
- E. F. Electrical: Division 26, ELECTRICAL.
- G. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.
 - 4. Exit devices.
 - 5. Floor closers.

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

- C. Samples and Manufacturers' Literature:
 - 1. Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers

 Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.
 - 2. Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.
- D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing

657-17-105JC Restore Utility Systems, Building 6A

shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to Resident Engineer for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in Resident Engineer's office until all other similar items have been installed in project, at which time the Resident Engineer will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Project Engineer and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.

B. Keying: Lock cylinders shall be Corbin Russwin Large Format Interchangeable Cylinders (LFIC) 62A1 6 Pin Keyway. Provide either uncombinated or blank keyed core to allow opening and closing during construction and prior to the installation of final cores. Cylinders are not to be keyed/pinned by any entity other than the facility locksmith.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. American Society for Testing and Materials (ASTM):

C. American National Standards Institute/Builders Hardware Manufacturers
Association (ANSI/BHMA):

A156.1-06.....Butts and Hinges

A156.2-03......Bored and Pre-assembled Locks and Latches

A156.3-08.....Exit Devices, Coordinators, and Auto Flush

Bolts

A156.4-08......Door Controls (Closers)

A156.5-14.....Cylinders and Input Devices for Locks.

A156.6-05......Architectural Door Trim

A156.8-05......Door Controls-Overhead Stops and Holders

A156.12-05Interconnected Locks and Latches

A156.13-05............Mortise Locks and Latches Series 1000

A156.14-07Sliding and Folding Door Hardware

A156.15-06......Release Devices-Closer Holder, Electromagnetic

and Electromechanical

A156.16-08......Auxiliary Hardware

A156.17-04Self-Closing Hinges and Pivots

A156.18-06......Materials and Finishes

A156.20-06Strap and Tee Hinges, and Hasps

A156.21-09......Thresholds

A156.22-05.....Door Gasketing and Edge Seal Systems

657-17-104JC Restore Utility Systems, Building 6							
657-17-105JC Restore Utility Systems, Building 6A 01-01-1	. 6						
A156.23-04Electromagnetic Locks							
A156.24-03Delayed Egress Locking Systems							
A156.25-07Electrified Locking Devices							
A156.26-06Continuous Hinges							
A156.28-07Master Keying Systems							
A156.29-07Exit Locks and Alarms							
A156.30-03High Security Cylinders							
A156.31-07Electric Strikes and Frame Mounted Actuators							
A156.36-10Auxiliary Locks							
A250.8-03Standard Steel Doors and Frames							
D. National Fire Protection Association (NFPA):							
80-10Fire Doors and Other Opening Protectives							
101-09Life Safety Code							
E. Underwriters Laboratories, Inc. (UL):							
Building Materials Directory (2008)							

PART 2 - PRODUCTS

.

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - 1. Exterior Doors: Type A2112/A5112 for doors 900 mm (3 feet) wide or less and Type A2111/A5111 for doors over 900 mm (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins. Hinges for exterior fire-rated doors shall be of stainless steel material.
 - 2. Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc. shall be of stainless steel material.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - 2. Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.

- 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm \times 114 mm (4-1/2 inches \times 4-1/2 inches) hinges.
- 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: $127 \text{ mm} \times 114 \text{ mm}$ (5 inches $\times 4-1/2$ inches).
- 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
- 7. Provide heavy-weight hinges where specified.
 - 8. At doors weighing 330 kg (150 lbs.) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

- A. ANSI/BHMA A156.26, Grade 1-600.
 - 1. Listed under Category N in BHMA's "Certified Product Directory."
- B. General: Minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete
- C. Continuous, Barrel-Type Hinges: Hinge with knuckles formed around a Teflon-coated 6.35mm (0.25-inch) minimum diameter pin that extends entire length of hinge.
 - 1. Base Metal for Exterior Hinges: Stainless steel.
 - 2. Base Metal for Interior Hinges: Stainless steel.
 - 3. Base Metal for Hinges for Fire-Rated Assemblies: Stainless steel.
 - 4. Provide with non-removable pin (hospital tip option) at lockable outswing doors.
 - 5. Where required to clear adjacent casing, trim, and wall conditions and allow full door swing, provide wide throw hinges of minimum width required.
 - 6. Provide with manufacturer's cut-outs for separate mortised power transfers and/or mortised automatic door bottoms where they occur.
 - 7. Where thru-wire power transfers are integral to the hinge, provide hinge with easily removable portion to allow easy access to wiring connections.
 - 8. Where models are specified that provide an integral wrap-around edge guard for the hinge edge of the door, provide manufacturer's

adjustable threaded stud and machine screw mechanism to allow the door to be adjusted within the wrap-around edge guard.

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer.

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
 - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
 - 7. Closers shall have full size metal cover; plastic covers will not be accepted.
 - 8. Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
 - 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
 - 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
 - 11. Provide parallel arm closers with heavy duty rigid arm.

- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 ½" (38mm) minimum piston diameter.

2.6 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Provide floor stops (Type L02141 or L02161 in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.
- F. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement.
- G. Omit stops where floor mounted door holders are required and where automatic operated doors occur.
- H. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- I. Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- J. Provide overhead surface applied stop Type C02541, ANSI A156.8 on patient toilet doors in bedrooms where toilet door could come in contact with the bedroom door.

- K. Provide door stops on doors where combination closer magnetic holders are specified, except where wall stops cannot be used or where floor stops cannot be installed within 4-inches of the wall.
- L. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.9 LOCKS AND LATCHES

- A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall be Corbin Russwin Large Format Interchangeable Cylinders (LFIC) 62A1 6 Pin Keyway. Provide either un-combinated or blank keyed core to allow opening and closing during construction and prior to the installation of final cores. Cylinders are not to be keyed/pinned by any entity other than the facility locksmith
- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets, except on designated doors in Psychiatric (Mental Health) areas, shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching Schlage ND Tubular. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.
 - 2. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At

outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Provide lever design to match design selected by Architect or to match existing lever design. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool.)

- 3. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.36.
- 4. Privacy locks in non-mental-health patient rooms shall have an inside thumbturn for privacy and an outside thumbturn for emergency entrance. Single occupancy patient privacy doors shall typically swing out; where such doors cannot swing out, provide wicket doors with rescue hardware (keyed deadlock and piano hinge).

2.13 KEYS

A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows:

Locks/Keys	Quantity			
Cylinder locks	2 keys each			
Cylinder lock change key blanks	100 each different key way			
Master-keyed sets	6 keys each			
Grand Master sets	6 keys each			
Great Grand Master set	5 keys			
Control key	2 keys			

2.15 ARMOR PLATES, KICK PLATES, MOP PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates and door edging as specified below:
 - 1. Kick plates, mop plates and armor plates of metal, Type J100 series.
 - 2. Provide kick plates and mop plates where specified. Kick plates shall be 254 mm (10 inches) or 305 mm (12 inches) high. Mop plates shall be 152 mm (6 inches) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick and mop plates beveled on all 4 edges (B4E). On push side of doors where jamb stop

extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick and mop plates to within 6 mm (1/4 inch) of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.

- 3. Kick plates and/or mop plates are not required on following door sides:
 - a. Armor plate side of doors;
 - b. Exterior side of exterior doors;
 - c. Closet side of closet doors;
 - d. Both sides of aluminum entrance doors.
- 4. Armor plates for doors are listed under Article "Hardware Sets".

 Armor plates shall be thickness as noted in the hardware set, 875 mm (35 inches) high and 38 mm (1-1/2 inches) less than width of doors, except on pairs of metal doors. Provide armor plates beveled on all 4 edges (B4E). Plates on pairs of metal doors shall be 25 mm (1 inch) less than width of each door. Where top of intermediate rail of door is less than 875 mm (35 inches) from door bottom, extend armor plates to within 13 mm (1/2 inch) of top of intermediate rail. On doors equipped with panic devices, extend armor plates to within 13 mm (1/2 inch) of panic bolt push bar.
- 5. Where louver or grille occurs in lower portion of doors, substitute stretcher plate and kick plate in place of armor plate. Size of stretcher plate and kick plate shall be 254 mm (10 inches) high.
- 6. Provide stainless steel edge guards where so specified at wood doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow. Provide edge guards of bevel and thickness to match wood door. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide full-height edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front. Forward edge guards to wood door manufacturer for factory installation on doors.

2.16 EXIT DEVICES

A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with

657-17-105JC Restore Utility Systems, Building 6A

finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging.

- B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels. Do not provide surface vertical rod panics at exterior doors.
- C. Concealed vertical rod panics shall be provided less bottom rod at interior doors, unless lockable or otherwise specified; provide fire pins as required by exit device and door fire labels. Where concealed vertical rod panics are specified at exterior doors, provide with both top and bottom rods.
- D. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature.
- E. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature.
- F. Exit devices for fire doors shall comply with Underwriters

 Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof
 of compliance.

2.17 FLUSH BOLTS (LEVER EXTENSION)

- A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
- B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
- C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
- D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.
- E. Provide extension rods for top bolt where door height exceeds 2184 mm (7 feet 2 inches).

2.18 FLUSH BOLTS (AUTOMATIC)

A. Conform to ANSI A156.3. Dimension of flush bolts shall conform to ANSI A115. Bolts shall conform to Underwriters Laboratories, Inc., requirements for fire door hardware. Flush bolts shall automatically latch and unlatch. Furnish dustproof strikes conforming to ANSI A156.16

- 657-17-105JC Restore Utility Systems, Building 6A
 - for bottom flushbolt. Face plates for dustproof strike shall be rectangular and not less than 38 mm by 90 mm (1-1/2 by 3-1/2 inches).
 - B. At interior doors, provide auto flush bolts less bottom bolt, unless otherwise specified, except at wood pairs with fire-rating greater than 20 minutes; provide fire pins as required by auto flush bolt and door fire labels.

2.19 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm CTC (6 inches CTC) length by 19 mm (3/4 inches) diameter minimum with plate Type J302, 90 mm by 381 mm (3-1/2 inches by 15 inches), unless otherwise specified. Provide pull with projection of 57.2 mm (2 1/4 inches) minimum and a clearance of 38.1 mm (1 1/2 inches) minimum. Cut plates of door pull plate for cylinders, or turn pieces where required.

2.20 PUSH PLATES

A. Conform to ANSI A156.6. Metal, Type J302, 203 mm (8 inches) wide by 406.4 mm (16 inches) high. Provide metal Type J302 plates 102 mm (4 inches) wide by 406.4 mm (16 inches) high where push plates are specified for doors with stiles less than 203 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required.

2.21 COMBINATION PUSH AND PULL PLATES

A. Conform to ANSI 156.6. Type J303, stainless steel 3 mm (1/8 inch) thick, 80 mm (3-1/3 inches) wide by 800 mm (16 inches) high), top and bottom edges shall be rounded. Secure plates to wood doors with 38 mm (1-1/2 inch) long No. 12 wood screws. Cut plates for turn pieces, and cylinders where required. Pull shall be mounted down.

2.22 COORDINATORS

A. Conform to ANSI A156.16. Coordinators, when specified for fire doors, shall comply with Underwriters Laboratories, Inc., requirements for fire door hardware. Coordinator may be omitted on exterior pairs of doors where either door will close independently regardless of the position of the other door. Coordinator may be omitted on interior pairs of non-labeled open where open back strike is used. Open back strike shall not be used on labeled doors. Paint coordinators to match door frames, unless coordinators are plated. Provide bar type coordinators, except where gravity coordinators are required at acoustic pairs. For bar type coordinators, provide filler bars for full width and, as required, brackets for push-side surface mounted closers, overhead stops, and vertical rod panic strikes.

2.23 THRESHOLDS

- A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be installed in a bed of sealant with 4-20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.
- B. For thresholds at elevators entrances see other sections of specifications.
- C. At exterior doors and any interior doors exposed to moisture, provide threshold with non-slip abrasive finish.
- D. Provide with miter returns where threshold extends more than 12 mm (0.5 inch) beyond face of frame.

2.24 AUTOMATIC DOOR BOTTOM SEAL AND RUBBER GASKET FOR LIGHT PROOF OR SOUND CONTROL DOORS

A. Conform to ANSI A156.22. Provide mortise or under-door type, except where not practical. For mortise automatic door bottoms, provide type specific for door construction (wood or metal).

2.25 WEATHERSTRIPS (FOR EXTERIOR DOORS)

A. Conform to ANSI A156.22. Air leakage shall not to exceed 0.50 CFM per foot of crack length $(0.000774 \, \text{m}^3/\text{s/m})$.

2.30 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626 or 630.
 - 2. Hinges --interior doors: 652 or 630.
 - 3. Pivots: Match door trim.
 - 4. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 5. Thresholds: Mill finish aluminum.
 - 6. Cover plates for floor hinges and pivots: 630.
 - 7. Other primed steel hardware: 600.

D. HARDWARE FINISHES FOR EXISTING BUILDINGS: U.S. STANDARD FINISHES SHALL MATCH FINISHES OF HARDWARE IN (SIMILAR) EXISTING SPACES. 2.31 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal	
652	Steel	
626	Brass or bronze	
630	Stainless steel	

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA COR for approval.
 - B. Hardware Heights from Finished Floor:
 - 1. Exit devices centerline of strike (where applicable) 1024 mm (40-5/16 inches).
 - 2. Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
 - 3. Deadlocks centerline of strike 1219 mm (48 inches).
 - 4. Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket.
 - 5. Centerline of door pulls to be 1016 mm (40 inches).
 - 6. Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.
 - 7. Push-pull latch to be 1024 mm (40-5/16 inches) to centerline of strike.
 - 8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors except security bedroom, bathroom and anteroom doors which shall have closer installed parallel arm on exterior side of doors. At exterior doors, closers shall be mounted on interior side. Where closers are mounted on

657-17-105JC Restore Utility Systems, Building 6A

doors they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws.

B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by Resident Engineer. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cutouts and screw-hole locations on doors and frames.
- E. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.

657-17-105JC Restore Utility Systems, Building 6A

G. After locks have been installed; show in presence of Resident Engineer that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also a copy of the invoice shall be sent to the Resident Engineer for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA Resident/Project Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

ELECTRIC HARDWARE ABBREVIATIONS LEGEND:

ADO = Automatic Door Operator

EMCH = Electro-Mechanical Closer-Holder

MHO = Magnetic Hold-Open (wall- or floor-mounted)

657-17-104JC Restore Utility Systems, Building 6
657-17-105JC Restore Utility Systems, Building 6A
PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.
NO CLOSER REQUIRED DUE TO EXEMPTION FOR PATIENT ROOM DOORS.

01-01-16

- - - E N D - - -

SECTION 08 71 13 AUTOMATIC DOOR OPERATORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Automatic operators for swinging.

1.2 RELATED REQUIREMENTS

- A. Aluminum Frames Entrance Work: Section 08 41 13, ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS.
- B. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- C. Access Control Devices: Division 28, ELECTRONIC SAFETY AND SECURITY.
- D. Electric General Wiring, Connections and Equipment Requirements: Division 26, ELECTRICAL.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. B209-14 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 2. A1008/A1008M-15 Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Baked Hardenable.
- C. Builders Hardware Manufacturers Association (BHMA):
 - 1. BHMA A156.10-11 Power Operated Pedestrian Doors.
- D. National Fire Protection Association (NFPA):
 - 1. 101-15 Life Safety Code.
- E. Underwriters Laboratories (UL):
 - 325-13 Standard for Doors, Drapery, Gate, Louver, and Window Operators and Systems.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
 - 3. Warranty.
 - 4.

- D. Test reports: Certify each product complies with specifications.
- E. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.
 - 2. Start-up, maintenance, troubleshooting, emergency, and shut-down instructions for each operational product.

1.5 QUALITY ASSURANCE

- A. Manufacturer's Qualifications:
 - 1. Regularly manufactures specified products.

1.6 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant automatic door operators against material and manufacturing defects.
 - 1. Warranty Period: Two years.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Comply with requirements of BHMA A156.10. Unless otherwise indicated on Drawings, provide operators that move doors from fully closed to fully opened position in three seconds maximum time interval, when speed adjustment is at maximum setting.
- B. Equipment: Conforming to UL 325. Provide key operated power disconnect wall switch for each door installation.
- C. Electrical Wiring, Connections and Equipment: Motors, starters, controls, associated devices, and interconnecting wiring required for installation. Equipment and wiring as specified in Division 26, ELECTRICAL.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide door operators from one manufacturer.
- C. Provide one type of operator throughout project.

2.3 SWING DOOR OPERATORS

- A. General:
 - 1. Type: Institutional type.
 - 2. Size: As recommended by manufacturer for door weight and sizes.
- B. Function:

- 1. Provide operators, enclosed in housing, permitting opening of door by energizing motor and stopped by electrically reducing Voltage and stalling motor against mechanical stop.
- 2. Door to close by means of spring energy, and closing force controlled by gear system and motor being used as dynamic brake without power, or controlled by hydraulic closer in electro-hydraulic operators.
- 3. Opening and Closing Speeds: Field adjustable.
- 4. Operators with checking mechanism providing cushioning action at last part of door travel, in both opening and closing cycle.
- 5. Operators capable of recycling doors instantaneously to full open position from any point in closing cycle when control switch is activated.
- 6. When automatic power is interrupted or shut-off, permit doors to easily open manually without damage to automatic operator system.
- C. Connect hardware with drive arm attached to door with pin linkage rotating in a self-lubricating bearing. Prevent doors from pivoting on shaft of operator.

D. Operator Housing:

1. ASTM B209, Type 6063-T5 aluminum alloy, 112 mm (4-1/2 inches) wide by 140 mm (5.5 inches) high by 3.2 mm (0.125 inch) thick, aluminum extrusions with enclosed end caps for application to 100 mm (4 inches) and larger frame systems.

E. Power Operator:

1. Completely assembled and sealed unit including gear drive transmission, mechanical spring and bearings, located in aluminum case and filled with special lubricant for extreme temperature conditions. Rubber mounted units with provisions for easy maintenance and replacement, without removing door from pivots or frame.

F. Motors:

1. Provide with interlock to prevent operation when doors are electrically locked from opening.

G. Electrical Control:

- Self-contained electrical control unit, including necessary transformers, relays, rectifiers, and other electronic components for proper operation and switching of power operator.
- 2. Connecting Harnesses: Interlocking plugs.

H. Accessories:

1. Metal mounting supports, brackets and other accessories necessary for installation of operators at head of door frames.

I. Microprocessor Controls:

- 1. Multi-function microprocessor control providing adjustable hold open time (1-30 seconds) with fully adjustable opening speed, LED indications for sensor input signals and operator status and power assist close options. Control capable of receiving activation signals from any device with normally open dry contact output.
- 2. Hold doors held open by low Voltage applied to the continuous duty motor.

3. Controls:

- a. Adjustable safety circuit that monitors door operation and stops opening direction of door if obstruction is sensed.
- b. Recycle feature that reopens door if obstruction is sensed at any point during closing cycle.
- c. Standard three position key switch with functions for ON, OFF, and HOLD OPEN, mounted on operator enclosure, door frame, or wall, as indicated on drawings.

2.4 POWER UNITS

- A. Self-contained, electric operated and independent of door operator.
 - 1. Capacity and size of power circuits according to automatic door operator manufacturer's specifications and Division 26 ELECTRICAL.

2.5 DOOR CONTROLS

- A. Control Devices: BHMA A156.10; control opening and closing functions.
- B. Open doors when control device is actuated; hold doors in open positions; then, close doors after an adjustable time period, unless safety device or reactivated control interrupts operation.

C. Manual Controls:

1. Push Plate Wall Switch: Recessed type, stainless steel push plate minimum 100 mm by 100 mm (4 inch by 4 inch), with 13 mm (1/2 inch) high letters "To Operate Door-Push" engraved on face of plate.

D. Motion Detector:

- 1. Mounting: Surface or concealed.
- 2. Detection Area: 1500 mm (60 inches) deep and 1500 mm (60 inches) across, plus or minus 150 mm (6 inches).
- 3. Response Time: 25 milliseconds, maximum.

- 657-17-105JC Restore Utility Systems, Building 6A
 - 4. Control Power: 24 Volt DC.
 - 5. Design units to be unaffected by cleaning material, solvents, dust, dirt and outdoor weather conditions.

2.6 SAFETY DEVICES

Α.

- B. Swing Doors: Install presence sensor on pull side of door to detect any person standing in door swing path and prevent door from opening.
 - 1. Time delay Switches: Adjustable between 3 to 60 seconds and control closing cycle of doors.
- C. Install decal signs with "In" or "Do Not Enter" on both faces of each door where shown.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - Verify door opening is correctly sized and within acceptable tolerances.
- B. Protect existing construction and completed work from damage.

3.2 INSTALLATION

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Coordinate door installation with other related work.
- C. Install manual controls and power disconnect switches recessed or semi-flush mounted in partitions.
- D. Secure operator components to adjacent construction with suitable fastenings.
- E. Conceal conduits, piping, and electric equipment, in finish work.
- F. Install power units in locations shown.
 - Where units are mounted on walls, provide metal supports or shelves for units.
 - 2. Ensure equipment, including time delay switches, are accessible for maintenance and adjustment.
- G. Ensure operators are adjusted and function properly for type of expected traffic.

- H. Synchronize each leaf of pair doors to open and close simultaneously.
 Permit each door leaf to be opened manually, independent of other door leaf.
- I. Install controls at positions shown and ensuring convenience for expected traffic.
- J. Push Plate Wall Switches Mounting Height: 1000 mm (40 inches) maximum, unless otherwise approved by Contracting Officer's Representative.

- - E N D - -

SECTION 09 05 16 SUBSURFACE PREPARATION FOR FLOOR FINISHES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies subsurface preparation requirements for areas to receive the installation of applied and resinous flooring. This section includes removal of existing floor coverings, and floor leveling and repair as required.

1.2 RELATED WORK

B. Section 09 65 19, RESILIENT TILE FLOORING, Section 09 67 23.20, RESINOUS EPOXY BASE WITH VINYL CHIP BROADCAST (RES-2), Section 09 67 23.30, RESINOUS MORTAR (Epoxy Resin Composition) FLOORING

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and TEST DATA.
- B. Written approval confirming product compatibility with subfloor material manufacturer and the flooring manufacturer
- C. Product Data:
 - 1. Moisture remediation system
 - 2. Underlayment Primer
 - 3. Cementitious Self-Leveling Underlayment

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

D638-10 (2010)	Test Method for Tensile Properties of Plastics
D4259 -88 (2012)	Standard Practice for Abrading Concrete to alter the surface profile of the concrete and to remove foreign materials and weak surface laitance.
C109/C109M	Standard Test Method for Compressive Strength of
-12 (2012)	Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) Modified Air Cure Only

D7234 -12 (2012)	Standard Test Method for Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers.
E96/E96M - 12 (2012)	Standard Test Methods for Water Vapor Transmission of Materials
F710 -11 (2011)	Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring
F1869-11 (2011)	Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride
F2170-11 (2011)	Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes
C348-08 (2008)	Standard Test Method for Flexural Strength of Hydraulic- Cement Mortars
C191-13 (2013)	Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle

PART 2 - PRODUCTS

2.1 MOISTURE REMEDIATION COATING

- A. System Descriptions:
 - High-solids, epoxy system designed to suppress excess moisture in concrete prior to an overlayment. For use under resinous products, VCT, tile and carpet where issues caused by moisture vapor are a concern.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up.
- C. System Components: Verify specific requirements as systems vary by manufacturer. Verify build up layers and installation method. Verify compatibility with substrate. Use manufacturer's standard components, compatible with each other and as follows:
 - 1. Liquid applied coating:
 - a. Resin: epoxy.
 - b. Formulation Description: Multiple component high solids.
 - c. Application: Per manufacturer's written installation requirements.
 - d. Thickness: minimum 10 mils
- D. Material Vapor Permeance: Application shall achieve a permeance rating of less than 0.1 perm in accordance with ASTM E96/E96M.
- E. Maximum RH requirement: 100% testing in accordance with ASTM F2170.

2.2

Property	Test	Value
Tensile Strength	ASTM D638	4,400 psi
Volatile Organic Compound Limits (V.O.C.)	SCAMD Rule 1113	25 grams per liter
Permeance	ASTM E96	0.1 perms
Tensile Modulus	ASTM D638	1.9X10 ⁵ psi
Percent Elongation	ASTM D638	12%
Cure Rate	Per manufacture's Data	4 hours Tack free with 24hr recoat window
Bond Strength	ASTM D7234	100% bond to concrete failure

CEMENTITIOUS SELF-LEVELING UNDERLAYMENT

- A. System Descriptions:
 - High performance self-leveling underlayment resurfacer. Single component, self-leveling, cementitious material designed for easy application as an underlayment for all types of flooring materials. It is used for substrate repair and leveling.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up. Gypsum-based products are unacceptable.
- C. System Characteristics:
 - 1. Wearing Surface: smooth
 - 2. Thickness: Ranging from feathered edge to 1", per application. Applications greater than 1" require additional 3/8" aggregate to mix or as recommended by manufacturer.
- D. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- E. Compressive Strength: Minimum 4100 psi in 28 days in accordance with ASTM C109/C109M.
- F. Flexural Strength: Minimum 1000 psi in 28 days in accordance with ASTM ${
 m C348}$
- G. Dry Time: Underlayment shall receive the application of moisture insensitive tile in 6 hours, floor coverings in 16 hours, and resinous flooring in 3-7 days.
- H. Primer: compatible and as recommended by manufacturer for use over intended substrate

I. System Components: Manufacturer's standard components that are compatible with each other and as follows:

1. Primer:

- a. Resin: copolymer
- b. Formulation Description: single component ready to use.
- c. Application Method: Squeegee and medium nap roller. All puddles shall be removed, and material shall be allowed to dry, 1-2 hours at 70F/21C.
- d. Number of Coats: (1) one.

2. Grout Resurfacing Base:

- a. Formulation Description: Single component, cementitious selfleveling high-early and high-ultimate strength grout.
- b. Application Method: colloidal mix pump, cam rake, spike roll.
 - 1) Thickness of Coats: Per architectural scope, 1" lifts.
 - 2) Number of Coats: More than one if needed.
- c. Aggregates: for applications greater than linch, require additional 3/8" aggregate to mix.

Property	Test	Value
Compressive Strength	ASTM C109/C109M	2,200 psi @ 24 hrs 3,000 psi @ 7 days
Initial set time Final Set time	ASTM C191	30-45 min. 1 to 1.5 hours
Bond Strength	ASTM D7234	100% bond to concrete failure

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before testing and not less than three days after testing.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation.
- C. Do not install materials when the temperatures of the substrate or materials are not within 60-85 degrees F/ 16-30 degrees C.

3.2 SURFACE PREPARATION

- A. Existing concrete slabs with existing floor coverings:
 - Conduct visual observation of existing floor covering for adhesion, water damage, alkaline deposits, and other defects.
 - 2. Remove existing floor covering and adhesives. Comply with local, state and federal regulations and the RFCI Recommended Work

657-17-104JC Restore Utility Systems, Building 6

657-17-105JC Restore Utility Systems, Building 6A

02-01-15

Practices for Removal of Resilient Floor Coverings, as applicable to the floor covering being removed.

- B. Concrete shall meet the requirements of ASTM F710 and be sound, solid, clean, and free of all oil, grease, dirt, curing compounds, and any substance that might act as a bond-breaker before application. As required prepare slab by mechanical methods. No chemicals or solvents shall be used.
- C. General: Prepare and clean substrates according to flooring manufacturer's written instructions for substrate indicated.
- D. Prepare concrete substrates per ASTM D4259 as follows:
 - 1. Dry abrasive blasting.
 - 2. Wet abrasive blasting.
 - 3. Vacuum-assisted abrasive blasting.
 - 4. Centrifugal-shot abrasive blasting.
 - 5. Comply with manufacturer's written instructions.
- E. Repair damaged and deteriorated concrete according to flooring manufacturer's written recommendations.
- F. Verify that concrete substrates are dry.
- G. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisture-vapor-emission rate of per flooring manufactures formal and project specific written recommendation.
- H. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity per flooring manufacture's formal and project specific written recommendation.

I.

- J. Tolerances: Subsurface shall meet the flatness and levelness tolerance specified on drawings or recommended by the floor finish manufacturer. Tolerance shall also not to exceed 1/4" deviation in 10'. As required, install underlayment to achieve required tolerance.
- K. Other Subsurface: For all other subsurface conditions, such as wood or metal, contact the floor finish or underlayment manufacturer, as appropriate, for proper preparation practices.

3.3 MOISTURE REMEDIATION COATING:

A. Where results of relative humidity testing (ASTM F2170) exceed the requirements of the specified flooring manufacturer, apply remedial coating as specified to correct excessive moisture condition.

- B. Prior to remedial floor coating installation mechanically prepare the concrete surface to provide a concrete surface profile in accordance with ASTM D4259.
- C. Mix and apply moisture remediation coating in accordance with manufacturer's instructions.

3.4 CEMENTITOUS UNDERLAYMENT:

A. Install cementitious self-leveling underlayment as required to correct surface defects, floor flatness or levelness corrections to meet the tolerance requirements, provide a smooth surface for the installation of floor covering. B. Mix and apply in accordance with manufacturer's instructions.

3.5 PROTECTION

A. Prior to the installation of the finish flooring, the surface of the underlayment should be protected from abuse by other trades by the use of plywood, tempered hardwood, or other suitable protection course

3.6 FIELD QUALITY CONTROL

A. Where specified, field sampling of products shall be conducted by a qualified, independent testing facility.

- - - E N D - - -

657-17-104JC Restore Utility Systems, Building 6 657-17-105JC Restore Utility Systems, Building 6A 04-01-15

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART I - GENERAL

1.1 DESCRIPTION

This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITALS

Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES—provide quadruplicate samples for color approval of materials and finishes specified in this section.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)
 2001......Architectural Painting Specification Manual

PART 2- PRODUCTS

SEE FINISH SCHEDULE ON DRAWINGS

--- E N D---

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards.

1.2 RELATED WORK

A. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS Section 09 29 00, GYPSUM BOARD.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Hanger inserts.
 - 3. Channels (Rolled steel).
 - 4. Furring channels.
 - 5. Screws, clips and other fasteners.

C. Shop Drawings:

- 1. Typical ceiling suspension system.
- 2. Typical metal stud and furring construction system including details around openings and corner details.
- 3. Typical shaft wall assembly

- 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.
- D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society For Testing And Materials (ASTM) A641-09.....Zinc-Coated (Galvanized) Carbon Steel Wire A653/653M-11.....Specification for Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by Hot-Dip Process. C11-10......Terminology Relating to Gypsum and Related Building Materials and Systems C635-07..... Manufacture, Performance, and Testing of Metal Suspension System for Acoustical Tile and Lay-in Panel Ceilings C636-08......Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels C645-09......Non-Structural Steel Framing Members C754-11.....Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products C841-03(R2008).....Installation of Interior Lathing and Furring C954-10......Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness E580-11......Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

2.1 PROTECTIVE COATING

Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G40 or equivalent.

2.2 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
 - 1. Use C 645 steel, 0.75 mm (0.0296-inch) minimum base-metal (30 mil).
 - 2. Runners same thickness as studs.
- B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600 mm (12 feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
 - 1. Conform to rated wall construction.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
 - 1. Not less than 0.45 mm (0.0179-inch) thick bare metal.
 - 2. Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. "Z" Furring Channels:
 - 1. Not less than 0.45 mm (0.0179-inch)-thick base metal, with 32 mm (1-1/4 inch) and 19 mm (3/4-inch) flanges.
 - 2. Web furring depth to suit thickness of insulation.
- D. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.
- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.

- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items.

 Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
- 1. Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
- 2. For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396-inch) thick galvanized steel with corrugated edges.
- H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

2.5 SUSPENDED CEILING SYSTEM FOR GYPSUM BOARD (OPTION) - NOT APPLICABLE PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

- A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.
- B. Space studs not more than 610 mm (24 inches) on center.
- C. Cut studs 6 mm to 9 mm (1/4 to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.

E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and sound rated partitions.

F. Openings:

- 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown.
- 2. Fasten back to back studs together with 9 mm (3/8-inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs.
- 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks.

G. Fastening Studs:

- 1. Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.
- 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.

H. Chase Wall Partitions:

- 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
- 2. Use studs or runners as cross bracing not less than 63 mm (2-1/2) inches wide).
- I. Form building seismic or expansion joints with double studs back to back spaced 75 mm (three inches) apart plus the width of the seismic or expansion joint.
- K. Form control joint, with double studs spaced 13 mm (1/2-inch) apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - 1. Framed with 63 mm (2-1/2 inch) or narrower studs, 600 mm (24 inches) on center.
 - 2. Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three foot vertical intervals on side without finish.
 - 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.

- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:
 - 1. Install rigid (hat section) furring channels at 600 mm (24 inches) on center, horizontally or vertically.
 - 2. Install "Z" furring channels vertically spaced not more than 600 mm (24 inches) on center.
 - 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
 - 4. Ends of spliced furring channels shall be nested not less than $200 \ \mathrm{mm} \ (8 \ \mathrm{inches})$.
 - 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
 - 6. Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 400 mm (16 inches) on center.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

- A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.
- B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

3.5 INSTALLING SHAFT WALL SYSTEM

- A. Conform to UL Design No. U438 for two-hour fire rating.
- B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports with power driven fasteners at both ends and 600 mm (24 inches) on center.
- C. After liner panels have been erected, cut C-H studs and E studs, from 9 mm (3/8-inch) to not more than 13 mm (1/2-inch) less than

657-17-105JC Restore Utility Systems, Building 6A

floor-to-ceiling height. Install C-H studs between liner panels with liner panels inserted in the groove.

- D. Install full-length steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels.
- E. Suitably frame all openings to maintain structural support for wall:
 - 1. Provide necessary liner fillers and shims to conform to label frame requirements.
 - 2. Frame openings cut within a liner panel with E studs around perimeter.
 - 3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill.

F. Elevator Shafts:

- 1. Frame elevator door frames with 0.87 mm (0.0341-inch) thick J strut or J stud jambs having 75 mm (three-inch) long legs on the shaft side.
- 2. Protrusions including fasteners other than flange of shaft wall framing system or offsets from vertical alignments more than 3 mm (1/8-inch) are not permitted unless shown.
- 3. Align shaft walls for plumb vertical flush alignment from top to bottom of shaft.

3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits.
 - 1. Space framing at 400 mm (16-inch) centers for metal lath anchorage.
 - 2. Space framing at 600 mm (24-inch) centers for gypsum board anchorage.
- B. Existing concrete construction exposed or concrete on steel decking:
 - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
 - Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists.
 - C. Installing suspended ceiling system for gypsum board (ASTM C635 Option):
 - 1. Install only for ceilings to receive screw attached gypsum board.
 - 2. Install in accordance with ASTM C636.

- a. Install main runners spaced 1200 mm (48 inches) on center.
- b. Install 1200 mm (four foot) tees not over 600 mm (24 inches) on center; locate for edge support of gypsum board.
- c. Install wall track channel at perimeter.

D. Installing Ceiling Bracing System:

- 1. Construct bracing of 38 mm (1-1/2 inch) channels for lengths up to 2400 mm (8 feet) and 50 mm (2 inch) channels for lengths over 2400 mm (8 feet) with ends bent to form surfaces for anchorage to carrying channels and over head construction. Lap channels not less than 600 mm (2 feet) at midpoint back to back. Screw or bolt lap together with two fasteners.
- 2. Install bracing at an approximate 45 degree angle to carrying channels and structure overhead; secure as specified to structure overhead with two fasteners and to carrying channels with two fasteners or wire ties.
- 3. Brace suspended ceiling or soffit framing in seismic areas in accordance with ASTM E580.

3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8-inch) from the layout line.
- B. Plumb and align vertical members within 3 mm (1/8-inch.)
- C. Level or align ceilings within 3 mm (1/8-inch.)

- - - E N D - - -

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 05 40 00, COLD-FORMED METAL FRAMING, and Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- F. Lay in gypsum board ceiling panels: Section 09 51 00, ACOUSTICAL CEILING.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.
- C. Shop Drawings:
 - 1. Typical gypsum board installation, showing corner details, edge trim details and the like.
 - 2. Typical shaft wall assembly.
 - 3. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.

D. Samples:

- 1. Cornerbead.
- 2. Edge trim.

- 3. Control joints.
- E. Test Results:
 - 1. Fire rating test, each fire rating required for each assembly.
- F. Certificates: Certify that gypsum board types, gypsum backing board types, cementitious backer units, and joint treating materials do not contain asbestos material.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM): C11-08..... Terminology Relating to Gypsum and Related Building Materials and Systems C475-02.....Joint Compound and Joint Tape for Finishing Gypsum Board C840-08......Application and Finishing of Gypsum Board C919-08.....Sealants in Acoustical Applications C954-07.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033 in. (0.84mm) to 0.112 in. (2.84mm) in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-05......Accessories for Gypsum Wallboard and Gypsum Veneer Base C1177-06......Glass Mat Gypsum Substrate for Use as Sheathing C1658-06......Glass Mat Gypsum Panels C1396-06......Gypsum Board E84-08......Surface Burning Characteristics of Building Materials
- C. Underwriters Laboratories Inc. (UL):
 Latest Edition........Fire Resistance Directory
- D. Inchcape Testing Services (ITS):

11-01-14

Latest Editions......Certification Listings

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise. Shall contain a minimum of 20 percent recycled gypsum.
- B. Coreboard or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X.
 - 2. ASTM C1658: Glass Mat Gypsum Panels,
 - 3. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Water Resistant Gypsum Backing Board: ASTM C620, Type X, 16 mm (5/8 inch) thick.
- D. Gypsum cores shall contain maximum percentage of post industrial recycled gypsum content available in the area (a minimum of 95 percent post industrial recycled gypsum content). Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 GYPSUM SHEATHING BOARD

- A. ASTM C1396, Type X, water-resistant core, 16 mm (5/8 inch) thick.
- B. ASTM C1177, Type X.

2.3 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown (FHP).
 - e. Corridor partitions.
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
 - 3. Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.
 - 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction.

- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.

F. Ceilings:

- 1. For single-ply construction, use perpendicular application.
- 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.

G. Walls (Except Shaft Walls):

- 1. When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
- 2. When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
- 3. Stagger screws on abutting edges or ends.
- 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
- 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
- 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.
- 7. No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
- 8. Installing Two Layer Assembly Over Sound Deadening Board:
 - a. Apply face layer of wallboard vertically with joints staggered from joints in sound deadening board over framing members.

- b. Fasten face layer with screw, of sufficient length to secure to framing, spaced 300 mm (12 inches) on center around perimeter, and 400 mm (16 inches) on center in the field.
- 9. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:
 - 1. Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.
 - 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
 - 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - 1. Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.

- b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
- c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
- d. Where shown.

3.3 INSTALLING GYPSUM SHEATHING

- A. Install in accordance with ASTM C840, except as otherwise specified or shown.
- B. Use screws of sufficient length to secure sheathing to framing.
- C. Space screws 9 mm (3/8 inch) from ends and edges of sheathing and 200 mm (8 inches) on center. Space screws a maximum of 200 mm (8 inches) on center on intermediate framing members.
- D. Apply 600 mm by 2400 mm (2 foot by 8 foot) sheathing boards horizontally with tongue edge up.
- E. Apply 1200 mm by 2400 mm or 2700 mm (4 ft. by 8 ft. or 9 foot) gypsum sheathing boards vertically with edges over framing.

3.4 CAVITY SHAFT WALL

- A. Coordinate assembly with Section 09 22 16, NON-STRUCTURAL METAL FRAMING, for erection of framing and gypsum board.
- B. Conform to UL Design No. U438 or FM WALL CONSTRUCTION 12-2/HR Nonbearing for two-hour fire rating. C. Cut coreboard (liner) panels 25 mm (one inch) less than floor-to-ceiling height, and erect vertically between J-runners on shaft side.
 - 1. Where shaft walls exceed 4300 mm (14 feet) in height, position panel end joints within upper and lower third points of wall.
 - 2. Stagger joints top and bottom in adjacent panels.

D. Gypsum Board:

- 1. Two hour wall:
 - a. Erect base layer (backing board) vertically on finish side of wall with end joints staggered. Fasten base layer panels to studs with 25 mm (one inch) long screws, spaced 600 mm (24 inches) on center.
 - b. Use laminating adhesive between plies in accordance with UL or FM if required by fire test.
 - c. Apply face layer of gypsum board required by fire test vertically over base layer with joints staggered and attach with screws of

sufficient length to secure to framing staggered from those in base, spaced 300 mm (12 inches) on center.

- 2. One hour wall with one layer on finish side of wall: Apply face layer of gypsum board vertically. Attach to studs with screws of sufficient length to secure to framing, spaced 300 mm (12 inches) on center in field and along edges.
- 3. Where coreboard is covered with face layer of gypsum board, stagger joints of face layer from those in the coreboard base.
- E. Treat joints, corners, and fasteners in face layer as specified for finishing of gypsum board.

F. Elevator Shafts:

- 1. Protrusions including fasteners other than flange of shaft wall framing system or offsets from vertical alignments more than 3 mm (1/8-inch) are not permitted unless shown.
- 2. Align shaft walls for plumb vertical flush alignment from top to bottom of shaft.

3.5 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated smoke barrier, fire rated and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the smoke barrier, fire rated and sound rated construction. Sanding is not required of non decorated surfaces.

3.6 REPAIRS

A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including non-decorated surfaces.

- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non-decorated surface to provide smoke tight construction.

3.7 UNACCESSIBLE CEILINGS

At Mental Health and Behavioral Nursing Units, areas accessible to patients and not continuously observable by staff (e.g., patient bedrooms, day rooms), ceilings should be a solid material such as gypsum board. This will limit patient access. Access doors are needed to access electrical and mechanical equipment above the ceiling. These doors should be locked to prevent unauthorized access and secured to ceiling using tamper resistant fasteners.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Acoustical units.
 - 2. Metal ceiling suspension system for acoustical ceilings.

1.2 RELATED REQUIREMENTS

- A. Color, pattern, and location of each type of acoustical unit: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Access doors in adhesive applied tile: Section 08 31 13, ACCESS DOORS AND FRAMES.
- C. Ceiling Suspension System: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- D. Lay in gypsum board ceiling panels: Section 09 29 00, GYPSUM BOARD.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. A641/A641M-09a(2014) Zinc-coated (Galvanized) Carbon Steel Wire.
 - 2.A653/A653M-15e1 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process.
 - 3. C423-09a Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method.
 - 4.C634-13 Terminology Relating to Environmental Acoustics.
 - 5. C635/C635M-13a Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings.
 - 6.C636/C636M-13 Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels.
 - 7. D1779-98(2011) Adhesive for Acoustical Materials.
 - 8. E84-15b Surface Burning Characteristics of Building Materials.
 - 9. E119-16 Fire Tests of Building Construction and Materials.
 - 10. E413-16 Classification for Rating Sound Insulation.
 - 11. E580/E580M-14 Installation of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Subject to Earthquake Ground Motions.
 - 12. E1264-14 Classification for Acoustical Ceiling Products.
- C. International Organization for Standardization (ISO):

1. ISO 14644-1 - Classification of Air Cleanliness.

1.4 PREINSTALLATION MEETINGS - NOT APPLICABLE

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Ceiling suspension system indicating manufacturer recommendation for each application.
 - 3. Warranty.
- D. Samples:
 - 1. Acoustical units, each type, with label indicating conformance to specification requirements.
 - 2. Colored markers for access service.

1.6 QUALITY ASSURANCE

- A. Manufacturer Oualifications:
 - 1. Regularly manufactures specified products.

1.7 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

- A. Environment:
 - 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
 - 2. Work Area Ambient Conditions: HVAC systems are complete, operational, and maintaining facility design operating conditions

continuously, beginning 48 hours before installation until Government occupancy.

3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Ceiling System: Acoustical ceilings units on exposed grid suspension systems.

2.2 SYSTEM PERFORMANCE

- A. Design product complying with specified performance:
 - 1. Maximum Deflection: 1/360of span, maximum.
- B. Fire Resistance: ASTM E119; as component of 1 hour rated roof-ceiling assembly unless stated otherwise.
- C. Surface Burning Characteristics: When tested according to ASTM E84.
 - 1. Flame Spread Rating: 25 maximum.
 - 2. Smoke Developed Rating: 450 maximum.

2.3 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide acoustical units from one manufacturer.
 - 1. Provide each product exposed to view from one production run.
- C. Provide suspension system from same manufacturer.

2.4 ACOUSTICAL UNITS

- A. General:
 - 1. Ceiling Panel and Tile: ASTM E1264, bio-based content according to USDA Bio-Preferred Product requirements.
 - a. Mineral Fiber: 3.6 kg/sq. m (3/4 psf) weight, minimum.
 - b. Integrally colored units.
 - 2. Classification: Provide type and form as follows:
 - a. Type III Units Mineral base with water-based painted finish maximum 10 g/l VOC; Form 2 Water felted, minimum 16 mm (5/8 inch) thick.

- b. Type IV Units Mineral base with membrane-faced overlay, Form 2 - Water felted, minimum 16 mm (5/8 inch) thick. Apply poly (vinyl) chloride over paint coat.
- c. Type V Units Perforated steel facing (pan) with mineral or glass fiber base backing.
 - 1) Steel: Galvanized steel, ASTM A653, with G30 coating. minimum 0.38 mm (0.015 inch) thick.
 - 2) Bonderize both sides. Apply two coats of baked-on enamel finish on surfaces exposed to view and one coat on concealed surfaces.
- d. Type VI Units Perforated stainless steel facing (pan) with mineral or glass fiber base backing.
- e. Type VII Units Perforated aluminum facing (pan) with mineral or glass fiber base backing.
 - 1) Aluminum sheets, minimum 0.635 mm (0.025 inch) thick.
 - 2) Apply two coats of baked-on enamel finish, free from gloss or sheen, on face and flanges.
- f. NRC (Noise Reduction Coefficient): ASTM C423, minimum 0.55.
- g. CAC (Ceiling Attenuation Class): ASTM E413, 40-44 range.
- h. LR (Light Reflectance): Minimum 0.75.

2.5 METAL SUSPENSION SYSTEM

- A. General: ASTM C635, heavy-duty system, except as otherwise specified.
 - 1. Suspension System: Provide the following:
 - a. Galvanized cold-rolled steel, bonderized.
 - b. Extruded aluminum.
 - c. Fire resistant plastic (glass fiber).
 - 2. Main and Cross Runner: Use same construction Do not use lighter-duty sections for cross runners.
- B. Exposed Grid Suspension System: Support of lay-in panels.
 - 1. Grid Width: 22 mm (7/8 inch) minimum with8 mm (5/16 inch) minimum panel bearing surface.
 - 2. Molding: Fabricate from the same material with same exposed width and finish.
 - 3. Finish: Baked-on enamel flat texture finish.
 - a. Color: To match adjacent acoustical units unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Suspension System Support of Metal Type V, VI, and VII Tiles: Concealed grid type with runners for snap-in attachment of metal tile (pans).

- D. Carrying Channels Secondary Framing: Cold-rolled or hot-rolled steel, black asphaltic paint finish, rust free.
 - 1. Weight per 300 m (per thousand linear feet), minimum:

Size		Cold-rolled		Hot-rolled	
mm	inches	kg	pound	kg	pound
38	1-1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

- E. Anchors and Inserts: Provide anchors or inserts to support twice the loads imposed by hangers.
 - 1. Hanger Inserts: Steel, zinc-coated (galvanized after fabrication).
 - a. Nailing type option for wood forms:
 - 1) Upper portion designed for anchorage in concrete and positioning lower portion below surface of concrete approximately 25 mm (one inch).
 - 2) Lower portion provided with minimum 8 mm (5/16 inch) hole to permit attachment of hangers.
 - b. Flush ceiling insert type:
 - Designed to provide a shell covered opening over a wire loop to permit attachment of hangers and keep concrete out of insert recess.
 - 2) Insert opening inside shell approximately 16 mm (5/8 inch) wide by 9 mm (3/8 inch) high over top of wire.
 - 3) Wire 5 mm (3/16 inch) diameter with length to provide positive hooked anchorage in concrete.
- F. Clips: Galvanized steel, designed to secure framing member in place.
- G. Tile Splines: ASTM C635.
- H. Wire: ASTM A641.
 - 1. Size:
 - a. Wire Hangers: Minimum diameter 2.68 mm (0.1055 inch).
 - b. Bracing Wires: Minimum diameter 3.43 mm (0.1350 inch).

2.6 ACCESSORIES

- A. Adhesives: Low pollutant-emitting, water based type recommended by adhered product manufacturer for each application.
- B. Perimeter Seal: Vinyl, polyethylene or polyurethane open cell sponge material, density of 1.3 plus or minus 10 percent, compression set

657-17-105JC Restore Utility Systems, Building 6A

less than 10 percent with pressure sensitive adhesive coating on one side.

- 1. Thickness: As required to fill voids between back of wall molding and finish wall.
- 2. Size: Minimum 9 mm (3/8 inch) wide strip.
- C. Access Identification Markers: Colored markers with pressure sensitive adhesive on one side, paper or plastic, 6 to 9 mm (1/4 to 3/8 inch) diameter.
 - 1. Color Code: Provide the following color markers for service identification:

Color	Service
Red	Sprinkler System: Valves and Controls
Green	Domestic Water: Valves and Controls
Yellow	Chilled Water and Heating Water
Orange	Ductwork: Fire Dampers
Blue	Ductwork: Dampers and Controls
Black	Gas: Laboratory, Medical, Air and Vacuum

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing acoustical panels suspension system to permit new installation.
 - 1. Dispose of other removed materials.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings .
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Applications:
 - Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Layout acoustical unit symmetrically, with minimum number of joints.

C. Installation:

- 1. Install acoustic tiles after wet finishes have been installed and solvents have cured.
- 2. Install lay-in acoustic panels in exposed grid with minimum 6 mm (1/4 inch) bearing at edges on supports.
 - a. Install tile to lay level and in full contact with exposed grid.
 - b. Replace cracked, broken, stained, dirty, or tile.
- 3. Tile in concealed grid upward access suspension system:
 - a. Install acoustical tile with joints close, straight and true to line, and with exposed surfaces level and flush at joints.
 - b. Make corners and arises full, and without worn or broken places.
 - c. Locate acoustical units providing access to service systems.
- 4. Adhesive applied tile:
 - a. Condition of surface according to ASTM D1779, Note 1, Cleanliness of Surface, and Note 4, Rigidity of Base Surface.
 - b. Size or seal surface as recommended by manufacturer of adhesive and allow to dry before installing units.

5. Markers:

- a. Install color coded markers to identify the various concealed piping, mechanical, and plumbing systems.
- b. Attach colored markers to exposed grid on opposite sides of the units providing access.
- c. Attach marker on exposed ceiling surface of upward access acoustical unit.
- D. Touch up damaged factory finishes.
 - 1. Repair painted surfaces with touch up primer.

3.4 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General: Install according to ASTM C636.
 - 1. Use direct or indirect hung suspension system or combination of
 - 2. Support a maximum area of 1.48 sq. m (16 sq. ft.) of ceiling per hanger.
 - 3. Prevent deflection in excess of 1/360 of span of cross runner and main runner.
 - 4. Provide additional hangers located at each corner of support components.

- 5. Provide minimum 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown.
- 6. Provide main runners minimum 1200 mm (48 inches) in length.
- 7. Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Direct Hung Suspension System: ASTM C635.
 - 1. Support main runners by hanger wires attached directly to the structure overhead.
 - 2. Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- C. Anchorage to Structure:

1. Concrete:

- a. Install hanger inserts and wire loops required for support of hanger and bracing wire. Install hanger wires with looped ends through steel deck when steel deck does not have attachment device.
- b. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger and bracing wire. Install in sides of concrete beams or joists at mid height.

2. Steel:

- a. Install carrying channels for attachment of hanger wires.
 - Size and space carrying channels to support load within performance limit.
 - 2) Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.
- b. Attach carrying channels to the bottom flange of steel beams spaced not 1200 mm (4 feet) on center before fireproofing is installed. Weld or use steel clips for beam attachment.
- c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists, and securely wire tie or clip to joist.

- D. Indirect Hung Suspension System: ASTM C635.
 - 1. Space carrying channels for indirect hung suspension system maximum 1200 mm (4 feet) on center. Space hangers for carrying channels maximum 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.
 - 2. Support main runners by specially designed clips attached to carrying channels.
- E. Seismic Ceiling Bracing System:
 - 1. Install according to ASTM E580.
 - 2. Connect bracing wires to structure above as specified for anchorage to structure and to main runner or carrying channels of suspended ceiling at bottom.

3.5 CEILING TREATMENT

- A. Moldings:
 - 1. Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - 2. Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- B. Perimeter Seal:
 - 1. Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - 2. Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.
- C. Existing ceiling:
 - 1. Where extension of existing ceilings occurs, match existing.
 - 2. Where acoustical units are salvaged and reinstalled or joined, use salvaged units within a space. Do not mix new and salvaged units within a space which results in contrast between old and new acoustic units.
 - 3. Comply with specifications for new acoustical units for new units required to match appearance of existing units.

3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed surfaces. Remove contaminants and stains.

- - - E N D - - -

SECTION 09 65 19 RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the installation of solid vinyl tile flooring, vinyl composition tile, and accessories required for a complete installation.

1.2 RELATED WORK:

- A. Subfloor Testing and Preparation: Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.
- B. Color, Pattern and Texture for Resilient Tile Flooring and Accessories: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Resilient material manufacturer's recommendations for adhesives, underlayment, primers, and polish.
 - 3. Application, installation and maintenance instructions.

C. Samples:

- 1. Tile: Each type, color, thickness and finish.
- 2. Edge Strips: Each type, color, thickness and finish.
- D. Shop Drawings:
 - 1. Layout of patterns as shown on the construction documents.
 - 2. Edge strip locations showing types and detail cross sections.
- E. Test Reports:
 - 1. Abrasion resistance: Depth of wear for each tile type and color and volume loss of tile, certified by independent laboratory. Tested per ASTM F510/F510M.

1.4 DELIVERY:

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation are not acceptable.

1.5 STORAGE:

A. Store materials in a clean, dry, enclosed space off the ground, protected from harmful weather conditions and at temperature and humidity conditions recommended by the manufacturer. Protect adhesives from freezing. Store flooring, adhesives, and accessories in the spaces where they will be installed for at least 48 hours before beginning installation.

1.6 QUALITY ASSURANCE:

A. Installer Qualifications: A company specializing in installation with minimum three (3) years' experience and employs experienced flooring installers who have retained, and currently hold, an INSTALL Certification, or a certification from a comparable certification program.

1.7 WARRANTY:

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.8 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

•	ASTM International (AST	M):
	D2047-11	.Test Method for Static Coefficient of Friction
		of Polish-Coated Flooring Surfaces as Measured
		by the James Machine
	D2240-05 (R2010)	.Test Method for Rubber Property-Durometer
		Hardness
	D4078-02 (R2008)	.Water Emulsion Floor Finish
	E648-14c	.Critical Radiant Flux of Floor Covering Systems
		Using a Radiant Energy Source
	E662-14	.Specific Optical Density of Smoke Generated by
		Solid Materials
	E1155/E1155M-14	.Determining Floor Flatness and Floor Levelness
		Numbers
	F510/F510M-14	.Resistance to Abrasion of Resilient Floor
		Coverings Using an Abrader with a Grit Feed

Flooring

F710-11......Preparing Concrete Floors to Receive Resilient

657-17-104JC Restore Utility Systems, Building 6
657-17-105JC Restore Utility Systems, Building 6A 12-01-15
F925-13Test Method for Resistance to Chemicals of
Resilient Flooring
F1066-04(R2014)Vinyl Composition Floor Tile
F1344-12(R2013)Rubber Floor Tile
F1700-13aSolid Vinyl Floor Tile
F1869-11Test Method for Measuring Moisture Vapor
Emission Rate of Concrete Subfloor Using
Anhydrous Calcium Chloride
F2170-11Test Method for Determining Relative Humidity
in Concrete Floor Slabs Using in Situ Probes
F2195-13Linoleum Floor Tile
C. Code of Federal Regulation (CFR):
40 CFR 59Determination of Volatile Matter Content, Water
Content, Density Volume Solids, and Weight
Solids of Surface Coating

D. International Standards and Training Alliance (INSTALL):

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS:

- A. Provide adhesives, underlayment, primers, and polish recommended by resilient floor material manufacturer.
- B. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E648.
- C. Smoke Density: Less than 450 per ASTM E662.
- D. Slip Resistance Not less than 0.5 when tested with ASTM D2047.

2.2 RUBBER TILE:NOT APPLICABLE

2.3 LINOLEUM TILE: NOT APPLICABLE

2.4 VINYL COMPOSITION TILE:

- A. Tile Standard: ASTM F1066, Class 1, solid-color and Class 2, through-pattern tile.
- B. Wearing Surface: Smooth .
- C. Thickness: 3.2 mm (0.125 inch).
- D. Size: $305 \times 305 \text{ mm}$ (12 x 12 inches).

2.5 SOLID VINYL-TILE:

- A. Tile Standard: ASTM F1700.
 - 1. Class: Class I, monolithic vinyl tile, surface-decorated vinyl tile.
 - 2. Type: A, smooth surface , embossed surface .
- B. Thickness: / 3.2 mm (0.125 inch) .
- C. Size: $305 \times 305 \text{ mm}$ (12 x 12 inches) .

2.6 LUXURY VINYL TILE: NOT APPLICABLE

2.7 ADHESIVES:

A. Provide water resistant type adhesive for flooring, base and accessories as recommended by the manufacturer to suit substrate conditions. Submit manufacturer's descriptive data, documentation stating physical characteristics, and mildew and germicidal characteristics.

2.8 PRIMER FOR CONCRETE SUBFLOORS:

A. As recommended by the adhesive and tile manufacturer.

2.9 LEVELING COMPOUND FOR CONCRETE FLOORS:

A. Provide cementitious products with latex or polyvinyl acetate resins in the mix.

2.10 POLISH AND CLEANERS:

- A. Cleaners: As recommended in writing by floor tile manufacturer.
- B. Polish: ASTM D4078.

2.11 MOULDING: NOT APPLICABLE

Α.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS:

- A. Maintain flooring materials and areas to receive resilient flooring at a temperature above 20 degrees C (68 degrees F) for three (3) days before application, during application and two (2) days after application, unless otherwise directly by the flooring manufacturer for the flooring being installed. Maintain a minimum temperature of 13 degrees C (55 degrees F) thereafter. Provide adequate ventilation to remove moisture from area and to comply with regulations limiting concentrations of hazardous vapors.
- B. Do not install flooring until building is permanently enclosed and wet construction in or near areas to receive tile materials is complete, dry and cured.

3.2 SUBFLOOR TESTING AND PREPARATION:

- A. Prepare and test surfaces to receive resilient tile and adhesive as per Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.
 - 1. Remove existing resilient floor and existing adhesive.
- B. Prepare concrete substrates in accordance with ASTM F710.

3.3 INSTALLATION:

- A. Install in accordance with manufacturer's instructions for application and installation unless specified otherwise.
- B. Mix tile from at least two containers. An apparent line either of shades or pattern variance is not acceptable.

C. Tile Layout:

- 1. If layout is not shown on construction documents, lay tile symmetrically about center of room or space with joints aligned.
- 2. Vary edge width as necessary to maintain full size tiles in the field, no edge tile to be less than 1/2 the field tile size, except where irregular shaped rooms make it impossible.
- 3. Place tile pattern in the same direction; do not alternate tiles unless specifically indicated in the construction documents to the contrary.

D. Application:

- 1. Adhere floor tile to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
- Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
- 3. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
- 4. Roll tile floor with a minimum 45 kg (100 pound) roller.
- E. Seal joints at pipes with sealants in accordance with Section 07 92 00, JOINT SEALANTS.

F. Installation of Edge Strips:

- 1. Locate edge strips under center line of doors unless otherwise shown on construction documents.
- 2. Set resilient edge strips in adhesive. Anchor metal edge strips with anchors and screws.
- 3. Where tile edge is exposed, butt edge strip to touch along tile edge.
- 4. Where thin set ceramic tile abuts resilient tile, set edge strip against floor file and against the ceramic tile edge.

12-01-15

3.4 CLEANING AND PROTECTION:

- A. Clean adhesive marks on exposed surfaces during the application of resilient materials before the adhesive sets. Exposed adhesive is not acceptable.
- B. Keep traffic off resilient material for a minimum 72 hours after installation.
- C. Clean flooring as recommended in accordance with manufacturer's printed maintenance instructions and within the recommended time frame. As required by the manufacturer, apply the recommended number of coats and type of polish and/or finish in accordance with manufacturer's written instructions.
- D. When construction traffic occurs over tile, cover resilient materials with reinforced kraft paper properly secured and maintained until removal is directed by COR. At entrances and where wheeled vehicles or carts are used, cover tile with plywood, hardboard, or particle board over paper, secured and maintained until removal is directed by COR.
- E. When protective materials are removed and immediately prior to acceptance, replace damaged tile and mouldings, re-clean resilient materials.

3.5 LOCATION:

- A. Unless otherwise indicated in construction documents, install tile flooring, under areas where casework, laboratory and pharmacy furniture and other equipment occur.
- B. Extend tile flooring for room into adjacent closets and alcoves.

- - - E N D - - -

FSECTION 09 67 23.20 RESINOUS (EPOXY BASE) WITH VINYL CHIP BROADCAST (RES-2)

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies Resinous (Resinous epoxy base with vinyl chip flake broadcast) flooring with integral cove base:
 - 1. Res-2 Resinous (epoxy) vinyl chip flake broadcast flooring system.

1.2 RELATED WORK

- B. Substrate Preparation for Floor Finishes: Section 09 05 16.
- C. Color and location of each type of resinous flooring: As indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Floor Drains: Division 22, PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product to be provided.
 - 2. Application and installation instructions.
 - 3. Maintenance Instructions: Submit manufacturer's written instructions for recommended maintenance practices.
- C. Qualification Data: For Installer.

D. Samples:

- 1. Each color and texture specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- 2. Samples for verification: For each (color and texture) resinous flooring system required, 6 inches (152 mm) square, applied to a rigid backing by installer for this project.
- 3. Sample showing construction from substrate to finish surface in thickness specified and color and texture of finished surfaces. Finished flooring must match the approved samples in color and texture.
- E. Shop Drawings: Include plans, sections, component details, and attachment to other trades. Indicate layout of the following:
 - 1. Patterns.
 - 2. Edge configuration.
- F. Certifications and Approvals:

- 1. Manufacturer's certification of material and substrate compliance with specification.
- 2. Manufacturer's approval of installer.
- 3. Contractor's certificate of compliance with Quality Assurance requirements.
- H. Warranty: As specified in this section.

1.4 QUALITY ASSURANCE

- A. Manufacture Certificate: Manufacture shall certify that a particular resinous flooring system has been manufactured and in use for a minimum of five (5) years.
- B. Installer Qualifications: Engage an experienced installer (applicator) who is experienced in applying resinous flooring systems similar in material, design, and extent to those indicated for this project for a minimum period of five (5) years, whose work has resulted in applications with a record of successful in-service performance, and who is acceptable to resinous flooring manufacturer.
 - Engage an installer who is certified in writing by resinous flooring manufacturer as qualified to apply resinous flooring systems indicated.
 - 2. Contractor shall have completed at least ten (10) projects of similar size and complexity. Include list of at least five (5) projects. List must include owner (purchaser); address of installation, contact information at installation project site; and date of installation.
 - 3. Installer's Personnel: Employ persons trained for application of specified product.

C. Source Limitations:

- Obtain primary resinous flooring materials including primers, resins, hardening agents, grouting coats and finish or sealing coats from a single manufacturer.
- Provide secondary materials, including patching and fill material, joint sealant, and repair material of type and from source recommended by manufacturer of primary materials.

1.5 MATERIAL PACKAGING DELIVERY AND STORAGE

A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.

- B. Protect materials from damage and contamination in storage or delivery, including moisture, heat, cold, direct sunlight, etc.
- C. Maintain temperature of storage area between 60 and 80 degrees F (15 and 26 degrees C).
- D. Keep containers sealed until ready for use.
- E. Do not use materials beyond manufacturer's shelf life limits.
- F. Package materials in factory pre-weighed and in single, easy to manage batches sized for ease of handling and mixing proportions from entire package or packages. No On site weighing or volumetric measurements are allowed.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with resinous flooring manufacturer's written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting resinous flooring application.
 - 1. Maintain material and substrate temperature between 65 and 85 degrees F (18 and 30 degrees C) during resinous flooring application and for not less than 24 hours after application.
 - 2. Concrete substrate shall be properly cured per referenced section 03 30 00, CAST-IN-PLACE CONCRETE. Standard cure time a minimum of 30 days. A vapor barrier must be present for concrete subfloors on or below grade.
 - a. Resinous flooring applications where moisture testing resulting in readings exceeding limits as defined in this specification under part 3, section 3.4, paragraph B, shall employ an multiple component 15 mil thick system designed to suppress excess moisture in concrete.
 - b. Application at a minimum thickness of 15 mils, over properly prepared concrete substrate as defined in section 3.4.
 - c. Moisture suppression system must meet the design standards as follows:

Property	Test	Value
Tensile Strength	ASTM D638	4,400 psi
Volatile Organic Compound Limits (V.O.C.)	EPA & LEED	25 grams per liter
Permeance	ASTM E96 @ 16mils/ 0.4mm on concrete	0.1 perms
Tensile Modulus	ASTM D638	1.9X10 ⁵ psi

Percent Elongation	ASTM D638	12%
Cure Rate	Per manufactures	4 hours Tack free
	Data	with 24hr recoat
		window
Bond Strength	ASTM D7234	100% bond to
		concrete failure

- B. Lighting: Provide permanent lighting or, if permanent lighting is not in place, simulate permanent lighting conditions during resinous flooring application.
- C. Close spaces to traffic during resinous flooring application and for not less than 24 hours after application, unless manufacturer recommends a longer period.

1.7 WARRANTY

- A. Work subject to the terms of the Article "Warranty of Construction" FAR clause 52.246-21.
- B. Warranty: Manufacture shall furnish a single, written warranty covering the full assembly (including substrata) for both material and workmanship for a extended period of three (3) full years from date of installation, or provide a joint and several warranty signed on a single document by manufacturer and applicator jointly and severally warranting the materials and workmanship for a period of three (3) full years from date of installation. A sample warranty letter must be included with bid package or bid may be disqualified.

1.8 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM Standard C722-04 (2012), "Standard Specification for Chemical-Resistant Monolithic Floor Surfacings," ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/C0722-04R12, www.astm.org.

- 1. Specification covers the requirements for aggregate-filled, resinbased, monolithic surfacings for use over concrete.
- C. American Society for Testing and Materials (ASTM):

C413	(2012)	.Absorpt	ion of	Chemi	ical-Resist	ant M	ortars,
		Grouts,	Monol	ithic	Surfacings	, and	Polymer
		Concret	es				

C531 (2012).....Linear Shrinkage and Coefficient of Thermal
Expansion of Chemical-Resistant Mortars,
Grouts, Monolithic Surfacings, and Polymer
Concretes

D638 (2010)..........Tensile Properties of Plastics
D790 (2010)..........Flexural Properties of Unreinforced and
Reinforced Plastics and Electrical Insulating
Materials

D1308 (2013)............Effect of Household Chemicals on Clear and Pigmented Organic Finishes

D2240 (2010)..........Rubber Property-Durometer Hardness
D4060(2010).........Abrasion Resistance of Organic Coatings by the
Taber Abraser

D4226 (2011).....Impact Resistance of Rigid (Poly-Vinyl Chloride) (PVC) Building Products

D4259 (2012)......Abrading Concrete to alter the surface profile

of the concrete and to remove foreign materials

and weak surface laitance

C7234 (2012)..........Pull-Off Adhesion Strength of Coatings on

Concrete Using Portable Pull-Off Adhesion

Testers

E96/E96M (2013)......Water Vapor Transmission of Materials
F1679......Variable Incidence Tribometer for determining

the slip resistance

F1869 (2011).........Measuring Moisture Vapor Emission Rate of
Concrete Subfloor Using Anhydrous Calcium
Chloride

F2170 (2011)......Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION FOR RES-2 (BROADCAST VINYL CHIP FLAKE)

A. System Descriptions:

- 1. Monolithic, multi-component epoxy chemistry resinous flooring system. Primer with broadcast quartz aggregates, High performance multi-component solvent free epoxy undercoat, Vinyl chip flake broadcast media in desired flake size (1/8", 1/4"). High performance multi component epoxy and solvent free sealers.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up.
- C. System Components: Verify specific requirements as systems vary by manufacturer. Verify build up layers of broadcast and installation method. Verify compatibility with substrate. Use manufacturer's standard components, compatible with each other and as follows:
 - 1. Primer with Broadcast quartz (primer coat):
 - a. Resin: epoxy.
 - b. Formulation Description: Multiple component high solids.
 - c. Application Method: squeegee, back roll and broadcast.
 - d. Thickness of coat(s): 2-3mil.
 - e. Number of Coats: One.
 - f. Aggregates: Quartz broadcast into wet epoxy primer.
 - 2. Undercoat: (body coat)
 - a. Resin: Epoxy.
 - b. Formulation Description: Pigmented multi-component, high solids.
 - c. Application Method: Notched squeegee and Back roll
 - d. Number of Coats: One.
 - e. Aggregates: vinyl chip flake broadcast into wet Undercoat.
 - f. Thickness of coat(s): 20-30mil.
 - g. Number of Coats: One.
 - 3. Sealer coat:
 - a. Resin: Epoxy.
 - b. Formulation Description: Multiple component high solids, no solvent UV stable.
 - c. Type/Finsh: Clear Gloss.
 - d. Thickness of coat(s): 2-3mil.
 - e. Number of Coats: (2) two.
 - f. Application: Squeegee and finish roll.
- D. System Characteristics:
 - 1. Color and Pattern: As selected by Resident Engineer from manufacturer's standard colors.

- 2. Integral cove base: 1 inch (25.4 mm) radius epoxy mortar cove keyed into concrete substrate and or resinous flooring mortar system. No fillers integral cove base must be troweled in place with specified resinous mortar base.
- 3. Overall System Thickness: Nominal 2 to 3 mm.
- 4. Finish: /texture finish.5. Temperature Range: Systems vary by manufacturer; approximate range from a minimum of 45 to 150 degrees F.

E. Physical Properties:

1. Physical Properties of flooring system when tested as follows:

Property	Test	Value
Tensile Strength	ASTM D638	5,200 psi
Volatile Organic Compound Limits (V.O.C.)	EPA & LEED	Below 100 g/l
Flexural Strength	ASTM D790	4,000 psi
Water Absorption	ASTM C413	0.056%
Coefficient of friction dry/slip index wet	ASTM F1679	>.79 dry >.65 wet
Impact Resistance	ASTM D4226	> 160 in. lbs
Abrasion Resistance	ASTM D4060 CS-17	0.03 gm maximum weight loss
Thermal Coefficient of Linear Expansion	ASTM C531	17 x 10 ⁻⁶ in/in °F
Hardness Shore D	ASTM D2240	85 to 90
Bond Strength	ASTM D7234	100% bond to concrete failure

- F. Chemical Resistance in accordance ASTM D1308 02(2007) "Standard Test Method for Effect of Household Chemicals on Clear and Pigmented Organic Finishes". ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/D1308-02R07, www.astm.org. No effect to the following exposures:
 - 1. Acetic acid (5%)
 - 2. Ammonium hydroxide (10%)
 - 3. Citric Acid (50%)
 - 4. Fatty Acid
 - 5. Motor Oil, 20W

- 6. Hydrochloric acid (20%)
- 7. Sodium Chloride
- 8. Sodium Hypochlorite (10%)
- 9. Sodium Hydroxide (30%)
- 10. Sulfuric acid (25%)
- 11. Urine, Feces
- 12. Hydrogen peroxide (10%)

2.2 SUPPLEMENTAL MATERIALS

- A. Textured Top Coat: Type recommended or produced by manufacturer of seamless resinous flooring system, type and profile for desired final finish.
- B. Joint Sealant: Type recommended or produced by resinous flooring manufacturer for type of service or joint conditioned indicated.
- C. Waterproof Membrane: Type recommended or produced by manufacturer of resinous floor coatings for type of service and conditions as specified.
- G. Patching and Fill Material: Resinous product of or approved by resinous coating manufacturer for application indicated. Resinous based materials only. Cementitous or single component product are not expectable.

2.3 BASE CAP STRIP

- A.-Zinc cove strip.
- B. Shape for 2mm depth of base material, "J" or "L" configuration.
- C. Finish:
 - 1. Finish exposed surfaces in accordance with NAAMM Metal Finishes Manual.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Examine the areas and conditions where monolithic resinous system with integral base is to be installed with the VA Resident Engineer.
- B. Moisture Vapor Emission Testing: Perform moisture vapor transmission testing in accordance with ASTM F1869 to determine the MVER of the substrate prior to commencement of the work. See section 3.4, 3.

3.2 PROJECT CONDITIONS

A. Maintain temperature of rooms (air and surface) where work occurs, between 70 and 90 degrees F (21 and 32 degrees C) for at least 48 hours, before, during, and 24 hours after installation. Maintain temperature at least 70 degrees F (21 degrees C) during cure period.

657-17-105JC Restore Utility Systems, Building 6A

- B. Maintain relative humidity less than 75 percent.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.
- D. Maintain proper ventilation of the area during application and curing time period.
 - 1. Comply with infection control measures of the VA Medical Center.

3.3 INSTALLATION REQUIREMENTS

- A. The manufacturer's instructions for application and installation shall be reviewed with the VA Resident Engineer for the seamless resinous (urethane and epoxy mortar) flooring system with integral cove base.
- B. Substrate shall be approved by manufacture technical representative.

3.4 PREPARATION

- A. General: Prepare and clean substrates according to resinous flooring manufacturer's written instructions for substrate indicated. Provide clean, dry, and neutral Ph substrate for resinous flooring application.
- B. Concrete Substrates: Provide sound concrete surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants incompatible with resinous flooring.
 - 1. Prepare concrete substrates as follows:
 - a. Shot-blast surfaces with an apparatus that abrades the concrete surface, contains the dispensed shot within the apparatus, and re circulates the shot by vacuum pickup.
 - b. Comply with ASTM D4259 requirements, unless manufacturer's written instructions are more stringent.
 - 2. Repair damaged and deteriorated concrete according to resinous flooring manufacturer's written recommendations.
 - 3. Verify that concrete substrates are dry.
 - a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisture-vapor-emission rate of [3 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours. Per manufacturers recommendations.
 - b. MVT threshold for monolithic resinous flooring shall not exceed 3 lbs/1000 square feet (0.0001437 kPa) in a 24 hour period.
 - c. When MVT emission exceeds this limit, apply manufacturer's recommended vapor control primer or other corrective measures as recommended by manufacturer prior to application of flooring or membrane systems.

- d. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity of 85 percent.
- e. Provide a written report showing test placement and results.
- 4. Verify that concrete substrates have neutral Ph and that resinous flooring will adhere to them. Perform tests recommended by manufacturer. Proceed with application only after substrates pass testing.
- C. Resinous Materials: Mix components and prepare materials according to resinous flooring manufacturer's written instructions.
- D. Use patching and fill material to fill holes and depressions in substrates according to manufacturer's written instructions.
- E. Treat control joints and other nonmoving substrate cracks to prevent cracks from reflecting through resinous flooring according to manufacturer's written recommendations. Allowances should be included for flooring manufacturer recommended joint fill material, and concrete crack treatment.
- F. Prepare wall to receive integral cove base:
 - Verify wall material is acceptable for resinous flooring application, if not, install material (e.g. cement board) to receive base.
 - 2. Fill voids in wall surface to receive base, install undercoats (e.g. water proofing membrane, and/or crack isolation membrane) as recommended by resinous flooring manufacturer.
 - 3. Install base prior to flooring if required by resinous flooring manufacturer.
 - 4. Grind, cut or sand protrusions to receive base application.

3.5 APPLICATION

- A. General: Apply components of resinous flooring system according to manufacturer's written instructions to produce a uniform, monolithic wearing surface of thickness indicated.
 - Coordinate application of components to provide optimum adhesion of resinous flooring system to substrate, and optimum intercoat adhesion.
 - Cure resinous flooring components according to manufacturer's written instructions. Prevent contamination during application and curing processes.

- B. Apply Primer: over prepared substrate at manufacturer's recommended spreading rate for all areas to receive integrated cove base.
- C. Apply cove base: Trowel to wall surfaces at a 1 inch radius, before applying flooring. Apply according to manufacturer's written instructions and details including those for taping, mixing, priming, and troweling, sanding, and top coating of cove base. Round internal and external corners.
- D. Apply Primer: over prepared substrate at manufacturer's recommended spreading rate. E. Trowel mortar base: Mix mortar material according to manufacturer's recommended procedures. Climatic and non-climatic resinous flooring systems may vary slightly on mode of application. Application should be based upon the following: Uniformly spread mortar over substrate using a specially designed screed box adjusted to manufacturer's recommended height. Metal trowel (hand or power) single mortar coat in thickness indicated for flooring system, grout to fill substrate voids. When cured, sand to remove trowel marks and roughness.
- F. Broadcast: Immediately broadcast quartz silica aggregate into the primer using manufacturer's spray caster. Strict adherence to manufacturer's installation procedures and coverage rates is imperative.
- G. Under Coat: Mix base material according to manufacturer's recommended procedures. Uniformly spread mixed material over previously primed substrate using manufacturer's installation tool. Roll material with strict adherence to manufacturer's installation procedures and coverage rates.
- H. Broadcast: Immediately broadcast vinyl flakes into the body coat. Strict adherence to manufacturer's installation procedures and coverage rates is imperative.
- I. First Sealer: Remove excess un-bonded flakes by lightly brushing and vacuuming the floor surface. Mix and apply sealer with strict adherence to manufacturer's installation procedures.
- J. Second Sealer: Lightly sand first sealer coat. Mix and apply second sealer coat with strict adherence to manufacturer's installation procedures.

3.6 TOLERANCE

A. From line of plane: Maximum 1/8 inch (3.18 mm) in total distance of flooring and base. Broadcast resinous flooring system will contour substrate. Deviation and tolerance are subject to concrete tolerance.

657-17-105JC Restore Utility Systems, Building 6A

B. From radius of cove: Maximum of 1/8 inch (3.18 mm) plus or 1/16-inch (1.59 mm) minus.

3.7 ENGINEERING DETAILS

- A. Chase edges to "lock" the flooring system into the concrete substrate along lines of termination.
- B. Penetration Treatment: Lap and seal resinous system onto the perimeter of the penetrating item by bridging over compatible elastomer at the interface to compensate for possible movement.
- C. Trenches: Continue flooring system into trenches to maintain monolithic protection. Treat cold joints to assure bridging of potential cracks.
- D. Treat floor drains by chasing the flooring system to lock in place at point of termination.
- E. Treat control joints to bridge potential cracks and to maintain monolithic protection. Treat cold joints and construction joints to bridge potential cracks and to maintain monolithic protection on horizontal and vertical surfaces as well as horizontal and vertical interfaces.
- F. Discontinue Resinous floor system at vertical and horizontal contraction and expansion joints by installing backer rod and compatible sealant after coating installation is completed. Provide sealant type recommended by manufacturer for traffic conditions and chemical exposures to be encountered.

3.8 CURING, PROTECTION AND CLEANING

- A. Cure resinous flooring materials in compliance with manufacturer's directions, taking care to prevent contamination during stages of application and prior to completion of curing process.
- B. Close area of application for a minimum of 24 hours.
- C. Protect resinous flooring materials from damage and wear during construction operation.
 - 1. Cover flooring with kraft type paper.
 - 2. Optional 6 mm (1/4 inch) thick hardboard, plywood, or particle board where area is in foot or vehicle traffic pattern, rolling or fixed scaffolding and overhead work occurs.
- D. Remove temporary covering and clean resinous flooring just prior to final inspection. Use cleaning materials and procedures recommended by resinous flooring manufacturer.

- - - E N D - - -

SECTION 09 68 00 CARPETING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. Section specifies carpet, edge strips, adhesives, and other items required for complete installation.

1.2 RELATED WORK:

- A. Manufacturer, Color and Style of Carpet and Edge Strip: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient Wall Base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 QUALITY ASSURANCE:

A. Installer Qualifications: A company specializing in carpet installation with a minimum three (3) years' experience and employing experienced flooring installers who have retained, and currently hold, an INSTALL Certification, or a certification from a comparable certification program, and a valid OSHA 10 certification.

1.4 SUBMITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Product Data:

- Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading and flame resistance characteristics for each type of carpet material and installation accessory.
- 2. Manufacturer's printed installation instructions for the carpet, including preparation of installation substrate, seaming techniques and recommended adhesives and tapes.

C. Samples:

- 1. Carpet: "Production Quality" samples $305 \times 305 \text{ mm}$ (12 x 12 inches) of carpets, showing quality, pattern and color specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- 2. Floor Edge Strip (Molding): 152 mm (6 inches) long of each color and type specified.
- D. Shop Drawings: Installers layout plan showing seams and cuts for sheet carpet and carpet module.

- E. Maintenance Data: Carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods and cleaning cycles.
- F. Installer's Oualifications.
- H. Manufacturer's warranty.

1.5 DELIVERY AND STORAGE:

- A. Deliver carpet in manufacturer's original wrappings and packages clearly labeled with manufacturer's brand name, size, dye lot number and related information. Transport carpet to job site in a manner that prevents damage and distortion that might render it unusable. When bending or folding is unavoidable for delivery purposes, unfold carpet and lay flat immediately.
- B. Deliver adhesives in containers clearly labeled with manufacturer's brand name, number, installation instructions, safety instructions and flash points.
- C. Store in a clean, dry, well-ventilated area, protected from damage and soiling. Before installation, acclimate carpet to the atmospheric conditions of the areas in which it will be installed for 2 days prior to installation

1.6 ENVIRONMENTAL REQUIREMENTS:

- A. Maintain areas in which carpeting is to be installed at a temperature between 18 35 degrees C (65 95 degrees F) with a maximum relative humidity of 65 percent for two (2) days before installation, during installation and for three (3) days after installation.
- B. Minimum Substrate Surface Temperature: 18 degrees C (65 degrees F) at time of installation.
- C. Three (3) days after installation, maintain minimum temperature of 10 degrees C (50 degrees F) for the duration of the contract.

1.7 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their carpet for a minimum of ten (10) years from date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

ANSI/NSF 140-10......Sustainable Carpet Assessment Standard

C. American Association of Textile Chemists and Colorists (AATCC):

16-04.....Colorfastness to Light

134-11..... Electric Static Propensity of Carpets

165-08......Colorfastness to Crocking: Textile Floor

Coverings-AATCC Crockmeter Method

174-11.....Antimicrobial Activity Assessment of New

Carpets

D. ASTM International (ASTM):

D1335-12......Tuft Bind of Pile Yarn Floor Coverings

D3278-96(R2011)......Flash Point of Liquids by Small Scale Closed-

Cup Apparatus

D5116-10.....Determinations of Organic Emissions from Indoor

Materials/Products

D5252-11.....Operation of the Hexapod Tumble Drum Tester

D5417-11..... Operation of the Vettermann Drum Tester

E648-14c.....Critical Radiant Flux of Floor-Covering Systems

Using a Radiant Heat Energy Source

E. Code of Federal Regulation (CFR):

40 CFR 59..... Determination of Volatile Matter Content, Water

Content, Density Volume Solids, and Weight

Solids of Surface Coating

F. The Carpet and Rug Institute (CRI):

CIS......Carpet Installation Standard

G. International Standards and Training Alliance (INSTALL)

H. International Organization for Standardization (ISO):

2551-81......Machine-Made Textile Floor Coverings

I. U.S. Consumer Product and Safety Commission (CPSC):

16 CFR 1630.....Surface Flammability of Carpets and Rugs

PART 2 - PRODUCTS

2.1 CARPET:

A. Physical Characteristics:

 Carpet free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains and other physical and manufacturing defects.

2. Type:

- a. Carpet Construction: Multi-level pattern loop..
- b. Carpet Type: Modular tile /24 by 24inch square) with 0.15 percent growth/shrink rate in accordance with ISO 2551.
- c. Pile Type: Multilevel loop and thickness must conform to ADA requirements.
- d. Pile Fiber: Commercial 100 percent branded (federally registered trademark), nylon continuous filament.
- 4. Backing Materials: Provide backing for glue-down installations.
 - b. Modular Tile:
 - 1) Primary Backing/Backcoating: Synthetic
 - 2) Secondary Backing: Manufacturer's standard material.
- 5. Appearance Retention Rating (ARR): Carpet to be tested and have the minimum 3.5 4.0 severe ARR when tested in accordance with either the ASTM D5252 (Hexapod) or ASTM D5417 (Vettermann) test methods using the number of cycles for short and long term tests as specified in the ASTM standard.
- 6. Tuft Bind: Comply with ASTM D1335 for tuft bind force required to pull a tuft or loop free from carpet backing with a minimum 36 N (8 pound) average force for modular carpet tile.
- 7. Colorfastness to Crocking: Dry and wet crocking and water bleed, comply with AATCC 165 Color Transference Chart for colors, minimum class 4 rating.
- 8. Colorfastness to Light (AATCC 16, Option 3): Color change between the exposed and unexposed carpet areas equivalent to a minimum of Grade 4 on the Gray Scale for Color Change after an exposure of 40 AFU (AATCC fading units) for all specified colors.
- 9. Delamination Strength: Minimum of 440 N/m (2.5 lb./inch) between secondary backing.
- 10. Flammability and Critical Radiant Flux Requirements:
 - a. Comply with 16 CFR 1630.
 - b. Test Carpet in accordance with ASTM E648.
 - d. Class II: Minimum critical radiant flux of 0.22 watts per square centimeter (1.4 watts per square inch).

657-17-104JC Restore Utility Systems, Building 6 657-17-105JC Restore Utility Systems, Building 6A 10-01-15

- e. Carpet in corridors, exits and Medical Facilities to be Class I.
- 11. Average Pile Yarn Density (APYD):
 - a. Corridors, lobbies, entrances, common areas or multipurpose rooms, open offices, waiting areas and dining areas: Minimum APYD 6000
 - b. Other areas: Minimum APYD 4000.
- 12. Antimicrobial: Nontoxic antimicrobial treatment in accordance with AATCC 174 Part I (qualitative), guaranteed by the carpet manufacturer to last the life of the carpet.

2.2 ADHESIVE AND CONCRETE PRIMER:

A. Provide water resistant, mildew resistant, nonflammable, and nonstaining adhesives and concrete primers for carpet installation. Provide release adhesive for modular tile carpet as recommended by the carpet manufacturer. Provide adhesives flashpoint of minimum 60 degrees C (140 degrees F) in accordance with ASTM D3278. Materials are to have a VOC maximum of 50 g/L when calculated according to 40 CFR 59, (EPA Method 24).

2.3 SEAMING TAPE:

A. Provide tape for seams as recommended by the carpet manufacturer for the type of seam used in installation. Seam sealant is to have a maximum VOC content of 50 g/L when calculated according to 40 CFR 59, (EPA Method 24). Do not use sealants that contain 1,1,1-trichloroethane or toluene.

2.4 EDGE STRIPS (MOLDING):

A. Metal:

- 1. Hammered surface aluminum, pinless, clamp down type designed for the carpet being installed.
- 2. Floor flange not less than 38 mm (1-1/2 inches) wide, face not less than 16 mm (5/8 inch) wide.
- 3. Finish: Clear anodic coating unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.

PART 3 - EXECUTION

3.1 SURFACE PREPARATION:

A. Contractor to prepare and test surfaces to receive carpet and adhesives as per Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

3.2 GENERAL INSTALLATION:

- A. Isolate area of installation from rest of building.
- B. Perform all work by manufacturer's approved installers. Conduct installation in accordance with the manufacturer's printed instructions and CRI CIS.
- C. Protect edges of carpet meeting hard surface flooring with molding and install in accordance with the molding manufacturer's printed instructions.
- D. Follow ventilation, personal protection, and other safety precautions recommended by the adhesive manufacturer. Continue ventilation during installation and for at least three (3) days following installation.
- E. Do not permit traffic or movement of furniture or equipment in carpeted area for 24 hours after installation.
- F. Complete other work which would damage the carpet prior to installation of carpet.
- G. Follow carpet manufacturer's recommendations for matching pattern and texture directions.
- H. Cut openings in carpet where required for installing equipment, pipes, outlets, and penetrations. Bind or seal cut edge of sheet carpet. Use additional adhesive to secure carpets around pipes and other vertical projections.

3.3 BROADLOOM CARPET INSTALLATION: - NOT APPLICABLE

3.4 MODULAR TILE INSTALLATION:

- A. Install per CRI CIS, Adhesive Application.
- B. Lay carpet modules with pile in same direction unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Install carpet modules so that cleaning methods and solutions do not cause dislocation of modules.
- D. Lay carpet modules uniformly to provide tight flush joints free from movement when subject to traffic.

3.5 EDGE STRIPS INSTALLATION

- A. Install edge strips over exposed carpet edges adjacent to uncarpeted finish flooring.
- B. Anchor metal strips to floor with suitable fasteners. Apply adhesive to edge strips, insert carpet into lip and press it down over carpet.
- C. Anchor vinyl edge strip to floor with adhesive. Apply adhesive to edge strip and insert carpet into lip and press lip down over carpet.

3.6 PROTECTION AND CLEANING:

- A. Once a carpet installation is complete, clean up scrap materials and debris, and vacuum the area, using manufacturer-approved equipment.

 Inspect seams carefully for evenness and protruding backing yarns, and inspect the perimeter of the installation for an acceptable finished appearance.
- B. Protect installed carpet if furniture is being moved, by laying plywood, fiberboard or porous non-staining sheeting material for minimum time practical. Based on manufacturer guidelines, protect carpet from rolling or foot traffic. Protect against other materials or renovation or construction activities, including dust, debris, paint, contractor traffic, until it is ready for its final use.
- C. Do not move furniture or equipment on unprotected carpeted surfaces.
- D. Just before final acceptance of work, remove protection and vacuum carpet clean.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the painting and finishing as shown on the construction documents and/or specified herein, including, but not limited to, the following:
 - 1. Prime coats which may be applied in shop under other sections.
 - 2. Prime painting unprimed surfaces to be painted under this Section.
 - 3. Painting items furnished with a prime coat of paint, including touching up of or repairing of abraded, damaged or rusted prime coats applied by others.
 - 4. Painting ferrous metal (except stainless steel) exposed to view.
 - 6. Painting interior concrete block exposed to view.
 - 7. Painting gypsum drywall exposed to view.
 - 9. Painting pipes, pipe coverings, conduit, ducts, insulation, hangers, supports and other mechanical and electrical items and equipment exposed to view.
 - 10. Painting surfaces above, behind or below grilles, gratings, diffusers, louvers lighting fixtures, and the like, which are exposed to view through these items.
 - 11. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.
 - 12. Incidental painting and touching up as required to produce proper finish for painted surfaces, including touching up of factory finished items
 - 13. Painting of any surface not specifically mentioned to be painted herein or on construction documents, but for which painting is obviously necessary to complete the job, or work which comes within the intent of these specifications, is to be included as though specified.

1.2 RELATED WORK:

- A. Activity Hazard Analysis: Section 01 35 26, SAFETY REQUIREMENTS.
- C. Lead Paint Removal: Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- E. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 OPENINGS;

G. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Painter qualifications.
- D. Manufacturer's Literature and Data:
 - 1. Before work is started, or sample panels are prepared, submit manufacturer's literature and technical data, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one (1) list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.
- G. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. High temperature aluminum paint.
 - 3. Epoxy coating.
 - 4. Intumescent clear coating or fire retardant paint.
 - 5. Plastic floor coating.

1.4 DELIVERY AND STORAGE:

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.

- 3. Specify Coat Types: Prime; body; finish; etc.
- C. Maintain space for storage, and handling of painting materials and equipment in a ventilated, neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 7 and 30 degrees C (45 and 85 degrees F).

1.5 QUALITY ASSURANCE:

- A. Qualification of Painters: Use only qualified journeyman painters for the mixing and application of paint on exposed surfaces. Submit evidence that key personnel have successfully performed surface preparation and application of coating on a minimum of three (3) similar projects within the past three (3) years.
- B. Paint Coordination: Provide finish coats which are compatible with the prime paints used. Review other Sections of these specifications in which prime paints are to be provided to ensure compatibility of the total coatings system for the various substrates. Upon request from other subcontractors, furnish information on the characteristics of the finish materials proposed to be used, to ensure that compatible prime coats are used. Provide barrier coats over incompatible primers or remove and reprime as required. Notify the Contracting Officer Representative (COR) in writing of any anticipated problems using the coating systems as specified with substrates primed by others.

1.6 MOCK-UP PANEL: - NOT APPLICABLE

1.7 REGULATORY REQUIREMENTS:

- A. Paint materials are to conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - 1. Volatile Organic Compounds (VOC) Emissions Requirements: Field-applied paints and coatings that are inside the waterproofing system to not exceed limits of authorities having jurisdiction.

2. Lead-Base Paint:

- a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
- b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.

- c. Do not use coatings having a lead content over 0.06 percent by weight of non-volatile content.
- d. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- 3. Asbestos: Provide materials that do not contain asbestos.
- 4. Chromate, Cadmium, Mercury, and Silica: Provide materials that do not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
- 5. Human Carcinogens: Provide materials that do not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints.

1.8 SAFETY AND HEALTH

- A. Apply paint materials using safety methods and equipment in accordance with the following:
 - 1. Comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis (AHA) as specified in Section 01 35 26, SAFETY REQUIREMENTS. The AHA is to include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.
- B. Safety Methods Used During Paint Application: Comply with the requirements of SSPC PA Guide 10.
- C. Toxic Materials: To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:
 - 1. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.
 - 2. 29 CFR 1910.1000.
 - 3. ACHIH-BKLT and ACGHI-DOC, threshold limit values.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH):

 ACGIH TLV-BKLT-2012.....Threshold Limit Values (TLV) for Chemical

 Substances and Physical Agents and Biological

 Exposure Indices (BEIs)
 - ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and
 Biological Exposure Indices, (Seventh Edition)

C	ASME International (ASME):
· ·	A13.1-07(R2013)Scheme for the Identification of Piping Systems
D	Code of Federal Regulation (CFR):
υ.	40 CFR 59Determination of Volatile Matter Content, Water
	Content, Density Volume Solids, and Weight Solids
	of Surface Coating
E.	-
Ŀ.	Commercial Item Description (CID):
	A-A-1272APlaster Gypsum (Spackling Compound)
r.	Federal Specifications (Fed Spec):
	TT-P-1411APaint, Copolymer-Resin, Cementitious (For
	Waterproofing Concrete and Masonry Walls) (CEP)
G.	Master Painters Institute (MPI):
	1Aluminum Paint
	4Interior/ Exterior Latex Block Filler
	5Exterior Alkyd Wood Primer
	7Exterior Oil Wood Primer
	8Exterior Alkyd, Flat MPI Gloss Level 1
	9Exterior Alkyd Enamel MPI Gloss Level 6
	10 Exterior Latex, Flat
	11Exterior Latex, Semi-Gloss
	18Organic Zinc Rich Primer
	22Aluminum Paint, High Heat (up to 590% - 1100F)
	27Exterior / Interior Alkyd Floor Enamel, Gloss
	31Polyurethane, Moisture Cured, Clear Gloss
	36Knot Sealer
	43Interior Satin Latex, MPI Gloss Level 4
	44
	45Interior Primer Sealer
	46Interior Enamel Undercoat
	47Interior Alkyd, Semi-Gloss, MPI Gloss Level 5
	48
	50Interior Latex Primer Sealer
	51
	52Interior Latex, MPI Gloss Level 3
	53Interior Latex, Flat, MPI Gloss Level 1
	54
	59 Interior/Exterior Alkyd Porch & Floor Enamel, Low
	Gloss

60	.Interior/Exterior Latex Porch & Floor Paint, Low
	Gloss
66	.Interior Alkyd Fire Retardant, Clear Top-Coat (ULC
	Approved)
67	.Interior Latex Fire Retardant, Top-Coat (ULC
	Approved)
68	.Interior/ Exterior Latex Porch & Floor Paint,
	Gloss
71	.Polyurethane, Moisture Cured, Clear, Flat
77	.Epoxy Cold Cured, Gloss
79	.Marine Alkyd Metal Primer
90	.Interior Wood Stain, Semi-Transparent
91	.Wood Filler Paste
94	.Exterior Alkyd, Semi-Gloss
95	.Fast Drying Metal Primer
98	.High Build Epoxy Coating
101	.Epoxy Anti-Corrosive Metal Primer
108	.High Build Epoxy Coating, Low Gloss
114	.Interior Latex, Gloss
119	.Exterior Latex, High Gloss (acrylic)
134	.Galvanized Water Based Primer
135	.Non-Cementitious Galvanized Primer
138	.Interior High Performance Latex, MPI Gloss Level 2
139	.Interior High Performance Latex, MPI Gloss Level 3
140	.Interior High Performance Latex, MPI Gloss Level 4
141	.Interior High Performance Latex (SG) MPI Gloss
	Level 5
163	.Exterior Water Based Semi-Gloss Light Industrial
	Coating, MPI Gloss Level 5
G. Society for Protective	Coatings (SSPC):
SSPC SP 1-82(R2004)	.Solvent Cleaning
SSPC SP 2-82(R2004)	.Hand Tool Cleaning
SSPC SP 3-28(R2004)	.Power Tool Cleaning
SSPC SP 10/NACE No.2	.Near-White Blast Cleaning
SSPC PA Guide 10	.Guide to Safety and Health Requirements
H. Maple Flooring Manufact	curer's Association (MFMA):
I. U.S. National Archives	and Records Administration (NARA):
29 CFR 1910.1000	.Air Contaminants

J. Underwriter's Laboratory (UL)

PART 2 - PRODUCTS

2.1 MATERIALS:

A. Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents.

2.2 PAINT PROPERTIES:

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.
- C. Provide undercoat paint produced by the same manufacturer as the finish coats. Use only thinners approved by the paint manufacturer, and use only to recommended limits.
- E. VOC test method for paints and coatings is to be in accordance with 40 CFR 59 (EPA Method 24). Part 60, Appendix A with the exempt compounds' content determined by Method 303 (Determination of Exempt Compounds) in the South Coast Air Quality Management District's (SCAQMD) "Laboratory Methods of Analysis for Enforcement Samples" manual.

2.3 PLASTIC TAPE: - NOT APPLICABLE

PART 3 - EXECUTION

3.1 JOB CONDITIONS:

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each day's work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.

- b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the COR and the product manufacturer. Under no circumstances are application conditions to exceed manufacturer recommendations.
- c. When the relative humidity exceeds 85 percent; or to damp or wet surfaces; unless otherwise permitted by the paint manufacturer's printed instructions.
- 2. Maintain interior temperatures until paint dries hard.
- 3. Do no exterior painting when it is windy and dusty.
- 4. Do not paint in direct sunlight or on surfaces that the sun will warm.
- 5. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces only when allowed by manufacturer's printed instructions.
 - b. Concrete and masonry when permitted by manufacturer's recommendations, dampen surfaces to which water thinned acrylic and cementitious paints are applied with a fine mist of water on hot dry days to prevent excessive suction and to cool surface.

3.2 INSPECTION:

A. Examine the areas and conditions where painting and finishing are to be applied and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.3 GENERAL WORKMANSHIP REQUIREMENTS:

- A. Application may be by brush or roller. Spray application only upon acceptance from the COR in writing.
- B. Furnish to the COR a painting schedule indicating when the respective coats of paint for the various areas and surfaces will be completed. This schedule is to be kept current as the job progresses.
- C. Protect work at all times. Protect all adjacent work and materials by suitable covering or other method during progress of work. Upon completion of the work, remove all paint and varnish spots from floors, glass and other surfaces. Remove from the premises all rubbish and accumulated materials of whatever nature not caused by others and leave work in a clean condition.
- D. Remove and protect hardware, accessories, device plates, lighting fixtures, and factory finished work, and similar items, or provide in

- place protection. Upon completion of each space, carefully replace all removed items by workmen skilled in the trades involved.
- E. When indicated to be painted, remove electrical panel box covers and doors before painting walls. Paint separately and re-install after all paint is dry.
- F. Materials are to be applied under adequate illumination, evenly spread and flowed on smoothly to avoid runs, sags, holidays, brush marks, air bubbles and excessive roller stipple.
- G. Apply materials with a coverage to hide substrate completely. When color, stain, dirt or undercoats show through final coat of paint, the surface is to be covered by additional coats until the paint film is of uniform finish, color, appearance and coverage, at no additional cost to the Government.
- H. All coats are to be dry to manufacturer's recommendations before applying succeeding coats.
- I. All suction spots or "hot spots" in plaster after the application of the first coat are to be touched up before applying the second coat.
- J. Do not apply paint behind frameless mirrors that use mastic for adhering to wall surface.

3.4 SURFACE PREPARATION:

A. General:

- 1. The Contractor shall be held wholly responsible for the finished appearance and satisfactory completion of painting work. Properly prepare all surfaces to receive paint, which includes cleaning, sanding, and touching-up of all prime coats applied under other Sections of the work. Broom clean all spaces before painting is started. All surfaces to be painted or finished are to be completely dry, clean and smooth.
- 2. See other sections of specifications for specified surface conditions and prime coat.
- 3. Perform preparation and cleaning procedures in strict accordance with the paint manufacturer's instructions and as herein specified, for each particular substrate condition.
- 4. Clean surfaces before applying paint or surface treatments with materials and methods compatible with substrate and specified finish.

 Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. Schedule the cleaning

- and painting so that dust and other contaminants from the cleaning process will not fall in wet, newly painted surfaces.
- 5. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - a. Concrete: 12 percent.
 - b. Fiber-Cement Board: 12 percent.
 - c. Masonry (Clay and CMU's): 12 percent.
 - d. Wood: 15 percent.
 - e. Gypsum Board: 12 percent.
 - f. Plaster: 12 percent.

C. Ferrous Metals:

- Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
- 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
- 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. Fill flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Masonry, Concrete, Cement Board, Cement Plaster and Stucco:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - 2. Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.

- 4. Replace mortar and fill open joints, holes, cracks and depressions with new mortar. Do not fill weep holes. Finish to match adjacent surfaces.
- 5. Neutralize Concrete floors to be painted by washing with a solution of 1.4 Kg (3 pounds) of zinc sulfate crystals to 3.8 L (1 gallon) of water, allow to dry three (3) days and brush thoroughly free of crystals.
- 6. Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in Division 03, CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods.

F. Gypsum Plaster and Gypsum Board:

- 1. Remove efflorescence, loose and chalking plaster or finishing materials.
- 2. Remove dust, dirt, and other deterrents to paint adhesion.
- 3. Fill holes, cracks, and other depressions with CID-A-A-1272A finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.5 PAINT PREPARATION:

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two (2) component and two (2) part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.6 APPLICATION:

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three (3) coats; prime, body, and finish. When two (2) coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.

- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Apply by brush or roller. Spray application for new or existing occupied spaces only upon approval by acceptance from COR in writing.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
- F. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.7 PRIME PAINTING:

- A. After surface preparation, prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rabbets for stop and face glazing of wood, and for face glazing of steel.

(High Heat Resistant Coating).

- G. Gypsum Board:
 - 1. Surfaces scheduled to have /MPI 53 (Interior Latex, Flat)MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5)
 - 2. Primer: MPI 50 (Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) in shower and bathrooms.
- I. Concrete Masonry Units except glazed or integrally colored and decorative units:
 - 1. MPI 4 (Block Filler) on interior surfaces.
 - 2. Prime exterior surface as specified for exterior finishes.

3.8 EXTERIOR FINISHES: - NOT APPLICABLE

3.9 INTERIOR FINISHES:

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:

- 1. Apply to exposed surfaces.
- 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
- 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 b. Two (2) coats of MPI 48 (Interior Alkyd Gloss)

C. Gypsum Board:

- 1. One (1) coat of MPI 45 (Interior Primer Sealer) plus one (1) coat of MPI 139 (Interior High Performance Latex, MPI Gloss level 3).
- 2. Two (2) coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2).
- 3. One (1) coat of MPI 45 (Interior Primer Sealer) plus one (1) coat of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5) or MPI 114 (Interior Latex, Gloss).
- 4. One (1) coat of MPI 45 (Interior Primer Sealer) plus one (1) coat of MPI 48 (Interior Alkyd Gloss).
- E. Masonry and Concrete Walls:
 - 1. Over MPI 4 (Interior/Exterior Latex Block Filler) on CMU surfaces.
 - 2. Two (2) coats of MPI 53 (Interior Latex, Flat, MPI Gloss Level 1).
 - 3. Two (2) coats of MPI 138 (Interior High Performance Latex, MPI Gloss.

3.10 REFINISHING EXISTING PAINTED SURFACES:

- A. Clean, patch and repair existing surfaces as specified under "Surface Preparation". No "telegraphing" of lines, ridges, flakes, etc., through new surfacing is permitted. Where this occurs, sand smooth and re-finish until surface meets with COR's approval.
- B. Remove and reinstall items as specified under "General Workmanship Requirements".
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- G. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- H. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- I. Sand or dull glossy surfaces prior to painting.

J. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.11 PAINT COLOR:

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, "REFINISHING EXISTING PAINTED SURFACE" and "MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE".
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.12 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE: NOT APPLICABLE

3.13 BUILDING AND STRUCTURAL WORK FIELD PAINTING:

- A. Painting and finishing of interior and exterior work except as specified here-in-after.
 - 1. Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 3. Painting of ferrous metal and galvanized metal.
 - 4. Painting of wood with fire retardant paint exposed in attics, when used as mechanical equipment space (except shingles).
 - 5. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:

- a. Hardware except ferrous metal.
- b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
- c. Signs, fixtures, and other similar items integrally finished.

3. Concealed surfaces:

- a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
- b. Inside walls or other spaces behind access doors or panels.
- c. Surfaces concealed behind permanently installed casework and equipment.

5. Labels:

- a. Code required label, such as Underwriters Laboratories Inc.,

 Intertek Testing Service or Factory Mutual Research Corporation.
- b. Identification plates, instruction plates, performance rating, and nomenclature.

3.14 IDENTITY PAINTING SCHEDULE:

- A. Identify designated service in new buildings or projects with extensive remodeling in accordance with ASME A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. For existing spaces where work is minor match existing.
 - 1. Legend may be identified using snap-on coil plastic markers or by paint stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12.2 M (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow using black stencil paint.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on construction documents where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.

- d. Add Fuel oil grade numbers.
- 6. Legend name in full or in abbreviated form as follows:

	COLOR OF	COLOR OF	COLOR OF	LEGEND			
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	ABBREVIATIONS			
Blow-off		Green	White	Blow-off			
Boiler Feedwater		Green	White	Blr Feed			
A/C Condenser Wate	r						
Supply		Green	White	A/C Cond Wtr Sup			
A/C Condenser Wate	r						
Return		Green	White	A/C Cond Wtr Ret			
Chilled Water Supp	ly	Green	White	Ch. Wtr Sup			
Chilled Water Retu	rn	Green	White	Ch. Wtr Ret			
Shop Compressed Ai	r	Blue	White	Shop Air			
Air-Instrument Con	trols	Green	White	Air-Inst Cont			
Drain Line		Green	White	Drain			
Emergency Shower		Green	White	Emg Shower			
High Pressure Stea	m	Green	White	H.P*			
High Pressure Cond	ensate						
Return		Green	White	H.P. Ret*			
Medium Pressure St	eam	Green	White	M. P. Stm*			
Medium Pressure Co	ndensate						
Return		Green	White	M.P. Ret*			
Low Pressure Steam	Green	White	L.P. Stm*				
Low Pressure Conde	nsate						
Return		Green	White	L.P. Ret*			
High Temperature W	ater						
Supply		Green	White	H. Temp Wtr Sup			
High Temperature W	ater						
Return		Green	White	H. Temp Wtr Ret			
Hot Water Heating	Supply	Green	White	H. W. Htg Sup			
Hot Water Heating	Return	Green	White	H. W. Htg Ret			
Gravity Condensate	Return	Green	White	Gravity Cond Ret			
Pumped Condensate	Return	Green	White	Pumped Cond Ret			
Vacuum Condensate	Return	Green	White	Vac Cond Ret			
Fuel Oil - Grade		Brown	White	Fuel Oil-Grade			
(Diesel Fuel included under Fuel Oil)							
Boiler Water Sampl	ing	Green	White	Sample			
Chemical Feed		Green	White	Chem Feed			
Continuous Blow-Do	wn	Green	White	Cont. B D			
Pumped Condensate	Green	White	Pump Cond				
Pump Recirculating	Green	White	Pump-Recirc.				
Vent Line	Green	White	Vent				
Alkali	Orange	Black	Alk				

Bleach		Orange	Black	Bleach			
Detergent		Yellow	Yellow Black				
Liquid Supply		Yellow	Black	Liq Sup			
Reuse Water		Yellow	Black	Reuse Wtr			
Cold Water (Domestic)	White	Green	White	C.W. Dom			
Hot Water (Domestic)							
Supply	White	Yellow	Black	H.W. Dom			
Return	White	Yellow	Black	H.W. Dom Ret			
Tempered Water	White	Yellow	Black	Temp. Wtr			
Ice Water							
Supply	White	Green	White	Ice Wtr			
Return	White	Green	White	Ice Wtr Ret			
Reagent Grade Water		Green	White	RG			
Reverse Osmosis		Green	White	RO			
Sanitary Waste		Green	White	San Waste			
Sanitary Vent		Green	White	San Vent			
Storm Drainage		Green	White	St Drain			
Pump Drainage		Green	White	Pump Disch			
Chemical Resistant Pipe							
Waste		Orange	Black	Acid Waste			
Vent		Orange	Black	Acid Vent			
Atmospheric Vent		Green	White	ATV			
Silver Recovery		Green	White	Silver Rec			
Oral Evacuation		Green	White	Oral Evac			
Fuel Gas		Yellow	Black	Gas			
Fire Protection Water							
Sprinkler	Red	Red	White	Auto Spr			
Standpipe	Red	Red	White	Stand			
Sprinkler	Red	Red	White	Drain			

B. Fire and Smoke Partitions:

- 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
- 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
- 3. Locate not more than 6096 mm (20 feet) on center on corridor sides of partitions, and with a least one (1) message per room on room side of partition.
- 4. Use semi-gloss paint of color that contrasts with color of substrate.

3.15 PROTECTION CLEAN UP, AND TOUCH-UP:

A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.

- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 10 21 13 TOILET COMPARTMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies metal toilet partitions, urinal screens, and entrance screens.

1.2 RELATED WORK

- A. Overhead structural steel supports for ceiling hung pilasters: NOT APPLICABLE
- B. Color of baked enamel finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Grab bars and toilet tissue holders: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples: Prime coat of paint on 150 mm (six-inch) square of metal panel with baked enamel finish coat over half of panel.
- C. Manufacturer's Literature and Data: Specified items indicating all hardware and fittings, material, finish, and latching.
- D. Shop Drawings: Construction details at 1/2 scale, showing installation details, anchoring and leveling devices.
- E. Manufacturer's certificate, attesting that zinc-coatings conform to specified requirements.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.):
 FF-B-575C......Bolt, Hexagon and Square
- C. Code of Federal Regulations (CFR):
 - 40 CFR 247..... Comprehensive Procurement Guidelines for Products Containing Recovered Materials
- D. Commercial Item Descriptions (CID):
 - A-A-1925......Shield, Expansion (Nail Anchors)
 A-A-60003.....Partitions, Toilet, Complete

PART 2 - PRODUCTS

2.1 TOILET PARTITIONS:

- A. Metal: water resistant; graffiti resistant; non-absorbent; contain a minimum 30 percent post-consumer recycled plastic; Class C flame spread rating.
- B. Conform to Fed. CID A-A-60003, except as modified herein.
- C. Fabricate to dimensions shown or specified.
- D. Toilet Enclosures:
 - 1. Type 1, Style B (Ceiling hung).
 - 2. NOT APPLICABLE
 - 3. Reinforce panels shown to receive toilet tissue holders or grab bars.
 - 4. Upper pivots and lower hinges adjustable to hold doors open 30 degrees.
 - 5. Latching devices and hinges for handicap compartments shall comply with ADA requirements.
 - 6. Keeper:
 - a. U-slot to engage bar of throw latch.
 - b. Combined with rubber bumper stop.
 - 7. Wheelchair Toilets:
 - a. Upper pivots and lower hinges to hold out swinging doors in closed position.
 - b. Provide U-type doors pulls, approximately 100 mm (four inches) long on pull side.

8. Finish:

- a. Finish 1 (baked enamel) on steel doors, pilasters, and enclosure panels except those adjacent to urinals and as specified.
- b. Finish 3 (stainless steel) on panel of enclosure panels adjacent to urinals.

E. Urinal Screens:

- 1. Type III, Style E (wall hung), finish 2 or 3.
 - a. With integral flanges and continuous, full height wall anchor plate.
 - b. Option: Full height U-Type bracket.
 - c. Wall anchor plate drilled for 4 anchors on both sides of screen.
- 2. Screen 600 mm (24 inches) wide and 1060 mm (42 inches high).

F. Room Entrance Screens:

- 1. Type II, Style B, (ceiling hung).
- 2. Self-closing doors swinging into the toilet room.
- 3. Provide door pull on pull side and flat stainless steel push plate 250 mm by 70 mm (10 inches by 2-3/4 inches) with beveled ground edges, locate 1200 mm (four feet) above floor.
- 4. Provide door stop with rubber bumper on pilaster opposite pull.
- 5. Where doors open against wall, provide rubber tipped bumpers having a three inch projection, at point of contact of top edge of door.
- 6. Finish the same as toilet enclosures.
- G. Toilet Partition products shall comply with following standards for biobased materials:

Material Type	Percent by Weight
Phenolic Partition	55 percent biobased material

The minimum-content standards are based on the weight (not the volume) of the material in the insulating core only.

2.2 FASTENERS

- A. Partition Fasteners: CID A-A-60003.
- B. Use expansion bolts, CID A-A-60003, for anchoring to solid masonry or concrete.
- C. Use toggle bolts, CID A-A-60003, for anchoring to hollow masonry or stud framed walls.
- D. Use steel bolts FS-B-575, for anchoring pilasters to overhead steel supports.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install in rigid manner, straight, plumb and with all horizontal lines level.
 - 2. Conceal evidence of drilling, cutting and fitting in finish work.
 - 3. Use hex-bolts for through-bolting.
 - 4. Adjust hardware and leave in freely working order.
 - 5. Clean finished surfaces and leave free of imperfections.
- B. Panels and Pilasters:
 - Support panels, except urinal screens, and pilaster abutting building walls near top and bottom by stirrup supports secured to partitions with through-bolts.

- 2. Secure stirrups to walls with two suitable anchoring devices for each stirrup.
- 3. Secure panels to faces of pilaster near top and bottom with stirrup supports, through-bolted to panels and machine screwed to each pilaster.
- 4. Secure edges of panels to edges of pilasters near top and bottom with "U" shaped brackets.
- 5. Where overhead braced, secure pilasters to building walls by headrails clamped on or set into top of each pilaster.
 - a. Secure clamps to pilasters with two through-bolts to each clamp.
 - b. When headrails are set into pilasters, through-bolt them to the pilasters.
 - c. Support headrails on wall flange fittings secured to building walls with minimum of two anchor bolts to each flange fitting.

C. Urinal Screens:

- 1. Anchor urinal screen flange to walls with minimum of four bolts both side of panel.
- 2. Space anchors at top and bottom and equally in between.

- - - E N D - - -

SECTION 10 44 13 FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 DESCRIPTION

This section covers recessed fire extinguisher cabinets.

1.2 RELATED WORK

A. Field Painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Fire extinguisher cabinet including installation instruction and rough opening required.

1.4 APPLICATION PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM):

 D4802-10......Poly (Methyl Methacrylate) Acrylic Plastic

 Sheet.

PART 2 - PRODUCTS

2.1 FIRE EXTINGUISHER CABINET

Recessed type with flat trim of size and design shown.

2.2 FABRICATION

- A. Form body of cabinet from 0.9 mm (0.0359 inch) thick sheet steel.
- B. Fabricate door and trim from 1.2 mm (0.0478 inch) thick sheet steel with all face joints fully welded and ground smooth.
 - 1. Glaze doors with 6 mm (1/4 inch) thick ASTM D4802, clear acrylic sheet, Category B-1, Finish 1.
 - 2. Design doors to open 180 degrees.
 - 3. Provide continuous hinge, pull handle, and adjustable roller catch.

2.3 FINISH

- A. Finish interior of cabinet body with baked-on semigloss white enamel.
- B. Finish door, frame with manufacturer's standard baked-on prime coat suitable for field painting.

PART 3 - EXECUTION

A. Install fire extinguisher cabinets in prepared openings and secure in accordance with manufacturer's instructions.

08-01-14

B. Install cabinet so that bottom of cabinet is 914 mm (36 inches) above finished floor.

- - - E N D - - -

SECTION 12 24 00 WINDOW SHADES

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section includes venetian blinds. Provide window shades complete, including brackets, fittings and hardware.

1.2 RELATED WORK:

A. Color of exposed parts of venetian blinds, (including tapes and cords) /: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 QUALITY ASSURANCE:

- A. Manufacturer's Qualification: Submit evidence that the manufacture has a minimum of three (3) years' experience in providing item of type specified, and that the blinds have performed satisfactorily on similar installations. Submit qualifications.
- C. Electrical Requirements:
 - 1. NFPA 70 Article 100.
 - 2. Listed and labeled in accordance with UL 325.
 - 3. Marked for intended use, and tested as a system.
 - 4. Individual testing of components is not acceptable in lieu of system testing.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
- 1. Venetian blind slats, 305 mm (12 inches) long, including cord and tape, showing color and finish.
- C. Manufacturer's literature and data; showing details of construction and hardware for:
 - Venetian blindsD. Shop Drawings: Provide fabrication and installation details for cloth shades, including shade cloth materials, their orientation to rollers, and their seam and batten locations.
- E. Fire Testing: Submit report of flame spread and smoke developed during product material tests by independent testing laboratory.
- F. Manufacturer's warranty.

1.5 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their window shades for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer's warranty.

1.6 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced to in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.):

AA-V-00200B......Venetian Blinds, Shade, Roller, Window, Roller, Slat, Cord, and Accessories

- C. ASTM International (ASTM):
 - A240/A240M-14......Chromium and Chromium-Nickel Stainless Steel

 Plate, Sheet, and Strip for Pressure Vessels

 and for General Applications
 - B221-14......Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes
 - B221M-13.....Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes (Metric)
 - G21-13..... Determining Resistance of Synthetic Polymeric

 Materials to Fungi
- D. National Electric Manufacturer's Association (NEMA):

ICS 6-93(R2006)......Industrial Control and Systems Closures

- E. National Fire Protection Association (NFPA):
 - 70-14.....National Electrical Code (NEC)

701-15......Fire Tests for Flame Propagation of Textiles and Films

- F. Underwriters Laboratories Inc. (UL):
 - 325-06(R2013).......Door, Drapery, Gate, Louver, and Window Operators and Systems

PART 2 - PRODUCTS

2.1 CLOTH SHADES: - NOT APPLICABLE

2.2 VENETIAN BLINDS:

A. Fed. Spec. AA-V-00200B, Type II, 25 mm (1 inch slats) fabricated of aluminum. Pre-production sample is not required.

657-17-105JC Restore Utility Systems, Building 6A

B. Manual Lift-Operator and Tilt-Operator Locations: Manufacturer's standard Right side and left side of headrail, respectively.

2.3 VERTICAL BLIND LOUVER BLADES: - NOT APPLICABLE

2.4 VENETIAN BLINDS AND SHADES ENCLOSED IN WINDOWS FOR MENTAL HEALTH AND BEHAVIORAL CARE UNITS: - NOT APPLICABLE

2.5 MATERIALS:

- A. Stainless Steel: ASTM A240/A240M.
- B. Extruded Aluminum: ASTM B221M (B221).
- C. Cords for Venetian Blinds: No. 4 braided nylon or No. 4-1/2 braided cotton or #10 stainless steel chain having not less than 80 kg (175 pounds) breaking strength.

2.6 FASTENINGS:

A. Zinc-coated or cadmium plated steel or stainless steel fastenings of length and type recommended by manufacturer. Except as otherwise specified, provide fastenings for installation with various structural materials as follows:

Type of Fastening	Structural Material
Wood screw	Wood
Tap screw	Metal
Case-hardened, self- tapping screw in pre- drilled hole	Solid masonry, concrete
Screw or bolt in expansion shields	Solid masonry, concrete
Toggle bolts	Hollow blocks, gypsum wallboard, plaster

2.7 FABRICATION:

- A. Fabricate venetian blinds to fit measurements of finished openings obtained at site.
- C. Venetian Blinds: Provide venetian blinds with 25 mm (1 inch) width horizontal slats positioned within ladder tapes. Provide multiple blinds of same type in openings and divided at mullions.
 - 1. Provide head-rails that enclose operating mechanism on three sides and ends.
 - 2. Provide enclosed bottom rails that prevent contact of tapes and sill at underside.

- 3. In lobbies, provide aluminum bottom rails and head boxes.
 - 4. Finish concealed metal work of head-rails including concealed mechanism, with one (1) shop coat of paint. Do not paint parts that have non-rusting finish, or parts where motion of friction occurs.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Measure openings before fabrication. Do not scale construction documents.
- B. Venetian Blinds: Support blinds in level position by brackets and intermediate supports that -permit easy removal and replacement of units without damage to blind, or adjacent surfaces. Provide at least two (2) fasteners for each bracket or other support.
 - Install blinds between jambs on window openings with steel trim.
 Mount brackets on trim reveal, flush with face of trim and secure with steel screws.
 - 2. Install blinds between jambs on window openings with wood trim.

 Mount brackets on trim or on wood plaster-mold set against plaster or other wall finish, and secure in place.
 - 3. Mount brackets and intermediate supports of lobby blinds on face of trim members, and secure with stainless steel standard tap or thread-forming machine screws, or by cadmium-plated molley or toggle bolts. Penetrate screws and bolts through, and lock behind steel sub-frame.
 - 4. Where blinds abut glass partitions of vestibules, extend head rails to trim at head of partition frame with slats sufficiently long to clear transom bars.
 - 5. Furnish one (1) brush of an approved type for every 50 blinds provided, suitable for cleaning blinds.

3.2 ADJUSTING:

A. Adjust and shades to operate smoothly, free from binding or malfunction throughout entire operational range.

3.3 CLEANING AND PROTECTION:

- A. Clean shade surfaces after installation, according to manufacturer's written instructions.
- B. Provide final protection and maintain conditions that ensure that shades are without damage or deterioration at time of Substantial Completion.

657-17-104JC Restore Utility Systems, Building 6
657-17-105JC Restore Utility Systems, Building 6A

09-01-15

C. Replace damaged shades that cannot be repaired, in a manner approved by COR before time of Substantial Completion.

3.4 DEMONSTRATION: - NOT APPLICABLE

- - - E N D - - -

SECTION 12 32 00 MANUFACTURED WOOD CASEWORK

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies plastic laminate casework as detailed on the construction documents, including related components and accessories required to form integral units. Wood casework items shown on the construction documents, but not specified below are to be included as part of the work under this section, and applicable portions of the specification are to apply to these items.

1.2 RELATED WORK:

- C. Color of Casework Finish: Section 09 06 00, SCHEDULE OF FINISHES.
- E. Backing Plates for Wall Mounted Casework: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- H. Countertop Construction and Materials and Items Installed in Countertops: Section 12 36 00, COUNTERTOPS.
- I. Plumbing Requirements Related to Casework: Division 22, PLUMBING.
- J. Electrical Lighting and Power Requirements Related to Casework: Division 26, ELECTRICAL.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Locks for doors and drawers.
 - 2. Adhesive cements.
 - 3. Casework hardware.
- C. Samples:
 - 2. Plastic laminate.
- D. Shop Drawings (1/2 full size):
 - 1. Each casework type, showing details of construction, including materials, hardware and accessories.
 - 2. Fastenings and method of installation.
- E. Certification:
 - 1. Manufacturer's qualifications specified.
 - 2. Installer's qualifications specified.

1.4 QUALITY ASSURANCE:

- A. Approval by COR is required of manufacturer and installer based upon certification of qualifications specified.
- B. Manufacturer's qualifications:
 - Manufacturer is regularly engaged in design and manufacture of plastic laminate casework, casework components and accessories of scope and type similar to indicated requirements for a period of not less than five (5) years.
 - 2. Manufacturer has successfully completed at least three (3) projects of scope and type similar to indicated requirements.
 - 3. Submit manufacturer's qualifications and list of projects, including owner contact information.
- C. Installer Qualifications:
 - 1. Installer has completed at least three (3) projects in last five (5) years in which these products were installed.
 - 2. Submit installer qualifications.

1.5 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their wood casework for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.6 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. ASTM International (ASTM):

A240/A240M-14	.Chromi	um and	Chror	nium-N:	ickel	Stainles	ss Steel
	Plate,	Sheet,	and	Strip	for	Pressure	Vessels
	and for	r Gener	al Ar	oplicat	tions	3	

A1008/A1008M-13......Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy

C1036-11E1(R2012)......Flat Glass

C. Builders Hardware Manufacturers Association (BHMA):

A156.1-13.....Butts and Hinges

A156.9-10......Cabinet Hardware

A156.5-14.....Auxiliary Locks and Associated Products

A156.11-14......Cabinet Locks

657-17-104JC Restore Utility Systems, Building 6							
657-17-105JC Restore Utility Systems, Building 6A 09-01-15)						
D. Composite Panel Association (CPA):							
A208.1-09Particleboard							
A208.2-09Medium Density Fiberboard (MDF) for Interior							
Applications							
E. U.S. Department of Commerce Product Standards (Prod. Std):							
PS 1-09Construction and Industrial Plywood							
F. Hardwood, Plywood and Veneer Association (HPVA):							
HP-1-09Hardwood and Decorative Plywood							
G. Architectural Woodwork Institute (AWI):							
Architectural Woodwork Standards, Edition 2 Certification Program -							
2014							
H. American Society of Mechanical Engineers (ASME):							
All2.18.1-12Plumbing Fixture Fittings							
I. National Electrical Manufacturers Association (NEMA):							
LD 3-05High Pressure Decorative Laminates							
J. Underwriters Laboratories Inc. (UL):							
437-08(R2013)Key Locks							
K. Scientific Equipment and Furniture Association (SEFA):							
2.3-10Installation of Scientific Laboratory Furniture	;						
and Equipment							
PART 2 - PRODUCTS							

PA

2.1 PLYWOOD, HARDWOOD FACE VENEER: - NOT APPLICABLE

2.2 PLASTIC LAMINATE:

- A. NEMA LD 3.
- B. Exposed decorative surfaces, both sides of cabinet doors, and for items having plastic laminate finish. General purpose Type HGL.
- C. Cabinet Interiors Including Shelving: Both of following options to comply with NEMA LD 3 as a minimum.
- 1. Plastic laminate clad plywood.

2.3 PLYWOOD, SOFTWOOD:

A. Prod. Std. PS1, five (5) ply construction from 13 mm to 28 mm (1/2 inch to 1-1/8 inch) thickness, and seven (7) ply for 31 mm (1 1/4 inch) thickness.

2.4 PARTICLEBOARD: NOT APPLICABLE

2.5 MEDIUM DENSITY FIBERBOARD (MDF): NOT APPLICABLE

2.6 GLASS:-NOT APPLICABLE

2.7 HARDWARE:

- A. Cabinet Locks:
 - 1. Provide where locks are indicated on construction documents.
 - 2. Locked pair of hinged door over 915 mm (36 inches) high:
 - a. ANSI/BHMA A156.5, key one side.
 - b. On active leaf use three (3) point locking device, consisting of two (2) steel rods and lever controlled cam at lock, to operate by lever having lock cylinder housed therein.
 - c. On inactive leaf provide dummy lever of same design.
 - d. Provide keeper holes for locking device rods and cam.
 - 3. Door and Drawer: ANSI/BHMA A156.11 cam locks. Provide one (1) type for each condition as follows:
 - a. Drawer and Hinged Door up to 915 mm (36 inches) high: E07261.
 - b. Drawer and Hinged Door: Pin-tumbler, cylinder type lock with not less than four (4) pins or a UL 437 rated wafer lock with brass working parts and case.
 - c. Sliding Door: E07161.
 - 4. Key locks differently for each type casework and master key for each service.
 - b. Furnish two (2) keys per lock.
 - c. Furnish six (6) master keys per service or Nursing Unit.
 - 5. Marking of Locks and Keys:
 - a. Name of manufacturer, or trademark which can readily be identified legibly marked on each lock and key change number marked on exposed face of lock.
 - b. Key change numbers stamped on keys.
 - c. Key change numbers to provide sufficient information for manufacturer to replace key.

B. Hinged Doors:

1. Provide doors 915 mm (36 inches) and more in height with three (3) hinges and doors less than 915 mm (36 inches) in height is to have two (2) hinges. Each door is to close against two (2) rubber bumpers.

C. Door Catches:

1. Friction or Magnetic type, fabricated with metal housing.

2. Provide one (1) catch for cabinet doors 1220 mm (48 inches) high and under, and two (2) for doors over 1220 mm (48 inches) high.

D. Drawer and Door Pulls:

1. Doors and drawers to have flush pulls, fabricated of either chromium-plated brass, chromium plated steel, stainless steel, or anodized aluminum. Drawer and door pulls to be of a design that can be operated with a force of 22.2 N (5 pounds) or less, with one (1) hand and not require tight grasping, pinching or twisting of the wrist.

E. Drawer Slides:

- 1. Full extension steel slides with nylon ball-bearing rollers.
- 2. Slides to have positive stop.
- 3. Equip drawers with rubber bumpers.
- G. Shelf Standards (Except For Fixed Shelves):
 - 1. Bright zinc-plated steel for recessed mounting with screws, 16 mm (5/8 inch) wide by 5 mm (3/16 inch) high providing 13 mm (1/2 inch) adjustment, complete with shelf supports.

2.8 MANUFACTURED PRODUCTS:

- A. When two (2) or more units are required, use products of one (1) manufacturer.
- B. Manufacturer of casework assemblies is to assume complete responsibility for the final assembled unit.
- C. Provide products of a single manufacturer for parts which are alike.

2.9 FABRICATION:

- A. Casework to be of the flush overlay design and, except as otherwise specified, be of Premium Grade construction and of component thickness in conformance with AWI Quality Standards.
- B. Fabricate casework of plastic laminated covered plywood as follows:
 - 1. Where shown, doors, drawers, shelves and all semi-concealed surfaces to be plastic laminated.
- D. Support Members for Tops of Tables and Countertops:
 - 1. Construct as detailed on construction documents.
 - 2. Provide miscellaneous steel members and anchor as shown on construction drawings.
- E. Legs For Counters:
 - 1. Fabricate legs for counters of 1.6 mm (0.0635 inch) thick, 38 mm (1-1/2 inch) square tubular stainless steel.

- 2. Secure legs to counter tops and provide legs at bottom with shoes not less than 25 mm (1 inch) in height.
- 3. Fabricate shoes of stainless steel, aluminum or chromium plated brass.

2.10 PRODUCTS OF OTHER COMPONENTS DIRECTLY RELATED TO CASEWORK:

- C. Refer to Section 09 22 16, NON-STRUCTURAL METAL FRAMING for backing plates used in conjunction with wall assemblies for the attachment of casework systems.
- F. Refer to Division 22, PLUMBING for the following work related to casework systems:
 - 1. Sinks, faucets and other plumbing service fixtures, venting, and piping systems.
 - 2. Compressed air, gas, vacuum and piping systems.
- G. Refer to Division 26, ELECTRICAL for the following work related to casework systems:
 - 1. Connections and wiring devices.
 - 2. Connections and lighting fixtures except when factory installed by the manufacturer.

PART 3 - EXECUTION

3.1 COORDINATION:

- A. Begin only after work of other trades is complete, including wall and floor finish completed, ceilings installed, light fixtures and diffusers installed and connected and area free of trash and debris.
- B. Verify location and size of mechanical and electrical services as required and perform cutting of components of work installed by other trades.
- C. Verify reinforcement of walls and partitions for support and anchorage of casework.
- D. Coordinate with other Divisions and Sections of the specification for work related to installation of casework systems to avoid interference and completion of service connections.

3.2 INSTALLATION:

- A. Install casework in accordance with manufacturer's written instructions.
 - 1. Install in available space; arranged for safe and convenient operation and maintenance.
 - 2. Align cabinets for flush joints except where shown otherwise.

- 3. Install with bottom of wall cabinets in alignment and tops of base cabinets aligned level, plumb, true, and straight to a tolerance of 3.2 mm in 2438 mm (1/8 inch in 96 inches).
- 4. Install corner cabinets with hinges on corner side with filler or spacers sufficient to allow opening of drawers.

B. Support Rails:

- 1. Install true to horizontal at heights shown on construction documents; maximum tolerance for uneven floors is plus or minus 13 mm (1/2 inch).
- 2. Shim as necessary to accommodate variations in wall surface not exceeding 5 mm (3/16 inch) at fastener.

C. Wall Strips:

- 1. Install true to vertical and spaced as shown on construction documents.
- 2. Align slots to assure that hanging units will be level.

D. Plug Buttons:

- 1. Install plug buttons in predrilled or prepunched perforations not used.
- 2. Use chromium plate plug buttons or buttons finish to match adjacent surfaces.
- E. Seal junctures of casework systems with mildew-resistant silicone sealants as specified in Section 07 92 00, JOINT SEALANTS.

3.3. CLOSURES AND FILLER PLATES:

- A. Close openings larger than 6 mm (1/4 inch) wide between cabinets and adjacent walls with flat, steel closure strips, scribed to required contours, or machined formed steel fillers with returns, and secured with sheet metal screws to tubular or channel members of units, or bolts where exposed on inside.
- B. Where ceilings interfere with installation of sloping tops, omit sloping tops and provide flat steel filler plates.
- C. Secure filler plates to casework top members, unless shown otherwise on construction documents.
- D. Secure filler plates more than 152 mm (6 inches) in width top edge to a continuous 25 x 25 mm (1 x 1 inch) 0.889 mm (1/16 inch) thick steel formed steel angle with screws.
- E. Anchor angle to ceiling with toggle bolts.
- F. Install closure strips at exposed ends of pipe space and offset opening into concealed space.

G. Finish closure strips and fillers with same finishes as cabinets.

3.4 FASTENINGS AND ANCHORAGE:

- A. Do not anchor to wood ground strips.
- B. Provide hat shape metal spacers where fasteners span gaps or spaces.
- C. Use 6 mm (1/4 inch) diameter toggle or expansion bolts, or other appropriate size and type fastening device for securing casework to walls or floor. Use expansion bolts shields having holding power beyond tensile and shear strength of bolt and breaking strength of bolt head.
- D. Use 6 mm (1/4 inch) diameter hex bolts for securing cabinets together.
- E. Use 6 mm (1/4 inch) by minimum 38 mm (1-1/2 inch) length lag bolt anchorage to wood blocking for concealed fasteners.
- F. Use not less than No. 12 or 14 wood screws with not less than 38 mm (1-1/2 inch) penetration into wood blocking.
- G. Space fastening devices 305 mm (12 inches) on center with minimum of three (3) fasteners in 915 or 1220 mm (3 or 4 foot) unit width.
- H. Anchor floor mounted cabinets with a minimum of four (4) bolts through corner gussets. Anchor bolts may be combined with or separate from leveling device.
- I. Secure cabinets in alignment with hex bolts or other internal fastener devices removable from interior of cabinets without special tools. Do not use fastener devices which require removal of tops for access.
- J. Where units abut end to end, anchor together at top and bottom of sides at front and back. Where units are back to back, anchor backs together at corners with hex bolts placed inconspicuously inside casework.
- K. Where type, size, or spacing of fastenings is not shown on construction documents or specified, show on shop drawings proposed fastenings and method of installation.

3.5 ADJUSTMENTS:

- A. Adjust equipment to insure proper alignment and operation.
- B. Replace or repair damaged or improperly operating materials, components or equipment.

3.6 CLEANING:

- A. Immediately following installation, clean each item, removing finger marks, soil and foreign matter.
- B. Remove from job site trash, debris and packing materials.
- C. Leave installed areas clean of dust and debris.

3.7 INSTRUCTIONS:

- A. Provide operational and cleaning manuals and verbal instructions in accordance with Article INSTRUCTIONS, SECTION 01 00 00, GENERAL REQUIREMENTS.
- B. Provide in service training both prior to and after facility opening. Coordinate in service activities with COR.

- - - E N D - - -

SECTION 12 36 00 COUNTERTOPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies casework countertops with integral accessories.
- B. Integral accessories include:
 - 1. Sinks with traps and drains.
 - 2. Eye and Face Wash Units.

1.2 RELATED WORK

- A. Color and patterns of plastic laminate: SECTION 09 06 00, SCHEDULE FOR FINISHES.
- B. DIVISION 22, PLUMBING.
- D. Equipment Reference Manual for SECTION 12 36 00, COUNTERTOPS.

1.3 SUBMITTALS

- A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings
 - 1. Show dimensions of section and method of assembly.
 - 2. Show details of construction at a scale of ½ inch to a foot.
- C. Samples:
 - 1. 150 mm (6 inch) square samples each top.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Hardboard Association (AHA):

A135.4-95......Basic Hardboard

C. Composite Panel Association (CPA):

A208.1-09.....Particleboard

D. American Society of Mechanical Engineers (ASME):

A112.18.1-12.....Plumbing Supply Fittings

A112.1.2-12.....Air Gaps in Plumbing System

A112.19.3-08(R2004).....Stainless Steel Plumbing Fixtures (Designed for Residential Use)

E. American Society for Testing and Materials (ASTM):

A167-99 (R2009)......Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

657-17-104JC Restore Utility Systems, Building 6			
657-17-105JC Restore Utility Systems, Building 6A 12-01-15			
A1008-10Steel, Sheet, Cold-Rolled, Carbon, Structural,			
High Strength, Low Alloy			
D256-10Pendulum Impact Resistance of Plastic			
D570-98(R2005)Water Absorption of Plastics			
D638-10Tensile Properties of Plastics			
D785-08Rockwell Hardness of Plastics and Electrical			
Insulating Materials			
D790-10Flexural Properties of Unreinforced and			
Reinforced Plastics and Electrical Insulating			
Materials			
D4690-99(2005)Urea-Formaldehyde Resin Adhesives			
F. Federal Specifications (FS):			
A-A-1936Adhesive, Contact, Neoprene Rubber			
G. U.S. Department of Commerce, Product Standards (PS):			
PS 1-95Construction and Industrial Plywood			
H. National Electrical Manufacturers Association (NEMA):			
LD 3-05High Pressure Decorative Laminates			

PART 2 - PRODUCTS

2.1 MATERIALS

- K. Solid Polymer Material:
 - 1. Filled Methyl Methacrylic Polymer.
 - 2. Performance properties required:

Property	Result	Test	
Elongation	0.3% min.	ASTM D638 ASTM D785 NEMA LD3.1	
Hardness	90 Rockwell M		
Gloss (60° Gordon)	5-20		
Color stability	No change	NEMA LD3 except 200 hour	
Abrasion resistance	No loss of pattern Max wear depth 0.0762 mm (0.003 in) - 10000 cycles	NEMA LD3	
Water absorption weight (5 max)	24 hours 0.9	ASTM D-570	
Izod impact	14 N·m/m (0.25 ft-lb/in)	ASTM D256 (Method A)	
Impact resistance	No fracture	NEMA LD-3 900 mm (36") drop 1 kg (2 lb.) ball	

Property	Result	Test	
Boiling water surface resistance	No visible change	NEMA LD3	
High temperature resistance	Slight surface dulling	NEMA LD3	

- 3. Cast into sheet form and bowl form.
- 4. Color throughout with subtle veining through thickness.
- 5. Joint adhesive and sealer: Manufacturers silicone adhesive and sealant for joining methyl methacrylic polymer sheet.
- 6. Bio-based products will be preferred.

2.2 SINKS

- D. Sinks of Methyl Methacrylic Polymer:
 - 1. Minimum 19 mm (3/4 inch) thick, cast into bowl shape with overflow to drain.
 - 2. Provide for underhung installation to countertop.
 - 3. Provide openings for drain.

2.3 TRAPS AND FITTINGS - NOT APPLICABLE

2.4 WATER FAUCETS - NOT APPLICABLE

2.5 FUEL GAS, LABORATORY AIR AND LABORATORY VACUUM FIXTURES - NOT APPLICABLE

2.6 FIXTURE IDENTIFICATION

- A. Code fixtures with full view plastic index buttons.
- B. Use following colors and codes:

SERVICE	COLOR	CODE	COLOR OF LETTERS
Cold Water	Dark Green	CW	White
Hot Water	Red	HW	White
Laboratory Air	Orange	AIR	Black
Fuel Gas	Dark Blue	GAS	White
Laboratory Vacuum	Yellow	VAC	Black
Distilled Water	White	DW	Black
Deionized Water	White	DI	Black
Oxygen	Light Green	OXY	White
Hydrogen	Pink	Н	Black
Nitrogen	Gray	N	Black
All Other Gases	Light Blue	CHEM.SYM.	Black

2.7 ELECTRICAL RECEPTACLES - NOT APPLICABLE

2.8 ELECTRIC DROP-IN HOTPLATE (RANGE) UNITS - NOT APPLICABLE

2.9 FILM VIEWER - NOT APPLICABLE

2.10 COUNTERTOPS

- A. Fabricate in largest sections practicable.
- B. Fabricate with joints flush on top surface.
- C. Fabricate countertops to overhang front of cabinets and end of assemblies 25 mm (one inch) except where against walls or cabinets.
- D. Provide 1 mm (0.039 inch) thick metal plate connectors or fastening devices (except epoxy resin tops).
- E. Join edges in a chemical resistant waterproof cement or epoxy cement, except weld metal tops.
- F. Fabricate with end splashes where against walls or cabinets.
- G. Splash Backs and End Splashes:
 - 1. Not less than 19 mm (3/4 inch) thick.
 - 2. Height 100 mm (4 inches) unless noted otherwise.
 - 3. Laboratories and pharmacy heights or where fixtures or outlets occur: Not less than 150 mm (6 inches) unless noted otherwise.
 - 4. Fabricate epoxy splash back in maximum lengths practical of the same material.
- H. Drill or cutout for sinks, and penetrations.
 - 1. Accurately cut for size of penetration.
 - 2. Cutout for VL 81 photographic enlarger cabinet.
 - a. Finish cutout to fit flush with vertical side of cabinet, allowing adjustable shelf to fit into cutout space of cabinet at counter top level. Finish cutout surface as an exposed edge.
 - b. Provide braces under enlarger space to support not less than 45 kg (100 pounds) centered on opening side along backsplash.
- Q. Methyl Methacrylic Polymer Tops:
 - 1. Fabricate countertop of methyl methacrylic polymer cast sheet, 19 mm (3/4 inch) thick.
 - 2. Fabricate back splash and end splash to height shown.
 - 3. Fabricate skirt to depth shown.
 - 4. Fabricate with marine edge where sinks occur.
 - 5. Fabricate in one piece for full length from corner to corner up to 3600 mm (12 feet).
 - 6. Join pieces with adhesive sealant.
 - 7. Cut out countertop for lavatories, plumbing trim.

8. Provide concealed fasteners and epoxy cement for anchorage of sinks to countertop.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Before installing countertops verify that wall surfaces have been finished as specified and that mechanical and electrical service locations are as required.
- B. Secure countertops to supporting rails of cabinets with metal fastening devices, or screws through pierced slots in rails.
 - 1. Where type, size or spacing of fastenings is not shown or specified, submit shop drawings showing proposed fastenings and method of installation.
 - 2. Use round head bolts or screws.
 - 3. Use epoxy or silicone to fasten the epoxy resin countertops to the cabinets.
 - 4. Use wood or sheet metal screws for wood or plastic laminate tops; minimum penetration into top 16 mm (5/8 inch), screw size No 8, or 10.

D. Sinks

- 3. Install methyl methacrylic polymer sinks in manufacturers recommended adhesive sealer or epoxy compound to underside of methyl methacrylic polymer countertop.
 - a. Bolt or screw to countertop to prevent separation of bowl and fracture of adhesive sealant joint.
 - b. Install drain and traps to sink.

3.2 PROTECTION AND CLEANING

- A. Tightly cover and protect against dirt, water, and chemical or mechanical injury.
- B. Clean at completion of work.

- - - E N D - - -

SECTION 21 08 00

COMMISSIONING OF FIRE SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Fire Suppression systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 21 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 21, is required in cooperation with the VA and the Commissioning Agent.
- B. The Fire Suppression systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the building fire suppression systems will require inspection of individual elements of the fire suppression construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and 657-17-104JC Restore Utility Systems, Building 6

657-17-105JC Restore Utility Systems, Building 6A

11-1-16

resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
COR. The Contractor shall review and comment on the tests prior to
approval. The Contractor shall provide the required labor, materials,
and test equipment identified in the test procedure to perform the
tests. The Commissioning Agent will witness and document the testing.
The Contractor shall sign the test reports to verify tests were
performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS,
for additional details.

3.5 TRAINING OF VA PERSONNEL - NOT APPLICABLE

---- END ----

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation.
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.

- b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

1. Qualifications:

- a. Provide a copy of the installing contractors fire sprinkler and state contractor's license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.

- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- b. Submit calculations of loads for sizing of sway bracing in accordance with NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.

- 3) One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Missouri fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-13......Installation of Sprinkler Systems
25-14.....Inspection, Testing, and Maintenance of Water-

Based Fire Protection Systems

101-15.....Life Safety Code

170-15......Fire Safety Symbols

C. Underwriters Laboratories, Inc. (UL):

Fire Protection Equipment Directory (2011)

D. Factory Mutual Engineering Corporation (FM):
 Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 - 1. Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13
 - 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
 - 3. Piping sizes 65 mm (2 $\frac{1}{2}$ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
 - 5. Plastic piping shall not be permitted except for drain piping.
 - 6. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

A. General:

- 1. Valves shall be in accordance with NFPA 13.
- 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.3 FIRE DEPARTMENT SIAMESE CONNECTION - NOT APPLICABLE

2.4 SPRINKLERS

- A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoistways, elevator machine rooms, and generator rooms.
- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.5 SPRINKLER CABINET

- A. Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13. Locate adjacent to the riser.
- B. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - 1. Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.

06-01-15

- 2. General description of where each sprinkler is used.
- 3. Quantity of each type present in the cabinet.
- 4. Issue or revision date of list.

2.6 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.7 SWITCHES: - NOT APPLICABLE

2.8 GAUGES

Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.11 ANTIFREEZE SOLUTION - NOT APPLICABLE

2.12 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping

shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, and seismic bracing shall be installed accordance with NFPA 13.

- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- I. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.
- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.

- L. Where dry pendent sprinklers are used for freezers or similar spaces and they are connected to the wet pipe system, provide an EPDM boot around the dry pendent sprinkler on the heated side and securely seal to the pipe and freezer to prevent condensation from entering the freezer.
- M. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- N. For each fire department connection, provide the symbolic sign given in NFPA 170 and locate 2400 to 3000 mm (8 to 10 feet) above each connection location. Size the sign to 450 by 450 mm (18 by 18 inches) with the symbol being at least 350 by 350 mm (14 by 14 inches).
- O. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- Q. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- R. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)
 - 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.

b. Provide signage indicating the number and location of low point drains.

3. Hydraulic Placards:

- a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- S. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- T. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior

657-17-104JC Restore Utility Systems, Building 6

657-17-105JC Restore Utility Systems, Building 6A

06-01-15

to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. CDA: Copper Development Association
 - 14. C: Celsius
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. COR: Contracting Officer's Representative
 - 18. CPVC: Chlorinated Polyvinyl Chloride
 - 19. CR: Chloroprene
 - 20. CRS: Corrosion Resistant Steel
 - 21. CWP: Cold Working Pressure
 - 22. CxA: Commissioning Agent
 - 23. db(A): Decibels (A weighted)
 - 24. DDC: Direct Digital Control
 - 25. DI: Digital Input
 - 26. DISS: Diameter Index Safety System
 - 27. DO: Digital Output
 - 28. DVD: Digital Video Disc

07-01-16

- 29. DN: Diameter Nominal
- 30. DWV: Drainage, Waste and Vent
- 31. ECC: Engineering Control Center
- 32. EPDM: Ethylene Propylene Diene Monomer
- 33. EPT: Ethylene Propylene Terpolymer
- 34. ETO: Ethylene Oxide
- 35. F: Fahrenheit
- 36. FAR: Federal Acquisition Regulations
- 37. FD: Floor Drain
- 38. FED: Federal
- 39. FG: Fiberglass
- 40. FNPT: Female National Pipe Thread
- 41. FPM: Fluoroelastomer Polymer
- 42. GPM: Gallons Per Minute
- 43. HDPE: High Density Polyethylene
- 44. Hg: Mercury
- 45. HOA: Hands-Off-Automatic
- 46. HP: Horsepower
- 47. HVE: High Volume Evacuation
- 48. ID: Inside Diameter
- 49. IPS: Iron Pipe Size
- 50. Kg: Kilogram
- 51. kPa: Kilopascal
- 52. lb: Pound
- 53. L/s: Liters Per Second
- 54. L/min: Liters Per Minute
- 55. MAWP: Maximum Allowable Working Pressure
- 56. MAX: Maximum
- 57. MED: Medical
- 58. m: Meter
- 59. MFG: Manufacturer
- 60. mg: Milligram
- 61. mg/L: Milligrams per Liter
- 62. ml: Milliliter
- 63. mm: Millimeter
- 64. MIN: Minimum
- 65. NF: Oil Free Dry (Nitrogen)
- 66. NPTF: National Pipe Thread Female

- 657-17-104JC Restore Utility Systems, Building 6
- 657-17-105JC Restore Utility Systems, Building 6A

07-01-16

- 67. NPS: Nominal Pipe Size
- 68. NPT: Nominal Pipe Thread
- 69. OD: Outside Diameter
- 70. OSD: Open Sight Drain
- 71. OS&Y: Outside Stem and Yoke
- 72. OXY: Oxygen
- 73. PBPU: Prefabricated Bedside Patient Units
- 74. PH: Power of Hydrogen
- 75. PLC: Programmable Logic Controllers
- 76. PP: Polypropylene
- 77. PPM: Parts per Million
- 78. PSIG: Pounds per Square Inch
- 79. PTFE: Polytetrafluoroethylene
- 80. PVC: Polyvinyl Chloride
- 81. PVDF: Polyvinylidene Fluoride
- 82. RAD: Radians
- 83. RO: Reverse Osmosis
- 84. RPM: Revolutions Per Minute
- 85. RTRP: Reinforced Thermosetting Resin Pipe
- 86. SCFM: Standard Cubic Feet Per Minute
- 87. SDI: Silt Density Index
- 88. SPEC: Specification
- 89. SPS: Sterile Processing Services
- 90. STD: Standard
- 91. SUS: Saybolt Universal Second
- 92. SWP: Steam Working Pressure
- 93. TEFC: Totally Enclosed Fan-Cooled
- 94. TFE: Tetrafluoroethylene
- 95. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 96. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 97. T/P: Temperature and Pressure
- 98. USDA: U.S. Department of Agriculture
- 99. V: Volt
- 100. VAC: Vacuum
- 101. VA: Veterans Administration
- 102. VAMC: Veterans Administration Medical Center
- 103. VAC: Voltage in Alternating Current
- 104. WAGD: Waste Anesthesia Gas Disposal

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

D

- E. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- F. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- G. Section 03 30 53, (SHORT FORM) CAST-IN-PLACE CONCRETE: Concrete and Grout.
 - N. Section 09 91 00, PAINTING.
 - Q. Section 22 07 11, PLUMBING INSULATION.
- S. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - T. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - U. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- W. Section 31 20 11, (SHORT FORM) EARTH MOVING: Excavation and Backfill.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

ASME Boiler and Pressure Vessel Code -

BPVC Section IX-2013....Welding, Brazing, and Fusing Qualifications B31.1-2012......Power Piping

C. American Society for Testing and Materials (ASTM):

A36/A36M-2012......Standard Specification for Carbon Structural Steel

A575-96(R2013)el......Standard Specification for Steel Bars, Carbon,

Merchant Quality, M-Grades

E84-2013a.....Standard Test Method for Surface Burning

Characteristics of Building Materials

E119-2012a.....Standard Test Methods for Fire Tests of Building Construction and Materials

F1760-01(R2011)......Standard Specification for Coextruded

Poly(Vinyl Chloride) (PVC) Non-Pressure Plastic
Pipe Having Reprocessed-Recycled Content

D. International Code Council, (ICC):

IBC-2012......International Building Code
IPC-2012.....International Plumbing Code

Ε.	Manufacturers Standardization Society (MSS) of the Valve and Fittings
	Industry, Inc:
	SP-58-2009Pipe Hangers and Supports - Materials, Design,
	Manufacture, Selection, Application and
	Installation
	SP-69-2003Pipe Hangers and Supports - Selection and
	Application
F.	Military Specifications (MIL):
	P-21035B Paint High Zinc Dust Content, Galvanizing
	Repair (Metric)
G.	National Electrical Manufacturers Association (NEMA):
	MG 1-2011Motors and Generators
Н.	National Fire Protection Association (NFPA):
	51B-2014 Standard for Fire Prevention During Welding,
	Cutting and Other Hot Work
	54-2012National Fuel Gas Code
	70-2014National Electrical Code (NEC)
I.	NSF International (NSF):
	5-2012Water Heaters, Hot Water Supply Boilers, and
	Heat Recovery Equipment
	14-2012Plastic Piping System Components and Related
	Materials
	61-2012 Drinking Water System Components - Health
	Effects
	372-2011Drinking Water System Components - Lead Content
J.	Department of Veterans Affairs (VA):
	PG-18-10Plumbing Design Manual
	PG-18-13-2011Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.

- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- I. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8 inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, controls, piping, pumps, valves and other items. All valves, trap primer valves, water hammer

657-17-105JC Restore Utility Systems, Building 6A

arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.

- 1. Mechanical equipment rooms.
- 2. Interstitial space.
- 3. Hangers, inserts, supports, and bracing.
- 4. Pipe sleeves.
- 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- J. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.
 - 2. Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 QUALITY ASSURANCE

A. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shut-

down of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Oualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.

- 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- G. Cleanliness of Piping and Equipment Systems:
 - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.

- 2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
- 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.
 Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.
 Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2004 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing

657-17-105JC Restore Utility Systems, Building 6A

agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Non-pressure PVC pipe shall contain a minimum of 25 percent recycled content. Steel pipe shall contain a minimum of 25 percent recycled content.
- B. Plastic pipe, fittings and solvent cement shall meet NSF 14 and shall bear the NSF seal "NSF-PW". Polypropylene pipe and fittings shall comply with NSF 14 and NSF 61. Solder or flux containing lead shall not be used with copper pipe.
- C. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.
- D. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- E. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.

- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING - NOT APPLICABLE

2.7 VARIABLE SPEED MOTOR CONTROLLERS - NOT APPLICABLE

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
 - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid

- 657-17-105JC Restore Utility Systems, Building 6A
 - black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
 - C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
 - D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
 - E. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC). Submittals based on the International Building Code (IBC) requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors:

 Permitted in concrete not less than 100 mm (4 inches) thick when
 approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- F. For Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).

- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- I. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - 1) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping):
 - 1) Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.

- 2) Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- J. Pre-insulated Calcium Silicate Shields:
 - 1. Provide 360 degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.
- K. Seismic Restraint of Piping: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.12 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to

- 657-17-105JC Restore Utility Systems, Building 6A
 - accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
 - K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.13 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

F. Cutting Holes:

- 1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 2. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer

type drill will not be allowed, except as permitted by COR where working area space is limited.

- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- J. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.

M. Work in Existing Building:

- 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- N. Work in Animal Research Areas: Seal all pipe penetrations with silicone sealant to prevent entrance of insects.
- O. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.
- P. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.

Q. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury

- 657-17-105JC Restore Utility Systems, Building 6A
 - can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
 - C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents

657-17-105JC Restore Utility Systems, Building 6A

use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.

- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.

F. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be

- 657-17-105JC Restore Utility Systems, Building 6A
 - delivered to COR in unopened containers that are properly identified as to application.
 - C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
 - D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
 - E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained.

Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.

- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

- tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.12 COMMISSIONING NOT APPLICABLE

3.13 DEMONSTRATION AND TRAINING - NOT APPLICABLE

- - - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.

B. Definitions:

- 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
- 4. Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
- 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
- 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 7. FSK: Foil-scrim-Kraft facing.
- 8. Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
- 9. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.

657-17-105JC Restore Utility Systems, Building 6A

- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
 - I. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
 - J. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

B209-2014......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-2011.....Standard Test Method for Hot-Surface

Performance of High-Temperature Thermal

Insulation

C449-2007 (R2013)......Standard Specification for Mineral Fiber
Hydraulic-Setting Thermal Insulating and
Finishing Cement

7-1	7-105JC Restore Utility	Systems, Building 6A	09-01-15
	C450-2008 (R2014)	.Standard Practice for Fabrication of	Thermal
		Insulating Fitting Covers for NPS Pi	ping, and
		Vessel Lagging	
	Adjunct to C450	.Compilation of Tables that Provide R	ecommended
		Dimensions for Prefab and Field Ther	mal
		Insulating Covers, etc.	
	C533-2013	.Standard Specification for Calcium S	ilicate
		Block and Pipe Thermal Insulation	
	C534/C534M-2014	.Standard Specification for Preformed	Flexible
		Elastomeric Cellular Thermal Insulat	ion in
		Sheet and Tubular Form	
	C547-2015	.Standard Specification for Mineral F	iber Pipe
		Insulation	
	C552-2014	.Standard Specification for Cellular	Glass
		Thermal Insulation	
	C553-2013	.Standard Specification for Mineral F	iber
		Blanket Thermal Insulation for Comme	rcial and
		Industrial Applications	
	C591-2013	.Standard Specification for Unfaced P	reformed
		Rigid Cellular Polyisocyanurate Ther	mal
		Insulation	
	C680-2014	.Standard Practice for Estimate of th	e Heat Gain
		or Loss and the Surface Temperatures	of
		Insulated Flat, Cylindrical, and Sph	erical
		Systems by Use of Computer Programs	
	C612-2014	.Standard Specification for Mineral F	iber Block
		and Board Thermal Insulation	
	C1126-2014	.Standard Specification for Faced or	
		Rigid Cellular Phenolic Thermal Insu	
	C1136-2012	.Standard Specification for Flexible,	
		Permeance Vapor Retarders for Therma	1
		Insulation	
	C1710-2011	.Standard Guide for Installation of F	
		Closed Cell Preformed Insulation in	Tube and
		Sheet Form	
	D1668/D1668M-1997a (201	4)el Standard Specification for Gla	ss Fabrics
		(Woven and Treated) for Roofing and	
		Waterproofing	

657-1	7-104JC Restore Utility Sy	stems, Bui	lding 6	
657-1	7-105JC Restore Utility Sy	stems, Bui	lding 6A	09-01-15
	E84-2015a	Standard Te	est Method for Surfac	ce Burning
		Characteris	stics of Building Mat	terials
	E2231-2015	Standard Pi	actice for Specimen	Preparation and
	И	Mounting of	Pipe and Duct Insu	lation to Assess
		Surface Bui	ning Characteristics	5
С.	Federal Specifications (E	Ted. Spec.)	:	
	L-P-535E-1979	Plastic She	eet (Sheeting): Plast	tic Strip; Poly
		(Vinyl Chlo	oride) and Poly (Ving	yl Chloride -
	J	Vinyl Aceta	ate), Rigid.	
D.	International Code Counci	1, (ICC):		
	IMC-2012	Internation	aal Mechanical Code	
Ε.	Military Specifications	(Mil. Spec.):	
	MIL-A-3316C (2)-1990	Adhesives,	Fire-Resistant, The	rmal Insulation
	MIL-A-24179A (2)-1987	Adhesive, E	lexible Unicellular	-Plastic Thermal
	I	Insulation		
	MIL-PRF-19565C (1)-1988.0	Coating Cor	pounds, Thermal Inst	ulation, Fire-and
	V	Nater-Resis	stant, Vapor-Barrier	
	MIL-C-20079H-1987	Cloth, Glas	ss; Tape, Textile Gla	ass; and Thread,
		Glass and W	Jire-Reinforced Glass	5
F.	National Fire Protection	Associatio	on (NFPA):	
	90A-2015	Standard fo	or the Installation of	of Air-
		Conditionir	ng and Ventilating Sy	ystems
G.	Underwriters Laboratories	s, Inc (UL)	:	
	723–2008 (R2013)S	Standard fo	or Test for Surface H	Burning
		Characteris	tics of Building Mat	terials
	1887-2004 (R2013)S	Standard fo	or Fire Test of Plast	tic Sprinkler
	E	Pipe for Vi	sible Flame and Smol	ke
		Characteris	stics	
Н.	3E Plus® version 4.1 Insu			
	from NAIMA with free dowr	nload; http	o://.www.pipeinsulat	ion.net
	UBMITTALS			
Α.	Submittals, including num	mber of red	quired copies, shall	be submitted in

1

- accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.

C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

D. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:
 - **4.3.3.1** Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.
 - 4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

- 4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.
- 4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.
- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.
 - D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in

657-17-105JC Restore Utility Systems, Building 6A

the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2010 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers.

Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m 3 (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 kg/m^3 (nominal 2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at

657-17-104JC Restore Utility Systems, Building 6

657-17-105JC Restore Utility Systems, Building 6A 09-01-15 temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded

2.2 MINERAL WOOL OR REFRACTORY FIBER NOT APPLICABLE

- A. Comply with Standard ASTM C612, Class 3, 450 degrees C (842 degrees F).
- 2.3 RIGID CELLULAR PHENOLIC FOAM NOT APPLICABLE
- 2.4 CELLULAR GLASS CLOSED-CELL NOT APPLICABLE

2.5 POLYISOCYANURATE CLOSED-CELL RIGID - NOT APPLICABLE

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

fitting covering.

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.7 CALCIUM SILICATE - NOT APPLICABLE

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping conveying fluids below

657-17-105JC Restore Utility Systems, Building 6A

ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended.

 Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multilayer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inchpounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.

- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be

- 657-17-105JC Restore Utility Systems, Building 6A clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
 - B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
 - D. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
 - E. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
 - F. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
 - G. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
 - H. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
 - I. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight

657-17-105JC Restore Utility Systems, Building 6A

system. Access doors and other items requiring maintenance or access shall be removable and sealable.

- J. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Distilled water piping.
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- O. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
- 2. All interior piping conveying fluids below ambient air temperature.
- P. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 1829 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets except for cold pipe or tubing applications. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.

- 3. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- Q. Provide PVC jackets over insulation as follows:
 - 1. Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).

3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

D. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- 2. Underground piping other than or in lieu of that specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impreganted glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
 - f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
 - g. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and exposures to the public.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.

F. Flexible Elastomeric Cellular Thermal Insulation:

- 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.

- b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
Nominal Pipe Size Millimeters (Incl			(Inches)		
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1½)	38 - 75 (1½ - 3)	100 (4) and Greater
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Rigid Cellular Phenolic Foam (Above ground piping only) (exterior locations only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)

657-17-104JC Restore Utility Systems, Building 6
657-17-105JC Restore Utility Systems, Building 6A

09-01-15

	ground piping only)				
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-15 degrees C (40-60 degrees F)	Rigid Cellular Phenolic Foam (Above ground piping only) (exterior locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
(4-15 degrees C (40-60 degrees F)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
 - E. Section 07 84 00, FIRESTOPPING.
 - G. Section 09 91 00, PAINTING.
 - I. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - J. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007 (R2013)Scheme for Identification of Piping Systems
B16.3-2011Malleable Iron Threaded Fittings: Classes 150
and 300

B16.9-2012Factory-Made Wrought Buttwelding Fittings
B16.11-2011Forged Fittings, Socket-Welding and Threaded
B16.12-2009 (R2014)Cast Iron Threaded Drainage Fittings
B16.15-2013Cast Copper Alloy Threaded Fittings: Classes
125 and 250
B16.18-2012Cast Copper Alloy Solder Joint Pressure

- Fittings
- B16.22-2013......Wrought Copper and Copper Alloy Solder-Joint

 Pressure Fittings
- B16.24-2011......Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500
- B16.51-2013.....Copper and Copper Alloy Press-Connect Fittings

ASME Boiler and Pressure Vessel Code -

BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications

C. American Society of Sanitary Engineers (ASSE):

1010-2004......Performance Requirements for Water Hammer
Arresters

- D. American Society for Testing and Materials (ASTM):
 - A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable

 Iron Castings
 - A53/A53M-2012......Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
 - A183-2014......Standard Specification for Carbon Steel Track

 Bolts and Nuts
 - A269/A269M-2014el.....Standard Specification for Seamless and Welded

 Austenitic Stainless Steel Tubing for General

 Service
 - A312/A312M-2015......Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless

 Steel Pipes
 - A403/A403M-2014......Standard Specification for Wrought Austenitic

 Stainless Steel Piping Fittings
 - A536-1984 (R2014)......Standard Specification for Ductile Iron
 Castings
 - A733-2013......Standard Specification for Welded and Seamless

 Carbon Steel and Austenitic Stainless Steel

 Pipe Nipples
 - B32-2008 (R2014).....Standard Specification for Solder Metal
 - B43-2014.....Standard Specification for Seamless Red Brass Pipe, Standard Sizes
 - B61-2008 (R2013)......Standard Specification for Steam or Valve

 Bronze Castings
 - B62-2009......Standard Specification for Composition Bronze or Ounce Metal Castings
 - B75/B75M-2011.....Standard Specification for Seamless Copper Tube
 - B88-2014.....Standard Specification for Seamless Copper

Water Tube

B584-2014.....Standard Specification for Copper Alloy Sand
Castings for General Applications

657-1	7-104JC Restore Utility	Systems, Building 6			
657-1	7-105JC Restore Utility	Systems, Building 6A	09-01-15		
	B687-1999 (R2011)	Standard Specification for Brass, Cop	per, and		
		Chromium-Plated Pipe Nipples			
	C919-2012	Standard Practice for Use of Sealants	in		
		Acoustical Applications			
	D1785-2012	Standard Specification for Poly (Viny	1		
		Chloride) (PVC) Plastic Pipe, Schedul	es 40, 80,		
		and 120			
	D2000-2012	Standard Classification System for Ru	bber		
		Products in Automotive Applications			
	D2564-2012	Standard Specification for Solvent Ce	ments for		
		Poly (Vinyl Chloride) (PVC) Plastic P	iping		
		Systems			
	D2657-2007	Standard Practice for Heat Fusion Joi	ning of		
		Polyolefin Pipe and Fittings			
	D2855-1996 (R2010)	Standard Practice for Making Solvent-	Cemented		
		Joints with Poly (Vinyl Chloride) (PV	C) Pipe		
		and Fittings			
	D4101-2014	Standard Specification for Polypropyl	ene		
		Injection and Extrusion Materials			
	E1120-2008	Standard Specification for Liquid Chl	orine		
	E1229-2008	Standard Specification for Calcium Hy	pochlorite		
	F2389-2010	Standard Specification for Pressure-r	ated		
		Polypropylene (PP) Piping Systems			
	F2620-2013	Standard Practice for Heat Fusion Joi	ning of		
		Polyethylene Pipe and Fittings			
	F2769-2014	Standard Specification for Polyethyle	ne of		
		Raised Temperature (PE-RT) Plastic Ho	t and		
		Cold-Water Tubing and Distribution Sy	stems		
Ε.	American Water Works Association (AWWA):				
	C110-2012	Ductile-Iron and Gray-Iron Fittings			
	C151-2009	Ductile Iron Pipe, Centrifugally Cast			
	C153-2011	Ductile-Iron Compact Fittings			
	C203-2008	Coal-Tar Protective Coatings and Lini	ngs for		
		Steel Water Pipelines - Enamel and Ta	pe - Hot		
		Applied			
	C213-2007	Fusion-Bonded Epoxy Coating for the I	nterior		
		and Exterior of Steel Water Pipelines			
	C651-2014	Disinfecting Water Mains			

F. American Welding Society (AWS):

A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing and Braze Welding

G. International Code Council (ICC):

IPC-2012.....International Plumbing Code

H. Manufacturers Specification Society (MSS):

SP-58-2009.....Pipe Hangers and Supports - Materials, Design,

Manufacture, Selection, Application, and

Installation

SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service

SP-110-2010......Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

I. NSF International (NSF):

14-2015......Plastics Piping System Components and Related Materials

61-2014a.....Drinking Water System Components - Health

Effects

372-2011......Drinking Water System Components - Lead Content

J. Plumbing and Drainage Institute (PDI):

PDI-WH 201-2010......Water Hammer Arrestors

K. Department of Veterans Affairs:

H-18-8-2013.....Seismic Design Handbook

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. All items listed in Part 2 Products.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:

- 1. Include complete list indicating all components of the systems.
- 2. Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be

- 657-17-105JC Restore Utility Systems, Building 6A
 - included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
 - C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2010 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
 - D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 UNDERGROUND WATER SERVICE CONNECTIONS TO BUILDINGS

- A. From inside face of exterior wall to a distance of approximately 1500 mm (5 feet) outside of building and underground inside building, material to be the same for the size specified inside the building.
- B. 75 mm (3 inch) Diameter and Greater: Ductile iron, AWWA C151, 2413 kPa (350 psig) pressure class, exterior bituminous coating, and cement lined. Bio-based materials shall be utilized when possible. Provide flanged and anchored connection to interior piping.
- C. Under 75 mm (3 inch) Diameter: Copper tubing, ASTM B88, Type K, seamless, annealed. Fittings are as specified in paragraph "Above

- 657-17-105JC Restore Utility Systems, Building 6A Ground (Interior) Water Piping". Use brazing alloys, AWS A5.8M/A5.8, Classification BCuP.
 - D. Flexible Expansion Joint: Ductile iron with ball joints rated for 1725 kPa (250 psig) working pressure conforming to AWWA C153, capable of deflecting a minimum of 20 degrees in each direction. Flexible expansion joint size shall match the pipe size it is connected to and shall have the expansion capability designed as an integral part of the ductile iron ball castings. Pressure containing parts shall be lined with a minimum of 15 mils of fusion bonded epoxy conforming to the applicable requirements of AWWA C213 and shall be factory tested with a 1500 volt spark test. Flexible expansion joint shall have flanged connections conforming to AWWA C110. Bolts and nuts shall be 316 stainless steel and gaskets shall be neoprene. The flexible expansion fitting shall not expand or exert an axial thrust under internal water pressure. Provide piping joint restraints at each mechanical joint end connection and piping restraints at the penetration of the building wall. The restraints shall be provided to address the developed thrust at the change of piping direction.

2.3 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. For pipe 150 mm (6 inches) and larger, stainless steel, ASTM A312, schedule 40 shall be used.
- B. Fittings for Copper Tube:
 - 1. Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, C84400. Mechanical grooved couplings, 2070 kpa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
 - 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical pressconnect fittings, double pressed type, with EPDM (ethylene propylene

diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.

- 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
- 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Fittings for Stainless Steel:
 - 1. Stainless steel butt-welded fittings, Type 316, Schedule 10, conforming to ASME B16.9.
 - 2. Grooved fittings, stainless steel, Type 316, Schedule 40, conforming to ASTM A403/A403M. Segmentally fabricated fittings are not allowed. Mechanical grooved couplings, ductile iron, 4138 kPa (600 psig), ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
- D. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- E. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- F. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.4 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: ASTM B43, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
 - 3. Nipples: ASTM B687, Chromium-plated.

- 657-17-105JC Restore Utility Systems, Building 6A
 - 4. Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
 - B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.5 ETHYLENE OXIDE (ETO) STERILIZER WATER SUPPLY PIPING - NOT APPLICABLE

2.6 TRAP PRIMER WATER PIPING

- A. Pipe: Copper tube, ASTM B88, type K, hard drawn.
- B. Fittings: Bronze castings conforming to ASME B16.18 Solder joints.
- C. Solder: ASTM B32 alloy type Sb5. Provide non-corrosive flux.

2.7 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.8 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.9 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1120.
- B. Liquid Chlorine: ASTM E1229.

2.10 WATER HAMMER ARRESTER

- A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.
 - 4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - 3. All pipe runs shall be laid out to avoid interference with other work/trades.
 - 4. Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or
 Threaded at each end with two removable nuts at each end for
 positioning rod and hanger and locking each in place.
 - 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel.

 Pipe Hangers and riser clamps shall have a copper finish when
 supporting bare copper pipe or tubing.
 - 8) Rollers: Cast iron.
 - 9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.

- 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.
- 6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

7. Penetrations:

- a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.
- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Domestic Water piping shall conform to the following:
 - 1. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - 2. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 1380 kPa (200 psig) gage during inspection and prove tight.

- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.
- 3.3 STERILIZATION NOT APPLICABLE
- 3.4 COMMISSIONING NOT APPLICABLE
- 3.5 DEMONSTRATION AND TRAINING NOT APPLICABLE

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS: Sealant products.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- I. Section 22 07 11, PLUMBING INSULATION.
- K. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- L. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 - A13.1-2007......Scheme for the Identification of Piping Systems A112.36.2M-1991(R 2012).Cleanouts
 - A112.6.3-2001 (R2007)...Standard for Floor and Trench Drains

 - B16.1-2010......Gray Iron Pipe Flanges and Flanged Fittings
 - B16.4-2011.....Standard for Grey Iron Threaded Fittings

Classes 125 and 250

B16.15-2013......Cast Copper Alloy Threaded Fittings, Classes
125 and 250

	B16.18-2012	.Cast Copper Alloy Solder Joint Pressure
	D16 21_2011	Fittings .Nonmetallic Flat Gaskets for Pipe Flanges
	B16.22-2013	.Wrought Copper and Copper Alloy Solder-Joint
	-16 00 0011	Pressure Fittings
	B16.23-2011	.Cast Copper Alloy Solder Joint Drainage
		Fittings: DWV
	B16.24-2001 (R2006)	.Cast Copper Alloy Pipe Flanges and Flanged
		Fittings
	B16.29-2012	.Wrought Copper and Wrought Copper Alloy Solder-
		Joint Drainage Fittings: DWV
	B16.39-2009	.Malleable Iron Threaded Pipe Unions Classes
		150, 250, and 300
	B18.2.1-2012	.Square, Hex, Heavy Hex, and Askew Head Bolts
		and Hex, Heavy Hex, Hex Flange, Lobed Head, and
		Lag Screws (Inch Series)
С.	American Society of San	itary Engineers (ASSE):
	1001-2008	.Performance Requirements for Atmospheric Type
		Vacuum Breakers
	1018-2001	.Performance Requirements for Trap Seal Primer
		Valves - Potable Water Supplied
	1044-2001	.Performance Requirements for Trap Seal Primer
		Devices - Drainage Types and Electronic Design
		Types
	1079-2012	.Performance Requirements for Dielectric Pipe
		Unions
D.	American Society for Te	sting and Materials (ASTM):
		.Standard Specification for Pipe, Steel, Black
		And Hot-Dipped, Zinc-coated, Welded and
		Seamless
	A74-2013a	.Standard Specification for Cast Iron Soil Pipe
		and Fittings
	A888-2013a	.Standard Specification for Hubless Cast Iron
		Soil Pipe and Fittings for Sanitary and Storm
		Drain, Waste, and Vent Piping Applications
	B32-2008	Standard Specification for Solder Metal
		.Standard Specification for Seamless Red Brass
	D10 2009	Pipe, Standard Sizes
		Tipe, Standard Sizes

B75-2011Standard Sp	ecification for Seamless Copper Tube
B88-2009Standard Sp	ecification for Seamless Copper
Water Tube	
B306-2013Standard Sp	ecification for Copper Drainage Tube
(DWV)	
B584-2013Standard Sp	ecification for Copper Alloy Sand
Castings fo	r General Applications
B687-1999 (R 2011)Standard Sp	ecification for Brass, Copper, and
Chromium-Pl	ated Pipe Nipples
B813-2010Standard Sp	ecification for Liquid and Paste
Fluxes for	Soldering of Copper and Copper Alloy
Tube	
B828-2002 (R 2010)Standard Pr	actice for Making Capillary Joints
by Solderin	g of Copper and Copper Alloy Tube
and Fitting	S
C564-2012Standard Sp	ecification for Rubber Gaskets for
Cast Iron S	oil Pipe and Fittings
D1785-2012Standard Sp	ecification for Poly(Vinyl Chloride)
(PVC) Plast	ic Pipe, Schedules 40, 80, and 120
D2321-2011Standard Pr	actice for Underground Installation
of Thermopl	astic Pipe for Sewers and Other
Gravity-Flo	w Applications
D2564-2012Standard Sp	ecification for Solvent Cements for
Poly(Vinyl	Chloride) (PVC) Plastic Piping
Systems	
D2665-2012Standard Sp	ecification for Poly(Vinyl Chloride)
(PVC) Plast	ic Drain, Waste, and Vent Pipe and
Fittings	
D2855-1996 (R 2010)Standard Pr	actice for Making Solvent-Cemented
Joints with	Poly(Vinyl Chloride) (PVC) Pipe and
Fittings	
D5926-2011Standard Sp	ecification for Poly(Vinyl Chloride)
(PVC) Gaske	ts for Drain, Waste, and Vent (DWV),
Sewer, Sani	tary, and Storm Plumbing Systems
F402-2005 (R 2012)Standard Pr	actice for Safe Handling of Solvent
Cements, Pr	imers, and Cleaners Used for Joining
Thermoplast	ic Pipe and Fittings

F477-2010............Standard Specification for Elastomeric Seals
(Gaskets) for Joining Plastic Pipe
F1545-1997 (R 2009).....Standard Specification for Plastic-Lined
Ferrous Metal Pipe, Fittings, and Flanges
E. Cast Iron Soil Pipe Institute (CISPI):

Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications

- F. Copper Development Association, Inc. (CDA):
 A4015......Copper Tube Handbook
- G. International Code Council (ICC):
 IPC-2012......International Plumbing Code
- H. Manufacturers Standardization Society (MSS):
 SP-123-2013...........Non-Ferrous Threaded and Solder-Joint Unions
 for Use With Copper Water Tube
- I. National Fire Protection Association (NFPA):
 70-2014......National Electrical Code (NEC)
- J. Plumbing and Drainage Institute (PDI):
 WH-201 (R 2010)......Water Hammer Arrestors Standard
- K. Underwriters' Laboratories, Inc. (UL):
 508-99 (R2013)......Standard For Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.

- 2. Floor Drains.
- 3. Grease Removal Unit.
- 4. Cleanouts.
- 5. Trap Seal Protection.
- 6. Penetration Sleeves.
- 7. Pipe Fittings.
- 8. Traps.
- 9. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2010 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - 1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.

- b. Sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
- c. Interior waste and vent piping above grade.
- 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or no-hub or hubless).
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
- 4. Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
- 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

B. Copper Tube, (DWV):

- 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
- 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
- 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
- 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 PUMP DISCHARGE PIPING - NOT APPLICABLE

2.3 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15 and ASTM D2665.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.

B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.4 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - 3. For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.5 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.

- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.6 FLOOR DRAINS - NOT APPLICABLE

2.7 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons.

Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.8 PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS - NOT APPLICABLE

2.9 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends.
 Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common

drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

- J. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- N. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:

- 1. Solid or split unplated cast iron.
- 2. All plates shall be provided with set screws.
- 3. Height adjustable clevis type pipe hangers.
- 4. Adjustable floor rests and base flanges shall be steel.
- 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 6. Riser clamps shall be malleable iron or steel.
- 7. Rollers shall be cast iron.
- 8. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

J. Penetrations:

- 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.

- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
 - 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

3.6 COMMISSIONING - NOT APPLICABLE

- - - E N D - - -

SECTION 22 33 00 ELECTRIC DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for installing a complete electric domestic water heater system ready for operation including the water heaters, thermometers, and all necessary accessories, connections, and equipment.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- E. Section 03 30 13, CAST-IN-PLACE CONCRETE: Concrete and Grout.
 - F. Section 09 91 00, PAINTING: Preparation and finish painting.
 - H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - K. Section 22 07 11, PLUMBING INSULATION.
 - M. Section 22 11 00, FACILITY WATER DISTRIBUTION: Piping, Fittings, Valves and Gages.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI): Z21.22B-2001 (R2008)....Relief Valves for Hot Water Supply Systems
- C. American Society for Heating, Refrigerating and Air Conditioning Engineers (ASHRAE):
 - 90.1 (2013).....Energy Standard for Buildings Except Low-Rise Residential Buildings
- D. American Society of Mechanical Engineers (ASME):

ASME Boiler and Pressure Vessel Code

BPVC Section IV-2013....Rules for Construction of Heating Boilers BPVC Section VIII-1-2013 Rules for Construction of Pressure

Vessels, Division 1

Form U-1..... Manufacturer's Data Report for Pressure Vessels

657-17-104JC	Restore	Utility	Systems,	Building	6	
657-17-105JC	Restore	Utility	Systems,	Building	6A	09-01-15

	B1.20.1-2013	.Pipe Threads, General Purpose (Inch)
	B16.5-2013	.Pipe Flanges and Flanged Fittings: NPS 1/2
		through NPS 24 Metric/Inch Standard
	B16.24-2011	.Cast Copper Alloy Pipe Flanges and Flanged
		Fittings: Classes 150, 300, 600, 900, 1500, and
		2500
	CSD-1-2012	.Controls and Safety Devices for Automatically
		Fired Boilers
Ε.	American Society of San	itary Engineering (ASSE):
	1005-1999	.Performance Requirements for Water Heater Drain
		Valves, 3/4 Inch Size
F.	National Fire Protectio	n Association (NFPA)
	70-2011	.National Electrical Code (NEC)
G.	NSF International (NSF)	:
	5-2012	.Water Heaters, Hot Water Supply Boilers, and
		Heat Recovery Equipment
	61-2012	.Drinking Water System Components - Health
		Effects
	372-2011	.Drinking Water System Components - Lead Content
Н.	Underwriters Laboratori	es, Inc. (UL):
	174-04 (R2012)	.Standard for Household Electric Storage Tank
		Water Heaters
	499-05 (R2013)	.Standard for Electric Heating Appliances
	1453-04 (R2011)	.Standard for Electric Booster and Commercial
		Storage Tank Water Heaters

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 33 00, ELECTRIC DOMESTIC WATER HEATERS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Water Heaters.

- 2. Pressure and Temperature Relief Valves.
- 3. Thermometers.
- 4. Pressure Gages.
- 5. Vacuum Breakers.
- D. For each electric domestic hot water heater type and size, the following characteristics shall be submitted:
 - 1. Rated Capacities.
 - 2. Operating characteristics.
 - 3. Electrical characteristics.
 - 4. Furnished specialties and accessories.
 - 5. A form U-1 or other documentation stating compliance with the ASME Boiler and Pressure Vessel code.
- E. Shop drawings shall include wiring diagrams for power, signal and control functions.
- G. Submit documentation indicating compliance with applicable requirements with ASHRAE 90.1 for Service Water Heating.
- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. For commercial applications, comply with American Society of Heating,
 Refrigerating and Air Conditioning Engineers (ASHRAE) for efficiency
 performance. ASHRAE 90.1, "Energy Efficient Design of New Buildings
 Except Low-Rise Residential Buildings, for commercial water heaters."
- B. Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70 by a qualified testing agency, and marked for intended location and application.
- C. ASME code construction shall be a vessel fabricated in compliance with the ASME BPVC Section VIII-1.
- D. Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 and NSF 372.

- F. The domestic water heater shall be certified and labeled by an independent testing agency.
- G. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.

Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 ELECTRIC DOMESTIC WATER HEATERS - NOT APPLICABLE

2.2 ELECTRIC, TANKLESS, DOMESTIC WATER HEATER

- A. Electric, Tankless, domestic water heaters shall be constructed with copper piping or tubing complying with NSF 61 and NSF 372 for barrier materials for potable water heaters without storage capacity.
- B. The pressure rating shall be 1035 kPa (150 psig).
- C. The heating element shall be resistance heating system type.
- D. Temperature control shall be made with flow control fittingsthermostat.
- E. The safety control shall be a high temperature limit cutoff device or system.
- F. The heater shall have an enameled jacket with an aluminum or steel floor stand or wall bracket for off-floor mounting.

- G. Heater capacities and electrical characteristics are scheduled on the drawings.
- 2.3 DOMESTIC HOT WATER EXPANSION TANKS NOT APPLICABLE
- 2.4 ELECTRIC WATER HEATER DRAIN PAN NOT APPLICABLE

2.5 HEAT TRAPS

A. Heat traps shall be installed in accordance with ASHRAE 90.1 unless provided integrally with the heater.

2.6 COMBINATION TEMPERATURE AND PRESSURE RELIEF VALVES

A. The combination pressure and temperature relief valve shall be ANSI Z21.22 and ASME rated and constructed of all brass or bronze with a self-closing reseating valve. The relief valves shall include a relieving capacity greater than the heat input and include a pressure setting less than the water heater's working pressure rating. Sensing element shall extend into storage tank.

2.7 THERMOMETERS

A. Thermometers shall be rigid stem or remote sensing, scale or dial type with an aluminum, black metal, stainless steel, or chromium plated brass case. The thermometer shall be back connected, red liquid (alcohol or organic-based) fill, vapor, bi-metal or gas actuated, with 225 mm (9 inches) high scale dial or circular dial 50 to 125 mm (2 to 5 inches) in diameter graduated from 4 to 100 degrees C (40 to 212 degrees F), with two-degree graduations guaranteed accurate within one scale division. The socket shall be separable, double-seat, micrometer-fittings, with extension neck not less than 65 mm (2-1/2 inches) to clear tank or pipe covering. The thermometer shall be suitable for 20 mm (3/4 inch) pipe threads. Thermometers may be console-mounted with sensor installed in separate thermometer well.

2.8 SUPPORTS

- A. Water heater stands shall be factory-fabricated steel for floor mounting capable of supporting water heater and water a minimum of 450 mm (18 inches) above the floor.
- B. Wall brackets for wall mounted heaters shall be factory-fabricated steel capable of supporting water heater and water.

2.9 MANIFOLD KITS

A. For multiple water heater installation, provide factory-fabricated copper manifold kits to include ball-type shutoff valves to isolate

each water heater and balancing valves to provide balanced flow through each water heater.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Water heaters shall be installed on concrete bases unless elevated above the floor. Refer to Specification Section 03 30 00, CAST-IN-PLACE CONCRETE and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. The water heaters shall be installed level and plumb and securely anchored.
- C. The water heaters shall be installed and connected in accordance with manufacturer's written instructions with manufacturer's recommended clearances.
- D. All pressure and temperature relief valves discharge shall be piped to nearby floor drains with air gap or break.
- E. Thermometers shall be installed on the water heater inlet and outlet piping and shall be positioned such that they can be read by an operator or staff standing on floor or walkway.
- F. The thermostatic control shall be set for a minimum setting of 60 degrees C (140 degrees F) for storage heaters and regulated to a maximum discharge temperature of 54 degrees C (130 degrees F) for distribution to personnel.
- G. Dielectric unions shall be provided if there are dissimilar metals between the water heater connections and the attached piping.
- H. Provide vacuum breakers per ANSI Z21.22 on the inlet pipe if the water heater is bottom fed. Refer to Specification Section 22 11 00, FACILITY WATER DISTRIBUTION.
- I. Shutoff valves shall be installed on the domestic water supply piping to the water heater and on the domestic hot water outlet piping.
- J. All manufacturer's required clearances shall be maintained.
- N. Water heater drain piping shall be installed as indirect waste to spill by positive air gap into open drains or over floor drains. Hose end drain valves shall be installed at low points in water piping for electric domestic water heaters without integral drains.
- O. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 LEAKAGE TEST

A. Before piping connections are made, water heaters shall be tested with hydrostatic pressure of 1380 kPa (200 psig) and 1654 kPa (240 psig) for a unit with a MAWP of 1103 kPa (160 psig). Any domestic water heater leaking water shall be replaced with a new unit at no additional cost to the VA.

3.3 PERFORMANCE TEST

A. All of the remote water outlets shall have a minimum of 43 degrees C (110 degrees F) and a maximum of 49 degrees C (120 degrees F) water flow at all times.

3.4 STARTUP AND TESTING

- A. As recommended by product manufacturer and listed standards and under actual or simulated operating conditions, tests shall be conducted to prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with each integrated system.
- B. The tests shall include system capacity, control function, and alarm functions.
- C. When any defects are detected, correct defects and repeat test at no additional costs to the Government.

3.5 COMMISSIONING - NOT APPLICABLE

3.6 DEMONSTRATION AND TRAINING - NOT APPLICABLE

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. COR: Contracting Officer's Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 09 91 00, PAINTING
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- E. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- H. Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUITS and CABLES.

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - 1. Equipment shall be factory-balanced to this tolerance and rebalanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 3. Conform to codes and standards as required by the specifications.

 Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent than those specified. Refer any conflicts to the COR.
- 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:

- Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
- 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
- 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the COR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the COR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS.

 Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment

have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.

- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- G. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- H. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009......Central Station Air-Handling Units
- C. American National Standard Institute (ANSI):
 B31.1-2007......Power Piping

D.	Rubber Manufacturers Association (ANSI/RMA):
	IP-20-2007Specifications for Drives Using Classical
	V-Belts and Sheaves
	IP-21-2009Specifications for Drives Using Double-V
	(Hexagonal) Belts
	IP-22-2007Specifications for Drives Using Narrow V-Belts
	and Sheaves
Ε.	Air Movement and Control Association (AMCA):
	410-96Recommended Safety Practices for Air Moving
	Devices
F.	American Society of Mechanical Engineers (ASME):
	Boiler and Pressure Vessel Code (BPVC):
	Section I-2007Power Boilers
	Section IX-2007Welding and Brazing Qualifications
	Code for Pressure Piping:
	B31.1-2007Power Piping
G.	American Society for Testing and Materials (ASTM):
	A36/A36M-08Standard Specification for Carbon Structural
	Steel
	A575-96(2007)Standard Specification for Steel Bars, Carbon,
	Merchant Quality, M-Grades
	E84-10Standard Test Method for Surface Burning
	Characteristics of Building Materials
	E119-09cStandard Test Methods for Fire Tests of
	Building Construction and Materials
Н.	Manufacturers Standardization Society (MSS) of the Valve and Fittings
	<pre>Industry, Inc.:</pre>
	SP-58-2009Pipe Hangers and Supports-Materials, Design and
	Manufacture, Selection, Application, and
	Installation
	SP 69-2003Pipe Hangers and Supports-Selection and
	Application
	SP 127-2001Bracing for Piping Systems, Seismic - Wind -
	Dynamic, Design, Selection, Application
I.	National Electrical Manufacturers Association (NEMA):
	MG-1-2009Motors and Generators

101-09.....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

B. Cleanliness of Piping and Equipment Systems:

- 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
- 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
- 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
- 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the COR.
- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

 Maintain the interior of building at 18 degrees C (65 degrees F)

 minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed.

 Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.

- 1. All components of an assembled unit need not be products of same manufacturer.
- 2. Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:

- 1. Material: Pressed steel, or close grained cast iron.
- 2. Bore: Fixed or bushing type for securing to shaft with keys.
- 3. Balanced: Statically and dynamically.
- 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch or fixed-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, and non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts.
 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for specifications.
- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 30,000 AIC. Provide AC input line reactors (3% impedance) and filters on incoming power line. Provide output line reactors on

line between drive and motor where the distance between the breaker and motor exceeds 50 feet.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- B. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- C. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm (1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. MIL. Spec. DOD-P-21035B, paint form.

2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. Supports for Roof Mounted Items:

- 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
- 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- C. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the COR for each job condition.
- D. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- E. Attachment to existing structure: Support from existing floor/roof frame.
- F. Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches) y 1-5/8 inches), 2.7 mm (No. 12 gage), designed to

accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.

- 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.

I. Supports for Piping Systems:

- 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - q. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.

2.12 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.

- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

2.13 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.14 SPECIAL TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.15 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.16 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and

equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.

H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.

I. Protection and Cleaning:

- 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

L. Work in Existing Building:

- Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type

drills, will be permitted only with approval of the COR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COR's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.

M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment to ceiling structure, whichever is lower (NFPA 70).

N. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

 All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.

- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

G. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the

Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.

- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks.
 Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer.
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
 - 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.

7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.11 STARTUP AND TEMPORARY OPERATION

A. Startup equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation.

Temporary use of equipment is specified in section 01 00 00, GENERAL REQUIREMENTS, article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.13 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Systems Readiness Report.
 - 5. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 6. Vibration and sound measurements.
 - 7. Recording and reporting results.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. Hydronic Systems: Includes chilled water.
- 6. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- 7. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- C. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION: Piping and Equipment Insulation.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- F. Section 23 36 00, AIR TERMINAL UNITS

1.3 OUALITY ASSURANCE

A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

B. Qualifications:

- TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
- 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COR. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. Tab Criteria:

- One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.

- C. For use by the COR staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Systems Readiness Report.
 - 4. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
- C. Associated Air Balance Council (AABC):
 - 2002......AABC National Standards for Total System
 Balance
- D. National Environmental Balancing Bureau (NEBB):
 - 7th Edition 2005Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
 - 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
 - $3^{\rm rd}$ Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 INSULATION REPAIR MATERIAL

A. See section 23 07 11, HVAC and BOILER PLANT INSULATION provide for repair of insulation removed or damaged for tab work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

A. The tab specialist shall review the contract plans and specifications and advise the COR of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate tab of the system. The tab specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to COR.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the COR.

3.5 TAB REPORTS

- A. The TAB contractor shall provide raw data immediately in writing to the COR if there is a problem in achieving intended results before submitting a formal report.
- C. If readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the COR.

3.6 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for preconstruction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 30 days in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, and laboratory fume hoods and biological safety cabinets.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes.

 Verify that dampers and other controls function properly.
- 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 2. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 3. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the COR. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the COR.

3.9 MARKING OF SETTINGS

A. Following approval of tab final report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the tab specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COR.

3.10 IDENTIFICATION OF TEST PORTS

A. The tab specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.11 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 2. Re-insulation of HVAC piping, ductwork and equipment after asbestos abatement or if existing insulation is damaged.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
- 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 14. MPR: Medium pressure steam condensate return.
- 15. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 16. LPR: Low pressure steam condensate gravity return.
- 17. PC: Pumped condensate.
- 18. HWS: Hot water heating supply.
- 19. HWR: Hot water heating return.
- 20. CW: Cold water.
- 21. SW: Soft water.
- 22. HW: Hot water.
- 23. CHS: Chilled water supply.
- 24. CHR: Chilled water return.
- 25. RS: Refrigerant suction.
- 26. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- C. Section 07 84 00, FIRESTOPPING
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

- **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
- **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
- **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
- 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
- (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
- (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
- 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
- 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as

- having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

C. Samples:

- Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
- 2. Each type of facing and jacket: Minimum size 100 mm (4 inches square).
- 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2) - 99......Plastic Sheet (Sheeting): Plastic Strip; Poly

(Vinyl Chloride) and Poly (Vinyl Chloride
Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):
 MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation

MIL-A-	·24179A (1)-87	Adhesive, Flexible Unicellular-Plastic
		Thermal Insulation
MIL-C-	19565C (1)-88	Coating Compounds, Thermal Insulation, Fire-and
		Water-Resistant, Vapor-Barrier
MIL-C-	20079н-87	Cloth, Glass; Tape, Textile Glass; and Thread,
		Glass and Wire-Reinforced Glass
D. Americ	. American Society for Testing and Materials (ASTM):	
A167-99(2004)		Standard Specification for Stainless and
		Heat-Resisting Chromium-Nickel Steel Plate,
		Sheet, and Strip
B209-0	7	Standard Specification for Aluminum and
		Aluminum-Alloy Sheet and Plate
C411-0	5	Standard test method for Hot-Surface
		Performance of High-Temperature Thermal
		Insulation
C449-0	7	Standard Specification for Mineral Fiber
		Hydraulic-Setting Thermal Insulating and
		Finishing Cement
C533-0	9	Standard Specification for Calcium Silicate
		Block and Pipe Thermal Insulation
C534-0	8	Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
C547-0	7	Standard Specification for Mineral Fiber pipe
		Insulation
C552-0	7	Standard Specification for Cellular Glass
		Thermal Insulation
C553-0	18	Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
C585-0	19	Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
C612-1	.0	Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
C1126-	04	Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation

	C1136-10Standard Specification for Flexible, Low		
	Permeance Vapor Retarders for Thermal		
	Insulation		
	D1668-97a (2006)Standard Specification for Glass Fabrics (Wov	en	
	and Treated) for Roofing and Waterproofing		
	E84-10Standard Test Method for Surface Burning		
	Characteristics of Building		
	Materials		
	E119-09cStandard Test Method for Fire Tests of Buildi	ng	
	Construction and Materials		
	E136-09bStandard Test Methods for Behavior of Materia	ls	
	in a Vertical Tube Furnace at 750 degrees C		
	(1380 F)		
Ε.	E. National Fire Protection Association (NFPA):		
	90A-09Standard for the Installation of Air		
	Conditioning and Ventilating Systems		
	96-08Standards for Ventilation Control and Fire		
	Protection of Commercial Cooking Operations		
	101-09Life Safety Code		
	251-06Standard methods of Tests of Fire Endurance o	f	
	Building Construction Materials		
	255-06Standard Method of tests of Surface Burning		
	Characteristics of Building Materials		
F.	. Underwriters Laboratories, Inc (UL):		
	723UL Standard for Safety Test for Surface Burni	ng	
	Characteristics of Building Materials with		
	Revision of 09/08		
G.	Manufacturer's Standardization Society of the Valve and Fitting		
	Industry (MSS):		
	SP58-2009Pipe Hangers and Supports Materials, Design,		
	and Manufacture		

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m 3 (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.

- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 $\rm kg/m^3$ (2 pcf), $\rm k$ = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k=0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.5 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets.

 Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt

- strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity areas conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.6 REMOVABLE INSULATION JACKETS

A. Insulation and Jacket:

- 1. Non-Asbestos Glass mat, type E needled fiber.
- 2. Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
- 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
- 4. Construction: One piece jacket body with three-ply braided pure
 Teflon or Kevlar thread and insulation sewn as part of jacket. Belt
 fastened.

2.7 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.8 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.

- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.9 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.10 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.11 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to section 07 84 00 FIRESTOPPING.

2.12 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the COR for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.
 Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT, and such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be

- removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. HVAC work not to be insulated:
 - 1. Relief air ducts (Economizer cycle exhaust air).
 - 2. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 3. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane sprayfoam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- M. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.

- 2. All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) or below ambient air temperature.
- N. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with
 - b. Above ceilings for other than roof level: 40 mm (1 $\frac{1}{2}$ inch) thick insulation faced with FSK.
 - 4. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:

- 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.

- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- G. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
 - 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.

- 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 - c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
 - d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	l Pipe Size	Millimeter	s (Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Above
100-121 degrees C (212-250 degrees F) (MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
38-94 degrees C (100- 200 degrees F) (LPR, MPR, HWS, HWR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)

4-16 degrees C	Rigid	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Cellular Phenolic	(1.5)			
(CHS, CHR)	Foam				
(40-60 degrees F)	Flexible	38	38 (1.5)	38 (1.5)	38 (1.5)
(CHS, CHR)	Elastomeric Cellular Thermal (Above ground piping only)	(1.5)			

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
COR. The Contractor shall review and comment on the tests prior to
approval. The Contractor shall provide the required labor, materials,
and test equipment identified in the test procedure to perform the
tests. The Commissioning Agent will witness and document the testing.
The Contractor shall sign the test reports to verify tests were
performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS,
for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

12-01-15

---- END ----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings, and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. For informational purposes only: The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers. The ECC is programmed and maintained under contract by Automatic Controls Equipment Systems, Inc. (ACES). Phone: 314-722-2727.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance,

Warranty, specified services and items required for complete and fully functional Controls Systems.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - 1. Fire alarm systems. If zoned fire alarm is required by the project-specific requirements, this interface shall require multiple relays,

which are provided and installed by the fire alarm system contractor, to be monitored.

- 2. Terminal units' velocity sensors
- 3. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.

E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
Boiler Flow Switches	23	23	23	N/A
VFDs	23 09 23	26	23 09 23	26
Medical gas panels	23	23	26	26
Laboratory Air Valves	23	23	23 09 23	N/A
Fire Alarm shutdown relay interlock wiring	28	28	28	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Starters, HOA switches	23	23	N/A	26

- F. This facility's existing direct-digital control system is located at the Mechanical Shop. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
- G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - 1. The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
 - 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal laptop, one digital display unit, microprocessor-based controllers, instrumentation, end

control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.

4. Responsibility Table:

Item/Task	Section	Control	VA
	23 09 23	system	
	contactor	integrator	
ECC expansion		X	
ECC programming		X	
Devices, controllers, control panels	X		
and equipment			
Point addressing: all hardware and	X		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		X	
Network Programming	X		
ECC Graphics		X	
Controller programming and sequences	X		
Integrity of LAN communications	X		
Electrical wiring	X		
Operator system training		X	
LAN connections to devices	X		
LAN connections to ECC		X	
IP addresses			X
Overall system verification		X	
Controller and LAN system verification	X		_

- H. Unitary standalone systems including Unit Heaters, Cabinet Unit
 Heaters, Fan Coil Units, Base Board Heaters, thermal comfort
 ventilation fans, and similar units for control of room environment
 conditions may be equipped with integral controls furnished and
 installed by the equipment manufacturer or field mounted. Refer to
 equipment specifications and as indicated in project documents.
 Application of standalone unitary controls is limited to at least those
 systems wherein remote monitoring, alarm and start-up are not
 necessary.
- I. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

- C. Section 23 36 00, AIR TERMINAL UNITS.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; a prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet
 Interoperability Building Blocks (BIBBs) are collections of one or more
 BACnet services. These are prescribed in terms of an "A" and a "B"
 device. Both of these devices are nodes on a BACnet internetwork.

- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device.

 Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.

- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.

- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.

- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.

CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

A. Criteria:

- 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
- 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

B. Codes and Standards:

- 1. All work shall conform to the applicable Codes and Standards.
- 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - 1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.

- 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
- 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading

Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Carbon Dioxide (CO ₂)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported.

This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.

D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly

- reference the specification and/or drawings that it supposed to represent.
- 6. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 11. Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.

- 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 16 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
 - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35° C (65 to 90° F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65° C (-40 to 150° F).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

В.	American Society of Heati	ng, Refrigerating, and Air-Conditioning			
	Engineers (ASHRAE):				
	Standard 135-10B	ACNET Building Automation and Control Networks			
С.	American Society of Mecha	nical Engineers (ASME):			
		ast Copper Alloy Solder Joint Pressure ittings.			
	B16.22-01W	rought Copper and Copper Alloy Solder Joint ressure Fittings.			
D.	American Society of Testi	ng Materials (ASTM):			
	B88-09S	tandard Specification for Solder Metal tandard Specifications for Seamless Copper ater Tube			
	B88M-09S	tandard Specification for Seamless Copper ater Tube (Metric)			
	B280-08	tandard Specification for Seamless Copper Tube or Air-Conditioning and Refrigeration Field ervice			
	D2737-03S	tandard Specification for Polyethylene (PE) lastic Tubing			
Ε.	Federal Communication Com	mission (FCC):			
		le 47 Chapter 1-2001 Part 15: Radio Frequency evices.			
F.	Institute of Electrical a	nd Electronic Engineers (IEEE):			
	I M R A	nformation Technology-Telecommunications and nformation Exchange between Systems-Local and etropolitan Area Networks- Specific equirements-Part 3: Carrier Sense Multiple ccess with Collision Detection (CSMA/CD) ccess method and Physical Layer Specifications			
G.	National Fire Protection	Association (NFPA):			
		ational Electric Code tandard for Installation of Air-Conditioning nd Ventilation Systems			
Н.	. Underwriter Laboratories Inc (UL):				
		ests for Flammability of Plastic Materials for arts and Devices and Appliances			
	294-10A	ccess Control System Units			
	486A/486B-10				
	916-10E	nergy Management Equipment roprietary Burglar Alarm Units and Systems			

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts

shall be available for at least five years after completion of this contract.

- 2.2 CONTROLS SYSTEM ARCHITECTURE (INTERFACE WITH EXISTING)
- 2.3 COMMUNICATION (INTERFACE WITH EXISTING)
- 2.4 NETWORK AND DEVICE NAMING CONVENTION (INTERFACE WITH EXISTING)
- 2.5 BACNET DEVICES (INTERFACE WITH EXISTING)

2.6 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
 - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
 - 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.

- b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.

- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- 7. Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software (Interface with Existing)

2.7 SPECIAL CONTROLLERS

- A. Room Differential Pressure Controller: The differential pressure in laboratory rooms, operating rooms and isolation rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space, and display the value on its monitor. The sensor-controller shall meet the following as a minimum:
 - 1. Operating range: -0.25 to +0.25 inches of water column
 - 2. Resolution: 5 percent of reading
 - 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
 - 4. Analog output: 0-10 VDC or 4-20 ma
 - 5. Operating temperature range: 32°F-120°F

2.8 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.

- b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
- c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - 1) Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop.

 Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
- d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water flow sensors:
 - 1. Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.

- e. Seal: Teflon (PTFE).
- 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
- 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
- 4. Install flow meters according to manufacturer's recommendations.

 Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed,
 SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- F. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.9 CONTROL CABLES

- A. General:
 - 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.

- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing.

 Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - 1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- C. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.10 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted

dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.

- Leakage: Maximum leakage in closed position shall not exceed 7 L/S
 (15 CFMs) differential pressure for outside air and exhaust dampers
 and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches)
 differential pressure for other dampers.
- Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
- 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.

E. Control Valves:

- 1. Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
- 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
- 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
- 4. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
- 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.

- b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
- c. Two-way 2-position valves shall be ball, gate or butterfly type.
- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
 - 4. See drawings for required control operation.

2.11 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Pneumatic Type:
 - 1. Airflow measuring stations shall measure airflow by the pitot tube traverse method. Each unit shall consist of a network of static and total pressure sensors, factory positioned and connected in parallel, to produce an equalized velocity pressure. The measured velocity pressure converted to airflow (cfm) shall have accuracy within 2 percent of the full scale throughout the velocity range from 200 to 1,200 meter per minute (700 to 4,000 fpm).
 - 2. Airflow measuring stations shall consist of 16-gauge sheet metal casing, an aluminum air velocity treatment and air straightening section with an open face area not less than 97 percent and a total and static pressure sensing manifold made of copper. Each station shall contain noncombustible sensors which shall be incapable of producing toxic gases or fumes in the event of elevated duct temperatures. All interconnecting tubing shall be internal to the unit with the exception of one total pressure and one static pressure meter connection.
 - 3. Each air flow measuring station shall be installed to meet at least the manufacturer's minimum installation conditions and shall not amplify the sound level within the duct. The maximum resistance to airflow shall not exceed 0.3 times the velocity head for the duct stations and 0.6 times the velocity head for the fan stations. The unit shall be suitable for continuous operation up to a temperature of 120°C (250°F).
 - 4. Differential pressure transducers shall measure and transmit pressure signals to the direct digital controller.
- C. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:

- a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
- b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.

2. Air Flow Sensor Grid Array:

- a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
- b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
- c. Pressure drop through the flow station shall not exceed 4 Pascal $(0.015"\ \text{W.G.})$ at 1,000 meter per minute $(3,000\ \text{FPM})$.

3. Electronics Panel:

- a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
- b. Electronics Panel shall be A/C powered 24 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma

- for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	
<=1	2	
>1 to <4	4	
4 to <8	6	
8 to <12	8	
12 to <16	12	
>=16	16	

- a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary

devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:

- 1. Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
- 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
- 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
- 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.

F. Airflow Synchronization:

 Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.

2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- 1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
- 2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- 6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.

B. Electrical Wiring Installation:

1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.

- 2. Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:

1. Temperature Sensors:

- a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
- b. Calibrate sensors to accuracy specified, if not factory calibrated.
- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

2. Pressure Sensors:

- a. Install duct static pressure sensor tips facing directly downstream of airflow.
- b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
- c. Install snubbers and isolation valves on steam pressure sensing devices.

3. Actuators:

a. Mount and link damper and valve actuators according to manufacturer's written instructions.

- b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

4. Flow Switches:

- a. Install flow switch according to manufacturer's written instructions.
- b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.

D. Installation of network:

1. Ethernet:

- a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.

E. Installation of digital controllers and programming:

- Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
- 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.

- 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

B. Validation

- 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

 System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's

- representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
 - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.

- b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
- c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
- d. Execute digital and analog commands in graphic mode.
- e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
- f. Demonstrate EMS performance via trend logs and command trace.
- g. Demonstrate scan, update, and alarm responsiveness.
- h. Demonstrate spreadsheet/curve plot software, and its integration with database.
- i. Demonstrate on-line user guide, and help function and mail facility.
- j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
- k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
- 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

---- END ----

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings. Boiler plant and outside steam distribution piping is covered in specification Section 23 21 11, BOILER PLANT PIPING SYSTEMS.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gages.
 - 13. Thermometers and test wells.
 - 14. Electric heat tracing systems.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam-to-Hot Water).

- 2. Flash tanks.
- D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - 1. One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI):
 - B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch)
 B16.4-2006......Gray Iron Threaded Fittings
- C. American Society of Mechanical Engineers (ASME):
 - B16.1-2005......Gray Iron Pipe Flanges and Flanged Fittings
 - B16.3-2006......Malleable Iron Threaded Fittings
 - B16.9-2007.....Factory-Made Wrought Buttwelding Fittings
 - B16.11-2005.....Forged Fittings, Socket-Welding and Threaded
 - B16.14-91..... Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads
 - B16.22-2001.....Wrought Copper and Copper Alloy Solder-Joint
 - Pressure Fittings
 - B16.23-2002.....Cast Copper Alloy Solder Joint Drainage Fittings
 - B16.24-2006......Cast Copper Alloy Pipe Flanges and Flanged
 Fittings, Class 150, 300, 400, 600, 900, 1500
 and 2500
 - B16.39-98......Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300
 - B31.1-2007......Power Piping
 - B31.9-2008.....Building Services Piping
 - B40.100-2005......Pressure Gauges and Gauge Attachments

Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1

D.	American Society for Te	sting and Materials (ASTM):	
	A47-99Ferritic Malleable Iron Castings		
	A53-2007	.Pipe, Steel, Black and Hot-Dipped, Zinc-Coated,	
		Welded and Seamless	
	A106-2008	.Seamless Carbon Steel Pipe for High-Temperature	
		Service	
	A126-2004	.Standard Specification for Gray Iron Castings	
		for Valves, Flanges, and Pipe Fittings	
	A181-2006	.Carbon Steel Forgings, for General-Purpose	
		Piping	
	A183-2003	Carbon Steel Track Bolts and Nuts	
	A216-2008	Standard Specification for Steel Castings,	
		Carbon, Suitable for Fusion Welding, for High	
		Temperature Service	
	A285-01	Pressure Vessel Plates, Carbon Steel, Low-and-	
		Intermediate-Tensile Strength	
	A307-2007	Carbon Steel Bolts and Studs, 60,000 PSI Tensile	
		Strength	
	A516-2006	Pressure Vessel Plates, Carbon Steel, for	
		Moderate-and- Lower Temperature Service	
	A536-84(2004)e1	Standard Specification for Ductile Iron Castings	
	B32-2008	Solder Metal	
	B61-2008	Steam or Valve Bronze Castings	
	B62-2009	Composition Bronze or Ounce Metal Castings	
	в88-2003	Seamless Copper Water Tube	
	F439-06	Socket-Type Chlorinated Poly (Vinyl Chloride)	
		(CPVC) Plastic Pipe Fittings, Schedule 80	
	F441-02(2008)	Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic	
		Pipe, Schedules 40 and 80	
Ε.	I. American Welding Society (AWS):		
	A5.8-2004Filler Metals for Brazing and Braze Welding		
	B2.1-00	.Welding Procedure and Performance	
		Qualifications	
F.	Manufacturers Standardi	zation Society (MSS) of the Valve and Fitting	
	<pre>Industry, Inc.:</pre>		
	SP-67-95	.Butterfly Valves	
	SP-70-98	.Cast Iron Gate Valves, Flanged and Threaded	
		Ends	

SP-71-97Gray Iron Swing Check Valves, Flanged and	
Threaded Ends	
SP-72-99Ball Valves with Flanged or Butt-Welding Ends	
for General Service	
SP-78-98Cast Iron Plug Valves, Flanged and Threaded	
Ends	
SP-80-97Bronze Gate, Globe, Angle and Check Valves	
SP-85-94Cast Iron Globe and Angle Valves, Flanged and	
Threaded Ends	

- G. Military Specifications (Mil. Spec.):
 - MIL-S-901D-1989......Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems
- H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping:
 - 1. Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
 - 2. All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME

- B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
- 4. Unions: ASME B16.39.
- 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - 1. Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.

- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass gate valves may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2100 mm (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 lb.), wedge disc, rising stem, union bonnet.
 - b. 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke.
 - 1) High pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - 2) All other services: MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

E. Globe and Angle Valves:

- 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger:
 - 1) Globe valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.

2) All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.

2. Angle Valves

- a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
- b. 65 mm (2 1/2 inches) and larger:
 - 1) Angle valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle valves.

F. Swing Check Valves

- 1. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 psig), 45 degree swing disc.
- 2. 65 mm (2-1/2 inches) and Larger:
 - a Check valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).
 - 2. 65 mm (2-1/2 inches) and larger: Flanged cast steel or 1723 kPa (250 psig) cast iron.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast iron or bronze.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, iron body.

- D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 1. 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids.

2.9 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement.

Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.10 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-30 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-125 psig): Rated 1025 kPa (150
 psig) at 186 degrees C (366 degrees F).
 - c. Steam Service 869-1025 kPa (126-150 psig): Rated 1375 kPa (200 psig) at 194 degrees C (382 degrees F).
 - d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C
 (310 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - 3. Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.

- 3. External cast iron equalizing rings for services exceeding 340 kPa (50 psig).
- 4. Welded ends.
- 5. Design shall conform to standards of EJMA and ASME B31.1.
- 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
- 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.
 - 6. Threaded connection at bottom, 25 mm (one inch) minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.11 FLEXIBLE BALL JOINTS

A. Design and Fabrication: One piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1720 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 750 mm (30 inches). Joints through 350 mm (14 inches) shall have forged pressure retaining members; while size 400 mm (16 inches) through 760 mm (30 inches) shall be of one piece construction.

B. Material:

 Cast or forged steel pressure containing parts and bolting in accordance with Section II of the ASME Boiler Code or ASME B31.1.
 Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME Section II SA 515, Grade 70.

- 2. Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - 1. Low pressure leakage test: 41 kPa (6psig) saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 3445 kPa (500 psig) saturated steam.
 - 3. Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
 - 4. Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
 - 5. Vibration: 170 hours on each of three mutually perpendicular axis at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.1 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.12 STEAM SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 feet per second).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m^2K/W (0.001 ft^2hrF/Btu).
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Cast iron or steel.
 - 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components supported on a welded steel frame.
- C. Steam Pressure Reducing Valves in PRV Stations:

- Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
- 2. Service: Provide controlled reduced pressure to steam piping systems.
- 3. Pressure control shall be smooth and continuous with maximum drop of 10 percent. Maximum flow capability of each valve shall not exceed capacity of downstream safety valve(s).
- 4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, monel, or similar durable material.
 - a. Pressure rating for high pressure steam: Not less than 1034 kPa (150 psig) saturated steam.
 - b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.
- 5. Select pressure reducing valves to develop less than 85 dbA at 1500 mm (5 feet) elevation above adjacent floor, and 1500 mm (5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing valves shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.
- 6. Pneumatically controlled valve: May be furnished in lieu of steam-operation. All specification requirements for steam operated valves apply. Valves shall close on failure of air supply.
- D. Safety Valves and Accessories: Comply with ASME Boiler and Pressure Vessel Code, Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown.
- E. Steam PRV for Individual Equipment: Cast steel or bronze body, screwed or flanged ends, rated 861 kPa (125 psig), or 20% about the working pressure, whichever is greater. Single-seated, diaphragm operated, spring loaded, adjustable range, all parts renewable.
- F. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516 or ASTM A285, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53 Grade B, Seamless or ERW, or A106 Grade B Seamless,

- Schedule 80. Corrosion allowance of 1.6 mm (1/16 inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
- G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping, (4 bolt raised face flange). For systems without relief valve traps shall be 5. Mechanism: Brass, stainless steel or corrosion resistant alloy rated for the pressure upstream of the PRV supplying the system.
 - 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
 - 4. Valves and seats: Suitable hardened corrosion resistant alloy.
 - 6. Floats: Stainless steel.
 - 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- H. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.

I. Steam Humidifiers:

 Steam separator type that discharges steam into the air stream through a steam jacketed distribution manifold or dispersion tube. Humidifiers shall be complete with Y-type steam supply strainer; modulating, normally closed steam control valve; normally closed condensate temperature switch; and manufacturer's standard steam trap.

- 2. Steam separator: Stainless steel or cast iron.
- 3. Distribution manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
 - a. Duct section height exceeds 900 mm (36 inches).
 - b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute).
 - b. If within 900 mm (3 feet) upstream of fan, damper or pre-filter.
 - d. If within 3000 mm (10 feet) upstream of after-filter.
- J. Steam Gun Set: Furnish for ready coupling to building steam and cold water and designed for rinsing equipment (such as carts and racks) with hot or cold water, cleaning such articles with detergent-laden hot water or steam, or alternately sanitizing the articles with only live steam
 - 1. Gun: Fit gun for finger-tip release of steam. Design so siphoning action will automatically mix detergent with gun effluent. Equip gun with hardwood front and rear handgrips. Include a 25 mm (15/16-inch) diameter, double tube butyl hose reinforced with braid and designed for 1034 kPa (150 psig) pressure. Hose shall be 3600 mm (12 feet)
 - 2. Detergent Tank: Furnish 9.5 L (2-1/2 gallon) polyethylene or fiberglass storage tank and fit for wall mounting. Also provide 13 mm (1/2 inch) diameter neoprene double wall detergent hose of the same length as steam hose. Fit hose-to-tank connection with strainer. Fit other end of hose with valve to regulate amount of detergent to be mixed with steam.
 - 3. Steam/Water Selector: Furnish manifold for wall mounting; design manifold to deliver only steam or water, or steam and water mix to gun. Construct mounting panel of stainless steel. Valves and piping located in panel shall be brass.
 - 4. Accessories: Provide one pair of protective gloves and three 50 mm (2 inch) diameter brushes, one nylon and two stainless-steel.
- K. Steam Hose and Accessories: Hose shall be sufficiently flexible to be placed in a 100 mm (4 feet) diameter coil.
 - 1. Furnish and install in the mechanical room housing each PRV station a 7500 mm (25 feet) length of 13 mm (1/2 inch) ID steam hose, rated

- 861 kPa (125 psig) and a hose rack. In one end of the hose install a quick-couple device, suitable for steam service, to match corresponding devices in the PRV blowdown connections.
- 2. Hose storage rack: Wall-mounted, steel, iron or aluminum, semi-circular shape, with capacity to store 7500 mm (25 feet) of 13 mm (1/2 inch) ID steam hose.
- L. Steam Flow Meter/Recorder: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Steam Exhaust Head: Cast iron, fitted with baffle plates, to trap and drain condensed water.

2.13 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam condensate to 103 kPa(15 psig)	0 to 207 kPa (30 psig).
Medium pressure steam and steam condensate nominal 413 kPa (60 psig)	0 to 689 kPa (100 psig).
High pressure steam and steam condensate nominal 620 kPa to 861 kPa (90 to 125 psig)	0 to 1378 kPa (200 psig).
Pumped condensate, steam condensate, gravity or vacuum (30" HG to 30 psig)	0 to 415 kPa (60 psig)

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range.

3. 0 - 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.15 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves

- with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M (8 feet) above grade with down turned elbow.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

3.5 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.7 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field refrigerant piping for direct expansion HVAC systems. Field refrigerant piping and associated drain and condenser water piping for walk-in coolers and freezers, including required pipe insulation. Field refrigerant piping and associated drain and condenser water piping for laboratory refrigerators, including required pipe insulation. Field refrigerant piping and associated drain and condenser water piping for mortuary refrigerators, including required pipe insulation.
- B. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.

C. Definitions:

- Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
- 2. Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.
- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Flexible metal hose
 - g. Liquid-suction interchanges
 - h. Oil separators (when specified)
 - i. Gages
 - j. Pipe and equipment supports
 - k. Refrigerant and oil
 - 1. Pipe/conduit roof penetration cover
 - $\ensuremath{\mathsf{m}}\xspace.$ Soldering and brazing materials
 - 2. Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.

- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI):

 495-1999 (R2002)......Standard for Refrigerant Liquid Receivers

 730-2005.......Flow Capacity Rating of Suction-Line Filters

 and Suction-Line Filter-Driers

 750-2007......Thermostatic Refrigerant Expansion Valves

 760-2007......Performance Rating of Solenoid Valves for Use

 with Volatile Refrigerants
- C. American Society of Heating Refrigerating and Air Conditioning
 Engineers (ASHRAE):
 - ANSI/ASHRAE 15-2007.....Safety Standard for Refrigeration Systems (ANSI)
 - ANSI/ASHRAE 17-2008.....Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI)
 - 63.1-95 (RA 01)......Method of Testing Liquid Line Refrigerant Driers (ANSI)
- D. American National Standards Institute (ANSI):
 - ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems Z535.1-2006......Safety Color Code
- E. American Society of Mechanical Engineers (ASME):

ANSI/ASME B16.22-2001 (R2005)

Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI)

ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer Components (ANSI)

ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments
ANSI/ASME B40.200-2008..Thermometers, Direct Reading and Remote Reading

F. American Society for Testing and Materials (ASTM)

A126-04Standard Specification for Gray Iron Castings	
for Valves, Flanges, and Pipe FittingsB32-08	
Standard Specification for Solder Metal	
B88-03Standard Specification for Seamless Copper	
Water Tube	
B88M-05Standard Specification for Seamless Copper	
Water Tube (Metric)	
B280-08Standard Specification for Seamless Copper Tube	
for Air Conditioning and Refrigeration Field	
Service	

G. American Welding Society, Inc. (AWS):

Brazing Handbook

A5.8/A5.8M-04......Standard Specification for Filler Metals for Brazing and Braze Welding

H. Federal Specifications (Fed. Spec.)

Fed. Spec. GG

I. Underwriters Laboratories (U.L.):

U.L.207-2009......Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
 - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5.
 - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
 - 2. Steel fittings: ASTM wrought steel fittings.
 - a. Refrigerant piping Welded Joints.
 - 3. Flanges and flanged fittings: ASME B16.24.

4. Refrigeration Valves:

- a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
- b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
- c. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non-ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
- d. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 5. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- 6. Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication.

 Provide screwed brass seal caps.
- 7. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter

- driers with replaceable filters shall be furnished with one spare element of each type and size.
- 8. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.
- 9. Oil Separators: Provide for condensing units, as shown. All welded steel construction with capacity to eliminate a minimum of 95 percent of the oil from the hot gas flowing through it. Provide manufacturer's published ratings for minimum and maximum refrigeration tonnage corresponding to this oil separating efficiency. Separator shall be equipped with a float valve to prevent return of the hot gas to crankcase, and shall have isolating stop valves so it can be opened and services without pumping out any other part of the system. ASME construction or UL listed.
- 10.Recievers: Conform to AHRI 495, steel construction, equipped with tappings for liquid inlet and outlet valves, pressure relief valve and liquid level indicator.

2.2 GAGES

- A. Temperature Gages: Comply with ASME B40.200. Industrial-duty type and in required temperature range for service in which installed. Gages shall have Celsius scale in 1-degree (Fahrenheit scale in 2-degree) graduations and with black number on a white face. The pointer shall be adjustable. Rigid stem type temperature gages shall be provided in thermal wells located within 1525 mm (5 feet) of the finished floor. Universal adjustable angle type or remote element type temperature gages shall be provided in thermal wells located 1525 to 2135 mm (5 to 7 feet) above the finished floor. Remote element type temperature gages shall be provided in thermal wells located 2135 mm (7 feet) above the finished floor.
- B. Vacuum and Pressure Gages: Comply with ASME B40.100 and provide with throttling type needle valve or a pulsation dampener and shut-off valve. Gage shall be a minimum of 90 mm (3-1/2 inches) in diameter with a range from 0 kPa (0 psig) to approximately 1.5 times the maximum system working pressure. Each gage range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.
 - 1. Suction: 101 kPa (30 inches Hg) vacuum to 1723 kPa (gage) (250 psig).

2. Discharge: 0 to 3445 kPa (gage) (0 to 500 psig).

2.3 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.4 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.5 PIPE/CONDUIT ROOF PENETRATION COVER

- A. Prefabricated Roof Curb: Galvanized steel or extruded aluminum 300 mm (12 inches) overall height, continuous welded corner seams, treated wood nailer, 38 mm (1-1/2 inch) thick, 48 kg/cu.m (3 lb/cu.ft.) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.
- B. Penetration Cover: Galvanized sheet metal with flanged removable top. Provide 38 mm (1-1/2 inch) thick mineral fiber board insulation.
- C. Flashing Sleeves: Provide sheet metal sleeves for conduit and pipe penetrations of the penetration cover. Seal watertight penetrations.

2.6 PIPE INSULATION FOR DX HVAC SYSTEMS

Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - 1. Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
 - 3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent

to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.

- 4. Use copper tubing in protective conduit when installed below ground.
- 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.

B. Joint Construction:

- 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
 - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
 - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
 - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
 - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Pipe relief valve discharge to outdoors for systems containing more than $45~\mathrm{kg}$ (100 lbs) of refrigerant.
- E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, and BOILER PLANT INSULATION.

3.2 PIPE AND TUBING INSULATION

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer,

- the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - 1. Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
 - Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

- A. Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.
- B. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of COR. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
 - 1. Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
 - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group A1 refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.

C. Test medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
 - 1. Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
 - 2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
 - 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

A. Refer to paragraph, quality assurance, in section 23 05 11, COMMONE WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
 - 2. Air flow control valves.
- C. Samples: Provide one typical air terminal unit for approval by the COR. This unit will be returned to the Contractor after all similar units have been shipped and deemed acceptable at the job site.
- D. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- E. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI):

 880-08......Air Terminals Addendum to ARI 888-98

 incorporated into standard posted 15th December

 2002

C. National Fire Protection Association (NFPA):

90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems

D. Underwriters Laboratories, Inc. (UL):

181-08.....Standard for Factory-Made Air Ducts and Air Connectors

E. American Society for Testing and Materials (ASTM):

C 665-06......Standard Specification for Mineral-Fiber

Blanket Thermal Insulation for Light Frame

Construction and Manufactured Housing

1.6 GUARANTY

A. In accordance with the general conditions.

PART 2 - PRODUCTS

2.1 GENERAL

A. Coils:

- 2. All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
- 3. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.

4. Electric Heating Coils:

- a. ARI certified, spiral fin type.
- b. Capacity: As indicated, based on scheduled data.
- c. Coil: Enclosed copper tube, aluminum finned element of coiled nickel-chrome resistance wire centered in tubes and embedded in refractory material. Exposed helical coil of nickel-chrome resistance wire with refractory ceramic support bushings will not be allowed.

- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4-lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.

- 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
- 3. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterfly-balancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.
- D. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - 1. Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- E. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- F. Provide static pressure tubes.
- G. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.
- H. Fan powered terminal units:
 - 1. General: The fan will be in a series configuration inside the unit casing.
 - 2. Fan assembly: Forward curved centrifugal direct drive blower with adjustable speed controller.
 - a. Motor: Integral thermal overload protection.
 - 1) 115 V single phase.
 208/240 V single phase.
 277 V single phase.

- b. Motor assembly: Completely isolated from cabinet with rubber vibration mounts.
- 3. Wiring: Factory mounted and wire controls. Mount electrical components NEMA-1 control box with removable cover. Incorporate single point electrical connection to power source. Provide terminal strip in control box for field wiring of power source. Provide factory wired non-fused disconnect switch on each terminal unit.
- 4. Provide 1-inch thick throwaway filter in the return air inlet.

2.3 AIR FLOW CONTROL VALVE (AFCV)

- A. Airflow control device shall be a venturi valve type air flow control valve.
- B. Pressure independent over a 150 Pa-750 Pa (0.6 inch WG 3.0 inch WG) drop across valve.
- C. Volume control accurate to plus or minus 5% of airflow over an airflow turndown range of 16 to 1. No minimum entrance or exit duct diameters shall be required to ensure accuracy or pressure independence.
- D. Response time to change in command signal and duct static pressure within three seconds.
- E. 16 gauge spun aluminum valve body and control device with continuous welded seam and 316 stainless steel shaft and shaft support brackets. Pressure independent springs shall be stainless steel. Shaft bearing surfaces shall be Teflon or polyester.
- F. 316 stainless steel continuous welded seam valve body, control device, shaft, shaft support bracket, pivot arm and internal mounting link.

 The control device shall have a baked on corrosion resistant phenolic coating. The shaft shall have a Teflon coating and all shaft bearing surfaces shall be made of Teflon. The pressure independent springs shall be made of stainless steel.
- G. The airflow device shall have no exposed aluminum or stainless steel components. The shaft support brackets, pivot arm, internal mounting link, and pressure independent springs shall have a baked-on corrosion resistant phenolic coating. Internal nuts, bolts, and rivets shall be titanium or phenolic coated stainless steel.
- H. Constant volume units:
 - 1. Actuator to be factory mounted to the valve.
 - 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.

- 3. Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.
- 4. The maximum and minimum airflows shall be as scheduled.

I. Variable volume units:

- 1. Actuator to be factory mounted to the valve.
- 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
- 3. Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.

J. Certification:

- 1. Control device: factory calibrated to airflows detailed on plans using NIST traceable air stations and instrumentation having a combined accuracy of plus or minus 1% of signal over the entire range of measurement.
- 2. Electronic airflow control devices: further calibrated and their accuracy verified to plus or minus 5% of signal at a minimum of eight different airflows across the full operating range of the device.
- 3. All airflow control devices: individually marked with device specific, factory calibration data to include: tag number, serial number, model number, eight point characterization information (for electronic devices), and quality control inspection numbers.
- K. Airflow measuring devices and airflow control devices that are not venturi valves (e.g., Pitot tube, flow cross, air bar, orifice ring, vortex shedder, etc.) are acceptable, provided the following conditions are met:
 - 1. They meet the performance and construction characteristics stated throughout this section of the specification.
 - 2. Suppliers of airflow control devices or airflow measuring devices requiring minimum duct diameters: provide revised duct layouts showing the required straight duct runs upstream and downstream of these devices.
 - 3. Supplier of the airflow control system: submit coordination drawings reflecting these changes and include static pressure loss calculations as part of submittal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC.

 Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
 Laboratories, Inc. (UL), Institute of Electrical and Electronics
 Engineers (IEEE), and National Fire Protection Association (NFPA) codes
 and standards are the minimum requirements for materials and
 installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts,

certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.

- 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:

- 1. The Government shall have the option of witnessing factory tests.

 The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
- 2. Four (4) copies of the equipment manufacturer's certified test reports to the COR two weeks prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized

- electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements.

 Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.

- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION"
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.

- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.

- 2. Each type of conduit coupling, bushing, and termination fitting.
- 3. Conduit hangers, clamps, and supports.
- 4. Duct sealing compound.
- 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 POLYCHLORINATED BIPHENYL (PCB) EQUIPMENT (NOT APPLICABLE)

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all

- aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10Standard Specification for Vinyl Chloride
Plastic Pressure-Sensitive Electrical
Insulating Tape

D2304-10Test Method for Thermal Endurance of Rigid
Electrical Insulating Materials
D3005-10Low-Temperature Resistant Vinyl Chloride
Plastic Pressure-Sensitive Electrical

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA):
 - WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):

70-17......National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

44-14	Thermoset-Insulated Wires and Cables
83-14	Thermoplastic-Insulated Wires and Cables
467-13	Grounding and Bonding Equipment
486A-486B-13	Wire Connectors

4001 400D 13..................

486C-13.....Splicing Wire Connectors

486D-15.....Sealed Wire Connector Systems

486E-15......Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

493-07......Thermoplastic-Insulated Underground Feeder and
Branch Circuit Cables

514B-12......Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.

- 2. No. 8 AWG and larger: Stranded.
- 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
- 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

D. Color Code:

- 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	A	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.

- 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES (NOT APPLICABLE)

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 DIRECT BURIAL CABLE INSTALLATION (NOT APPLICABLE)

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.

2. Test Reports:

- a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.
- 3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
 - B1-13.....Standard Specification for Hard-Drawn Copper
 Wire
 - B3-13.....Standard Specification for Soft or Annealed Copper Wire
 - B8-11.....Standard Specification for Concentric-LayStranded Copper Conductors, Hard, Medium-Hard,
 or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-12......IEEE Guide for Measuring Earth Resistivity,

Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements

- D. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC)
 - 70E-15.....National Electrical Safety Code
 - 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):
 - 44-14Thermoset-Insulated Wires and Cables
 - 83-14Thermoplastic-Insulated Wires and Cables
 - 467-13Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS (NOT APPLICABLE)

2.3 CONCRETE ENCASED ELECTRODE (NOT APPLICABLE)

2.4 GROUND CONNECTIONS

A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.

B. Above Grade:

- 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 2. Connection to Building Steel: Exothermic-welded type connectors.
- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- C. Pad-Mounted Transformers:
 - Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.

D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes.
 Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

D. Transformers:

- 1. Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary.

 Provide a grounding electrode at the transformer.
- 2. Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the ground bar at the service equipment.

3.5 RACEWAY

A. Conduit Systems:

- 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
- 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
- 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.

- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

H. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT (NOT APPLICABLE)

3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.8 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.9 LIGHTNING PROTECTION SYSTEM (NOT APPLICABLE)

3.10 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.11 EXTERIOR LIGHT POLES

A. Provide 6.1 M (20 feet) of No. 4 AWG bare copper coiled at bottom of pole base excavation prior to pour, plus additional un-spliced length in and above foundation as required to reach pole ground stud.

3.12 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.13 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.

- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.14 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 31 20 00, EARTHWORK: Bedding of conduits.

1.3 OUALITY ASSURANCE

A. Refer to paragraph, qualifications, in section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.

- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05......Electrical Rigid Steel Conduit C80.3-05......Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-11.....Surface Metal Raceway and Fittings 6-07......Electrical Rigid Metal Conduit - Steel 50-95......Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13......Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12......Conduit, Tubing, and Cable Fittings 514C-07......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06..... Electrical Intermediate Metal Conduit - Steel E. National Electrical Manufacturers Association (NEMA):

	TC-2-13	.Electrical Polyvinyl Chloride (PVC) Tubing and
		Conduit
	TC-3-13	.PVC Fittings for Use with Rigid PVC Conduit and
		Tubing
	FB1-12	.Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing and
		Cable
	FB2.10-13	.Selection and Installation Guidelines for
		Fittings for use with Non-Flexible Conduit or
		Tubing (Rigid Metal Conduit, Intermediate
		Metallic Conduit, and Electrical Metallic
		Tubing)
	FB2.20-12	.Selection and Installation Guidelines for
		Fittings for use with Flexible Electrical
		Conduit and Cable
F.	American Iron and Steel	Institute (AISI):
	S100-2007	.North American Specification for the Design of

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

Cold-Formed Steel Structural Members

B. Conduit:

- 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
- 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
- 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- 8. Surface Metal Raceway: Shall conform to UL 5.

C. Conduit Fittings:

- 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.

2. Electrical Metallic Tubing Fittings:

- a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
- b. Only steel or malleable iron materials are acceptable.
- c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
- d. Indent-type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of
 "pot metal" are prohibited.

3. Flexible Metal Conduit Fittings:

- a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
- b. Clamp-type, with insulated throat.

- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 6. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm \times 38 mm (1.5 \times 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

E. Outlet, Junction, and Pull Boxes:

- 1. UL-50 and UL-514A.
- 2. Rustproof cast metal where required by the NEC or shown on drawings.

- 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.

- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:

- a. Where shown on the structural drawings.
- b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- 4. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
 - 2. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT.

 Mixing different types of conduits in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum $1.8\,$ M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.

- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT.

 Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION (NOT APPLICABLE)

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped guarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper bonding jumper installed.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.

- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Interface of lighting controls with HVAC control systems.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.

2. Manuals:

a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data

sheets, wiring diagrams, and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Green Seal (GS): GC-12-03.....Occupancy Sensors C. National Electrical Manufacturer's Association (NEMA): C136.10-10......American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles-Physical and Electrical Interchangeability and Testing ICS-1-08.....Standard for Industrial Control and Systems General Requirements ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-11......Standard for Industrial Controls and Systems Enclosures D. National Fire Protection Association (NFPA): 70-14......National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 20......Standard for General-Use Snap Switches 773-95......Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting 773A-06......Nonindustrial Photoelectric Switches for

Lighting Control

98-04Enclosed and Dead-Front Switches				
916-07Standard for Energy Management Equipment				
Systems				
917-06Clock Operated Switches				
924-06Emergency Lighting and Power Equipment (for use				
when controlling emergency circuits).				

PART 2 - PRODUCTS

- 2.1 ELECTRONIC TIME SWITCHES (NOT APPLICABLE)
- 2.2 ELECTROMECHANICAL-DIAL TIME SWITCHES (NOT APPLICABLE)
- 2.3 OUTDOOR PHOTOELECTRIC SWITCHES (NOT APPLICABLE)
- 2.4 TIMER SWITCHES (NOT APPLICABLE)
- 2.5 CEILING-MOUNTED PHOTOELECTRIC SWITCHES (NOT APPLICABLE)
- 2.6 SKYLIGHT PHOTOELECTRIC SENSORS (NOT APPLICABLE)
- 2.7 INDOOR OCCUPANCY SENSORS
 - A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Sensor Output: Contacts rated to operate the connected relay.

 Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - 8. Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
 - B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.

- 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.8 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - 1. Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
- 2.9 OUTDOOR MOTION SENSOR (PIR)
- 2.10 LIGHTING CONTROL SYSTEM RELAY PANEL TYPE (NETWORK) (NOT APPLICABLE)
- 2.11 LIGHTING CONTROL SYSTEM RELAY PANEL TYPE (STAND ALONE) (NOT APPLICABLE)
- 2.12 LIGHTING CONTROL SYSTEM DISTIBUTIVE RELAY TYPE (NOT APPLICABLE)
- 2.13 LIGHTING CONTROL SYSTEML CIRCUIT BREAKER PANEL TYPE (NOT APPLICABLE)
- 2.14 LIGHTING CONTROL SYSTEM DIGITAL ADDRESSABLE LIGHTING INTERFACE (DALI) (NOT APPLICABLE)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.

- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability.
 Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

3.4 INSTRUCTION

- A. Furnish the services of a factory-trained technician for one 8-hour training period for instructing personnel in the maintenance and operation of the lighting control system on the dates requested by the COR.
- B. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REOUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - a. Certification from the manufacturer that a representative panelboard has been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

Α.	Publications listed below (including amendments, addenda, revisions
	supplements, and errata) form a part of this specification to the
	extent referenced. Publications are referenced in the text by
	designation only.

	designation only.
В.	International Code Council (ICC):
	IBC-12International Building Code
С.	National Electrical Manufacturers Association (NEMA):
	PB 1-11Panelboards
	250-08Enclosures for Electrical Equipment (1,000V
	Maximum)
D.	National Fire Protection Association (NFPA):
	70-11National Electrical Code (NEC)
	70E-12Standard for Electrical Safety in the Workplace
Ε.	Underwriters Laboratories, Inc. (UL):
	50-95Enclosures for Electrical Equipment
	67-09Panelboards
	489-09 Molded Case Circuit Breakers and Circuit
	Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

A. Enclosures:

- 1. Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
- 2. Enclosures shall not have ventilating openings.

- 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
- 4. Provide manufacturer's standard option for pre-punched knockouts on top and bottom endwalls.
- 5. Include removable inner dead front cover, independent of the panelboard cover.

B. Trims:

- 1. Hinged "door-in-door" type.
- 2. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.

- 6. Electrically and mechanically trip free.
- 7. An operating handle which indicates closed, tripped, and open positions.
- 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
- 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
- 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SURGE PROTECTIVE DEVICES (NOT APPLICABLE)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. In seismic areas, panelboards shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- F. Provide blank cover for each unused circuit breaker mounting space.
- G. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims with finishes to match surrounding surfaces after the panelboards have been installed. Do not paint nameplates.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:

- 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
 - h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).

- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- D. Environmental Protection Agency (EPA):
 40 CFR 261.....Identification and Listing of Hazardous Waste
- E. Federal Communications Commission (FCC):

 CFR Title 47, Part 15...Radio Frequency Devices

 CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment
- F. Illuminating Engineering Society (IES):

 LM-79-08......Electrical and Photometric Measurements of

 Solid-State Lighting Products

	TM_80_08	.Measuring Lumen Maintenance of LED Light
	III-00-00	Sources
	TM_82_12	.Characterization of LED Light Engines and LED
	IM-02-12	
		Lamps for Electrical and Photometric Properties
C	Tootitute of Dlootnicel	as a Function of Temperature
G.		and Electronic Engineers (IEEE):
		.Surge Voltages in Low Voltage AC Power Circuits
н.	International Code Coun	
_		.International Building Code
⊥.	National Fire Protection	
		.National Electrical Code (NEC)
	101-12	-
J.		ufacturer's Association (NEMA):
	C82.1-04	.Lamp Ballasts - Line Frequency Fluorescent Lamp
		Ballasts
	C82.2-02	.Method of Measurement of Fluorescent Lamp
		Ballasts
	C82.4-02	.Lamp Ballasts - Ballasts for High-Intensity
		Discharge and Low-Pressure Sodium (LPS) Lamps
		(Multiple-Supply Type)
	C82.11-11	.Lamp Ballasts - High Frequency Fluorescent Lamp
		Ballasts
	LL-9-09	.Dimming of T8 Fluorescent Lighting Systems
	SSL-1-10	.Electronic Drivers for LED Devices, Arrays, or
		Systems
К.	K. Underwriters Laboratories, Inc. (UL):	
	496-08	.Lampholders
	542-0599	.Fluorescent Lamp Starters
	844-12	.Luminaires for Use in Hazardous (Classified)
		Locations
	924-12	.Emergency Lighting and Power Equipment
	935-01	.Fluorescent-Lamp Ballasts
	1029-94	.High-Intensity-Discharge Lamp Ballasts
	1029A-06	.Ignitors and Related Auxiliaries for HID Lamp
		Ballasts
	1598-08	.Luminaires
	1574-04	.Track Lighting Systems
	2108-04	.Low-Voltage Lighting Systems

8750-09.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.

B. Sheet Metal:

- 1. Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
- 2. Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
- 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
- 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.

D. Lamp Sockets:

- Fluorescent: Single slot entry type, requiring a one-quarter turn of the lamp after insertion. Lampholder contacts shall be the biting edge type.
- 2. Compact Fluorescent: 4-pin.
- 3. High Intensity Discharge (HID): Porcelain.
- E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.

G. Metal Finishes:

1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.

- Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- I. Light Transmitting Components for Fluorescent Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - 2. Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
 - 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.
- J. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.
- K. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures.

2.2 BALLASTS

- A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic instant-start or programmed-start type, designed for type and quantity of lamps indicated. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated. Ballasts shall include the following features:
 - 1. Lamp end-of-life detection and shutdown circuit (T5 lamps only).
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion (THD): 10 percent or less.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.

- 8. Ballast Factor: 0.87 or higher unless otherwise indicated.
- 9. Power Factor: 0.98 or higher.
- 10. EMR/RFI Interference: Comply with CFR Title 47 Part 18 for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
- 11. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled.
- 12. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp.
- B. Compact Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic programmed rapid-start type, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated. Ballasts shall include the following features:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion (THD): 10 percent or less.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. Ballast Factor: 0.95 or higher unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.
 - 10. Interference: Comply with CFR Title 47 Part 18 for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.

2.3 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch.
 - 1. Enclosure: Shall be impact-resistant thermoplastic. Enclosure shall be suitable for the environmental conditions in which installed.
 - 2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
 - 3. Lamps: Shall be sealed-beam MR-16 halogen, rated not less than 12 watts at the specified DC voltage.
 - 4. Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be minimum of 10 years.
 - 5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.
 - 6. Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.4 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.

F. Fixtures:

- 1. Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
- 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
- 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings.

Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.

G. Voltage: Multi-voltage (120 - 277V).

2.5 LED LIGHT FIXTURES

A. General:

- 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
- 2. LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
- 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: $120 277V (\pm 10\%)$ at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
- 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.

B. LED Downlights:

1. Housing, LED driver, and LED module shall be products of the same manufacturer.

C. LED Troffers:

- LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
- 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.

- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed fluorescent fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
 - 5. Hardware for surface mounting fluorescent fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 6 mm (1/4 inch) secured to channel members attached to and spanning the tops of the ceiling structural grid members. Nonturning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points

spaced near the corners of each fixture. Pre-positioned 6 mm (1/4 inch) studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 6 mm (1/4 inch) toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.

- 6. Hardware for recessed lighting fixtures:
 - a. All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.
 - b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - 1) Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
 - d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 7. Surface mounted lighting fixtures:

- a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
- b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - 1) Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - 2) The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - 3) The outlet box is supported vertically from the building structure.
- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 8. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 9. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.

- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.

2. Electrical tests:

- a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
- b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of exterior fixtures, poles, and supports. The terms "lighting fixtures", "fixture" and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for exterior light poles and luminaires.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- H. Section 26 09 23, LIGHTING CONTROLS: Controls for exterior lighting.

1.3 OUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.

- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- k. Submit site plan showing all exterior lighting fixtures with fixture tags consistent with Lighting Fixture Schedule as shown on drawings. Site plan shall show computer generated point-by-point illumination calculations. Include lamp lumen and light loss factors used in calculations.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the exterior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Aluminum Association Inc. (AA):

 AAH35.1-06.....Alloy and Temper Designation Systems for

 Aluminum
- C. American Association of State Highway and Transportation Officials (AASHTO):

	32-LTS-6Structural Supports for Highway Signs,
	Luminaires and Traffic Signals
D.	American Concrete Institute (ACI):
	318-05Building Code Requirements for Structural
	Concrete
Ε.	American National Standards Institute (ANSI):
	C81.61-09Electrical Lamp Bases - Specifications for
	Bases (Caps) for Electric Lamps
F.	American Society for Testing and Materials (ASTM):
	A123/A123M-12Zinc (Hot-Dip Galvanized) Coatings on Iron and
	Steel Products
	A153/A153M-09Zinc Coating (Hot-Dip) on Iron and Steel
	Hardware
	B108-03a-08Aluminum-Alloy Permanent Mold Castings
	C1089-13Spun Cast Prestressed Concrete Poles
G.	Federal Aviation Administration (FAA):
	AC 70/7460-IK-07Obstruction Lighting and Marking
	AC 150/5345-43F-06Obstruction Lighting Equipment
Н.	Illuminating Engineering Society of North America (IESNA):
	HB-9-00Lighting Handbook
	RP-8-05Roadway Lighting
	LM-52-03Photometric Measurements of Roadway Sign
	Installations
	LM-72-10Directional Positioning of Photometric Data
	LM-79-08Approved Method for the Electrical and
	Photometric Measurements of Solid-Sate Lighting
	Products
	LM-80-08Approved Method for Measuring Lumen Maintenance
	of LED Light Sources
	TM-15-07Backlight, Uplight and Glare (BUG) Ratings
I.	National Electrical Manufacturers Association (NEMA):
	C78.41-06 Electric Lamps - Guidelines for Low-Pressure
	Sodium Lamps
	C78.42-07 Electric Lamps - Guidelines for High-Pressure
	Sodium Lamps
	C78.43-07Electric Lamps - Single-Ended Metal-Halide
	Lamps

	C78.1381-98Electric Lamps - 70-Watt M85 Double-Ended
	Metal-Halide Lamps
	C82.4-02Ballasts for High-Intensity-Discharge and Low-
	Pressure Sodium Lamps (Multiple-Supply Type)
	C136.3-05For Roadway and Area Lighting Equipment -
	Luminaire Attachments
	C136.17-05Roadway and Area Lighting Equipment - Enclosed
	Side-Mounted Luminaires for Horizontal-Burning
	High-Intensity-Discharge Lamps - Mechanical
	Interchangeability of Refractors
	ICS 2-00 (R2005)Controllers, Contactors and Overload Relays
	Rated 600 Volts
	ICS 6-93 (R2006)Enclosures
J.	National Fire Protection Association (NFPA):
	70-11National Electrical Code (NEC)
К.	Underwriters Laboratories, Inc. (UL):
	496-08Lampholders
	773-95Plug-In, Locking Type Photocontrols for Use
	with Area Lighting
	773A-06Nonindustrial Photoelectric Switches for
	Lighting Control
	1029-94High-Intensity-Discharge Lamp Ballasts
	1598-08Luminaires
	8750-09Light Emitting Diode (LED) Equipment for Use in
	Lighting Products

1.6 DELIVERY, STORAGE, AND HANDLING

A. Provide manufacturer's standard provisions for protecting pole finishes during transport, storage, and installation. Do not store poles on ground. Store poles so they are at least 305 mm (12 inches) above ground level and growing vegetation. Do not remove factory-applied pole wrappings until just before installing pole.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Luminaires, materials and equipment shall be in accordance with NEC, UL, ANSI, and as shown on the drawings and specified.

2.2 POLES

A. General:

- 1. Poles shall be as shown on the drawings, and as specified. Finish shall be as specified on the drawings.
- 2. The pole and arm assembly shall be designed for wind loading of 161 km/hr (100 mph) minimum, as required by wind loading conditions at project site, with an additional 30% gust factor and supporting luminaire(s) and accessories such as shields, banner arms, and banners that have the effective projected areas indicated. The effective projected area of the pole shall be applied at the height of the pole base, as shown on the drawings.
- 3. Provide a steel-grounding stud opposite handhole openings, designed to prevent electrolysis when used with copper wire.
- 4. Provide a base cover that matches the pole in material and color to conceal the mounting hardware pole-base welds and anchor bolts.
- 5. Hardware and Accessories: All necessary hardware and specified accessories shall be the product of the pole manufacturer.
- 6. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.

B. Types:

- Aluminum: Provide round or square aluminum poles manufactured of corrosion-resistant AA AAH35.1 aluminum alloys conforming to AASHTO LTS-4. Poles shall be seamless extruded or spun seamless type. Coordinate with the COR when determining round or square poles.
- 2. Steel: Provide round or square steel poles having minimum 11-gauge steel with minimum yield/strength of 48,000 psi and hot-dipped galvanized iron-oxide primed factory finish. Galvanized steel poles shall comply with ASTM A123 and A153. Coordinate with the COR when determining round or square poles.
- 3. Concrete: Provide round or square or multi-sided concrete poles conforming to ASTM C1089 with integral cast bases. Poles shall have hollow core suitable as a raceway. Coordinate with the COR when determining round or square poles.

2.3 FOUNDATIONS FOR POLES

- A. Foundations shall be cast-in-place concrete, having 3000 psi minimum 28-day compressive strength.
- B. Foundations shall support the effective projected area of the specified pole, arm(s), luminaire(s), and accessories, such as shields, banner

- arms, and banners, under wind conditions previously specified in this section.
- C. Place concrete in spirally-wrapped treated paper forms for round foundations, and construct forms for square foundations.
- D. Rub-finish and round all above-grade concrete edges to approximately 6 mm (0.25-inch) radius.
- E. Anchor bolt assemblies and reinforcing of concrete foundations shall be as shown on the drawings. Anchor bolts shall be in a welded cage or properly positioned by the tie-wire to stirrups.
- F. Prior to concrete pour, install electrode per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 LUMINAIRES

- A. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp and ballast heat, and safe cleaning and relamping.
- B. Illumination distribution patterns, BUG ratings and cutoff types as defined by the IESNA shall be as shown on the drawings.
- C. Incorporate ballasts in the luminaire housing, except where otherwise shown on the drawings.
- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Lamp sockets for high intensity discharge (H.I.D) fixture shall have locking-type porcelain enclosures in conformance to the applicable requirements of ANSI C81.61-09 and UL 496-08.
- F. Pre-wire internal components to terminal strips at the factory.
- G. Bracket-mounted luminaires shall have leveling provisions and clamptype adjustable slip-fitters with locking screws.
- H. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.
- I. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, match finish process and color of pole or support materials. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- J. Luminaires shall carry factory labels, showing complete, specific lamp and ballast information.

2.5 LAMPS

- A. Install the proper lamps in every luminaire installed and every existing luminaire relocated or reinstalled as shown on the drawings.
- B. Lamps shall be general-service, outdoor lighting types.
- C. High-Pressure Sodium (HPS) Lamps: Comply with NEMA C78.42, Color Rendering Index (CRI) 21 (minimum), wattage as indicated on fixture schedule. Lamps shall have minimum average rated life of 24,000 hours.
- D. Low-Pressure Sodium (LPS) Lamps: Comply with NEMA C78.43, wattage as indicated on fixture schedule. Lamps shall have minimum average rated life of 18,000 hours.
- E. Metal-Halide Lamps: Comply with NEMA C78.43 or NEMA C78.1381. Lamps shall be pulse start or ceramic type with wattage and correlated color temperature as indicated on fixture schedule.
- F. LED sources shall meet the following requirements:
 - 1. Operating temperature rating shall be between -40 degrees C (-40 degrees F) and 50 degrees C (120 degrees F).
 - 2. Correlated Color Temperature (CCT): Examples include 2700K, 3000K, 3500K, 4000K, 4500K, 5000K, 5700K, and 6500K. Coordinate CCT with the COR.
 - 3. Color Rendering Index (CRI): \geq 85.
 - 4. The manufacturer shall have performed reliability tests on the LEDs luminaires complying with Illuminating Engineering Society (IES)

 LM79 for photometric performance and LM80 for lumen maintenance and L70 life.
- G. Mercury vapor lamps shall not be used.

2.6 HIGH INTENSITY DISCHARGE BALLASTS

- A. Per NEMA C82.4 and UL 1029. Ballasts shall be encapsulated single-lamp, copper-wound, constant-wattage autotransformer type, designed to operate on the voltage system to which they are connected, and capable of open-circuit operation without reducing lamp life.
- B. Ballasts shall have individual overcurrent protection in each ungrounded supply conductor.
- C. Ballast shall have an allowable line voltage variations of $\pm 10\%$, with a maximum 20% lamp wattage regulation spread.
- D. Power factor shall be not less than 90%.
- E. Ballast shall have a minimum starting temperature of -30 degrees C (-22 degrees F), and a normal ambient operating temperature of 40 degrees C (104 degrees F).

F. Lamp current crest factor shall be 1.8 or less, in accordance with lamp manufacturer recommendations.

2.7 METAL HALIDE CORE AND COIL BALLASTS

- A. Shall be pulse start, linear reactor type for 277 volt luminaires and constant-wattage autotransformer (CWA) type for other voltage luminaires (if not otherwise specified).
- B. Ballasts shall have individual overcurrent protection in each ungrounded supply conductor.
- C. Power factor shall be not less than 90%.
- D. Ballast shall have an allowable line voltage variation of $\pm 5\%$ for linear reactor type and $\pm 10\%$ for CWA, with a maximum 20% lamp wattage regulation spread.
- E. Ballast shall have a minimum starting temperature of -40 degrees C (-40 degrees F).
- F. Lamp current crest factor shall be 1.8 or less, in accordance with lamp manufacturer recommendations.

2.8 METAL HALIDE ELECTRONIC BALLASTS

- A. Ballast shall be low-frequency electronic type, and shall operate pulse start and ceramic metal halide lamps at a frequency of 90 to 200 Hz square wave.
- B. Ballast shall be labeled Type '1' outdoor, suitable for recessed use, Class 'P'.
- C. Ballast shall have auto-resetting thermal protector to shut off ballast when operating temperatures reach unacceptable levels.
- D. Ballast shall have an end of lamp life detection and shut-down circuit.
- E. Lamp current crest factor shall be 1.5 or less.
- F. Ballasts shall comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
- G. Ballast shall have a minimum ballast factor of 1.0.
- H. Input current THD shall not exceed 20% for the primary lamp.
- I. Ballasts shall have ANSI C62.41, category 'A' transient protection.
- J. Ballasts shall have power factor greater than 90%.
- K. Ballast shall have a Class 'A' sound rating.

2.9 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40 degrees C (-40 degrees F).
 - 3. Input Voltage: 120 to 480 (±10%) volt.

- 4. Power Supplies: Class I or II output.
- 5. Surge Protection: The system must survive 250 repetitive strikes of "C Low" (C Low: $6kV/1.2 \times 50 \mu s$, $10kA/8 \times 20 \mu s$) waveforms at 1-minute intervals with less than 10% degradation in clamping voltage. "C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.
- 6. Power Factor (PF): \geq 0.90.
- 7. Total Harmonic Distortion (THD): $\leq 20\%$.
- 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
- 9. Drivers shall be reduction of hazardous substances (ROHS)-compliant.

2.10 EXISTING LIGHTING SYSTEMS

- A. For modifications or additions to existing lighting systems, the new components shall be compatible with the existing systems.
- B. New poles and luminaires shall have approximately the same configurations, dimensions, lamping and reflector type as the existing poles and luminaires, except where otherwise shown on the drawings.

2.11 OBSTRUCTION LIGHTING

- A. Refer to Section 26 09 23, LIGHTING CONTROLS for control devices.
- B. For Buildings:
 - 1. Incandescent type luminaires shall comply with FAA, AC 70/7460-1K, and AC 150/5345-53, and be Type L-810 duplex units with red Fresnel lenses and steady burning 100 W, type A-21, clear, traffic-signal lamps in each unit.
 - 2. LED type luminaires shall comply with FAA, AC 70/7460-1K, and AC 150/5345-53, and be Type L-810 duplex units with red steady burning light from and LED light source with minimum 50,000 hour lamp life and employing Night Vision Goggles (NVG) friendly technology.
 - 3. Mount the luminaires on galvanized rigid steel pipe masts attached to the roof of the buildings so the luminaires extend 305 mm (12 inches) above the level of the highest item on the building, including items attached to the roof.
 - 4. Locate luminaires in accordance with the applicable FAA Standards.
- C. For Smoke Stacks: Luminaires shall be in accordance with the referenced details shown on the drawings. All lamps shall be the type shown on the drawings.
- D. For Water Tanks and Cooling Towers: Luminaires shall be FAA, AC 70/7460-1K, and AC 150/5345-53, Type L-810 duplex units with incandescent or LED light source.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.

B. Pole Foundations:

- 1. Excavate only as necessary to provide sufficient working clearance for installation of forms and proper use of tamper to the full depth of the excavation. Prevent surface water from flowing into the excavation. Thoroughly compact backfill with compacting arranged to prevent pressure between conductor, jacket, or sheath, and the end
- 2. Set anchor bolts according to anchor-bolt templates furnished by the pole manufacturer.
- 3. Install poles as necessary to provide a permanent vertical position with the bracket arm in proper position for luminaire location.
- 4. After the poles have been installed, shimmed, and plumbed, grout the spaces between the pole bases and the concrete base with non-shrink concrete grout material. Provide a plastic or copper tube, of not less than 9 mm (0.375-inch) inside diameter through the grout, tight to the top of the concrete base to prevent moisture weeping from the interior of the pole.
- C. Install lamps in each luminaire.
- D. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

A. Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose.

3.3 ACCEPTANCE CHECKS AND TESTS

A. Verify operation after installing luminaires and energizing circuits.

- - - E N D - - -

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - 1. Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

А	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also
	Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station
CAD	AutoCAD
CBOPC	Community Based Out Patient Clinic

CBC	Coupled Bonding Conductor
СВОС	Community Based Out Patient Clinic (refer to CBOPC,
	OPC, VAMC)
CCS	TIP's Cross Connection System (refer to VCCS and
	HCCS)
CFE	Contractor Furnished Equipment
CFM	US Department of Veterans Affairs Office of
	Construction and Facilities Management
CFR	Consolidated Federal Regulations
CIO	Communication Information Officer (Facility, VISN or
	Region)
cm	Centimeters
CO	Central Office
COR	Contracting Officer Representative
CPU	Central Processing Unit
CSU	Customer Service Unit
CUP	Conditional Use Permit(s) - Federal/GSA for VA
dB	Decibel
dBm	Decibel Measured
dBmV	Decibel per milli-Volt
DC	Direct Current
DEA	United States Drug Enforcement Administration
DSU	Data Service Unit
EBC	Equipment Bonding Conductor
ECC	Engineering Control Center (refer to DCR, EMCR)
EDGE	Enhanced Data (Rates) for GSM Evolution
EDM	Electrical Design Manual
EMCR	Emergency Management Control Room (refer to DCR, ECC)
EMI	Electromagnetic Interference (refer to RFI)
EMS	Emergency Medical Service
EMT	Electrical Metallic Tubing or thin wall conduit
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,
	LEC)
-	-

EPBX	Electronic Digital Private Branch Exchange	
ESR	Vendor's Engineering Service Report	
FA	Fire Alarm	
FAR	Federal Acquisition Regulations in Chapter 1 of Title	
	48 of Code of Federal Regulations	
FMS	VA's Headquarters or Medical Center Facility's	
	Management Service	
FR	Frequency (refer to RF)	
FTS	Federal Telephone Service	
GFE	Government Furnished Equipment	
GPS	Global Positioning System	
GRC	Galvanized Rigid Metal Conduit	
GSM	Global System (Station) for Mobile	
HCCS	TIP's Horizontal Cross Connection System (refer to	
	CCS & VCCS)	
HDPE	High Density Polyethylene Conduit	
HDTV	Advanced Television Standards Committee High-	
	Definition Digital Television	
HEC	Head End Cabinets (refer to HEIC, PA)	
HEIC	Head End Interface Cabinets (refer to HEC, PA)	
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)	
HSPA	High Speed Packet Access	
HZ	Hertz	
IBT	Intersystem Bonding Termination (NEC 250.94)	
IC	Intercom	
ICRA	Infectious Control Risk Assessment	
IDEN	Integrated Digital Enhanced Network	
IDC	Insulation Displacement Contact	
IDF	Intermediate Distribution Frame	
ILSM	Interim Life Safety Measures	
IMC	Rigid Intermediate Steel Conduit	
IRM	Department of Veterans Affairs Office of Information	
	Resources Management	

ISDN	Integrated Services Digital Network
ISM	Industrial, Scientific, Medical
IWS	Intra-Building Wireless System
LAN	Local Area Network
LBS	Location Based Services, Leased Based Systems
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)
LED	Light Emitting Diode
LMR	Land Mobile Radio
LTE	Long Term Evolution, or 4G Standard for Wireless Data
	Communications Technology
M	Meter
MAS	Medical Administration Service
MATV	Master Antenna Television
MCR	Main Computer Room
MCOR	Main Computer Operators Room
MDF	Main Distribution Frame
MH	Manholes or Maintenance Holes
MHz	Megaherts (10 ⁶ Hz)
mm	Millimeter
MOU	Memorandum of Understanding
MW	Microwave (RF Band, Equipment or Services)
NID	Network Interface Device (refer to DEMARC)
NEC	National Electric Code
NOR	Network Operations Room
NRTL	OSHA Nationally Recognized Testing Laboratory
NS	Nurse Stations
NTIA	U.S. Department of Commerce National
	Telecommunications and Information Administration
OEM	Original Equipment Manufacturer
OI&T	Office of Information and Technology
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)
OSH	Department of Veterans Affairs Office of Occupational
	Safety and Health

OSHA	United States Department of Labor Occupational Safety	
	and Health Administration	
OTDR	Optical Time-Domain Reflectometer	
PA	Public Address System (refer to HE, HEIC, RPEC)	
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)	
PCR	Police Control Room (refer to SPCC, could be	
	designated SCC)	
PCS	Personal Communications Service (refer to UPCS)	
PE	Professional Engineer	
PM	Project Manager	
PoE	Power over Ethernet	
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,	
	PBX)	
PSTN	Public Switched Telephone Network	
PSRAS	Public Safety Radio Amplification Systems	
PTS	Pay Telephone Station	
PVC	Poly-Vinyl Chloride	
PWR	Power (in Watts)	
RAN	Radio Access Network	
RBB	Rack Bonding Busbar	
RE	Resident Engineer or Senior Resident Engineer	
RF	Radio Frequency (refer to FR)	
RFI	Radio Frequency Interference (refer to EMI)	
RFID	RF Identification (Equipment, System or Personnel)	
RMC	Rigid Metal Conduit	
RMU	Rack Mounting Unit	
RPEC	Radio Paging Equipment Cabinets (refer to HEC, HEIC,	
	PA)	
RTLS	Real Time Location Service or System	
RUS	Rural Utilities Service	
SCC	Security Control Console (refer to PCR, SPCC)	
SMCS	Spectrum Management and Communications Security	
	(COMSEC)	

SFO	Solicitation for Offers	
SME	Subject Matter Experts (refer to AHJ)	
SMR	Specialized Mobile Radio	
SMS	SMS Security Management System	
SNMP	Simple Network Management Protocol	
SPCC	Security Police Control Center (refer to PCR, SMS)	
STP	Shielded Balanced Twisted Pair (refer to UTP)	
STR	Stacked Telecommunications Room	
TAC	VA's Technology Acquisition Center, Austin, Texas	
TCO	Telecommunications Outlet	
TER	Telephone Equipment Room	
TGB	Telecommunications Grounding Busbar (also Secondary	
	Bonding Busbar (SBB))	
TIP	Telecommunications Infrastructure Plant	
TMGB	Telecommunications Main Grounding Busbar (also	
	Primary Bonding Busbar (PBB))	
TMS	Traffic Management System	
TOR	Telephone Operators Room	
TP	Balanced Twisted Pair (refer to STP and UTP)	
TR	Telecommunications Room (refer to STR)	
TWP	Twisted Pair	
UHF	Ultra High Frequency (Radio)	
UMTS	Universal Mobile Telecommunications System	
UPCS	Unlicensed Personal Communications Service (refer to	
	PCS)	
UPS	Uninterruptible Power Supply	
USC	United States Code	
UTP	Unshielded Balanced Twisted Pair (refer to TP and	
	STP)	
UV	Ultraviolet	
V	Volts	
VAAR	Veterans Affairs Acquisition Regulation	
VACO	Veterans Affairs Central Office	
	•	

VAMC	VA Medical Center (refer to CBOC, OPC, VACO)	
VCCS	TIP's Vertical Cross Connection System (refer to CCS	
	and HCCS)	
VHF	Very High Frequency (Radio)	
VISN Veterans Integrated Services Network (refers to		
	geographical region)	
VSWR Voltage Standing Wave Radio		
W	Watts	
WEB	World Electronic Broadcast	
WiMAX	Worldwide Interoperability (for MW Access)	
WI-FI	Wireless Fidelity	
WMTS	Wireless Medical Telemetry Service	
WSP	Wireless Service Providers	

B. Definitions:

- 1. Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- 2. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EOUIPMENT AND SYSTEMS.

- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 13. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 14. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 15. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 16. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 17. Microducts: All forms of air blown fiber pathways.

- 18. Ohm: A unit of restive measurement.
- 19. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 20. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 21. Sound (SND): Changing air pressure to audible signals over given time span.
- 22. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 23. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 24. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 25. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.

B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:

1.	Federal Communicatio	ns Commission, (FCC) CFR, Title 47:
	Part 15	Restrictions of use for Part 15 listed RF
		Equipment in Safety of Life Emergency Functions
		and Equipment Locations
	Part 47	Chapter A, Paragraphs 6.1-6.23, Access to
		Telecommunications Service, Telecommunications
		Equipment and Customer Premises Equipment
	Part 58	Television Broadcast Service
	Part 73	Radio and Television Broadcast Rules
	Part 90	Rules and Regulations, Appendix C
	Form 854	Antenna Structure Registration
	Chapter XXIII	National Telecommunications and Information
		Administration (NTIA, P/O Commerce, Chapter
		XXIII) the 'Red Book'- Chapters 7, 8 & 9
		compliments CFR, Title 47, FCC Part 15, RF
		Restriction of Use and Compliance in "Safety of
		Life" Functions & Locations
_		

2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction:

RUS Bull 1751F-630 Design of Aerial Cable Plants
RUS Bull 1751F-640 Design of Buried Cable Plant, Physical
Considerations

RUS Bull 1751F-643 Underground Plant Design

RUS Bull 1751F-815 Electrical Protection of Outside Plants,

RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants (PC-4)

RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2)

RUS Bull 345-50 Trunk Carrier Systems (PE-60)
RUS Bull 345-65 Shield Bonding Connectors (PE-65)

RUS Bull 345-72 Filled Splice Closures (PE-74)

RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80)

3. US Department of Commerce/National Institute of Standards Technology, (NIST):

FIPS PUB 1-1 Telecommunications Information Exchange

FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
	Circuit Terminating Equipment for operation
	with Packet Switched Networks, or Between Two
	DTEs, by Dedicated Circuit
FIPS PUB 140/2	Telecommunications Information Security
	Algorithms
FIPS PUB 143	General Purpose 37 Position Interface between
	DTE and Data Circuit Terminating Equipment
FIPS 160/2	Electronic Data Interchange (EDI),
FIPS 175	Federal Building Standard for
	Telecommunications Pathway and Spaces
FIPS 191	Guideline for the Analysis of Local Area
	Network Security
FIPS 197	Advanced Encryption Standard (AES)
FIPS 199	Standards for Security Categorization of
	Federal Information and Information Systems

4. US Department of Defense, (DoD):

MIL-STD-188-110	Interoperability and Performance Standards for
	Data Modems
MIL-STD-188-114	Electrical Characteristics of Digital Interface
	Circuits
MIL-STD-188-115	Communications Timing and Synchronizations
	Subsystems
MIL-C-28883	Advanced Narrowband Digital Voice Terminals
MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial,
	Radio Frequency, (Series BNC (Uncabled), Socket
	Contact, Jam Nut Mounted, Class 2)

- 5. US Department of Health and Human Services:

 The Health Insurance Portability and Accountability Act of 1996
 (HIPAA) Privacy, Security and Breach Notification Rules
- 6. US Department of Justice: 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
- 7. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards):

Subpart 7	Approved NRTLs; obtain a copy at
	http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.htm
	<u>l</u>)
Subpart 35	Compliance with NFPA 101, Life Safety Code
Subpart 36	Design and Construction Requirements for Exit
	Routes
Subpart 268	Telecommunications
Subpart 305	Wiring Methods, Components, and Equipment for
	General Use
Subpart 508	Americans with Disabilities Act Accessibility
	Guidelines; technical requirement for
	accessibility to buildings and facilities by
	individuals with disabilities

- 8. US Department of Transportation, (DoT):
 - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.
 - b. COMSEC, "VA wide coordination and control of security classified communication assets."
 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
 - d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
 - e. Handbook 6100 Telecommunications: Cyber and Information Security Office of Cyber and Information Security, and Handbook 6500 - Information Security Program.
 - f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special

- Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/dts/otpca/nrtl/index.html
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - 2. Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - 3. Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment

486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories

	1865-2007	Standard for Safety for Vertical-Tray Fire
		Protection and Smoke-Release Test for
		Electrical and Optical-Fiber Cables
	2024-2011	Standard for Optical Fiber Raceways
	2024-2014	Standard for Cable Routing Assemblies and
		Communications Raceways
	2196-2001	Standard for Test of Fire Resistive Cable
	60950-1 ed. 2-2014	Information Technology Equipment Safety
D. In	dustry Standards:	
1.	Advanced Television	Systems Committee (ATSC):
	A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
		Digital Television System
	A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
		RF/Transmission System Characteristics
	A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
		Service Multiplex and Transport System
		Characteristics
	A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
		2 Video System Characteristics
	A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
		Audio System Characteristics
	A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
		Enhanced AC-3 Audio System Characteristics
2.	American Institute of	f Architects (AIA): 2006 Guidelines for Design &
	Construction of Healt	th Care Facilities.
3.	American Society of N	Mechanical Engineers (ASME):
	A17.1 (2013)	Safety Code for Elevators and Escalators
		Includes Requirements for Elevators,
		Escalators, Dumbwaiters, Moving Walks, Material
		Lifts, and Dumbwaiters with Automatic Transfer
		Devices
	17.3 (2011)	Safety Code for Existing Elevators and
		Escalators
	17.4 (2009)	Guide for Emergency Personnel
	17.5 (2011)	Elevator and Escalator Electrical Equipment
4.	American Society for	Testing and Materials (ASTM):
	B1 (2001)	Standard Specification for Hard-Drawn Copper
		Wire

	B8 (2004)	Standard Specification for Concentric-Lay-
		Stranded Copper Conductors, Hard, Medium-Hard,
		or Soft
	D1557 (2012)	Standard Test Methods for Laboratory Compaction
		Characteristics of Soil Using Modified Effort
		56,000 ft-lbf/ft3 (2,700 kN-m/m3)
	D2301 (2004)	Standard Specification for Vinyl Chloride
		Plastic Pressure Sensitive Electrical
		Insulating Tape
	B258-02 (2008)	Standard Specification for Standard Nominal
		Diameters and Cross-Sectional Areas of AWG
		Sizes of Solid Round Wires Used as Electrical
		Conductors
	D709-01(2007)	Standard Specification for Laminated
		Thermosetting Materials
	D4566 (2008)	Standard Test Methods for Electrical
		Performance Properties of Insulations and
		Jackets for Telecommunications Wire and Cable
5.	American Telephone a	nd Telegraph Corporation (AT&T) - Obtain
	following AT&T Publi	cations at https://ebiznet.sbc.com/SBCNEBS/):
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
		Environmental, and Physical Design Requirements
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
	, ,	
	· · ·	Requirements
	ATT-TP-76305 (2013)	
		-
		Common Systems Cable and Wire Installation and
	ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways
	ATT-TP-76305 (2013) ATT-TP-76306 (2009)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012) ATT-TP-76402 (2013)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and Installation Requirements
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012) ATT-TP-76402 (2013)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and Installation Requirements Technical Requirements for Supplemental Cooling
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012) ATT-TP-76402 (2013) ATT-TP-76405 (2011)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and Installation Requirements Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012) ATT-TP-76402 (2013) ATT-TP-76405 (2011)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and Installation Requirements Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments Grounding and Bonding Requirements for Network
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012) ATT-TP-76405 (2011) ATT-TP-76416 (2011)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and Installation Requirements Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments Grounding and Bonding Requirements for Network Facilities
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012) ATT-TP-76405 (2011) ATT-TP-76416 (2011) ATT-TP-76440 (2005)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and Installation Requirements Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments Grounding and Bonding Requirements for Network Facilities Ethernet Specification Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces
	ATT-TP-76305 (2013) ATT-TP-76306 (2009) ATT-TP-76400 (2012) ATT-TP-76405 (2011) ATT-TP-76416 (2011) ATT-TP-76440 (2005)	Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways Electrostatic Discharge Control Detail Engineering Requirements AT&T Raised Access Floor Engineering and Installation Requirements Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments Grounding and Bonding Requirements for Network Facilities Ethernet Specification Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces

ATT-TP-76900 (2010) AT&T Installation Testing Requirement ATT-TP-76911 (1999) AT&T LEC Technical Publication Notice

6. British Standards Institution (BSI):

BS EN 50109-2 Hand Crimping Tools - Tools for The Crimp

Termination of Electric Cables and Wires for

Low Frequency and Radio Frequency Applications

- All Parts & Sections. October 1997

7. Building Industry Consulting Service International (BICSI):

ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices

ANSI/BICSI 004-2012 Information Technology Systems Design and

Implementation Best Practices for Healthcare

Institutions and Facilities

ANSI/NECA/BICSI

568-2006 Standard for Installing Commercial Building
Telecommunications Cabling

NECA/BICSI 607-2011 Standard for Telecommunications Bonding and
Grounding Planning and Installation Methods for
Commercial Buildings

ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System

Design and Implementation Best Practices

8. Electronic Components Assemblies and Materials Association, (ECA).

ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices
Recommended Procedures for User Certification

EIA/ECA 310-E (2005) Cabinets, and Associated Equipment

- 9. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities.
- 10. Insulated Cable Engineers Association (ICEA):

ANSI/ICEA

S-80-576-2002 Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications
Wiring Systems

ANSI/ICEA

S-84-608-2010 Telecommunications Cable, Filled Polyolefin
Insulated Copper Conductor, S-87-640(2011)
Optical Fiber Outside Plant Communications
Cable

ANSI/ICEA

	S-90-661-2012	Category 3, 5, & 5e Individually Unshielded
		Twisted-Pair Indoor Cable for Use in General
		Purpose and LAN Communication Wiring Systems
	S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,
		Polyolefin Insulated, Copper Conductors
	S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
		Insulated, Copper Conductors
	ICEA S-102-700	
	(2004)	Category 6 Individually Unshielded Twisted Pair
		Indoor Cables (With or Without an Overall
		Shield) for use in Communications Wiring
		Systems Technical Requirements
11.	Institute of Electri	cal and Electronics Engineers (IEEE):
	ISSN 0739-5175	March-April 2008 Engineering in Medicine and
		Biology Magazine, IEEE (Volume: 27, Issue:2)
		Medical Grade-Mission Critical-Wireless
		Networks
	IEEE C2-2012	National Electrical Safety Code (NESC)
	C62.41.2-2002/	
	Cor 1-2012 IEEE	Recommended Practice on Characterization of
		Surges in Low-Voltage (1000 V and Less) AC
		Power Circuits 4)
	C62.45-2002	IEEE Recommended Practice on Surge Testing for
		Equipment Connected to Low-Voltage (1000 V and
		Less) AC Power Circuits
	81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground
		Impedance, and Earth Surface Potentials of a
		Grounding System
	100-1992	IEEE the New IEEE Standards Dictionary of
		Electrical and Electronics Terms
	602-2007	IEEE Recommended Practice for Electric Systems
		in Health Care Facilities
	1100-2005	IEEE Recommended Practice for Powering and
		Grounding Electronic Equipment
12	International Code C	ouncil.

12. International Code Council:

AC193 (2014) Mechanical Anchors in Concrete Elements

13. International Organization for Standardization (ISO):

ISO/TR 21730 (2007) Use of Mobile Wireless Communication and Computing Technology in Healthcare Facilities -Recommendations for Electromagnetic Compatibility (Management of Unintentional Electromagnetic Interference) with Medical Devices 14. National Electrical Manufacturers Association (NEMA): NEMA 250 (2008) Enclosures for Electrical Equipment (1,000V Maximum) ANSI C62.61 (1993) American National Standard for Gas Tube Surge Arresters on Wire Line Telephone Circuits ANSI/NEMA FB 1 (2012) Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing EMT) and Cable ANSI/NEMA OS 1 (2009) Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports NEMA SB 19 (R2007) NEMA Installation Guide for Nurse Call Systems TC 3 (2004) Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing NEMA VE 2 (2006) Cable Tray Installation Guidelines 15. National Fire Protection Association (NFPA): 70E-2015 Standard for Electrical Safety in the Workplace National Electrical Code (NEC) 70-2014 72-2013 National Fire Alarm Code Standard for the Fire Protection of Information 75-2013 Technological Equipment 76-2012 Recommended Practice for the Fire Protection of Telecommunications Facilities 77-2014 Recommended Practice on Static Electricity 90A-2015 Standard for the Installation of Air Conditioning and Ventilating Systems 99-2015 Health Care Facilities Code Life Safety Code 101-2015 Safeguarding construction, alternation and 241 Demolition Operations 255-2006 Standard Method of Test of Surface Burning

Characteristics of Building Materials

	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2014	Standard for the Installation of Lightning
		Protection Systems
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
16.	Society for Protecti	ve Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17.	Society of Cable Tel	ecommunications Engineers (SCTE):
	ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
		Distribution Coaxial Cable
18.	Telecommunications I	ndustry Association (TIA):
	TIA-120 Series	Telecommunications Land Mobile communications
		(APCO/Project 25) (January 2014)
	TIA TSB-140	Additional Guidelines for Field-Testing Length,
		Loss and Polarity of Optical Fiber Cabling
		Systems (2004)
	TIA-155	Guidelines for the Assessment and Mitigation of
		Installed Category 6 Cabling to Support
		10GBASE-T (2010)
	TIA TSB-162-A	Telecommunications Cabling Guidelines for
		Wireless Access Points (2013)
	TIA-222-G	Structural Standard for Antenna Supporting
		Structures and Antennas (2014)
	TIA/EIA-423-B	Electrical Characteristics of Unbalanced
		Voltage Digital Interface Circuits (2012)
	TIA-455-C	General Requirements for Standard Test
		Procedures for Optical Fibers, Cables,
		Transducers, Sensors, Connecting and
		Terminating Devices, and other Fiber Optic
		Components (August 2014)
	TIA-455-53-A	FOTP-53 Attenuation by Substitution
		Measurements for Multimode Graded-Index Optical
		Fibers in Fiber Assemblies (Long Length)
		(September 2001)

TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5-μ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November 2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4
	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)

TIA-574	Position Non-Synchronous Interface between Data Terminal equipment and Data Circuit Terminating Equipment Employing Serial Binary Interchange
	(May 2003)
TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as "rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
 - 4. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
 - 5. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 6. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - 7. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
 - 8. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
 - 9. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
 - 10. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
 - 11. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
 - 12. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
 - 13. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - 2. Movement of materials: Unload materials and equipment delivered to site. Pay costs for rigging, hoisting, lowering and moving equipment on and around site, in building or on roof.
 - 3. Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. Plan for large equipment requiring positioning prior to closing in building.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 - 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.

- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - 1. Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 - 1. Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:

- a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
- b. Fiber optic insertion loss power meter with light source.
- c. Optical time domain reflectometer (OTDR).
- d. Volt-Ohm meter.
- e. Digital camera.
- f. Bit Error Test Set (BERT).
- q. Signal level meter.
- h. Time domain reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
- i. Spectrum analyzer.
- j. Color video monitor with audio capability.
- k. Video waveform monitor.
- 1. Video vector scope.
- m. 100 MHz oscilloscope with video adapters.
- 3. Supply only test equipment with a calibration tag from Government-accepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.

I. Submittal Drawings:

- 1. Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
- 2. Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.

- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - 6. Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
 - 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources

- of supply, recommended spare parts, and name of servicing organization.
- k. Warranty documentation indicating end date and equipment protected under warranty.
- Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.

C. Record Wiring Diagrams:

- 1. Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
- 2. General Drawing Specifications: Detail and elevation drawings to be
 D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale
 of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other
 enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm
 (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch =
 12 inches). Building composite floor plan drawings to be D size 61
 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175
 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg and .rvt formats as determined by COR.

- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - 1. OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.

- 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
- 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
- 4. Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - 1. When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.

C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

- A. Comply with FAR clause 52.246-21.
 - 1. Warranty material and equipment to be free from defects, workmanship, and remain so for a period of one year for Emergency Systems from date of final acceptance of system by Government; provide OEM's equipment warranty document to COR.
 - 2. Government maintenance personnel must have ability to contact OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time; contractor and OEM must provide this capability.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.
- B. In cases of renovations in historic or otherwise restrictive buildings, where it has been determined as impossible to follow above stated guidelines, exceptions must not modify maximum distances set forth in TIA 568 and 569; and exceptions must not in any way effect performance of entire TIP system.
- $\hbox{C. Modification to administrative issues requires written approvals from } \\ \hbox{Contracting Officer.}$

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 UNDERGROUND CABLES (NOT APPLICABLE)

2.7 AERIAL (ABOVEGROUND) ENCLOSURES (NOT APPLICABLE)

2.8 TEMPORARY TIP PATHS (OVERHEAD TRACKS, ROAD/PATH BRIDGES, ETC.) (NOT APPLICABLE)

2.9 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - 1. Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - 3. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - 6. Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
 - 7. Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
 - 8. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
 - 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
 - 10. Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
 - 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
 - 12. Do not support piping risers or conduit on sleeves.
 - 13. Identify unused sleeves and slots for future installation.
 - 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.

B. Core Drilling:

- 1. Avoid core drilling whenever possible.
- 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.

- 3. Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
- 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to

- detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - 1. Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment

must be removed and reinstalled as directed and without additional cost to Government.

- 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
- 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - 2. Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to

provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.

- 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or non-compliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.

G. Tests:

- 1. Interim inspection is required at approximately 50 percent of installation.
- 2. Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
- 3. Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
- 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.

- 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B and/or T568A pin assignments and cabling connections are in compliance with TIA standards.
- 6. Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
- 7. Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - b. Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance
 Test
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon

completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.

1. Pretesting Procedure:

- a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
- b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
- 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:
 - a. Utility provider entrance.
 - b. Buried conduit duct locations.
 - c. Maintenance Holes (Manholes) and hand holes.
 - d. ENTR or DEMARC.
 - e. PBX interconnections.
 - f. MCR interconnections.
 - q. MCOR interconnections.
 - h. TER interconnections.
 - i. TOR interconnections.
 - j. Control room interconnections.
 - k. TR interconnections.
 - 1. System interfaces in locations listed herein.
 - m. HE interconnections.
 - n. Antenna (outside and inside) interconnections.
 - o. System and lightning ground interconnections.
 - p. Communications circulating ground system.
 - q. UPS areas.
 - r. Emergency generator interconnections.
 - s. Each general floor areas.
 - t. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

I. Acceptance Test:

- 1. Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- 2. Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - 3) Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - 3) EMS Representatives: Police, Sherriff, City, County or State representatives.
- 4. Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - 2) Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - 3) Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.

4) If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.

J. Acceptance Test Procedure:

- Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
- 2. A system inventory including available spare parts must be taken at this time.
- 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
- 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
- 5. Inventory system diagrams, record drawings, equipment manuals, pretest results.
- 6. Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.

K. Operational Test:

- 1. Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
- 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of

the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.

M. Proof of Performance Certification:

- 1. If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
- 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
- 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - 1. Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - 2. Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - 3. Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.

1.2 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - 2. Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - 2. Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm 2 (10 AWG) and smaller.

B. Ground Rods:

- 1. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- 2. Provide quantity of rods required to obtain specified ground resistance.

- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
 - 1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
 - 2. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:
 - 1. Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:
 - a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
 - b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
 - c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.

- d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole grounding lugs.
- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each $12-24 \times 19.1 \text{ mm}$ (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- 2. Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- H. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.

I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copper-to-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), antennas, satellite dishes, towers, raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Install telecommunications bonding backbone conductor throughout building via telecommunications backbone pathways effectively bonding all interior telecommunications grounding busbars in telecommunications rooms, antenna headend equipment room, telephone operators room, main computer room, digital telephone (PBX) equipment room, VoIP active equipment room, and network operations room to telecommunications main grounding busbar in Demarc room after testing bond to verify bonding conductor for telecommunications from grounding electrode conductor is installed per NEC. Size telecommunications bonding backbone conductor as specified in TIA-607-B.
- C. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- D. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- E. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- F. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- G. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.

- 2. Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
- 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
- 4. Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
- 5. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
- 6. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.

7. Bonding Jumpers:

- a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
- b. Use connector manufacturer's compression tool.

8. Bonding Jumper Fasteners:

- a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
- b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
- c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
- d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.

- H. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
 - 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:
 - Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
 - 2) Install 16 mm 2 (6 AWG) bonding jumpers across aluminum pan junctions.
- I. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - 1. Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - 2. At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
 - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
 - d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.

- J. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- K. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- L. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- M. Communications Cable Tray Systems:
 - 1. Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.
 - 2. Where metallic cable tray systems are mechanically discontinuous:
 - a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is 0.010 ohms or less, as verified by measuring across splice plate connection.
 - b. Install 16 $\,\mathrm{mm^2}$ (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
 - 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.
- N. Communications Raceway Grounding:

- 1. Conduit: Use insulated $16~\text{mm}^2$ (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
- 2. Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.

O. Ground Resistance:

- 1. Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
- 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
- 3. Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

P. Ground Rod Installation:

- 1. Drive each rod vertically in earth minimum 3000 mm (10 feet) in depth.
- 2. Make connections by exothermic process to form solid metal joints, where permanently concealed ground connections are required. Make accessible ground connections with mechanical pressure type ground connectors.
- 3. Install angled ground rods or grounding electrodes in horizontal trenches to achieve specified resistance, where rock prevents driving of vertical ground rods.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.

F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Bedding of conduits: Section 31 20 00, EARTHWORK.
- B. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- C. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
 - 3. Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
 - 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.

- 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 7. Surface Metal Raceway: Conform to UL 5.
- 8. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.

C. Conduit Fittings:

- 1. Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA $_{\rm FB}$ 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - 2) Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - g. Provide OEM approved fittings.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows:
 Malleable iron, steel or aluminum alloy materials; Zinc or
 cadmium plate iron or steel fittings. Aluminum fittings
 containing more than 0.4 percent copper are not permitted.

- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - 2) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 6. Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.
- 7. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.

- 8. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 9. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

10. Rigid Aluminum Fittings:

- a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- d. Indent type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made of "pot metal" are not permitted.
- f. Provide OEM approved fittings.
- 11. Wireway Fittings: As recommended by wireway OEM.

D. Conduit Supports:

- 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

E. Outlet, Splice, and Pull Boxes:

1. Conform to UL-50 and UL-514A.

- 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
- 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
- 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
- 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - 2. Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
 - 5. Size: Metric Designator 53 (trade size 2) or smaller.
 - 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
 - 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
 - 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
 - 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to

MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.

10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.

I. Outlet Boxes:

- 1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
- 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

K. Cable Tray:

- 1. Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
- 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
- 3. Provide continuous welded top side wire to protect cable insulation and installers.
- 4. High strength steel wires formed into a 50×100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
- 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: 105 mm (4 inches).
 - c. Width: 300 mm (12 inches).
- 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
- 7. Provide accessories to protect, support and install wire basket tray system.
- L. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.

M. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code
Physical Access Control System	28 13 00	Conduit to Cable Tray Partitioned Cable Tray
Intrusion Detection System	28 16 00	Conduit to Cable Tray, Partitioned Cable Tray
Fire Detection and Alarm	28 31 00	Complete Conduit

B. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - 1) Fill and seal clearances between raceways and openings with fire stop material.
 - 2) Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
 - d. Waterproofing at Floor, Exterior Wall, and Roof Conduit Penetrations:

 Seal clearances around conduit and make watertight or as directed by waterproofing manufacturer.

C. Conduit Installation:

- 1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
- 2. Install insulated bushings on all conduit ends.
- 3. Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
- 4. Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.
- 8. Minimum radius of communication conduit bends:

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.

- 10. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- 13. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.

- c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - 2) As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - 1) Conduit outside diameter larger than 1/3 of slab thickness is prohibited.
 - 2) Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - 3) Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
- e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - 1. Rigid steel or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - 1. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - 4. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.

- b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
- c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

G. Expansion Joints:

- 1. Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
- 2. Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.

H. Seismic Areas:

- 1. In seismic areas, follow H-18-8 Seismic Design Requirements.
- 2. Rigidly secure conduit to building structure on opposite sides of a building expansion joint with pull boxes on both sides of joint.
- 3. Connect conduits to pull boxes with 375 mm (15 inches) of slack flexible conduit.
- 4. Install green copper wire minimum #6 AWG in flexible conduit for bonding jumper.

I. Conduit Supports, Installation:

- 1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
- 2. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
- 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
- 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:

- 1) Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
- 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
- 3) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- 8. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- 9. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

J. Box Installation:

- 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- 3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.

- K. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - 2. Install supports from building structure for vertical runs at intervals not to exceed $1.2\ \mathrm{m}$ (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
 - 4. Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 31 00 VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies a complete and fully functional emergency voice communication switching and routing equipment and system (hereinafter referred to as the "system") to be installed in the VA Medical Center, John Cochran Division, (hereinafter referred to as the "facility") that includes an emergency voice and dial processing switch, government accepted equipment cabinets, interface enclosures, radio relay racks, stand-by batteries (UPS), combiners, traps, and filters; interconnection nodes and amplifiers; voice station instruments; auxiliary systems; and passive devices such as: protectors, isolators, splitters, couplers, cable patch, punch down, and cross-connector blocks or devices, cable management items, and associated hardware.
- B. Government defines system as a Critical Service Communication System and is so listed by NFPA. Its installation and operation must adhere to appropriate National, Government, and Local Life Safety and Emergency Communication Support Codes, whichever are more stringent for this facility.

1.2 RELATED WORK

- A. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS submit the following:
 - 1. Bill of Materials.
 - 2. System cabinet and each interface cabinet layout drawing, as each is expected to be installed.
 - 3. Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.

- 4. Engineering drawings of system, showing calculated signal levels at system output, each input and output distribution point, proposed telephone outlet values, and signal level at each telephone outlet multi-pin jack.
- 5. List of test equipment.
- B. Environmental Requirements: Confirm environmental specifications for physical TR areas occupied by system. Identify requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power Requirements: Provide specific voltage, amperage, phases, and quantities of circuits required.
 - 5. Air Conditioning, Heating, and Humidity Requirements:
 - a. Identify ambient temperature and relative humidity operating ranges required to prevent equipment damage.
 - b. Air conditioning requirements expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards.
 - 6. Proposed floor plan, based on expanded system configuration of proposed system for this facility.
 - 7. Conduit size requirement (between main TR, remote TR, Telephone Equipment Room, MCR and devices).
- C. Submit samples of reports generated by TMS with technical submittal for evaluation of formats and compliance with information field content.
- D. Needs Analysis Report: Provide summary report of the needs analysis conducted per requirements of this section.
- E. Provide current and qualified OEM training certificates and OEM certification for contractor installation, maintenance, and supervisory personnel.
- F. Proof of Performance Test Plan: Provide COR and SMCS 0050P2H3 (202) 461-5310 with a Proof of Performance Test Plan 90 days prior to cutover of system.
 - 1. Include tests to demonstrate system's capabilities of providing indicated services.
 - 2. Use only test equipment accepted by SMCS 0050P2H3 (202) 461-5310 and COR included with acceptance test plan.

3. Submit test equipment certification verifying calibration within six months of system cut-over.

G. Closeout Submittals:

- 1. Provide two copies of OEM developed training video presentation for evaluation and approval by COR.
- 2. Provide spreadsheet with details of the complete record program in memory for associated station assignments.
- 3. Provide a written commitment from system equipment OEM to supply parts and on-site engineering support services for one year warranty service (materials and labor).
- 4. Provide OEM certification allowing, OEM or authorized distributor to fully support contract (initial installation, warranty service for warranty period of the contract).
 - a. System equipment OEM's signatory of certified written commitment must be of an individual who has full authority to obligate OEM to this commitment.
 - b. Include names, corporate addresses, and telephone numbers of individuals who have this authority as a part of the commitment.

H. Maintenance Material Submittals:

- 1. Furnish 5 percent spare protectors for lightning protection system.
- 2. Furnish one spare audio monitor panel.
- 3. Furnish on spare electrical supervision panel.
- 4. Furnish a complete set of system electronic modules and cards to be used as on-hand operational emergency spare equipment. One each of T-1, DS-**, interface cards etc. is the minimum required or a compliment as directed by OEM. Confer with SMCS 0050P2H3 to determine other spare items required to equip system with emergency repair capabilities that completely adhere to system warranty requirements.

1.4 QUALITY ASSURANCE

A. Supervision:

1. Provide a full time on-site project manager, effective on issuance of notice to proceed, responsible to coordinate and supervise contractor and sub-contractor personnel in all phases of installation, training, inspection, cutover, and final acceptance of system. Deliver project manager a complete copy of these specifications to include all amendments prior to start of installation.

- 2. Coordinate and conduct system data base survey with SMCS 0050P2H3, (202) 461-5310, COR and a member of IT Service identifying all programming of features, classes of service, and equipment installed by type and physical location as specified in this document and all attachments thereto. After survey is completed, turn over a complete list of equipment to COR for approval by SMCS 0050P2H3, (202) 461-5310, prior to start of installation.
- 3. Ensure that project manager and skilled personnel remain on premise until items on the punch list, developed during inspection, cutover, and acceptance testing of system are completed, inspected, and accepted by COR.
- 4. Be responsible for any and all coordination with LEC relative to interface with commercial telephone system; be responsible for removal of voice and data equipment and cabling abandoned by LEC, Government, or other organizations and not retained for exclusive use by Government as a result of this installation.
- B. Needs Analysis (required for replacement of existing systems): Conduct a needs analysis of existing facility with representatives from IRM and various departments to determine system's requirements. Depict system features and capacities, in addition to specific site requirements.

1. System:

ITEM WIRED	EQUIPPED CAPACITY	WIRED CAPACITY
Main Station Lines:		
Single Line		
Multi Line		
(Equipped for direct inward dialing)		
Central Office Trunks:		
Two Way		
DID		
Two-way Dial Repeating Tie Line		
Foreign Exchange (FX)		
Conference		
Audio Paging Access		
Off-Premise Extensions		
CO Trunk By-Pass		
Monitors w/keyboard(s)		

ITEM WIRED	EQUIPPED CAPACITY	WIRED CAPACITY
Printer(s)		
Operator Console(s)		
T-1 Access/Equipment		
Maintenance Terminal		

- 2. Projected Maximum Growth: Identify projected maximum growth for each item identified in this section. For this purpose, the following definitions are provided to detail system's capability:
 - a. Provide software and hardware required to equip system with items listed under equipped capacity, 30 days prior to system cut-over.
 - b. Wired Capacity to include wiring and equipment listed under wired capacity, with the exception of line, data, and trunk cards, provided and tested 30 days prior to system cutover.
 - c. Expand system to projected maximum growth through use of printed circuit boards and modular cabinets that do not require extensive re-wiring and reprogramming.
- 3. Cable Distribution System: Refer to Section 27 15 00, COMMUNICATIONS STRUCTURED CABLING, for specific cable distribution system requirements. Contractor is required to formulate a projected cable and TCO count that coincides with projected maximum growth described herein.
- 4. Telephone Instruments (Stations): Telephone instruments are an integral component of system. Indicate each instrument location, type of instrument and class of service as determined by the needs analysis or as shown on drawings.

1.5 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Conform to CFM OI&T Design Guide.
- B. Conform to CFM Electrical Design Manual (EDM-PG18-10, current edition).
- C. Perform the following minimum services designed in accordance with and supported by OEM :
 - 1. Provide continuous inter- and intra-facility voice service.
 - 2. Capacity size and install systems so that loss of connectivity to an external telephone systems, VoIP and facility's LAN/WAN systems does not affect facility's operation in specific designated emergency

- operating locations and instruments including the Commission and NFPA 101 listed Analog Emergency By-Pass Phones; Police Emergency Call Equipment (elevator cabs, parking lots, stairwells, Duress Alarms and Locator); Code Blue (One, FAX, Patient Phones).
- 3. Inter-operate, connect, and function fully with existing Local (Telephone) Exchange Company (LEC) Networks, Federal Telephone Service (FTS) Inter-city Networks, Inter-exchange Carriers, Integrated Services Digital Network (ISDN) and Voice over Internet Protocol (VoIP) at a minimum (NOTE: VoIP Service is not allowed to perform Facility Safety of Life Functions as well as facility's LAN/WAN.
- 4. Contain control and switching equipment, voice and digital system, with attendant consoles.
- 5. Contain voice mail and automatic attendant functions and continuous intra- and inter-facility voice service.
- 6. Provide universal night answering function from facility designated remote locations.
- 7. Direct access to trunk level equipment including audio paging, Industry Standard "T" and "DS" carrier protocols, and external protocol converters.
- 8. Provide connections to "T" and "DS" access/equipment or Customer Service Units (CSU or DTE) used in Federal telephone service and other trunk applications. Provide T-1 equipment required to terminate and make operational the quantity of circuits designated. Connect CSUs to system's emergency battery power supply. Provide system capable of operating in industry standard DS protocol and provide that level of service when required.
- 9. Contain attendant and operator consoles, video monitors with keyboards, and printers to provide employee directory access from Traffic Management System (TMS). Provide identical capabilities at console positions, video monitors, and keyboards. Provide attendant consoles accepting a mixture of trunk types and extend calls received via these trunks to station users.
- 10. Be capable of interfacing and operating with Direct-Incoming-Dial (DID) service to stations as identified herein without affecting intra-facility operation. Provide DID trunk group that must operate as a separate trunk group from other Central Office (CO) trunks.

- 11. Contain the designated number of telephone instruments, where each instrument (also referred to as "station") has ability to direct dial other facility telephone stations, public telephone network, tie-lines, and FTS telephone numbers without attendant assistance. Provide dual tone multi-frequency (DTMF) for intra-facility and external-facility calling at each station. The term DTMF, as used herein, is defined as "a dialing or analog operation".
- 12. Provide standard digital VoIP telephone instruments at designated TCOs.
- 13. Provide at designated TCOs and locations shown on drawings, "Special Hands Free" digital VoIP telephone instruments.
- 14. Receive specified telephone signals acquired from LEC and FTS contracted carrier, process and distribute them to designated telephone stations, as determined by Class of Service (CoS).
- 15. Perform adjacent channel operation a minimum of local, long distance, and Federal telephone service telephone signals. Install and interface system equipment according to OEM's schematic diagram for adjacent telephone channel operation. Provide testing capability in each equipment cabinet, rack, interface point and test ports that provide access for each telephone channel without need to disconnect distribution cables or equipment. Process each telephone channel as a single channel. Include a means of monitoring complete system with appropriate printout and archiving of each processed and distributed channel.
- 16. Design system to minimize cross talk, background processor noise, inter-modulation, and other signal interference. Install and interface system equipment according to OEM head-end schematic diagram for adjacent audio channel operation. Process each audio input channel as a single separate channel and combine into one output channel. Provide, in the telephone switch room, an audio and visual monitoring panel to test each converted audio input and distribution channel and analog channels, transmitted and received signal functions.
- 17. Provide Digital Signal Processor Resources for a non-blocking telephone system.
- 18. Point Of Local (Telephone) Exchange Company Demarc: Notify COR if signals at LEC interface point do not meet minimum signal level and

quality, detailing the nature of the deficiencies, and expected effect on the telephone signals in the new system.

D. System Performance:

- 1. Support and fully operate in the following functional modes:
 - a. ISDN Integrated Services for Digital Networks:
 - 1) Basic Rate Interface (BRI).
 - 2) Primary Rate Interface (PRI).
 - b. Fiber-optic Distributed Data Interface (FDDI).
- 2. System Sensitivity: Provided satisfactory service for at least 3,000 feet for all voice locations.
- 3. Minimum System Operating Parameters:
 - a. System Speed: Minimum 1.0 giga-Bits (gb) per second.
 - b. Impedance: 600 Ohms, BAL.
 - c. Cross Modulation: -60 deci-Bel (dB).
 - d. Hum Modulation: -55 dB.
 - e. System Data Error: Minimum 10 to the -10 Bits per second (Bps).
 - f. Loss: Measured at frame output with reference Zero (0) deci-Bel measured (dBm) at 1,000 Hertz (Hz) applied to frame input:
 - 1) Trunk to station: Maximum 1.5 dB.
 - 2) Station to station: Maximum 3.0 dB.
 - 3) Internal switch crosstalk: -60 dB when a signal of +10 dBm, 500-2,500 Hz range is applied to primary path.
 - g. Idle channel noise: 25 dB relative noise per channel (rnC) or 3.0 dBm at 0 above (terminated) ground noise, whichever is greater.
 - h. Traffic Grade of Service for Voice: Minimum grade P-01 with an average traffic load of 7.0 One Hundred Call Seconds (CCS) per station per hour.
 - i. Average CCS per Voice Station: CCS capacity maintained at 7.0 CCS and a Time Between Failures (TBF) of 99.99 percent when system is expanded up to the projected maximum growth.

E. Voice and Audio Standards:

- 1. Input and Output Signal Level: 0.0 dBm at 1 kilo Hertz (kHz) test tone modulation level.
- 2. Input and Output Impedance: 600 Ohms Balanced (BAL).
- 3. Input and Output Signals: Terminated on each system unit.
- 4. Frequency Range: Minimum 50 Hertz (Hz) to 3.0 kHz + 1.0 percent.
- 5. Signal-to-Noise Ratio: 60 deci-Bell per mili-Volt (dBmV) + 1.0 dBmV.
- 6. Cross Modulation: -46 dB.

- 7. Hum Modulation: -55 dB.
- 8. Isolation (control unit to unit): Minimum 24 dB.
- F. Control Signal Standards:
 - 1. Input and Output Signal: 0.0 dBmV + 1.0 dBmV Level.
 - 2. Input and Output Signals Terminated on each system unit.
 - 3. Input and Output Impedance: 600 Ohms, BAL.
 - 4. Channel Bandwidth Voice: Minimum 50 Hz to 3.0 kHz, + 5.0 percent.
 - 5. S/N Ratio: 60 dBmV + 1.0 dBmV.
- G. Telephone Outlet (TCO):
 - 1. Isolation (outlet-outlet): Minimum 24 dB.
 - 2. Impedance: 600 Ohms.
 - 3. Signal Level: 0 dBmV + 0.1 dBmV.
 - 4. System Speed: Minimum 100 mega-Bits (mb) per second.
 - 5. System Data Error: Minimum 10 to the -6 Bits per second.
- H. General Product Requirements:
 - 1. Provide current model of standard products of OEM of record. OEM of record to be defined as a commercial business enterprise manufacturing items of equipment and which:
 - a. Maintains a factory production line for equipment submitted.
 - b. Maintains a stock of replacement parts for equipment submitted.
 - c. Maintains engineering drawings, specifications, and operating manuals for equipment submitted.
 - d. Has published and distributed descriptive literature and equipment specifications on equipment submitted at least 30 days prior to the Invitation for Bid.
 - 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated.
 - 3. Where standards are established for supplies, materials or equipment, furnish supplies, materials and equipment listed by NRTL.
 - 4. Provide equipment labeled with approved seal of NRTL.
 - 5. Provide COR with verification, at time of installation type of cable being provided is recommended and approved by OEM. Provide cabling meeting requirements of NRTL, TIA Wiring Standards and requirements of NFPA 70. Coordinate correct protection, cable duct and conduit with subcontractors.
 - 6. Interface with telephone, PA, and other systems utilizing interfacing methods approved by OEM and Government. Acceptable interfacing method requires not only a physical and mechanical

- connection, but includes matching of signal, voltage, and processing levels, with regard to signal quality and impedance. Provide separation of Critical Care, Life Safety, and Emergency systems.
- 7. Provide solid state active electronic component rated for continuous duty service and complying with FCC standards, for telephone equipment, systems, and service.
- 8. Provide passive distribution equipment with $-80~\mathrm{dB}$ radiation shielding specifications or greater.
- 9. Terminate interconnecting twisted pair cables on equipment terminal boards, punch blocks, breakout boxes, splice blocks. Terminate unused equipment ports/taps according to OEM's instructions for telephone cable systems without adapters. Terminate unused or spare twisted pair cable, and fiber-optic cable that is unconnected, loose or unsecured.
- 10. Utilize microprocessor components for signaling, programming circuits and functions. Ensure program memory is non-volatile or protected from erasure during power outages for a minimum of three days.
- 11. Provide continuous electrical supervision of system equipment, interconnecting cabling, distribution cable plant, and UPS back up battery and charger to determine change in status and to assist in trouble shooting system faults.
- 12. Voltage: Not to exceed 30V AC Root Mean Squared (RMS) or 42V direct current (DC), except for primary power to power supply circuits.
- 13. Color Coded Distribution Wiring: Conform to ANSI/TIA-606-B standard. Clearly and permanently label equipment, cable duct and conduit, enclosures, wiring, terminals, and cables according ANSI/TIA 606-B standard record wiring diagrams, to facilitate installation and maintenance.
- 14. Connect primary input power to critical branch of emergency AC power distribution system.
- 15. Provide UPS sized for equipment to function and operate normally during input power fluctuations or loss of power for a minimum of four hours.
- 16. Provide plug-in connectors to connect equipment.
- 17. Utilize barrier terminal screw type connectors, at a minimum for base band cable systems.
- 18. Crimp Type Connectors:

- a. Type installed with a ratchet tool are an acceptable alternative if cable dress, pairs, shielding, grounding, connections and labeling are provided same as barrier terminal strip connectors.
- b. Tape of any type, wire nuts, or solder type connections will not be permitted.
- 19. Provide stainless steel, anodized aluminum faceplates, or UL approved cycolac plastic matching equipment.
- 20. Provide noise filters and surge protectors for each equipment (including interface cabinets) control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches.

2.2 EQUIPMENT

A. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
Power Line Frequency	60 Hz ±2.0 Hz
Operating Temperature	O to 50 degrees centigrade (C)
Humidity	80 percent minimum rating

B. System Equipment:

- 1. Self-contained, electronic, digital and VoIP in operation, providing the following minimum functions:
 - a. Intra-facility station-to-station four digit direct dialing to include those telephone instruments equipped with DID features.
 - b. Direct-output-dial (DOD) from any unrestricted telephone instrument to any CO trunk, ISDN, or FTS access lines by dialing a pre-designated access code.
 - c. DOD from any station to tie lines by dialing a pre-designated access code.
 - d. Ability of incoming calls from FTS access lines and tie lines to direct dial system stations without attendant assistance.
 - e. Access to outside lines through operator's console at restricted telephone instruments.
 - f. Access to features, functions, CO trunks, FTS access lines, tielines, toll free numbers, and long distance directory assistance from unrestricted telephone instruments.
 - g. Minimum 40 Class-of-Service (COS) restrictions to be applied individually or in combination as dictated by individual

telephone number service requirements. Describe number and type of COS restrictions available in submittals.

- 2. Provide station users with standard feature package listed by this paragraph, andprovide ability to restrict any of these features on a station by station basis.
 - a. Line Hunt Capability: Assign sequential and circular line hunting lines to a hunt group submit number of hunt groups available and capacity of each group.
 - b. Consultation Hold: Capability to place an incoming call on hold while making a consulting call, then return to original call.
 - c. Call Transfer: Permit a user to transfer an incoming or outgoing CO trunk, FTS, or tie-line call to another system station without attendant assistance.
 - d. Call Pick-Up: Answer a ringing, but unanswered call, within a pre-designated group of station lines by dialing a feature code or activating a feature button.
 - e. Call Forwarding "Follow Me" Functions: Automatically reroute incoming calls to another selected telephone number. Activate and deactivating this feature from selected telephone instruments at their discretion.
 - f. "Busy and Don't Answer" Functions: Automatically reroute calls to a pre-programmed secondary telephone instrument when a given telephone instrument is busy or does not answer within a prescribed time interval.
 - g. Call Queuing: Telephone instrument encountering a busy trunk, e.g. CO, FTS, Foreign Exchange Service (FX), and tie-lines, can be automatically connected to the trunk when it becomes available.
 - h. Call Back/Ring Back: Call back/ring back is activated at calling instrument initiating call to another internal busy instrument by an access code or feature button. Automatically ring calling instrument when both instruments become idle, and when answered, rings called instrument without preventing calling instrument from originating or receiving other calls.
 - i. Music on Hold: Provide music on hold to system station lines, CO trunks, FTS access lines, and tie-lines when placed on hold. Acceptable music source is digital media player as accepted by

- SMCS 0050P2H3 and COR. Off air radio or non-royalty sources cannot be used for this function.
- j. Conferencing: A telephone instrument initiated conference (minimum of three parties) which allows stations to conference any combination of telephone instrument, CO, or FTS calls.
- k. Automatic Number Identification: A facility where directory number or equipment number of a calling instrument is obtained automatically for use in message accounting.
- 1. Station to Station Call Waiting: Busy telephone instruments allowed to receive a second incoming call from another telephone instrument. Play call waiting tone on busy instrument, upon receiving a second incoming call. The busy instrument has ability to place initial call on hold and answer second call and alternate between both calls.
- m. Station and System Speed Dialing:
 - System Speed Dialing: Minimum 50 numbers allow designated telephone instruments to originate speed calls to CO, FTS, FX, or tie lines.
 - 2) Station Speed Dialing: Ten numbers per instrument; instrument includes capability of entering, removing, or changing numbers programmed on their Station Speed dialing list.
- n. Call Park: Telephone instrument feature must be provided that allows non-preselected internal instruments to access an attendant initiated feature in response to an internal/external paging situation.
- o. Universal Night Answer Service: Provide a means of night service transfer for answering incoming calls, which would normally be answered at console, from locations other than console. Chimes, with cut-off switches, to announce incoming calls placed at two locations.
- p. Line Load Control: A pre-programmed attendant controlled feature which, when activated from console positions, restricts all but selected stations from accessing FTS and CO trunks during emergency conditions. Activation of line load control must not affect intra-facility communications, e.g., station to station, access to Public Address system, audio-page, etc.
- q. Dual Common Controls: The following are the minimum features required:

- Provide a redundant common processing unit with automatic transfer capability offering a stored program technology control feature.
- 2) Either common control is capable of handling the total system traffic load without degradation of service.
- 3) In event of failure of primary common control automatically switch to redundant unit with no interruption to calls in progress and no loss of program features.

r. Line Lock Out:

- In event a telephone instrument handset is not replaced in telephone instrument cradle, after a pre-determined time interval with no dial action lock out that station line, i.e., not tie up system switch equipment.
- 2) Apply audible tone to locked out station lines.
- 3) Automatically restore associated station line to full service when a locked-out telephone instrument handset is replaced.
- s. Supervisory Telephone (not Electrical or Electronic) Signaling and Ringing:
 - 1) Provide dual solid state signal generating devices, or equivalent, which produce standard supervisory signaling, i.e., ringing, dial tone, busy tone, etc. A maximum one-third of installed main station line capacity can be affected by failure of any one signal generating device.
 - 2) Provide automatic transfer to alternate signal generating device in event of failure of primary device for dual solid state signal generating devices.
 - 3) Supervisory Signaling and Ringing:
 - a) Provide tones to indicate progress of a call through the exchange, i.e. dial tone - to indicate that switching equipment is ready to receive dial digits and, when required, provide a secondary dial tone for FTS 2000 access; busy tone (60 to 120 interruptions per minute) - to indicate that a busy line or trunk has been encountered; audible ring back tone - to indicate to calling subscriber that the number dialed is being called.
 - b) Provide supervisory signaling and ringing devices capable of operating from emergency DC power source.

t. Fusing:

- 1) Equip system with fuses to protect total telephone system and individual segments of system so that a problem in one segment can be isolated without damaging the total system.
- 2) Provide alarm indicating type fuses with their rating designated by numerical or color code on fuse panels that are easily visible.

u. Equipment Power Supply:

- Equip system with a complete on-line power supply consisting of AC surge protection, dual load-sharing rectifiers/chargers, batteries, and inverter.
- 2) Capacity of power supply must support system including projected maximum growth and as required in this specification for interfaced equipment.
- 3) Coordinate with Local Exchange Company (LEC) to determine CO trunk, FTS access line, and other required interface unit power requirements and provide power to interface units so they can continue to function in event of a commercial AC power failure.
- v. Alarms and Trouble Indicators: It is acceptable to combine required electrical and electronic supervision functions in these panels provided supervisory standards are met.
 - 1) Provide and make operational visual and audible alarms, equipped with cut-off switches, indicating AC power failure, rectifier failure, major and minor trouble, temperature/humidity, electrical or electronic supervisory alarms. Provide sensors for remote environmental alarms at attendant console area and one other location. Separate these alarms in addition to major and minor alarms on attendant consoles.
 - 2) Provide small red indicator lamps on alarm panel for each alarm with cut-off switches or one switch for all alarms and distinctive audible alarms. If one cutoff switch is provided for all audible alarms, restore alarms to ready status condition for audible registration of additional alarms.
 - 3) On submittal describe other system alarms that are remote and describe system alarms/indicators of malfunctions that are located on the equipment.

- w. Provide capability of system to provide four-digit intra-station dialing and desired functions described herein.
- x. Due to varied trunk group requirements and possible future trunk group requirements, e.g. public address system access, alternate access codes can be proposed. Grouping of similar type trunk group/features, e.g. 5-1 public address system (all call), 5-2 public address system zone 1, etc. is acceptable.
- y. Provide emergency numbers accessible by system station users.

 Label numbers on console or a multi-line instrument and at least one other designated location. Provide a distinctive audible and visual signal associated with emergency number to ensure an immediate response to calls. Provide capability of priority answering emergency number and extending the call as situation dictates at console or multi-line instrument. A modified trunk circuit can be used for this purpose.
- z. Provide sensitivity for voice service up to 914.4 m (3,000 feet).

3. Voice Mail Requirements:

- a. Requirement is an automated call processing capability. Connect automated attendant to system and configured to answer and route calls received on a predetermined number of central office trunks. Configure system so that, if called extension is busy or does not answer within a predetermined number of rings, route caller to person's voice mail box. Provide complete voice mail system allowing predetermined number of users to send complete and confidential messages in users' voice and receive complete and confidential messages in senders' own voice 24 hours per day, 7 days per week. Integrate into operation of system and be compatible with local telephone company central office.
- b. Provide capacity for the following number of ports (minimum):

	Equipped	Wired
	Capacity	Capacity
Automated Attendant	12	20
Voice Mail	12	20

c. Provide voice mail system for 500 mailboxes and 40 hours of storage with growth to 60 hours of storage.

4. Voice Mail Features:

a. Access to system and its features from any instrument anywhere that provides DTMF signaling.

- b. Ability of those leaving a message to review message and edit message that is being placed in mailbox.
- c. Privacy/Security through use of a password.
- d. Ability to send messages to users on voice mail system in the following manner:
 - 1) To any user on same voice mail system.
 - 2) To more than one user on same voice mail system an ad hoc distribution list determined by sender at time of message transmission.
 - 3) To a predetermined distribution list.
 - 4) Broadcast to users on same voice mail system.
- e. Verification, with Receipt: Ability of a user to request and receive verification of when a message is played through the use of a touch-tone command. Indicate time and date of when a message is played and place that information in sender's mailbox.
- f. Envelope Information: Ability of a user to request and receive time and date information of when specific messages were left in user's mailbox.
- g. Connects to voice mail system through system extension number or a seven/ten digit telephone number from LEC.
- h. Message "PROMPTS" for every transaction: Provide Messages for "GREETINGS" and "INSTRUCTIONS FOR RECORDING OR EDITING A MESSAGE".
- i. Notify user that messages are in user's mailbox with a message waiting tone, lamp, and display.
- j. Notify user, upon accessing system, of how many messages are in user's mailbox.
- k. Message Response Alternatives:
 - Respond or send a reply to another user on same voice mail system.
 - 2) Route message to another user on same voice mail system.
 - 3) Delete message.
 - 4) Save message.
- 1. Ability to fast forward or rewind messages.
- m. Present messages to user on a "FIFO" basis.
- n. User Administration: Provide management information and statistics in the following categories:
- o. Port Usage: Traffic statistics on each access path into system.

- p. Usage of Storage Capacity: Remaining storage capacity at any one time and during peak periods.
- q. Mailbox Usage: Connect time and number of new or saved messages.
- r. User administration terminal to allow for "Class of Service
 Controls" in the following areas and for the following
 parameters:
 - 1) Initial Authorization:
 - a) Ability to enable a mailbox.
 - b) Record "Owner's" name.
 - c) Set initial Pass Number.
 - 2) Usage Control:
 - a) Length of personal greeting.
 - b) Length of messages received.
 - c) Number of messages.
 - d) Message retention time.
 - 3) Feature Authorizations: Allowed or not.
 - a) Group List Creation.
 - b) Group List Usage.
 - c) Broadcast Messages.
- C. Voice Traffic Management System (TMS):
 - 1. Provide complete and self-contained on-site TMS.
 - 2. Functions:
 - a. Provide laser printer for reports generated by system and maintenance administration terminal.
 - b. Connect TMS to system emergency battery power supply.
 - c. Screen menus to provide access to each category of reports.
 - d. Traffic Accounting and Management Call Detail Recording (CDR) for Voice Circuits (TMS):
 - 1) Include hardware, software, and interconnections for complete system.
 - 2) Contain a database stored on non-volatile media.
 - 3) Provide line numbers, physical locations of equipment by building and room number, department to which a line is assigned, name of persons assigned to a number, type of equipment, and any comments regarding system features.
 - 4) Support additional input and output (I/O) ports for video monitors or other terminals that allows a passive display of data bases by authorized medical center personnel other than

those individuals responsible for data input and conducting studies.

- 5) Protect data bases with user ID and password.
- 6) Provide separate voice line reports, on demand and predetermined schedule, for automatic printing. The following reports are required:
 - a) Originating trunk traffic by trunk group, expressed in CCS.
 - b) Terminating trunk traffic by trunk group, expressed in CCS.
 - c) All trunks busy, by trunk group, expressed as blocked call count.
 - d) All equipment busy, i.e., no dial tone and failure to complete cross-office call because of all equipment busy, expressed in blocked call count.
 - e) List of equipment alarms, error tables, trouble logs, history files, etc.
- e. Measurements for each console:
 - 1) Incoming calls.
 - 2) Calls answered.
- f. Provide remote video monitors compatible with TMS hardware and software in immediate vicinity of telephone operators for use as an on-line directory lookup system of facility personnel.
- g. Print reports in English notation that do not require interpretation of abbreviations or codes by the user.
- h. Provide storage on disk to prevent a purge of stored data. Maintain call record and facility usage data in database for a minimum 30 days with storage capability of accommodating a minimum 5,000 calls per day.
- i. Furnish normal system traffic data to appropriate facility staff within seven days of a facility request. Prepare quarterly and submit, to appropriate facility staff, a comprehensive traffic study, including the required traffic data with the contractor's comments and recommendations.
- j. Load and maintain directory that includes, name, title, organization, location, extension, and class-of-service.
- k. Provide cable plant management function with the following minimum requirements:
 - 1) A list of off-premise cable by circuit number, numbers of pairs for each circuit, and circuit definition.

- 2) Complete cable plant distribution record to identify location (cable pair) on main distribution frame, riser, cable size, cable pair in-use (main cable feeder and station cable), building and room number of termination, and equipment type terminated.
- Automatically provide the cable number and pair assignments, when service order is entered.
- 1. Provide equipment inventory list containing the following minimum requirements:
 - 1) System cabinets, cards (active and spares), batteries, current and surge protectors, rectifiers, peripheral equipment, i.e. public address etc.
 - 2) Quantity of single and multi-line telephones, speakerphones, dial intercom units, speakers, gongs, loud horns, bells, chimes, recorders, etc.
 - 3) A list of equipment as being used or spare; ordered or received; installed date, warranty date, cost, location, serial number, etc.
- m. Provide electrical and/or electronic supervisory alarms and faults reports.

D. Attendant Console:

- 1. Attendant consoles must be compatible with local commercial telephone system:
 - a. Powered from system's emergency battery power supply.
 - b. Load sharing to ensure that all incoming calls are evenly distributed among consoles regardless of traffic load.
 - c. Telephone signal (not electrical or electronic) supervision over all calls connected through console providing indication of:
 - 1) Called party answer (revert back to attendant if no answer).
 - 2) Trunk group busy.
 - 3) Station Recall to Attendant: In event of an incoming call being placed (in a hold status) prior to a station being dialed after a specified time this call must revert to the attendant.
 - d. Call transfer capability by attendant.
 - e. Automatic ring of called station with ring back tone provided to calling party.

- f. Console designed for operation as far as 304.8 m (1,000 feet) from PBX equipment cabinets serviced by a 0.205 mm2 (24 AWG) cable.
- q. Attendant console must provide:
 - 1) Ability to enter any on-going voice call, regardless of whether call was connected through console, direct-in-dial, or originated as an intra-station call. Apply warning tone when attendant enters an on-going voice call.
 - 2) "Call-splitting" ability that permits attendant to exclude either outside or inside party when handling trunk calls.
 - 3) "Camp-on busy" feature, that permits attendant to place incoming voice calls on hold until called station number, is available. Tone burst to be applied to busy line to alert that a call is waiting.
 - 4) When busy line becomes free, the waiting call is automatically connected. If waiting call is not connected after a predetermined time, the waiting call reverts to the attendant.
 - 5) Universal Night Answering Service: Provide ability for incoming calls to be answered from a location other than console.
 - 6) On-the-ear models attendant headsets, equipped with coiled cord, plug-In case amplifier, and quick disconnect for 10 attendants. Submit type of headsets to be provided.
 - 7) One supervisor plug-in handset with a push-to-talk button and a nine-foot cord.
 - 8) Dual tone multi-frequency dialing for attendant completion of incoming, outgoing, and intra-station calls.
- h. Automated Attendant Features:
 - Access from any instrument anywhere that provides DTMF signaling.
 - 2) Voice "PROMPTS" for every transaction.
 - 3) Introductory greeting.
 - 4) Ability of caller to enter extension of the person being called and connection to that extension or enter zero for connection to operator.
 - 5) Capability of providing caller with a directory and subdirectories of telephone numbers and ability to enter desired extension at any time while listening to directory.

- E. Cross-Connection System (CCS) Equipment: Breakout, termination connector (or bulkhead), patch panels, and connection assemblies, in addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION, must include the following:
 - 1. Connector panels made of flat smooth 3 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet.
 - 2. Bulkhead equipment connectors mounted on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel.
 - 3. Each panel color matching cabinet installed.

F. Voice (or Telephone):

- 1. 110-type punch blocks certified for Category 6 represent the minimum requirement for voice or telephone, and control wiring instead of patch panels. Category 6 IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS. Secure punch block strips to OEM designed physical anchoring unit located on a wall in Demarc Room, Telephone Equipment Room, and TR. However, console, cabinet, rail, panel, etc. mounting is allowed at OEM recommendation and as accepted by COR. Punch blocks will not be accepted for Class II or 120 VAC power wiring.
- 2. Technical Characteristics:
 - a. Number of Horizontal Rows: Minimum 100.
 - b. Number of Terminals per Row: Minimum 4.
 - c. Terminal protector: Required for each used or unused terminal.
 - d. Insulation Splicing: Required between each row of terminals.

G. Fiber Optic and Analog Audio:

- 1. Product reference type must be tele wire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel can be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with proper connectors. This panel will not be permitted for 120 VAC power connections.
- 2. Technical Characteristics:
 - a. Height: Minimum two RUs, 89 mm (3.5").
 - b. Width: Minimum 484 mm (19 1/16"), EIA.
 - c. Number of Connections: Minimum 12 pairs.
 - d. Audio Service: Use RCA 6.35 mm (1/4 inch) Phono, XL or Barrier Strips, surface mounted with spade lugs (punch block or wire wrap

- type strips are acceptable alternates for barrier strips as long as system design is maintained).
- e. Control Signal Service: Barrier strips surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained).
- f. Low Voltage Power (Class II): Barrier strips with spade lugs and clear full length plastic cover, surfaced mounted.
- g. Fiber Optic: "LC" Stainless steel, female.

H. Mounting Strips and Blocks:

1. Barrier Strips:

- a. Barrier strips are permitted for AC power, data, voice, and control cable or wires that accommodate size and type of audio spade (or fork type) lugs used with insulating and separating strips between terminals for securing separate wires in orderly fashion.
- b. Provide barrier strips with audio spade lug, which is connected to an individual screw terminal on barrier strip at each cable or wire end.
- c. Secure barrier strips to console, cabinet, rail, panel, etc. Do not connect 120 VAC power wires to signal barrier strips.

2. Technical Characteristics:

- a. Terminal Size: Minimum 6-32.
- b. Terminal Count: Any combination.
- c. Wire Size: Minimum 20 AWG.
- d. Voltage Handling: Minimum 100 V.
- e. Protective Connector Cover: Required for Class II and 120 VAC power connections.
- 3. Solderless Connectors: Crimp-on insulated lug to fit 6-32 minimum screw terminal. Install fork connector using standard crimp tool.
- 4. Furnish items for balancing and minimizing interference capable of passing telephone signals in frequency bands selected, in directions specified, with low loss, and high isolation and with minimum delay of specified frequencies and signals. Provide equipment necessary to meet requirements of this section and system performance standards.

I. Audio Monitor Panel:

1. EIA standard panel for mounting in upper portion of 480 mm (19 inches) system equipment cabinet. This unit can be combined in

system's Annunciating System and Electrical Supervision Panel, in order to achieve the minimum electrical supervision requirements of system. Refer to system technical data for additional required specifications.

2. Technical Characteristics:

- a. Monitor Speaker: A permanent magnet, 76 mm (3 inch) minimum diameter, and a monitor volume control.
- b. Audiometer: Easy to read volume unit (vu) or similar meter with illuminated scale and meter calibrating control.
- c. Channel Selector Switch: Six positions (Off, 1, 2, 3, 4, and Spare) which connect monitor speaker and VU meter to selected audio channel.

J. Telephone Instruments:

- Provide telephone instruments equipped with inductive capability to radiate a magnetic field required to activate hearing aid telecoil and to provide personnel, who use hearing aids, access to all telephones within facility.
- Provide station equipment consisting of standard single line instruments, patient bedside instruments, and multi-line digital electronic telephone instruments with digital display, of latest design.
- 3. Provide telephone instruments except patient bedside phones, with a flash button (or equivalent feature button) with pre-determined timing feature to initiate consultation hold and other features normally initiated by operation of hook-switch. Flash button must be distinct from hook-switch.
- 4. Attach laminated faceplate listing most common user features and their appropriate access codes to telephone instruments, except patient bedside phones. Faceplates can be an integral part of instrument housing or be an adhesive backed decal applied over tone pad area of housing at time of telephone set installation.
- 5. Provide station instruments feature compatible and with transmission characteristics compatible with proposed system.
- Provide telephone instrument signaling by means of standard adjustable, buzzers, chimes, or electronic tone, unless otherwise specified.
- 7. Single Line Instruments:

- a. Single line instruments can be electronic or 2500-type analog phones.
- b. Single line instruments used must be capable of supporting bridged cabling to allow a single phone number on multiple instruments without using multiple switch ports.
- c. Single line instruments must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment without using multiple switch ports.
- 8. Multi-Line Instruments, Digital and Electronic Features:
 - a. Digital read-out display and with minimum 14 programmable (lines or features) buttons.
 - b. Adjustable electronic tone to announce calls.
 - c. Detect an incoming call to multi-button instrument and provide an audible signal only on designated lines.
 - d. Lights to identify called line and remain illuminated for duration of call.
 - e. Associate telephone intercom systems with these instruments.
 - f. Equipment associated with intercom systems can require special features such as built in microphone and speaker. Provide secretaries with a means of announcing calls to offices with extensions or pickups on system. Identify provision of intercom systems during required data base survey and provide any required intercom systems.
 - g. This equipment must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment. Use of analog switch ports to provide ringing voltage, if required, is acceptable and include these switch ports in equipped capacity.
 - h. Provide hot line telephones between two identified points equipped with two-way automatic ring and cut-off controlled by telephone hook-switch, i.e. when near-end hand set is removed from hook switch, far-end telephone rings until hand set is removed from hook-switch.
 - i. Configure speaker on hands-free telephone stations to be used as both transmitter and receiver to answer or initiate a call. These facilities to normally be used as a hot line between two points.
- 9. Patient Bedside Instruments Features:

- a. Maintenance free, sanitized packet, and capable of supporting table top, side-rail, top bed-rail, or wall mounting. Provide each phone with minimum 15 feet of self-contained line cord.
- b. At the discretion of the facility, patient bedside instruments can be discarded, cleaned for reuse, or given to the patient, as appropriate. Expected anticipated cost per instrument does not exceed ten dollars.
- K. Lightning Protection System: Provide totally external to building. The use of internal electrical wiring for lightning grounding systems will not be permitted.
 - 1. Provide ground system, cabinets, racks, wire management systems, cable shields, etc. with copper wire run external to building and bond to grounding electrode conductor or inter system bonding termination. If these items are installed in an area not protected by lightning protection system, immediately notify COR of lightning strike hazard.
 - 2. Telephone, Data, Audio, and Coaxial Cable Lightning Protector:
 - a. Provide in-line device with screw type connectors to match coaxial and STP or UTP cable specified. Locate at each building entrance where each cable enters a building from the outside and grounded with stranded copper wire run external to building bonded to grounding electrode conductor to shunt high current surges to earth ground and have a minimal effect on quality of signal being received or transmitted. Provide protector made of non-corrosive metal and waterproof. Refer to system technical data for additional required specifications.
 - b. Technical Characteristics:
 - 1) Peak Pulse Power: 1500 W at 25 degrees C (77 degrees F).
 - 2) Protection Device: Gas Tube or as required by OEM.
 - 3) Dissipation: 1.0 Milliseconds (MS).
 - 4) Response Time: 5.0 nS.
 - 5) Connectors: As specified.
 - 6) Ground Wire: Minimum #6 AWG Stranded Copper, or as required by OEM and Government.

2.3 AUXILIARY SYSTEMS

- A. Interface system to Public Address System.
 - 1. Provide console attendants direct access to selected zones and all zones paging. Provide attendant "priority access" to all zones.

- 2. Provide selected station users access to appropriate zones, by dialing proper access.
- 3. Provide required interface devices to PA. Provide a feature to prevent PA from being "locked up" by a user placing the system on hold or leaving receiver "off-hook".

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install according to following Industry Standards:
 - 1. NFPA Section 70, National Electrical Code (NEC), Article 517 and Chapter 7.
 - 2. NFPA Section 99, Health Care Facilities, Chapter 3-4.
 - 3. NFPA Section 101, Life Safety Code, Chapters 7, 12, and 13.
 - 4. Joint Commission Manual for Health Care Facilities, Life Safety and Support guidelines.
 - 5. These specifications.
 - 6. OEM installation, design, recommendations, and instructions.

B. System Installation:

- 1. Install suitable filters, traps, directional couplers, splitters, telephone outlets, and pads for minimizing interference and for balancing amplifiers and distribution systems.
- Connect passive equipment according to OEM's specifications to insure correct termination, isolation, impedance match and signal level balance at each telephone outlet.
- 3. Terminate lines in a suitable manner to facilitate future expansion of system.
- 4. Terminate vertical and horizontal copper and fiber optic lines in system, TER, MCR and TR equipment only.
- 5. Install terminating resistors or devices on unused branches, outlets, and equipment ports of system designed for purpose of terminating fiber optic or twisted pair, and coaxial cables carrying telephone, and analog video signals in telephone, and analog systems.
- 6. Install equipment outdoors in weatherproof enclosures with hinged doors and locks if equipment is not weatherproof. Provide a minimum of two keys for each lock.
- 7. Install equipment indoors in metal cabinets with hinged doors and locks. Provide a minimum of two keys for each lock and VA Police Access Control System.

- 8. Install a triplex outlet with modular jacks and stainless steel face plate for each telephone outlet shown on drawings. Provide appropriate modular jack (single or triplex) with appropriate face plate for each outlet location identified and verified on drawings.
- 9. Install patient and wall telephone instruments on a single modular jack designed for wall telephone instruments and patient wall or PBPU installations.
- 10. Install permanent telephone cables in conduit or an enclosed duct system. Obtain acceptance for installation, as determined by Government requirements, without conduit or enclosed duct system in cable tray or mechanically supported and separated from other signal cable systems.
- 11. Where cables penetrate fire/smoke partitions, firewalls, or floors, coordinate installation of firestopping material of type accepted by COR.
- 12. Install equipment in accordance with specifications for system as recommended by OEM.
- 13. Replace ceiling tiles damaged during installation and maintenance service of cable and wire distribution system. Restore immediate areas damaged during system installation and maintenance service.
- 14. Run all cross connects to established circuits during installation and maintenance service for contract life.
- 15. Remove, on a daily basis, debris and scrap generated in conduct of work.

C. Rack and Cabinet Equipment Mounting:

 Install rack mounted equipment on enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustments can be conveniently made.

2. Heavy Equipment:

- a. Install heavy equipment using rack slides or rails allowing servicing from front of enclosure.
- b. Install additional support to supplement front panel mounting screws for heavy equipment.
- 3. Install cable slack to permit servicing by removal of equipment from front of enclosure.
- 4. Install a color matched blank panel (spacer) of 44 mm (1-3/4 inches) high, between each piece of equipment (active or passive) to ensure

- adequate air circulation maintaining enclosure design for efficient equipment cooling and air ventilation.
- 5. Provide 380 mm (15 inches) of front vertical space opening for additional equipment. Install color matched blank panels to cover any unused enclosure openings.
- 6. Connect signal connector, patch, and bulkhead panels (i.e. PA, telephone, control, etc.) so that outputs from each source, device or system component to enter panel at top row of jacks, beginning left to right as viewed from front; these are to be called "inputs". Install connection to load, device or system component to exit panel at bottom row of jacks, beginning left to right as viewed from front; these are to be called "outputs".
- 7. Mount equipment located indoors installed in metal racks or enclosures with hinged doors so it can be accessible for maintenance without interference to other nearby equipment.
- 8. Fasten cables to equipment racks or enclosures in a manner that allows doors or access panels to open and close without disturbing or damaging cables.
- 9. Install distribution hardware allowing access to connections for testing and provide room for doors or access panels to open and close without disturbing cables.
- D. Conduit, Cables And Wiring, Cable Tray, Raceways, Signal Ducts, Etc:
 - 1. Conduits installed in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
 - 2. Ensure that Telephone, and PA systems (as identified by NEC Section 517) are separated and protected from other systems.

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

- 1. Conduct an interim inspection of installed equipment in presence of COR, prior to proof of performance testing. Verify that equipment provided, adheres to installation requirements of this section.
- 2. Install 50 percent of system equipment to include system, interface, origination and junction enclosures powered with permanent AC wiring, outlets, conduit and cables, before interim inspection can take place.
- 3. Notify COR of estimated date contractor expects to be ready for interim inspection, at least seven working days before requested inspection date.

- 4. Furnish results of interim inspection to COR and PM. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation. SMCS 0050P2H3, (202) 461-5310, must be a part of this inspection team.
- 5. COR, in conjunction with PE, will determine if an additional inspection is required, or if contractor will be permitted to proceed with the installation. In either case, re-inspection of deficiencies noted during the interim inspections are to be part of the proof of performance test. The interim inspection is not permitted to affect the system's completion date. Include test documents as part of system's record wiring diagrams.
- B. Pretesting: Align and balance system, upon completing installation of the system. Pretest entire system.
- C. Pretesting Procedure: During system pretest, verify (utilizing the accepted spectrum analyzer and test equipment) that system is fully operational and meets the system performance requirements. Measure and record the aural carrier levels of each system telephone, at each of the following points in the system:
 - 1. Local Exchange Company (LEC) inputs.
 - 2. System inputs and outputs.
 - 3. TER, MCR and TR amplifiers, channel processor and converter inputs and outputs.
 - 4. System output S/NR for each telephone.
 - 5. Signal level at each interface point to distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
 - 6. Submit four copies of recorded system pretest measurements along with pretest certification, to COR.
- D. Pretesting Certification: After pretesting system, notify COR that system is ready for proof of performance testing in presence of a SMCS 0050P2H3, (202) 461-5310, and COR, and that it meets requirements stated in construction documents. Submit notification of system readiness no later than twenty working days prior to scheduled Government proof of performance test. Failure of contractor to comply with these pretest requirements, automatically cancels the scheduled acceptance test.
- E. Acceptance Test:

- 1. After system has been pretested and contractor has submitted pretest results and certification to COR, schedule an acceptance test date and give COR thirty days written notice prior to date acceptance test is expected to begin include expected length (in time) of test. Test in the presence of COR and an OEM certified representative. Test utilizing accepted test equipment to certify proof of performance. Verify that total system meets specified requirements under operating conditions, and complies with listed system performance standards.
- 2. Make only those operator adjustments required to show proof of performance. Demonstrate and verify that installed system does comply with operational requirements. under operating conditions. Rate system as either acceptable or unacceptable at conclusion of the test. Failure of any part of system, that precludes completion of system testing and cannot be repaired within four hours, terminates the acceptance test of system.
- 3. Declare entire system unacceptable if repeated failures result in a cumulative time of eight hours to effect repairs and retesting entire system at the convenience of Government.

F. Acceptance Test Procedure:

- 1. Mechanical and Physical Inspection:
 - a. COR will tour major areas where system and sub-systems are located, to ensure they are properly installed in place, and are ready for proof of performance acceptance testing. A system inventory including available spare parts must be taken at this time. Verify equipment to ensure appropriate UL certification labels are affixed.
 - b. Review system diagrams, record drawings, equipment manuals, AutoCAD files, intermediate and pretest results.
 - c. Failure of system to meet installation requirements of this specification terminates testing.

2. Subsystem Operational Test:

a. After the mechanical and physical inspection, perform an operational test of each sub-system to verify that equipment is properly connected, interfaced and is operational to meet requirements of this section. If any sub-system is not functionally ready, that sub-system will be declared unacceptable

- and testing terminated. At this point, contractor is only permitted one hour to correct deficiencies.
- b. Mutually agree with COR, at this time, to wait one hour or to commence testing of next sub-system.
- c. Repeated failures of sub-system testing or total system testing, that results in a cumulative time of four hours to effect repairs, is grounds for declaring entire system unacceptable and testing to be terminated. Reschedule retesting at convenience of Government.
- 3. Sub-system Performance Test: After operational test of each subsystem, verify that performance requirements and standards are met
 using test equipment. Verify there are no visible signal
 distortions, such as intermodulation, beats, etc. appearing on any
 received or generated telephone with A spectrum analyzer, signal
 level meter and bit error rate analyzer (BERT).
- 4. Total System Test: Commences only after system and sub-systems have been tested and accepted.
 - a. LEC Point of Demarcation: Check system outputs.
 - b. System: Test within 30 days following successful pretesting of system. In addition to compliance with technical characteristics and quantities of equipment specified herein, the final acceptance test provision that 30 continuous days of uninterrupted telephone service, must be completed prior to contractor being deemed in compliance with the contract.
 - 1) For purpose of final acceptance, telephone service is considered interrupted when failure of any contractor provided telephone equipment including batteries, results in an interruption of service. This includes a failure of more than 20 percent of any trunk group, 15 percent of any number group (15 or more stations), operator console, or telephone service to any area determined to be critical by Facility Director. Response time to restore service has bearing upon the term "interrupted service".
 - 2) To facilitate system acceptance test and to allow familiarization and training of government employees, activate system, including operator consoles, stations, and equipment a minimum 30 days prior to acceptance test date. Test installed equipment and circuits prior to acceptance by Government.

During this "burn-in" period, de-bug the system. Make system available for in-house communications and demonstrate required features to facility staff.

- 5. Individual Item Test: COR can select individual items of equipment for detailed proof-of-performance testing to verify items selected meet or exceed minimum requirements of the specification.
- 6. Interface Cable Sub-system: Check minimum 75 percent of system outlets and interface points to ensure that system meets performance requirements.
 - a. Each sub-system interface, junction, and connection point or location will be checked.
 - b. Each distribution active and passive item of equipment, signal inputs and outputs must be tested.

G. Test Conclusion:

- At conclusion of acceptance test, using the generated punch list (or discrepancy list), Government will reschedule testing on deficiencies and shortages.
- 2. If system is declared unacceptable without conditions, retest expenses are borne by the contractor.

3.3 SYSTEM STARTUP

- A. Provide personnel (switch technicians, installers, trainers, project manager, etc.) on premise for seven consecutive days after cutover to clear any malfunctions that develop, to assign/reassign any software features/COS, and conduct any additional training as required.
- B. Connect telephone equipment located in TER to telecommunications grounding busbar.
- C. Provide system ground between system and interfaced systems such as PA system equipment chassis, etc.
- D. Ensure that other dedicated telecommunications systems applications within facility (i.e., pay stations, electro-writing equipment, facsimile etc.) that require space within TER, MCR and TRs, conduits, and cable pair are accommodated. Coordination between applicable parties is necessary to ensure accommodation of these systems.
- E. Verify all portions of system installation conform to local building and fire codes.

3.4 TRAINING

A. Furnish services of an OEM trained and certified engineer or technician for two eight-hour classes to instruct designated facility maintenance

- personnel. Include cross connection, corrective, and preventive maintenance of telephone system and equipment.
- B. Furnish services of an OEM trained and certified engineer or technician, familiar with functions and operation of system and equipment, for two eight-hour periods to train designated facility IRM personnel. Instruct staff personnel in each area where system is installed under this contract. When multiple areas are involved, classes are to be grouped. Coordinate periods of training with COR to ensure all shifts receive required training. Include instructions utilizing hands-on operation and functions of the system.
- C. Before system can be accepted by Government, this training must be accomplished. Schedule training at the convenience of Facilities CO and Chief of Engineering Service.

3.5 MAINTENANCE

- A. Provide COR the ability to contact OEM's central emergency assistance maintenance center and request remote diagnostic testing and assistance in resolving technical problems at any time, during warranty period. Provide remote diagnostic testing and assistance capability to Government.
- B. Response Time during Warranty Period:
 - 1. Respond on-site, during the standard work week, to a routine trouble call within 24 hours of its report. A routine trouble is considered a trouble that causes a sub-system to be inoperable.
 - 2. Respond on-site to an emergency trouble call within four hours of its report. An emergency trouble is when failure:
 - a. Causes a system to be inoperable at any time.
 - b. Involves more than 20 voice circuits.
 - c. Is of a common control unit, power supply, signal generating device or attendant console.
 - 3. Respond on-site to a catastrophic trouble call within two hours of its report. System failure is considered a catastrophic trouble call.
 - a. If system failure cannot be corrected within six hours, provide an alternate CPU/Key System/mini- system equipped for a minimum of 100 main station lines, 10 CO trunks, 10 FTS access lines and two operator's consoles.

- b. Install alternate system to provide emergency service to critical areas as determined by Facility Director within 12 hours (time to commence at end of the six hour trouble shooting period).
- c. Provide to Facility Contracting Officer (CO), prior to cut-over of main telephone system, a pre-written program disk from programmable alternate system.
- 4. Catastrophic trouble calls include failures affecting operation of critical emergency health care facilities (i.e., cardiac arrest teams, intensive care units, etc.) if so determined by Facility
- 5. Respond on-site to installation of station or equipment requests for service within:
 - a. Eight hours for emergency installations designated by Facility CO.
 - b. Three working days for routine installations designated by Facility CO.
- C. A standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
- D. Provide compatible temporary equipment returning system or sub-system to full operational capability, until repairs are completed for any trouble that cannot be corrected within one working day.
- E. COR and Facility CO are contractor's reporting and contact officials for system trouble calls, during warranty period.
- F. Required On-Site Visits during Warranty Period:
 - Visit, once every twelve weeks, to perform system preventive maintenance, equipment cleaning and operational adjustments to maintain system.
 - a. Arrange facility visits with COR or Facility CO prior to performing maintenance visits.
 - b. Perform preventive maintenance in accordance with OEM's recommended practice and service intervals during non-busy times agreed to by COR or Facility CO.
 - c. Provide preventive maintenance schedule to COR and Facility CO for approval.
 - d. Provide on-site replacement spare parts and equipment, plus test equipment, ensuring they meet OEM's minimum recommended spare parts stock sizing requirements for this specific system.

- 2. Provide Facility CO a report itemizing each deficiency found and corrective action performed during each visit or official reported trouble call. Provide COR or Facility CO with sample copies of reports for review and approval at beginning of acceptance test. Minimum reports required:
 - a. Monthly summary of equipment and sub-systems serviced during warranty period to COR or Facility CO by fifth working day after end of each month. Describe services rendered, parts replaced, repairs performed and prescribe anticipated future needs of equipment and systems for preventive and predictive maintenance.
 - b. Separate log entry for each item of equipment and each sub-system of system listing dates and times of scheduled, routine, and emergency calls. Describe details of the nature and causes of each emergency call, emergency steps taken to rectify situation and specific recommendations to avoid such conditions in the future.
 - c. Include in Warranty GFE accepted by contractor, interfaced and installed in system; attach GFE List.

- - - E N D - - -

 $2\overline{016}$

ST. LOUIS MO VA MEDICAL CENTER OIT COMMUNICATION TECHNOLOGY NETWORK INFRASTRUCTURE SPECIFICATIONS AND DESIGN GUIDELINES

This document is an informational design guideline tool to be utilized by a Communications Technology Installer to ensure that the desired system performance is achieved during a construction project for any St. Louis VA Facility. The solutions specified in this document align itself with the training, inventory, tools, and consumables that currently exist at the St. Louis VA Medical Center. This is a binding document to a Contractor and spells out how the communications system shall be constructed and built within any St. Louis VA building to ensure desired performance for the St. Louis VA Facility. All sketches, drawings, and charts herein are for the purpose of providing for specifications in a simplified format. Errors and omissions in such do not relieve the Contractor of the responsibility for providing a fully complete, secure and properly operating structured cabling system suitable for the intended use. The specified manufacture items listed in this document are the prefer items to be installed this is to allow continue standardize configurations and reduce the amount of stock to be maintained which reduce cost to the tax payers. If a contractor wishes to use a different manufacture parts then what is listed then the contractor needs to prove that the items are alike in all aspect. Bidders must obtain a complete set of Project Drawings and Specifications to determine the full scope of work. In case of conflict between the Project Drawings and Specifications the VA Facility Project Manager shall be contacted to review and clarify. This document is inclusive to VA Design Manuals, Directives and Handbooks along with 5 Divisions noting that VA directives over ride Division Manuals.

General Communication Information

Pai	rt 1 – General	
1-1.01	References	
1-1.02	Definitions / Terms / Acronyms	
1-1.03	Submittal Requirements	
1-1.04	Contractor Qualifications	
1-1.05	Bidder Qualifications	
1-1.06	Delivery, Storage and Protection	
1-1.07	Project conditions	
1-1.08	Sequencing	
1-1.09	Continuity of Service and Scheduling of Work	
1-1.10	Protection of Work and Property	

Part 2 - Products

1-2.01 Refer to Appendix A for Approved Parts List

Part 3 - Execution

- 1-3.01 General
- 1-3.02 Cable Pathways
- 1-3.03 Work Area Outlets
- 1-3.04 Installation Practices
- 1-3.05 Labeling 1-3.06 Identification & Labeling
- 1-3.07 Fire Stopping
- 1-3.08 Sealing of Penetrations and Openings
- 1-3.09 Cable Supports
- 1-3.10 Cable Protection
- 1-3.11 Grounding
- 1-3.12 Cable Abatement 1-3.13 Documentation 1-3.14 Training
- 1-3.15 Cleaning
- 1-3.16 Project Closeout

Chapter 2

Grounding and Bonding for Communications Systems

Part 1 - General

- 2-1.01 General Information
- 2-1.02 Additional Information
- 2-1.03 Summary
- 2-1.04 References
- 2-1.04 References
- 2-1.06 Coordination
- 2-1.07 Scope of Work

Part 2 - Products

- 2-2.01 Manufacturers 2-2.02 Materials

Part 3 - Execution

- 2-3.01 Additional Information
- 2-3.02 Preparation
- 2-3.03 Installation
- 2-3.04 Acceptances

Communications Equipment Room Fittings

D		_
Part	1	 General

- 3-1.01 Additional Information 3-1.02 Summary
- 3-1.03 Definitions
- 3-1.04 System Overview
- 3-1.05 Electrical Requirements 3-1.06 HVAC Requirements
- 3-1.06 HVAC Requision 3-1.07 Submittals
- 3-1.08 Quality Assurance
- 3-1.09 Project Conditions
- 3-1.10 Coordination

Part 2 - Products

- 3-2.01 Pathways
- 3-2.02 Ladder Rack
- 3-2.03 Backboards
- 3-2.04 Category 6 Patch Panels
- 3-2.05 Fiber Optic Rack Enclosures and Adapter Plates
- 3-2.06 Fiber Optic Connectors
- 3-2.07 Fiber Patch Cables
- 3-2.08 Standard Relay Racks and Accessories
- 3-2.09 Vertical Cables Managers
- 3-2.10 Port Replicators
- 3-2.11 Environmental Monitoring (RIM 600)
- 3-2.12 UPS

Part 3 - Execution

- 3-3.01 Additional Information
- 3-3.02 Underground Entrance Pathway
- 3-3.03 Fiber Optic Patch Panels
- 3-3.04 Free Standing Racks
- 3-3.05 Bonding and Grounding
- 3-3.06 Ladder Racking
- 3-3.07 Cable Management
- 3-3.08 Copper Patch Panels

Chapter 4

Communications Backbone Cabling

Part 1 - General

- 4-1.01 Products Installed but not Supplied Under This Section
- 4-1.02 Backbone Cabling Description
- 4-1.03 Work Included
- 4-1.04 Submittals 4-1.05 Coordination

Part 2 – Products

- 4-2.01 Attributes and Performance for Optical Fiber
- 4-2.02 Optical Fiber Requirements

Part 3 - Execution

- 4-3.01 Additional Information
- 4-3.02 Installation
- 4-3.03 Fiber Optic Cable Testing

Communications Horizontal Structured Cabling

Part 1 - General

- Products Installed but not Supplied Under This Section 5-1.01
- 5-1.02 Systems Description
- 5-1.03 Manufacturer Qualifications
- 5-1.04 **Testing Agency Qualifications**
- 5-1.05 Warranty

Part 2 - Products

- 5-2.01 General
- 5-2.02 Manufacturer
- 5-2.03 UTP Pin/Pair Termination Assignment
- System Performance 5-2.04
- Source Quality Control 5-2.05
- 5-2.06 Wall Plates
- 5-2.07 Jacks
- 5-2.08 UTP Cable

Part 3 - Execution

- 5-3.01 Additional Information
- 5-3.02 Installation
- 5-3.03 **Testing Procedures**

Attachments

- Approved Parts List
- Indoor Interlocking Armor Plenum 12/12/24 B.
- C. Indoor Interlocking Armor Plenum 6/6/12
 D. Indoor Outdoor Interlocking Armor Plenum 12/12/24
- E. Indoor Outdoor Interlocking Armor Plenum 6/6/12
- F. OSP Single Jacket Single Armor 12/12/24
- OSP single Jacket Single Armor 6/6/12
- Outside Plant Optical Fiber Installation Guidelines

General Communication Information

Part 1 – General

- 1-1.01 References
- 1-1.02 Definitions / Terms / Acronyms
- 1-1.03 Submittal Requirements
- 1-1.04 Contractor Qualifications
- 1-1.05 Bidder Qualifications
- 1-1.06 Delivery, Storage and Protection
- 1-1.07 Project conditions
- 1-1.08 Sequencing
- 1-1.09 Continuity of Service and Scheduling of Work
- 1-1.10 Protection of Work and Property

Part 2 - Products

1-2.01 Refer to Appendix A for Approved Parts List

Part 3 - Execution

- 1-3.01 General
- 1-3.02 Cable Pathways
- 1-3.03 Work Area Outlets
- 1-3.04 Installation Practices
- 1-3.05 Labeling
- 1-3.06 Identification & Labeling
- 1-3.07 Fire Stopping
- 1-3.08 Sealing of Penetrations and Openings
- 1-3.09 Cable Supports
- 1-3.10 Cable Protection
- 1-3.11 Grounding
- 1-3.12 Cable Abatement
- 1-3.13 Documentation
- 1-3.14 Training
- 1-3.15 Cleaning
- 1-3.16 Project Closeouts

Part 1 – General

1-1.01 References – The most current Edition of each reference will be used

- A. Department of Veterans Affairs Office of Construction & Facilities Management Manual for Electrical Design.
- B. Department of Veterans Affairs Physical Security Design Manual for VA Facilities.
- C. Department of Veterans Affairs Office of Construction & Facilities Management Manual for the Office of Information & Technology.
- D. Department of Veteran Affairs VA Handbook 0730 Security and Law Enforcement.
- E. Department of Veteran Affairs VA Handbook 6500 Information Security program.
- F. ANSI/TIA/EIA 569-C Commercial Building Standards For Telecommunications Pathways And Spaces
- G. ANSI/TIA-568 Commercial Building Telecommunications Cabling Standard
- H. ANSI/TIA/EIA 606 The Administration Standard For The Telecommunications Infrastructure Of Commercial Building
- I. ANSI/J-STD-607 Commercial Building Grounding And Bonding Requirements For Telecommunications
- J. ANSI/TIA/EIA-862 Building Automation Systems Cabling Standard for Commercial Buildings
- K. ANSI/TIA-942 Telecommunications Infrastructure Standard for Data Centers
- L. ASTM D 4566-05, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable, 2005
- M. BICSI Telecommunications Distribution Methods Manual (TDMM)
- N. BICSI Information Transport Installation Manual (ITSM)
- O. ISO/IEC 11801 Information Technology Generic Cabling for Customer Premise
- P. IEEE 802.3 Standard for Information technology -Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications
- Q. IEC 61156-1, Multicore and Symmetrical Pair/Quad Cables for Digital Communications Part 1: Generic Specification, 2005
- R. NFPA-70 National Electrical Code
- S. NECA/BICSI-568-A Standard for Installing Commercial Building Telecommunications Cabling
- T. Federal Communications Commission Part 15 and Part 68
- U. UL 444 Standard for Safety of Communications Cable
- V. UL 1666 Standard for Safety of Flame Propagation Height
- W. NFPA 262 Flame Travel and Smoke of Wires and Cables
- X. Local Authority Having Jurisdiction

1-1.02 Definitions / Terms / Acronyms

- A. ANSI American National Standards Institute
- B. AWG American Wire Gauge
- C. BICSI Building Industry Consulting Service International
- D. EMI Electromagnetic Interference
- E. EMT Electrical Metal Tubing
- F. ETL Intertek Semko Labs
- G. FCC Federal Communications Commission
- H. IEC International Electrotechnical Commission
- I. IEEE Institute of Electrical and Electronic Engineers
- J. IDC Insulation displacement contact
- K. ISO International Standards Organization
- L. J-STD Joint Standard
- M. LEED: Leadership in Energy and Environmental Design
- N. NEC National Electric Code
- O. NECA National Electrical Contractors Association
- P. NFPA National Fire Protection Agency
- Q. NRTL National Recognized Testing Laboratory
- R. RCDD Registered Communication Distribution Designer
- S. SC Subscriber Channel
- T. TIA Telecommunications Industry Association
- U. TGB Telecommunications Grounding Bus-Bar
- V. TMGB Telecommunications Main Grounding Bus-Bar
- W. TER Telephone Equipment Room
- X. UL Underwriters Laboratory
- Y. 1GBase-T networking protocol capable of transmitting 1 billion bits of information per second over copper twisted pair
- Z. 10GBase-T networking protocol capable of transmitting 10 billion bits of information per second over copper twisted pair
- AA. 10GBase-SX networking protocol capable of transmitting 10 billion bits of information per second over optical fiber at 850 nanometers
- BB. Contractor: The term "Contractor" refers to the installation Contractor responsible for the furnishing and installation of all work indicated within this Specification.

- CC. Construction Manager: The terms "Construction Manager" mean the VA Facility appointed representative.
- DD. Furnish: The term "furnish" is used to mean "purchase, supply, provide and deliver to the Project site, protect and provide interim storage and be ready for unloading, unpacking, assembly, installation, and similar operations in accordance with Manufacturer's specifications."
- EE. Home-Run: This means that every wire is run separately from its termination point back to a central data closet.
- FF. Provide: The terms "provide" means to "furnish and install, complete and ready for the intended use".
- GG. Install: The term "install" is used to describe operations at project site including the actual "unloading, unpacking, rigging in place, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations".
- HH. Installer: The "Installer" is the Contractor, Subcontractor and/or supplier who uses their own employees for performance of all construction activity related to their specified responsibilities, including installation, erection, application, and similar operations. Installers are required to be experienced in the operations they are engaged to perform and the "Installers" must be an authorized Manufacturers representative, certified, experienced and qualified to provide, install, program, troubleshoot, train, warrant and service all the systems in this section in their entirety.
- II. If Applicable: The term "if applicable" will be that work which may be required for completed construction at applicable locations, but is not necessarily shown or described in the Contract Documents.
- JJ. As Necessary: The term "as necessary" will be that work which is required for completed construction, but is not necessarily shown or described in the Contract Documents.
- KK. As Required: The term "as required" will be that work which is required for completed construction and is shown on the drawings or described in the project Specification.
- LL. Concealed: The Term "concealed" means hidden from sight, buried as in chases, furred spaces, shafts, fixed ceiling or embedded in construction.
- MM. Exposed: The term "exposed" means bare, open to the elements, out in the open, uncovered.
- NN. Product: The term "product" will mean any item of equipment, material, fixture, apparatus, appliance or accessory installed under this Division.
- OO. "Substantial Completion" is deemed that the project is sufficiently complete to be utilized for its intended use as stated in the body of this written Specification.
- PP. Governmental: The term "governmental" means all municipal, state and federal government agencies.
- QQ. Words in the singular will also mean and include the plural, wherever the context so indicates, and words in the plural will mean the singular, wherever the context so indicates.
- RR. Cabling: The term "cabling" will mean cable assembly, raceway, conductors, fittings and any other necessary accessories to make a complete wiring system.
- SS. Backbone: A facility (e.g., pathway, cable or conductors) between telecommunications rooms, or floor distribution terminals, the entrance facilities and equipment rooms within or between buildings.
- TT. Backbone Cabling: Cabling and connecting hardware that provides interconnections between telecommunications rooms, equipment rooms, and entrance facilities.
- UU. Horizontal Cabling: The cabling between and including the work area outlet/connector and the horizontal cross-connect/patch cord in the telecommunications room.

- VV. Telecommunications: A branch of technology concerned with the transmission, emission, and reception of signs, signals, writing, images, and sounds; that is, information, of any nature by cable, radio, optical, or other electromagnetic systems.
- WW. Telecommunications Room (TR): A room used for both OIT active and passive IT distribution equipment and FMS active and passive distribution equipment. The term "Telecommunication Room" replaces the legacy terms "Signal closet" and Telecommunications Closet," which are no longer used.
- XX. Pull Point: A Pull Point is a space used to transition between floors for backbone and horizontal cabling within a building riser system.
- YY. Equipment Outlet (EO): A device also known as the outlet or information outlet placed at the user workstation for termination using connectors (jacks) of horizontal media for connectivity of data at work area outlet, multimedia equipment. These outlets provide the connection point to data and other media services.
- ZZ. Connector 8P8C (Jack): A female connector that has eight positions and eight conductors. Jacks are typically used to terminate eight conductor category rated cable at the user end and are inserted into faceplates to create a connection point for the user's equipment cord.
- AAA. VA Facility Project Manager: Primary VA Facility point of contact for all aspects of construction project.

 All items that need approval must be approved in writing by the VA Facility Project Manager.
- BBB. OI&T Personnel: VA representative for the consult of all things pertaining with Network infrastructure.

1-1.03 Submittal Requirements

- A. Under the provisions of this request for proposal the Structured Cabling System Contractor will submit the following with their original bid package:
 - 1) A copy of their valid Leviton Strategic Partner Certification certificate.
- B. Prior to proceeding with work the winning contractor will provide electronic submittals for all products used to OI&T personnel listed below for review.

Scott Gibson (314) 652-4100 ext. 66407 Scott.Gibson@va.gov Data

Steve Warren (314) 652-4100 ext. 53859 Steven.Warren@va.gov Data

Lance McCosh (314)652-4100 ext. 57000 Lance.McCosh@va.gov Telephone

- C. No substitutions of material can be installed until reviewed with OI&T personnel and approved by VA Facility Project Manager.
- D. Refer to other applicable sections for additional submittals requirements.

1-1.04 Contractor Qualifications

- A. Comply with below qualification requirements.
- B. The Installer (Firm and Employees) will be experienced in the operations they are engaged to perform. Demonstrate at least five years of continuous recent experience on similar projects. The Installer will hold recent, up-to-date licenses, certifications and training certificates in the area the project is located and for the equipment to be installed.

- C. Qualified Structured Cabling System Installation firms will have demonstrable design and installation training with certifications of competence. Certified training will be industry recognized and at least equal to:
 - 1) Registered Communications Distribution Designer (RCDD).
 - 2) Certified Leviton Strategic Partner.
- D. Provide the name of a full time on site foreman who personally has been trained as part of the Leviton Strategic Partner Program to the OI&T Personnel listed above
- E. Provide the name of an on-call Project Manager to supervise the project to the OI&T Personnel listed above.
- F. Separate Qualifications Requirements:
 - 1) Installers will be specifically qualified for each system being installed under this section. Provide documentation for each installer including:
 - a. License for State in which doing work
 - b. Registered Telecommunications Installer Apprentice Certificate

1-1.05 Bidder Qualifications

- A. Bidding Contractor shall be a licensed to install telecommunications systems in the state where work will be performed.
- B. Bidding Contractor shall have a minimum of 5 years' experience installing structured cabling for telecommunications.
- C. Bidding Contractor shall have the capability to bond project in its entirety.
- D. Bidding Contractor shall be able to provide insurance at the request of the VA Facility

1-1.06 Delivery, Storage, and Protection of Data Related Material

- A. Contractor shall ensure that materials delivery to work area shall be coordinated with Construction Manager.
- B. Contractor is responsible for all materials, tools and vehicles left on the job site.
- C. Contractor shall coordinate with the VA Facility Project Manager for location and placement of disposal bin for the removal of all trash produced by the Contractor's associated personnel during the project.
- D. Contractor shall ensure materials are stored in an environmental area where:
 - 1) Temperature does not exceed 120 degrees Fahrenheit nor below 32 degrees Fahrenheit.
 - 2) Humidity does not exceed 80 %.
 - 3) No direct exposure to sunlight.
- E. Cable shall be stored according to Manufacturer's recommendations as a minimum. In addition, cable must be stored in a location protected from vandalism and weather.
- F. Deliver equipment in individual shipping splits for ease of handling, mount on shipping skids and wrap for protection.
- G. Inspect and report concealed damage to Carrier within Carrier specified time.

- H. Store in a clean, dry space. Maintain factory protection or cover with heavy canvas or plastic to keep out dirt, water, construction debris, and traffic. Heat enclosures to prevent condensation. Meet the requirements and recommendations of NFPA 70B and the Manufacturer. Location will be protected to prevent moisture from entering enclosures and material.
- I. Handle in accordance with NEMA and the Manufacturer's recommendations and instructions to avoid damaging equipment, installed devices and finish.
- J. The equipment will be kept upright at all times. When equipment has to be tilted for ease of passage through restricted areas during transportation, the Contractor will be required to brace the equipment suitably to insure that the tilting does not impair the functional integrity of the equipment.

1-1.07 Project Conditions

A. Environmental Requirements

- a. Contractor shall ensure that any pollutants produced during the work are disposed of according to local, state, national regulations and VA Facility requirements. Follow the most stringent guidelines.
- b. It is preferred that the Communications Contractor recycle any used or un-used components during the course of the construction project.
- c. Coordinate with LEED Project Manager if cabling system or components will be used for points in a LEED certified project.

B. Field Measurements

- 1) Contractor shall coordinate with VA Facility Project Manager on projects that the main electrical service ground has a resistance to earth of less than 5 ohms.
- 2) Contractor shall ensure that all grounding Bus-Bars for all equipment network rooms shall have a resistance of less than 1 ohm back to the main electrical service ground.
- 3) Contractor shall ensure that all field testers have been calibrated from the Manufacturer within 1 year.

1-1.08 Sequencing

- A. Contractor shall coordinate with VA Facility Project Manager on sequencing of various trades and construction teams for the lifecycle of the project.
- B. Cooperation and coordination with other trades.
 - The work will be so performed that the progress of the entire building construction, including all
 other trades, will not be delayed and not interfered with. Materials and apparatus will be
 installed as fast as conditions of the building will permit and must be installed promptly when
 and as directed.
 - 2) Keep fully informed as to the shape, size and position of all openings required for all apparatus and give information in advance to build openings into the work. Furnish and set in place all sleeves, pockets, supports and incidentals.
 - 3) Coordinate exact locations and roughing in dimensions of all work before installation and make all final connections as required. Any changes required to avoid interferences or to provide adequate clearances for Code and maintenance requirements will be made at no additional costs.
 - 4) Structural elements of the project will not be relocated, altered or changed to accommodate the work without written authorization from the VA Facility Project Manager.
 - 5) Work that is installed before coordination with other trades or that causes interference with the work of other trades will be changed to correct condition at no additional cost to the VA Facility.
 - 6) Obtain a complete set of Project Drawings and Specifications for coordination and to determine the full scope of work.

7) Attend project coordination meetings to coordinate work of this Section, pathways, work of other trades phasing and other project requirements.

1-1.09 Continuity of Service and Scheduling of Work

- A. Contractor shall provide a detailed construction schedule with hard dates for completion of roughing in cables, terminations and testing to the VA Facility Project Manager and the OI&T personnel.
- B. Cabling schedule shall be in a software program designated by the VA Facility Project Manager.
- C. Continuity of all services will be maintained in all areas that will be occupied or temporarily relocated during the construction period. If an interruption of service becomes necessary, such will be scheduled in advance, made only upon consent of the VA Facility and at a time outside normal working hours as the VA Facility will designate. The Contractor will schedule the shutdown with seven days in advance. Arrange work to minimize shutdown time.
- D. Should services be inadvertently interrupted, immediately notify the VA Facility and OI&T personnel. Be prepared to immediately furnish labor, materials and the equipment necessary for prompt restoration of interrupted service.
- E. Refer to the overall scheduling of the work of the project. Schedule work, process submittals and order materials and equipment to conform to this schedule and installation work is not to delay nor interfere with the progress of the project.
- F. Inform VA Facility Project Manager immediately of any delays or potential delays. Furnish Manufacturer's letter to verify order date, equipment delays, expected shipment date, order number, and potential remedies to speed up delivery. Any costs to speed up delivery will be implemented at no cost to the project if the equipment or material was not ordered as soon as possible after Contract award or within the time frames indicated with the Submittals.
- G. Include premium time required to comply with the project scheduling and phasing.
- H. Be aware of, and plan for, project scheduling and phasing. Provide for complete continuous operation of all systems. Coordinate scheduling and phasing with the VA Facility Project Manager, other Trades, and the General Contractor.
- I. Demolition of existing systems being updated will take place only after the new or replacement system is completely installed, operational, tested and certified. This work may be required on a "perphase" basis.

1-1.10 Protection of Work and Property

- A. Be responsible for the care and protection of all work included under this Section until it has been tested and accepted.
- B. Protect all equipment and materials from damage from all causes including theft. All materials and equipment damaged or stolen will be replaced by contractor with equal material or equipment at the option of the VA Facility Project Manager.
- C. Materials and equipment stored for this project will be protected and maintained according to the Manufacturer's recommendations and requirements and according to the applicable requirements of NFPA 70B.
- D. Protect all equipment, outlets and openings with temporary plugs, caps and covers. Protect work and materials of other trades from damage that might be caused by work or workmen and make good on any damage caused.
- E. Use caution to avoid damage to existing work, and to prevent harm to personnel working in all areas.

- F. Observe all safety precautions and requirements for the construction.
- G. The General Contractor and the Installer are responsible for initiating, maintaining, and supervising all safety precautions and requirements during construction.
- H. Coordinate installations with all other trades in order to not damage equipment or cables during construction. Any work that is damaged during construction will not be repaired. Replace damaged work completely, with no splices in cabling, at no additional cost to the VA Facility.

Part 2 - Products

1-2.01 Refer to Appendix A for complete Approved Parts List

Part 3 – Execution

1-3.01 General

- A. Verify the exact location prior to bid of all items that may be indicated and determine exact location of all electrical items that are not indicated on the Drawings.
- B. Include the cost of all work including sub-letting of any work that may be required to complete the work indicated in order to avoid work stoppages and jurisdictional disputes. The work to be sublet will conform to precedent agreements and decisions of record. Jurisdictional assignment will be a responsibility under this Section's contractual obligation.
- C. Do not install equipment and materials that have not been reviewed by the VA Facility Project Manager. Equipment and materials which are installed without the VA Facility Project Manager review or without complying to comments issued with the review will be removed from the project when so instructed by the VA Facility Project Manager. No payment will be made for unapproved or removal if it is ordered removed. The Installer will be responsible for any ancillary costs incurred because of its removal and the installation of the correct equipment and materials.
- D. Obtain detailed information on installation requirements from the Manufacturers of all equipment to be furnished, installed or provided. At the start of construction, check all Contract Documents include all Drawings and all Sections of the specifications for equipment requiring electrical connections and service and verify electrical characteristics of equipment prior to roughing.
- E. Equipment and systems will not be installed without first coordinating the location and installation of equipment and systems with the Contractor and all other Trades.
- F. Any and all material installed or work performed in violation of above requirements will be re-adjusted and corrected by the Installer without charge.
- G. Refer to all Drawings associated with the project, prior to the installation or roughing-in of the electrical outlets, conduit and equipment, to determine the exact location of all outlets.
- H. After installation, equipment will be protected to prevent damage during the construction period. Openings in conduits and boxes will be closed to prevent the entrance of foreign materials.
- I. Home runs indicated are not to be combined or reduced without written consent from the VA Facility Project Manager.
- J. All connections to equipment will be made as required, if applicable, and in accordance with the approved submittal and setting drawings.

K. Site Observation:

Site observation visits will be performed randomly during the project by the Architect, VA
 Facility Personnel, and VA Facility Representatives. Reports will be generated noting
 observations. Deficiencies noted on the site visit reports will be corrected. All work will comply

- with the Contract Documents, applicable Codes, regulations and local Authorities whether or not a particular deficiency has been noted in a site visit report.
- 2) Be responsible to notify the VA Facility Project Manager ten working days prior to closing in work behind walls, raised access floors, ceilings, etc., so that installed work can be observed prior to being concealed.
- 3) Areas will stay accessible until deficiencies are corrected and accepted. Notify the VA Facility Project Manager when all deficiencies are corrected. Return reports with items indicated as corrected prior to re-observation by the VA Facility Project Manager.
- L. Change Orders, Modifications, Revisions and Directives:
 - When change orders, modifications, revisions or Architect's Directives are issued or authorized, provide the required additional material, equipment, personnel and workers to prevent delays in the work, and to complete the work within the time limit of the Contract unless a specific time extension is requested with the change and accepted. Include costs for expediting deliveries where required.
 - Requests for additional compensation will be submitted broken down and associated by item, tasks and Drawing or sketch number with material and labor costs, so quantities can be easily verified.
 - 3) Requests will be properly and adequately identified so the scope of work can be clearly determined. Indicate who originated change in work.
 - 4) Submit on all credits broken down as requested for adds. Credits will be separately identified and accounted for. Do not indicate as net changes with adds.
 - 5) Unit costs for labor and material will be equal for adds, deletes and credits.
- M. Loose materials will not be stored on-site. A "gang box" is acceptable to be placed in a location agreeable to the VA Facility Project Manager and the Contractor. The Installer is responsible for all equipment and materials and for their delivery until the system is deemed complete and accepted by the VA Facility.
- O. If approved by VA Facility a trailer may be used for the storage of materials to be located on the VA Facility property at a location designated by the VA Facility and the General Contractor. Such on-site storage will be kept locked by the Installer. Security for the trailer and its contents will be strictly the responsibility of the Installer.
- P. Protect existing spaces where work is being performed; protect it from damage and from the accumulation of dirt and debris.
- Q. Any ceilings, walls, floors, furniture, equipment, furnishings, etc., damaged by the work of this Section will be replaced, or at the VA Facility option, or repaired with similar materials, workmanship and quality.
- R. Work includes field survey of existing conditions, systems, equipment and tracing of existing circuits in order to determine scope of work.
- S. Maintain the existing building in operation at all times during the entire construction period. If it is necessary to have a system shutdown, a written request for approval will be submitted in advance stating the estimated shutdown time. Work will be planned to minimize shutdown. Shutdowns will be at the convenience of the VA Facility and, if necessary, on premium time.
- T. Clean and touch up all equipment, materials and work sites at the completion of work in each area.
- U. Certain portions of the work area may be occupied during construction. Determine which areas and schedule work accordingly and include necessary premium time.
- V. Make sure necessary provisions to provide continuous service of all existing systems throughout all occupied areas.

1-3.02 Cable Pathways

- A. Install cables in pathways.
- B. Provide all equipment and cabling for a complete installed operating system to include the Pathways, outlet boxes and grounding/bonding system.
- C. All pathways provided under this Section will comply with fill capacities as per Code, ANSI/TIA-569 and BICSI.
- D. Cable bending radius will not be less than minimum required by ANSI/TIA and BICSI.
- E. Cabling installed concealed will be supported from the building structure (e.g. cable trays, J-Hooks, etc.).
- F. Cables will be installed no closer than 12 inches (305mm) to electrical equipment and wiring. When cables are required to cross power wiring, they will only do so perpendicular to the power wiring. Cable and power wiring will only cross each other the minimal number of times as required due to building design limitations.
- G. Clearances: Clearances between cabling and other building systems as required by ANSI/TIA-569 and BICSI will be maintained throughout the building.
- H. All cables will be installed in a neat and workman-like manner. Cables will be installed parallel and perpendicular to building elements.
- I. Provide expansion fittings and adequate cable slack at all building expansion joints.
- J. Fire/smoke seals all conduits, raceways, sleeves, slots, etc. where cables pass from one location to another.

1-3.03 Work Area Outlets

- A. All data work area outlet locations will be as indicated on the Drawings. Uniquely label each work area data face plate and cable according to the labeling scheme outlined in the section on labeling.
- B. Work area data outlets installed in casework will have their cables installed within the conduit or raceway provided.
- C. Install data jack and connector modules as indicated in the details and on the Drawings.
- D. Work data area outlets will be seated properly and will be installed level on walls and parallel to building elements as required.

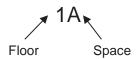
1-3.04 Installation Practices

- A. Follow and adhere to installation practices specified by the applicable Telecommunications Industry Association standards.
- B. Follow and adhere to installation practices specified by BICSI Information Transport System Installation Manual use newest edition.
- C. Follow and adhere to installation practices specified by BICSI Telecommunications Distribution Methods Manual use newest edition.
- D. Follow and adhere to installation practices specified by NFPA-70 National Electric Code, use newest edition.
- E. Follow and adhere to installation practices specified by the Manufacturers.

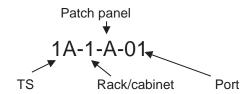
F. The general topology will be a "hierarchal star" configuration. All segments will originate in NRTL listed patch panels located in the telecommunication equipment racks/cabinets and end at the work area outlets.

1) Routing:

- a. All cabling will be installed in conduit where indicated on plans or will be installed open using "J" hooks and routed on cable trays located as shown on plans.
- b. Cables will be routed, in large groups, down main cable pathways, until a direct path to the point of access to the workstation outlet can be taken. At that point, cables will be routed, above all building systems, to the outlet location in accordance with standard installation practices, as described herein.
- c. Multiple cables to individual rooms will be pulled as a bundle and terminated at each end in sequential order so that labeling within a room location is in sequence.
- d. When not in conduit or tray, cables will be supported to the deck and/or beams, every five feet throughout the length of their installed run. Hangers, clips, and other methods of grouping the cables and keeping them away from other systems installed in the building are to be provided and installed. Ensure that hangers and other methods of securing cable do not compress cable or damage insulation.
- e. Cables will be attached to beams with minimal disruption of the fireproofing. Care should be taken to assure that fireproofing removal is not excessive. The Contractor will be responsible of restoring the fireproofing to appropriate levels. Restoration will be verified by the VA Facility Project Manager.
- f. Cable routes will be with 90-degree angles whenever possible. Cables will not be installed randomly or diagonally through the building.
- g. Cables installed partially or fully within the telecommunications room will be routed through and secured in the cable tray wherever possible. No cables are to be routed across the rooms at angles, or are the cables to be run from one portion of the room or tray to another. Cables placed in the cable tray are to be laced frequently to keep them neatly bundled and not permitted to shift from one side of the tray to the other as they are routed in the tray.
- h. Station cables will be routed to fixed wall locations through EMT to back box. Secure and store four feet of slack cable above ceiling at cable entrance to EMT.


2) Separation from EMI Sources:

- a. Comply with BICSI TDMM and ANSI/TIA-569 recommendations for separating unshielded copper data communication cable from potential EMI sources, including electrical power lines and equipment.
- b. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment will be as follows:
 - Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - 2. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - 3. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).
- 3) Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment will be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).


- 4) Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures will be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5) Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 6) Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).
- G. All cables will have both ends completely terminated at their respective patch panel and work area outlet. Individual conductors will be trimmed flush with IDC block. Cables indicated to be "spare" will have one end terminated at their respective patch panel or cross-connect block and the other end will be hermetically sealed with a polyolefin heat-shrinkable cap. Provide RayChem Co. or approved equivalent after testing. Tape will not be approved.
- H. The total length of permanently installed cable for any complete segment will not exceed 246 feet (75m). Do not splice or otherwise re-terminate any cable used, terminate only at the patch panels, cross connect blocks and work area outlets. Route cables [minimum of 12 inches (305mm) away] to avoid light ballasts, transformers, power wiring and other electrical devices so that there is no EMI or RFI interference with data transmission. Permanently label all cables six inches from the connector at each end, according to the labeling scheme outlined in the section on labeling. All cables will be terminated at outlets, patch panels or cross connects blocks ONLY.
- I. Maximum pulling tension will not exceed 25 lbs/ft. when installing cables.

1-3.05 Labeling

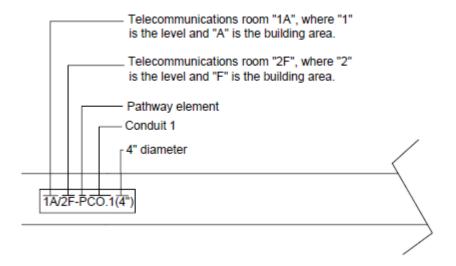
- A. Labeling procedure will meet ANSI/TIA-606 Administration Standard and BICSI practices lines.
- B. The labeling scheme will be provided as follows at all locations within the cable infrastructure:
 - Telecommunications Space (TS) The telecommunications space identifier should show the floor and space and shall be placed on the door frame top (handle side) of the telecommunications space both outside and inside the room so as to be visible from hallway and in the room.

2) Data drops will be labeled with the horizontal link identifier with telecommunications space, rack/cabinet identifier, patch panel identifier, and port identifier. The cable and face plates shall be labeled with the horizontal link identifier.

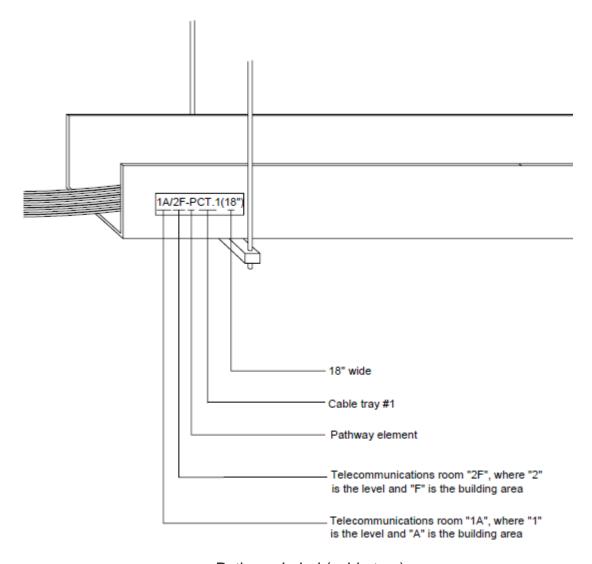
19

3) Drop locations will start from the left, as you walk in the doorway, and continue around the room in a clockwise direction.

- 4) Hand-written and embossed type labels are specifically prohibited. In addition, provide the following:
 - a. Label each outlet with permanent self-adhesive label with 3/8 in. label where no clear plastic label holder is provided. Where clear plastic label holders are provided insert the 3/8" label and do not remove the backing.
 - b. Label each cable with 2-1" flexible nylon permanent self-adhesive label where the identifier is seen 360 degrees around the cable. At the face plate place the label with in 10" of the cable termination and within 6" at the patch panel side.
 - c. Use labels on face of data patch panels. Provide location assignment records in a protective cover and soft copy for each data patch panel. The hard copies should be given to the VA Administrator.
 - d. Labels will be machine-printed. Hand-lettered labels will not be acceptable.
- C. Products Refer to Appendix A for Approved Part Numbers
 - 1) Label Printers
 - a. The contractor shall use the 6000 or 6500 DYMO RHINO Printer to label the job.
 - b. The contractor shall use the RHINO Connect software with the printers listed above.
 - 2) Tapes (Labels)
 - Shall be industrial adhesives that resist dirt and oil.
 - b. Shall have a split backing for easy removal
 - 3) Flexible Nylon shall be used for curved surfaces (wire and cable) and rough surfaces for indoor applications flexible nylon memory resistant material shall be used.
 - a. RHINO Label (1" White)
 - 4) Permanent Polyester Labels For flat surfaces permanent polyester shall be used.
 - a. RHINO Label (3/8" White)
 - b. RHINO Label (1/2" White)
 - c. RHINO Label (1" White)
 - 5) Vinyl For outdoor applications vinyl shall be used.
 - a. RHINO Label (3/8"- white)
 - b. RHINO Label (1/2"-white)
 - c. RHINO Label (3/4" White)
 - 6) Paper Tag For magnifier label holders shall be used.
 - a. RHINO Label (1/4"-White)
 - 7) Heat Shrink Tube shall be RHINO polyolefin tube with a 3:1 heat-shrink ratio


1-3.06 Identification & Labeling

Confirm specific labeling requirements with VA administrator prior to cable installation and termination.


A. Pathways

1) Pathways shall be marked at each endpoint and at all intermediate pull or junction boxes. In the case of partitioned pathways (i.e. innerduct) each partition shall have a unique identifier.

- 2) Label pathways using the recommended identifiers shown below.
- 3) Pathway label shall be 1" Flexible Nylon RHINO adhesive labels.

Pathway Label (conduit)

Pathway Label (cable tray)

B. Telecommunication Space

- 1) Labels shall be affixed at the entry to all telecommunications rooms and spaces (Includes entrance facilities, communication equipment rooms, communication equipment spaces and work areas)
- 3) RHINO Perm Poly adhesive labels shall be used for all Telecommunications space labels
- 4) Affix labels to exterior entrance door frames (handle side) so that the label is visible from the hallway and by those working in the room coordinate with VA administrator.

1A

Telecommunications Space Identifier

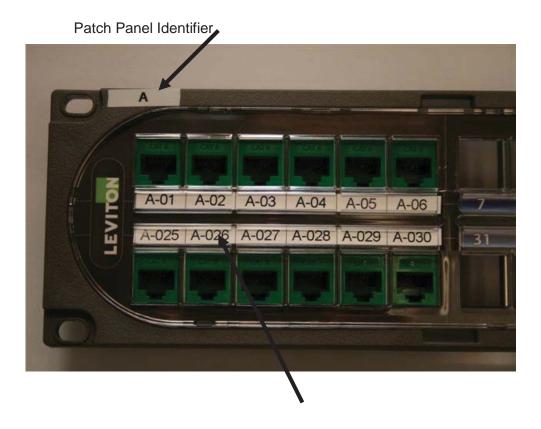
C. Backbone Cables (Fiber or Copper)

- 1) Backbone Cables are cables within a single building and shall be marked within 12" of each endpoint.
- 2) Any cable installed in conduit shall be labeled at all intermediate pull or junction box.
- 3) Label backbone cables with identifier shown below. Note: the far end backbone cable identifier would be reversed.
- 4) 1" RHINO Labels-Flexible Nylon adhesive labels shall be used for all communications cable labels.
- 5) Cable labels shall be affixed to cables marking directly on the cable is not permitted.

Near end Building Backbone Cable Identifier

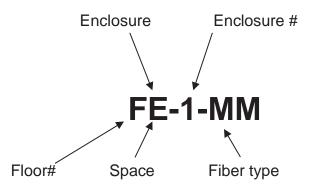
F=Floor and S=Space (Room#)

D. Patch Panels


- 1) Patch panels shall be labeled with an identifier and all individual ports shall be labeled with an identifier. Patch panels shall be labeled on the left side of the patch panel with a horizontal label using a RHINO 3/8" Perm Poly
- 2) Patch panels ports may be labeled with RHINO adhesive type labels as shown below. RHINO ¼" Non-Adhesive Tag White

Patch Panel Identifier

A-01


Patch Panel Port Identifier

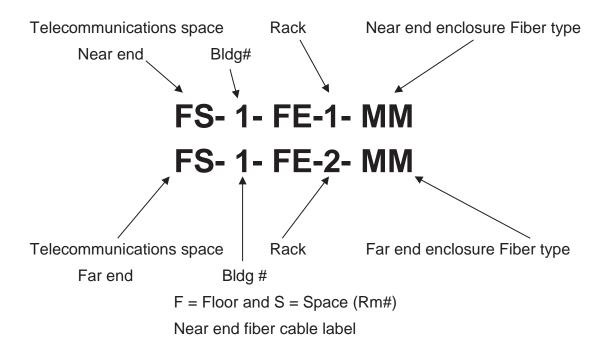
Patch Panel Port Identifier

E. Fiber Enclosures

- 1) Fiber Enclosures shall be labeled with an identifier and all individual ports with an identifier. Both the front and rear ports shall be labeled. Fiber enclosures ports shall be labeled with RHINO 3/8' perm poly tape placed in the magnification label holders on front and rear of the enclosure. The Enclosures shall be labeled with RHINO 3/8" Perm Poly tape placed on the upper left side of the enclosure.
- 2) Examples of fiber enclosure labeling is showed below. Note: MM for multi-mode fiber and SM for single mode fiber.
- 3) Note the magnification label holders are installed with the arrow up when door is open.

Fiber Enclosure Label

Fiber Enclosure Front Door



Inside Front of Enclosure

Inside Rear of Enclosure

P = Position

- F. Campus Bone (fiber between buildings)
 - 1. The fiber cables shall be labeled on both ends and shall show the near end and far end enclosures where the cable is terminated.
 - 2. The cables shall be labeled with the 1" flex nylon tape

G. Faceplates (Drop locations)

- 1) All faceplate labels shall indicate the horizontal link identifier for each cable that it houses.
- 2) For faceplates that used clear plastic cover strips a non-adhesive tag maybe used.
- 3) For faceplates without clear plastic cover strips, adhesive type labels shall be affixed to the faceplate marking directly on the faceplates is not permitted.
- 4) RHINO Perm Poly adhesive type labels shall be used for all work station outlets.
- 5) RHINO 3/8" Perm Poly shall be used on face plates with label holder. Label shall be placed over white paper insert and clear cover shall then be installed.
- 6) RHINO 3/8" Clear Perm Poly shall be used on face plates without label holders. (This Faceplate shall not be used for any new installations unless specifically called for)

1A-1-A-01

Faceplate Identifier

Angled Faceplate with Designation Windows

Faceplate with no label holder

H. Grounding and Bonding

- 1) The TMGB(s) (telecommunications main grounding Bus-Bar) or the TGB (telecommunications grounding Bus-Bar) shall be labeled as defined in ANSI/TIA/EIA 606.
- 2) The identifier shall be a RHINO 1" Perm Poly adhesive label affixed to the Bus-Bar.

1A-TMGB

1A-TGB

Main Telecommunications Bus-Bar

Telecommunications Bus-Bar

I. Racks/Cabinets

Each rack or cabinet shall be labeled on the upper left hand corner with the a
 Vertical label with 1" Perm Poly tape

1RACK IDENTIFER

1-3.07 Fire Stopping

- A. Work, in general, includes furnishing and installing fire and smoke barrier penetration seals for openings in floor, walls, and other elements of construction.
- B. Comply with requirements in Division 07 Section "Penetration Fire stopping."
- C. Comply with ANSI/TIA -569, Annex A, "Fire stopping."
- D. Comply with BICSI TDMM, "Fire stopping Systems" Article.
- E. Comply with ANSI/TIA-606 for labeling of firestops
- F. Applicator Qualifications: Two years' experience installing UL classified fire stopping.
- G. Performance of materials will have been tested to provide fire rating equal to that of the construction.

H. Blue Prints:

- 1) Submit blue prints showing each condition requiring penetration seals indicating proposed UL systems materials, anchorage, methods of installation, and actual adjacent construction.
- Submit a copy of UL illustration of each proposed system indicating Manufacturer approved modifications.
- I. Manufacturer's Data: Submit copies of Manufacturer's specifications, recommendations, installation instructions, and maintenance data for each type of material required. Include letter indicating that each material complies with the requirements and is recommended for the applications shown.
- J. Applicator's Qualification Statement: List past projects indicating required experience.

K. Existing Project Conditions:

- 1) Verify existing conditions and substrates with VA Facility Project Manager before starting work. Correct unsatisfactory conditions before proceeding.
- 2) Proceed with installation only after penetrations of the substrate and supporting brackets have been installed.

L. Environmental Requirements:

- 1) Furnish adequate ventilation if using solvent.
- 2) Furnish forced air ventilation during installation if required by Manufacturer.
- 3) Keep flammable materials away from sparks or flame.
- 4) Provide masking and drop cloths to prevent contamination of adjacent surfaces by fire stopping materials.
- M. Warranties: Submit copies of written warranty, minimum of one year, agreeing to repair or replace joint sealers which fail in joint adhesion, cohesion, abrasion residence, weather resistance, extrusion residence, migration residence, stain resistance, or general durability or appear to deteriorate in any other manner not clearly specified by submitted Manufacturer's data as an inherent quality of the material for the exposure indicated. The guarantee period will be one year from date of substantial completion.
- N. Acceptable Manufacturers: Subject to compliance with requirements, provide products of Nelson Fire Protection Products or Engineers approved equal as further defined in the. Systems and Applications Schedule are in Part 3 of this section.

O. Materials:

- 1) Provide materials classified by UL to provide Fire Barrier equal to time rating of construction being penetrated.
- 2) Provide asbestos free materials that comply with applicable codes and have been tested in accordance with UL 1479 or ASTM E-814.

P. Preparation: Clean surfaces to be in contact with penetration seal materials of dirt, grease, oil, loose materials, rust, or other substances that may affect proper fitting, adhesion, or the required fire resistance.

Q. Installation:

- 1) Install penetration seal materials in accordance with printed instructions of the UL Building Materials Directory and in accordance with Manufacturer's instructions.
 - 2) Seal holes or voids made by penetration to ensure an effective smoke barrier.
- 3) Where floor openings without penetrating items are more than four inches in width and subject to traffic or loading, install fire stopping materials capable of supporting same loading as floor.
 - 4) Protect materials from damage on surfaces subject to traffic.

R. Field Quality Control:

- 1) Examine penetration sealed areas to ensure proper installation before concealing or enclosing areas.
- 2) Keep areas of work accessible until inspection by applicable code authorities.
- 3) Perform under this section patching and repairing of fire stopping caused by cutting or penetration by other trades.

S. Adjusting and Cleaning:

- 1) Clean up spills of liquid components.
- 2) Neatly cut and trim materials as required.
- 3) Remove equipment, materials and debris, leaving area in undamaged clean condition.

T. Visual Inspection of Fire stopping.

1) Upon completion of project a mandatory walk through is required with the contractor, VA Facility Project Manager, and OI&T personnel to review photos and give a visual inspection.

1-3.08 Sealing of Penetrations and Openings

- A. All fire stop systems will be installed in accordance with the Manufacturer's recommendations and will be completely installed and available for inspection by the local inspection authorities prior to cable system acceptance.
- B. Provide a seal around raceways or cables penetrating full height walls (slab to slab), floors or ventilation or air handling ducts so that the spread of fire or products of combustion will not be substantially increased.
- C. Penetrations through fire-resistant-rated walls, partitions, floors or ceilings will be fire stopped using approved methods and NRTL listed products to maintain the fire resistance rating.
- D. Installation restrictions of the listing agencies will be strictly adhered to {e.g. 24 inch (610 mm) minimum horizontal separation between boxes on opposite sides of the wall, maximum square inch opening in wall}.
- E. Fire stopping in sleeves or in areas having small openings that may require the addition or modification of installed cables or raceways will be soft, pliable, non-hardening fire stop putty. Putty will be water resistant and intumescent.
- F. Fire stopping in locations not likely to require frequent modification will be NRTL listed putty or caulk to meet the required fire resistance rating.
- G. Box penetrations into a fire rated wall or shaft will have a fire-stopping pad installed on the back of the box.
- H. Fire stopping of cable trays through walls will be with NRTL listed bags to meet the required fire resistive rating and that will not allow products of combustion to pass through the protected opening. The NRTL listed bags will be installed inside and on both sides of the opening as required to meet the required resistive fire rating of the wall.

I. Fire stopping materials will be NRTL listed to UL 1479 (ASTM E814). Installation methods will conform to a UL fire stopping system. Submit specifications and installation drawings for the type of material to be used. Fire stopping materials will be as manufactured by 3M, International Protective Coatings Corp., Specified Technologies, Inc., Carborundum Company, RayChem, Nelson Fire Stop or approved equal.

1-3.09 Cable Supports

- A. Provide hook and loop (Velcro) cable wraps at all panels, horizontal runs, equipment racks and cabinets. Tie wraps are specifically prohibited.
- B. Provide J-Hook supports from the building structure as required for cable runs to the cable drop location. Maximum distance between supports will be five feet (1500mm) depending on the structural elements of the building. Maximum number of cables per support will be thirty. Provide additional supports as required when cable quantities exceed thirty and to maintain required bending radius of cables. Cables installed exposed or in areas subject to abuse {below 10 feet (3m) above finished floor} or in accessible areas will be installed in conduit.
- C. All cables will be supported directly from building structure. Under no circumstance will cable be installed using cross bracing, plumbing/sprinkler pipes, ceiling systems or any other system that is not a specifically approved method to independently support cables. Cables will not be allowed to rest on ceiling tiles, duct work, piping, etc. Supports will be provided as required in order for cables to avoid contact with any other building system. Bundle cables in groups by Room.

1-3.10 Cable Protection

- A. Provide bushings in all metal studs and the like where cables will pass through. Bushings will be of two (2)-piece construction with one piece inserted through the opening and the second piece locking it into place. Single piece bushings with locking tabs or friction fit are specifically prohibited.
- B. Cables to be installed in existing enclosed open bays or furred spaces where conduit stubs are not provided will be protected from chafing or any damage. The Installer will verify that the warranty will not be violated before installing any cabling in these locations.
- C. Provide cutting, coring, sleeves and bushings and seal as required at all penetrations.
- D. Cables damaged during installation will not be repaired. They will be completely replaced with new cable at no cost to the VA Facility.

1-3.11 Grounding & Bonding

A. Refer to Chapter 2 for Grounding and Bonding requirements.

1-3-12 Cable Abatement

A. To determine exact cables that need to be removed or ones that should remain installed the contractor must contact and obtain approval from VA Facility Project manager and one of the below listed OI&T contacts. If cables are removed without approval it will be the responsibility of contract holder to replace the cables that were removed. All cables that are identified to be removed the contractor will remove the cable in its entirety from end to end. (Ex. Cable from Patch Panel to Jack) All cable shall be removed from the premise and recycled whenever possible. All data jack components which include jack, face plate, and any labels shall be collected and returned to OI&T Department.

Scott Gibson (314) 652-4100 ext. 66407 Scott.Gibson@va.gov
Steve Warren (314) 652-4100 ext. 53859 Steven.Warren@va.gov
Lance McCosh (314)652-4100 ext. 57000 Lance.McCosh@va.gov Telephone

1-3.13 Documentation

A. All electronic files must be combined on one CD-R that is labeled with Project Name and have an index of files included. Example – 9th Remodel, Index 1. Building Structured Cabling Labeling Administration Report 2. Test Reports 3. As-Built AutoCAD files 4. Firestops photos.

- 1) Provide Building Structured Cabling Labeling Administration Report on CD-R indicating ANSI/TIA -606-B required information.(see VA OI&T administrator for electronic form)
- 2) Provide electronic documentation on a labeled CD-R of test results for every cable segment and link installed. File will include measured values as well as whether or not the test passed.
- 3) Provide "as-built" Drawings in AutoCAD Version 12 or higher on labeled CD-R to the VA Facility Engineering Department and OI&T Department. Obtain copy of original Drawings from the Architect.
- 4) Contractor must provide electronic photo on CD-R to the OI&T Personnel listed above showing properly firestopped penetrations for all openings that were utilized or created during construction project. This photo must include the date of fire stopping and contractor information for the contractor that performed the fire stopping.
- B. Paper Documentation should be provided in an 8" x 11" format
 - 1) Record drawings indicating actual cable routes and outlet identifiers. Provide respective copies mounted in each telecommunications room, and the main cross connect.
 - 2) "Record" drawings indicating location of all equipment including but not limited to work area outlets, patch panels, cross connect blocks, on each segment and cable routing. Indicate labeling for each piece of equipment.
 - 3) Provide name, address and telephone number of the Manufacturer's representative and Service Company for all items supplied so that the source of replacement parts and service can be readily obtained.
 - a. Include copies of Manufacturer's and installer's warranties and maintenance contracts and performance bonds properly executed and signed by an authorized representative.
 - 4) The Owner and Maintenance Manual material will be bound in 3-ring binders and indexed. On the edge of the binder provide a clear see-through plastic holder with a typed card indicating the Project name, the Architect's name, the installer's name and the Volume number (e.g., Vol. No.1 of 2).

1-3.14 Training

- A. General Foreman or Superintendent of the Trade will perform training sessions which will consist of the following:
 - 1) Complete review of the project and systems including, but not limited to, the following:
 - a. Review each Record Drawing (use of typical is acceptable).
 - b. Note equipment layouts, locations and control points.
 - c. Review each system.
 - d. Review system design operation and philosophy.
 - e. Review alarms and necessary responses.
 - f. Review standard troubleshooting techniques for each system.
 - g. Review areas served by equipment.
 - h. Identify color codes used.
 - i. Review features and special functions.
 - i. Review maintenance requirements.
 - k. Review installation, operation, and maintenance manuals.
 - I. Respond to questions (record questions and answers).
 - 2) After training, walk the entire project, review each equipment room and typical locations. Explain equipment and proper operation.
- B. Specific system training will be by a Factory Trained Representative.
 - As requested, DYMO will provide training on the RHINO printers and software at no charge.

1-3.15 Cleaning

- A. In all telecommunications room/spaces a thorough sweeping, vacuuming and wet mopping shall be performed on a weekly basis or more frequently as directed by the VA Facility. Cleaning shall include floors, rafters, floor joists, exposed structural members, exposed mechanical/electrical equipment and ductwork/piping/conduits, walls, ladder trays, tops of cabinets/racks, existing/new passive and active components, or per manufacturer recommendations.
- B. All non-metallic cable managers and snap covers shall be wiped clean, both inside and outside of front, including rear channels. All clear covers and doors shall be cleaned, both front and rear per manufacturer recommendations.
- C. Inside of fiber optic enclosure and patch panels shall be blown clean of settled dust. Cleaning shall be performed for all new construction projects or where gypsum sanding has been performed.
- D. All scraps, boxes, spools, pull-line and trash shall be removed and properly disposed of.
- E. All residual cable lubricant shall be cleaned from floors and walls with an appropriate degreaser.

1-3.16 Project Closeouts

A. Final closeout will be accomplished once all documentation is received and all issues are satisfactorily resolved. Everything must be reviewed by OI&T personnel and approved by VA Facility Project Manager.

End of Section

Grounding and Bonding for Communications Systems

Part 1 – General

2-1.01 General Information

2-1.02 Additional Information

2-1.03 **Summary**

2-1.04 References

2-1.05 Submittals

2-1.06 Coordination

2-1.07 Scope of Work

Part 2 - Products

2-2.01 Manufacturers

2-2.02 Materials

Part 3 - Execution

2-3.01 Additional Information

2-3.02 Preparation

2-3.03 Installation

2-3.04 Acceptances

Grounding and Bonding for Communications Systems

Part 1 - General

2-1.01 General Information

- A. Unless noted otherwise, conductive non-current carrying electrical materials and equipment shall be grounded. Non-electrical items of equipment shall be bonded together and grounded as indicated herein and on drawings. Grounding and bonding shall be in accordance with National Electrical Code requirements.
- B. Raceway system shall be grounded and shall be electrically and mechanically continuous from all telecommunication rooms to system main ground point
- C. Main system ground points shall be as indicated on drawings or by the VA Facility Project Manager. Exact location and point of connection of main system grounds shall be verified during construction.
- D. Grounding conductors shall be installed in telecommunications raceways unless noted otherwise.
- E. Grounding conductors shall be bonded to raceway systems at 100 foot intervals in cable tray systems and at the entrance and exit of conduits where grounding conductors are installed through the conduit.
- F. TMGBs shall be mounted on the plywood backboards in each telecommunications space. The mounts shall include two isolation bushings and two sets of mounting legs for each bus bar.
- G. The contractor shall furnish and install stranded ground wires from the ground bus bars in each of the telecommunications spaces to the nearest point of connection of the
 - 1) Local electrical distribution panel ground
 - 2) Building steel
- H. Conductor size shall be a 2 AWG green stranded copper ground wire.
- I. Furnish and install ground wires, clamps, connectors, etc. as required to connect all racks, cabinets, frames and all exposed conductive materials and equipment of each telecommunications system to the ground bar/plate in each telecommunications space.
- J. All TMGB and TGB shall be labeled per Chapter 1.
- K. All exposed conductive elements telecommunications systems shall be bonded to the ground bar in the telecommunications spaces.
- L. Lightning protection equipment (primary and secondary protectors) shall be bonded to ground with a minimum 2 AWG stranded copper ground wire.
- M. Contractor shall ensure that all grounding Bus-Bars for all equipment rooms shall have a resistance of less than 1 ohm back to the main electrical service ground
- N. Contractor shall ensure that all field testers have been calibrated from the Manufacturer within 1 year
- O. Equipment chassis, racks, cabinets and frames shall be bonded to ground as required by the manufacturer's recommendations or in lieu of manufacturer's recommendations as follows:
- P. When necessary due to distance re-size grounding conductors as required by the NEC for the largest amperage electrical circuit available at the specific equipment, rack or cabinet.

2-1.02 Additional Information

- A. Refer to Chapter 1 for the following Part 1 General information
 - 1) References
 - 2) Definitions / Terms / Acronyms
 - 3) Submittal Requirements
 - 4) Contractor Qualifications
 - 5) Bidder Qualifications
 - 6) Delivery, Storage and Protection
 - 7) Project conditions
 - 8) Sequencing
 - 9) Continuity of Service and Scheduling of Work
 - 10) Protection of Work and Property

2-1.03 Summary

- A. This Section includes the following:
 - 1) Conduit, fittings and bodies.
 - 2) Bonding, Grounding cable and fittings.
 - 3) Junction boxes pull boxes and gutters.
 - 4) Measured pull tape.
 - 5) Grounding Bus-Bars
- B. This Section covers only grounding and bonding for communication systems, including bonding and grounding conduit and fittings.
- C. All material needs to be provided and installed by Contractor, wired and connected by Contractor and tested by Contractor, unless noted otherwise. "Contractor" as used herein shall mean Telecommunications Contractor or Telecommunications Contractor's sub-contractor.

2-1.04 References

- A. The publications listed below form a part of this specification. The publications are referred to in the text by basic designation only.
- B. Specific reference in specifications to codes, rules, regulations, standards, manufacturer's instructions, or requirements of regulatory agencies will mean the latest printed edition of each in effect at the date of contract unless the document is shown dated.
- C. Conflicts:
 - 1) Between referenced requirements: Comply with the authority having jurisdiction.
 - 2) Between referenced requirements and contract documents: Comply with the authority having jurisdiction.
- D. References:
 - 1) American National Standards Institute (ANSI):
 - a. C80.1 Rigid Steel Conduit Zinc Coated.
 - b. C80.4 Fittings for Rigid Metal Conduit.

- E. Federal Specifications (FS):
 - 1) W-C-58C Conduit Outlet Boxes, Bodies Aluminum and Malleable Iron.
 - 2) W-C-1094 Conduit and Conduit Fittings Plastic, Rigid.
 - 3) WW-C-566C Flexible Metal Conduit.
 - 4) WW-C-581D Coatings on Steel Conduit.
- F. National Electrical Manufacturers Association (NEMA):
 - RN1 Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Electrical metallic Tubing.
 - 2) TC2 Electrical Plastic Tubing (EPT) and Conduit (EPC-40 and EPC-80).
 - 3) TC3 PVC Fittings for Use with Rigid PVC Conduit and Tubing.
 - 4) NEMA VE 1 Metal Cable Tray Systems.
 - 5) NEMA VE 2 Metal Cable Tray Installation Guidelines.
- G. American Society for Testing and Materials International (ASTM):
 - ASTM A123 Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products.
 - ASTM A653 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.
 - 3) ASTM B633 Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel.
- H. Underwriters Laboratories Inc. (UL):
 - 2.01.1.1 Rigid Metal Electrical Conduit.
 - 2) 514 B Fittings for Conduit and Outlet Boxes.
 - 3) 51 Schedule 40 and 80 Rigid PVC Conduit.
 - 4) 651A Type EB and A Rigid PVC Conduit and HDPE Conduit.
 - 5) 1666 Standard for Riser Application for Optical Fiber Raceway.
- I. National Fire Protection Association, Inc. (NFPA) ANSI/NFPA 70 National Electrical Code (NEC).
- J. National Electrical Safety Code (NESC).
- K. Telecommunications Industry Association ANSITIA-569-C Commercial Building Standard for Telecommunications Pathways and Spaces.
- L. American National Standards Institute ANSI/J/STD-607-B Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications.
- M. Building Industry Consulting Service International (BICSI) Telecommunications Distribution Methods Manual (TDMM).
- N. Building Industry Consulting Service International (BICSI) Customer Owned Outside Design Manual.
- O. Local, county, state and federal regulations and codes in effect as of date of purchase.
- P. Equipment of foreign manufacture must meet U.S. Codes and standards. It will be indicated in the proposal the components that may be of foreign manufacture, if any, and the country of origin.

2-1.05 Submittals

A. The Contractor will perform no portion of the work requiring submittal and review until the respective submittals have been approved by the VA Facility Project Manager.

B. Qualifications: The Contractor will submit qualification data sheets for firms and persons as specified in the "Quality Assurance" article of this specification to demonstrate their capabilities and experience. Located in Chapter 3 Section 3-1.06.

2-1.06 Coordination

- A. The contractor shall install Chatsworth Products Inc. (CHATSWORTH PRODUCTS PART#)
 Telecommunications grounding Bus-Bars and the appropriate AWG size for distance of green
 stranded ground wire to bond racks and ladder rack back to TGB and TMGB located in
 telecommunications room.
- B. Field coordinate installation of conduit and cable with other trades to ensure clearance requirements are met.
- C. Coordinate with all contractors providing equipment outside the scope of this contract.
- D. Contractor shall furnish and install telecommunications grounding Bus-Bars, grounding equalizer(s), and equipment bonding conductors to install a complete telecommunications grounding system.
- E. The contractor shall furnish and install telecommunications grounding Bus-Bars, grounding equalizer(s), and equipment bonding conductors to install a complete telecommunications grounding system.
- F. Field coordinate installation of conduit and cable with other trades to ensure clearance requirements are met.
- G. Coordinate with all contractors providing equipment outside the scope of this contract.

2-1.07 Scope of Work

A. Contractor shall furnish and install telecommunications main grounding Bus-Bar (TMGB), telecommunications grounding Bus-Bar (TGB), grounding equalizer(s) (GE), and equipment bonding conductors required for the complete installation of grounding and bonding for telecommunications system(s) within the building structure.

Part 2 - Products Refer to Appendix A for Approved Parts List

2-2.01 Manufacturers

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Grounding Conductors, Cables, Connectors, and Rods:
 - a. Apache Grounding/Erico Inc.
 - b. Boggs, Inc.
 - c. Chance/Hubbell.
 - d. Chatsworth Products
 - e. Copperweld Corp.
 - f. Dossert Corp.
 - g. Erico Inc.; Electrical Products Group.
 - h. Framatome Connectors/Burndy Electrical.
 - i. Galvan Industries, Inc.
 - j. Ideal Industries, Inc.

- k. ILSCO.
- I. Kearney/Cooper Power Systems.
- m. O-Z/Gedney Co.; a business of the EGS Electrical Group.
- n. Raco, Inc.; Division of Hubbell.
- o. Thomas & Betts, Electrical.
- p. Approved Equal.

2-2.02 Materials

- A. All conduits, fittings, junction and pull boxes will be UL rated.
- B. All conduits, fittings, junction and pull boxes will comply with the NEC.
- C. PVC-Coated Rigid Steel Conduit and Fittings: Follow NEMA RN1 (Type A).
- D. Non-metallic Conduit and Fittings: Pass NEMA TC2, UL 651 and 651A and FS W-C- 1094A. EMT fittings will be formed steel compression ring type. Die cast fittings are not allowed.
- E. Rigid Steel Galvanized Conduit and Fittings Before Coating
 - 1) Follow FS WW-C-581d, ANSI C80.1, and UL 6.
 - 2) Pass bending, ductility, and thickness of zinc coating in ANSI C80.1.
- F. Electrical Metallic Tubing (EMT):
 - 1) EMT fittings will be formed steel compression ring type. Die cast fittings are not allowed.
 - 2) EMT will be UL listed and conform to NEC Article 300.22.
 - 3) Will be used inside buildings only.
 - 4) Only manufacturer's fittings, transition adapters, terminators and fixed bends will be used.
 - 5) All transition junction and pull boxes, fittings terminators and adapters will be a metallic material.
 - 6) Minimum average tensile strength will be 1250 lbs. For 1½-inch and smaller conduits and innerduct.
 - 7) Minimum average tensile strength will be 1800 lbs. For conduits larger than 1½ inch.
- G. Conduit Bodies: Follow UL 514B and FS W-C-58C. Furnish sufficient coating for touch up after installation.
- H. Conduit Fittings
 - 1) All fittings will be compression or threaded.
 - Fittings will provide a secure connection for pulling communications cables.
 - 3) Setscrew fittings are not permitted.
- I. Conduit "condulets" are not permitted.
- J. Flexible conduit is not permitted.
- K. Non-metallic conduits are not permitted in above ground installations. Conversion fittings are required for non-metallic (below ground) to metallic (above ground) transitions.
- L. Telecommunications Main Grounding Bus-Bar (TMGB)
 - 1) The TMGB shall be an electrical grade listed copper bar with predrilled holes for use with standard sized two whole lugs. Minimum size of the bar shall be 1/4" x 4" x 20" (or length that is

determined by number of required connections including space for future growth). Chatsworth Products.

M. Telecommunications Grounding Bus-Bar (TGB)

1) The TGB shall be an electrical grade listed copper bar with predrilled holes for use with standard sized two whole lugs. Minimum size of the bar shall be 1/4" x 2" x 12" (or length that is determined by number of required connections including space for future growth). Chatsworth Products.

N. Maintenance Hole Bonding and Grounding.

- The Maintenance Hole will be bonded and grounded if a splice case is required for any cable pulled through the space. No bonding or grounding is required if all cables are pulled without a splices.
- Splice cases; cable rack and ground rod will be bonded together using a minimum No. 6 AWG copper cable.

O. Pull Boxes, Junction Boxes and Gutters

- 1) All junction boxes, gutters and pull boxes will comply with NEC Article 314.
- 2) All junction boxes, gutters and pull boxes will meet the following minimum material requirements:
 - a. 16-gauge steel or heavier.
 - b. Seams will be continuously welded and grounded smooth.
 - c. External screws and clamps.
 - d. External mounting feet (where possible).
 - e. Oil-resistant gasket and adhesive.
 - f. ANSI 61 gray polyester powder coating inside and out over phosphatized surface.
 - g. UL 50 type 12.
- All junction boxes, gutters and pull boxes will be provided with bushings for conduits and/or cabling.
- 4) All junction boxes, gutters and pull boxes will be securely installed.
- 5) All junction boxes, gutters and pull box sizes for single and multiple conduit runs will comply with BICSI TDMM.
- 6) All bonding conductors and connectors will be listed for the purpose intended and approved by a Nationally Recognized Testing Laboratory (NRTL).
- All bonding conductors will be insulated and copper. The minimum bonding conductor size will be a No. 6 AWG.

P Floor Mount Racks

- 1) All racks must have a Rack Bus-Bar installed for consolidating equipment grounds. Chatsworth Products
- All rack Bus-Bars must be bonded to TGB or TMGB via a minimum bonding conductor size of 6AWG

Part 3 – Execution

2-3.01 Additional Information

- A. Refer to Chapter 1 for the following Part 1 General information
 - 1) References
 - 2) Definitions / Terms / Acronyms

- 3) Submittal Requirements
- 4) Contractor Qualifications
- 5) Bidder Qualifications
- 6) Delivery, Storage and Protection
- 7) Project conditions
- 8) Sequencing
- 9) Continuity of Service and Scheduling of Work
- 10) Protection of Work and Property

2-3.02 Preparation

- A. Contractor's RCDD will review, approve and stamp all shop drawings, coordination drawings and record drawings.
- B. Verify conduit system is properly sized for cables (minimum one inch, unless otherwise noted in Drawings).
- C. Verify general conduit route following Drawings.
- D. Verify substrates to which work is connected and determine detail requirements for proper support.
- E. Verify proper location and type of rough-in for conduit, cable terminations and ground bussbar.

2-3.03 Installation

- A. Coordinate locations with other trades prior to installation.
- B. Install work following drawings, manufacturer's instructions and approved submittal data.
- C. Installation plans and requests for information (RFIs) will be reviewed by contractor's RCDD.
- D. All work will be reviewed by contractor's on-site RCDD.
- E. Locations and Types:
 - 1) Install PVC coated conduits in outdoor above-ground locations, inside valve vaults and wet wells, and in corrosive and wet environments.
 - Install PVC conduits in buried duct banks or encased in concrete. Use PVC coated rigid steel elbows for stub-outs.
 - 3) Install exposed conduit parallel or perpendicular to lines of existing construction and grouped together where possible, without interfering with use of premises or working areas. Prevent safety hazards and interference with operating and maintenance procedures.
 - 4) Conduit may pass through areas with temperature differential of 20 degrees F or more. Seal with proper fitting at barrier between areas of differing temperature.
 - 5) Do not install conduit in interference with equipment placement or operation; piping; structural members; maintenance access; indicated future equipment.
 - 6) Contractor's RCDD supervisor will coordinate with drawings of other disciplines to determine availability of space for installation.

F. Design Considerations

- 1) Conduit fill will comply with ANSI/TIA -569.
- 2) The minimum bend radius is six times the conduit inside diameter (ID) for a two inch conduit or less.
- 3) The minimum bend radius is ten times the conduit ID for a conduit greater than two inches.

- 4) Below grade conduit will extend three inches above finished floor (AFF) with a bushing.
- 5) Ceiling conduit or sleeves will extend six inches below finished ceiling with a bushing.
- 6) All stubbed conduit ends will be provided with a ground bushing.
- 7) All conduit penetrations will comply with all applicable fire codes. All conduit penetrations in fire-rated walls or floors will be sealed and fire proofed to at least the rating of the penetration area.
- 8) Conduits will be routed in the most direct route, with the fewest number of bends possible.
- 9) There will be no continuous conduit sections longer than 100 feet. For runs that total more than 100 feet, insert junction or pull boxes (or gutters if appropriate) so that no continuous run between pull boxes is greater than 100 feet.
- There will be no more than two 90-degree bends (180 degrees total) between conduit pull boxes.
- 11) Changes in direction will be accomplished with sweeping bends observing minimum bend radius requirements above. Do not use pull boxes for direction changes unless specifically designated otherwise in the Drawings.
- 12) Unless otherwise noted in the Drawings, conduits entering pull boxes will be aligned with exiting conduits.
- 13) Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. *Per VA 10-06M Section 27 15 00 Communications Horizontal Cabling.*
- G. Bonding Conductor for Telecommunications (BCT)
 - 1) The BCT conductor will bond the TMGB to the service equipment (power) ground. The BCT shall be a continuous copper conductor sized according to length.
- H. Grounding Equalizer (GE)
 - 1) The GE connects the TGB's in the same floor telecommunication rooms on the first, top and every third floor in a multi-story building.
- I. Structural Steel Framed Structures
 - 1) In structural steel frame buildings, where the steel framework is accessible within the room, the TMGB and each TGB shall be bonded to the structural steel frame using a minimum No. 6 AWG conductor.
 - 2) Connections to the structural steel shall be by exothermically welding or with an electro tinplated bonding plate.
 - 3) Where the structural steel is external to the room and is accessible, the structural steel should be bonded to the TMGB or the TGB using a minimum No. 6 AWG conductor.

2-3.04 Acceptances

- A. Once all work has been completed, test documentation has been submitted and approved, and the VA Facility Project Manager is satisfied that all work has been completed in accordance with contract documents, the VA Facility Project Manager will notify Contractor in writing of formal acceptance of the system.
- B. Acceptance will be subject to completion of all work and submittal and approval of complete as-built documentation as described above, and VA Facility Project Manager and OI&T Representative final inspection of the work for compliance with the approved as-built documentation.

Chapter 3

Communications Equipment Room Fittings

Part 1 – General

- 1.01 Additional Information
- 1.02 Summary
- 1.03 Definitions
- 1.04 System Overview
- 1.05 Electrical Requirements
- 1.06 HVAC Requirements
- 1.07 Submittals
- 1.08 Quality Assurance
- 1.09 Project Conditions
- 1.10 Coordination

Part 2 – Products

- 2.01 Pathways
- 2.02 Ladder Rack
- 2.03 Backboards
- 2.04 Category 6 Patch Panels
- 2.05 Fiber Optic Rack Enclosures and Adapter Plates
- 2.06 Fiber Optic Connectors
- 2.07 Fiber Patch Cables
- 2.08 Standard Relay Racks and Accessories
- 2.09 Vertical Cables Managers
- 2.10 Port Replicators
- 2.11 Environmental Monitoring
- 2.12 UPS

Part 3 - Execution

- 3.01 Additional Information
- 3.02 Underground Entrance Pathway
- 3.03 Fiber Optic Patch Panels
- 3.04 Free Standing Racks
- 3.05 Bonding and Grounding
- 3.06 Ladder Racking
- 3.07 Cable Management
- 3.08 Copper Patch Panels

Chapter 3

Communications Equipment Room Fittings

Part 1 – General

3-1.01 Additional Information

- A. Refer to Chapter 1 for the following Part 1 General information
 - 1) References
 - 2) Definitions / Terms / Acronyms
 - 3) Submittal Requirements
 - 4) Contractor Qualifications
 - 5) Bidder Qualifications
 - 6) Delivery, Storage and Protection
 - 7) Project conditions
 - 8) Sequencing
 - 9) Continuity of Service and Scheduling of Work
 - 10) Protection of Work and Property

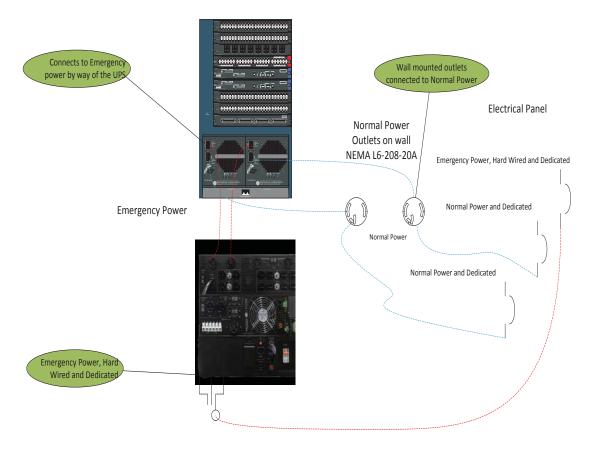
3-1.02 Summary

- A. Section Includes:
 - 1) Telecommunications mounting elements.
 - 2) Backboards.
 - 3) Telecommunications equipment racks.
 - 4) Server Racks.
 - 5) Telecommunications service entrance pathways.
 - 6) Grounding.
- B. Related Sections:
 - 1) Retain Sections in subparagraphs below that contain requirements Contractor might expect to find in this Section but are specified in other Sections.
 - 2) Chapter 1 Section "Communications General Information"
 - 3) Chapter 4 Section "Communications Backbone Cabling" for data cabling associated with system panels and devices.
 - 4) Chapter 5 Section "Communications Horizontal Cabling" for data cabling associated with system panels and devices.

3-1.03 Definitions

- A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- B. BICSI: Building Industry Consulting Service International.

- C. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- D. LAN: Local area network.
- E. RCDD: Registered Communications Distribution Designer.
- F. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.


3-1.04 System Overview

- A. The Contractor shall install (as a minimum) one (1) 4 foot by 8 foot ¾ inch thick fire retardant plywood board on the wall of the telephone closet for the mounting of equipment. The plywood board should be placed so that stenciling is facing away from the wall to clearly display it.
- B. The Contractor shall terminate phone cable on 110 frame distribution panels.
- C. Each patch panel shall have a channel identification system that allows numbering or labeling of the jacks. All demarcation equipment should terminate in this room, via a 25 pair or greater cable, from the exterior point of presence. The Contractor will be responsible for providing and running the 25 pair or greater cable.
- D. The Contractor shall install a minimum 50 pair phone from the primary Point of Presence (telephone closet) to all other closets in a multi-level or multi closet system.
- E. The Contractor shall terminate intra distribution or riser cable to either specified 66 blocks or 110 frames.
- F. All requirements are subject to change depending upon facility or project layout.
- G. Ladder racking within the communications room is used as a pathway for communications cable to route down the wall area over to the rack.
- H. Cable management products will be installed vertically and horizontally on each side of rack.
- I. Rack mounted power protection for surge suppression, transient voltage suppression and current draw metering are necessary to protect sensitive networking equipment from damage while allowing for a centralized location for equipment power.
- J. All conduit or EZ Paths shall not extend lower than 7' 10" from the floor
- K. All components need to be grounded and bonded per Chapter 2
- L. Walls must go deck to deck with no opening (HVAC, etc.) over 100 SQ IN.
- M. Solid Core hardwood (1-3/4 inch) or hollow steel door. Dutch glass or half doors are unacceptable.
- N. Locking hardware on door (see VA Specs on lock requirements.) to include deadbolt. If a door is not set in a steel frame, one of the two locks must be a jimmy proof rim dead lock. Doors set in steel frames must be fitted with a mortise lock with a deadlock pin feature. The day lock on the main door must be automatically locking, with a minimum 19 mm (3/4 in.) dead bolt and inside thumb latch. Combinations or keys to day locks will be restricted to Marion IRM employees.
- Hinges either on inside of closets or if exterior are welded or pinned to prevent removal of hinge bolt.
- P. Closets may not be shared space with any other services such as housekeeping, storage, electrical panels, alarm systems, etc.

- Q. 2 or 4 bulb Fluorescent Electrical light with light switch mounted on inside of the room.
- R. HVAC or ventilation sufficient to cool and control humidity for equipment. (If the existing system cannot be zoned to supply individual room control then a separate AC system will be required)
- S. Room shall be equipped with water based fire suppression sprinkler system and no other water lines should run through or over closets.
- T. Room must be very well protected from weather
- U. No windows in door or wall. (See ISO for possible exceptions)
- V. For minimum room size for TER refer to the VA office of Construction & Facilities Management manual Chapter 8, section 8.6.2. Multi-level buildings will require data closets on every level, meeting the same requirements established for the primary Point of Presence (data closet). Multi-level data closets should be directly above one another unless space restrictions do not permit it. Any variance from this design must be coordinated and accepted through the COTR and all affected parties.
- W. Building ground should be supplied to closet via green jacketed #2 stranded copper wires. Building ground cables should enter the room via 1/2" or smaller conduit that is securely fastened to the wall. (Unistrut or similar device) The conduit should not extend lower than 7' 10" from the floor. This will accommodate room for a cable tray connected to a 7' equipment rack.
- X. Cat6 cables should enter the room through appropriate size conduit that is securely fastened to the wall. (Unistrut or similar device) The conduit should not extend lower than 7' 10" from the floor (8' to 8' 6" would be ideal if possible). This will accommodate room for a cable tray connected to a 7' equipment rack.
- Y. 25 Pair cable or larger cables should enter the room via 3/4" or appropriate sized conduit that is securely fastened to the wall. (Unistrut or similar device) The conduit should not extend lower than 7' 10" from the floor. This will accommodate room for a cable tray connected to a 7' equipment rack.
- Z. Exterior telecom service equipment must be in secure area or secure cabinet
- AA. If signage provided, signage must state room number only. Room name or purpose must not be stated on sign.
- BB. A water fire suppression system must be installed if electronic telephone switching equipment is installed.
- CC. All spaces, equipment, pathways, and components shall be labeled as called out in Chapter 1 of this document.

3-1.05 Electrical Requirements

- A. The room shall be served by a dedicated panel board, located in the room with sufficient capacity to provide for current and future needs by having spare breakers and an additional 20% capacity for the panel above the designed needs.
- B. In addition to the circuits required to power the IT equipment and/or UPS equipment, provide a separate 120V, dedicated 20A circuit with two quadraplex receptacles centered on each side wall, two quadraplex receptacles centered on each front wall on either side of the room door, and three quadraplex receptacles centered on the rear wall. All receptacles shall be 18 in [450 mm] above finished floor. Allow three quadraplex receptacles on each 20A circuit. *Per VA Electrical Design Manual.*
- C. A minimum of two normal power dedicated 208 volt 3-phase 20AMP twist-lock grounded electrical outlet 1 emergency power, hard wired and dedicated for UPS as shown.

- D. No electrical installations shall induce trip hazards into a Telecommunication Room from the conduits or from the need to place electrical cords on the floor.
- E. Coordinate all electrical outlet locations with OIT before installation begins.

3-1.06 HVAC Requirements

- A. HVAC or ventilation sufficient to cool and control humidity for equipment. (If the existing system cannot be zoned to supply individual room control then a separate AC system will be required
- B. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards). *Per VA 10-06M Section 27 15 00 Communications Horizontal Cabling.*
- C. All heat loads shall be coordinated with OIT to ensure the accuracy of the loads of the equipment to be installed in the Telecommunications Room.

3-1.07 Submittals

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 - 1) Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2) Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.

3) Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

3-1.08 Quality Assurance

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - Layout Responsibility: Preparation of Shop Drawings will be under the supervision of a RCDD.
 - 2) Field Inspector: Currently registered by BICSI as RCDD to perform the on-site inspection.
- B. Electrical Components, Devices, and Accessories must be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Telecommunications Pathways and Spaces must comply with ANSI/TIA-569-C.
- D. Grounding hardware and system must comply with ANSI-J-STD-607-B.

3-1.09 Project Conditions

A. Environmental Limitations: Do not deliver or install equipment frames until spaces are enclosed and weather-tight, wet work in spaces is complete and dry, and work above ceilings is complete.

3-1.10 Coordination

- A. Meet jointly with Telecommunications, VA Facility Project Manager, and OI&T Network Specialist to coordinate layout and installation of communications equipment, LAN equipment, service provider equipment and coordinate service entrance arrangement with local exchange carrier.
 - 1) Record agreements reached in meetings and distribute them to other participants.
 - Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of LAN equipment.
 - 3) Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.
- B. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.
- C. Contractor shall furnish and install the following:
 - 1) Racks
 - 2) Cabinets
 - 3) Enclosures
 - 4) Cable management panels.
 - 5) Building entrance terminal and protectors.
 - 6) Primary and secondary building entrance protection
 - 7) Surge protection devices
 - 8) Power distribution units
 - 9) Uninterruptible power supply units
- D. Electrical Contractor shall furnish and install the following:
 - 1) Power circuits to telecommunications spaces and equipment.
- E. Unless noted otherwise, the following items will be the responsibility of the Department of OI&T:

- 1) All electronics and active data networking equipment, etc.
- 2) Telephones
- 3) PC's, printers, video display terminals, etc.
- F. Contractor shall coordinate with the VA Facility Project Manager and Department of OI&T to determine if there are any special or specific instructions before starting Work.
- G. Contractor shall coordinate with the VA Facility Project Manager for location and type of blocking to be installed in the walls to support wall mounted equipment.
- H. Contractor shall coordinate location of electrical receptacles that need to be installed on raceways, racks or inside cabinets with the VA Facility Project Manager.

Part 2 – Products Refer to Appendix A for Approved Parts List

3-2.01 Pathways

- A. General Requirements: Comply with TIA/EIA-569.
- B. Cable Support: NRTL labeled. Cable support brackets will be designed to prevent degradation of cable performance and pinch points that could damage cable.
 - Comply with NFPA 70 and UL 2043 for fire-resistant and low-smoke-producing characteristics.
 - 2) Support brackets with cable tie slots for fastening cable ties to brackets.
 - 3) Lacing bars, spools, J-hooks, and D-rings.
 - 4) Straps and other devices.
- C. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems.
 - 1) Outlet boxes shall be a Randl Square 5 back box
 - 2) Conduits shall be a minimum of 1" (25 mm).

3-2.02 Ladder Rack

- A. Acceptable Manufacturer: Chatsworth.
 - Ladder racking shall be 4 post and constructed with aluminum, 12" wide and be black in color.
 - 2) UL Classified and Listed.

3-2.03 Backboards

A. The Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels specified in Division 06 Section "Rough Carpentry."

3-2.04 Category 6 and 6A Patch Panels

- A. Patch panels shall combine strength and durability with a sleek look and have options for customization. The panels shall also be made of a polymer composite makeup that gives the panel a higher strength-to-weight ratio than metal patch panels, made in the USA and be100% recyclable.
- B. Manufacturer Leviton Mfg. Co., 201 North Service Rd., Melville, NY 11747.
- C. Provide patch panels as specified below:

1) Leviton 2RU 48Port QuickPort Flat Composite Panel with two integrated patch cord managers and two rear cable management bars capable of accepting Category 6 and 6A QuickPort jacks.

3-2.05 Fiber Optic Rack Enclosures and Adapter Plates

- A. Fiber Enclosure shall have a three piece removable cover that conceals and protects patch cords and allows easy access. The enclosures shall offer increased flexibility while utilizing minimum rack space. Enclosures can be arranged and configured to support future growth.
- B. Provide enclosures and adapters to equal the amount of fiber being terminated.
- C. Acceptable Manufacturer: Leviton Mfg. Co., 201 North Service Rd., Melville, NY 11747. Provide Opt-X Ultra Style Enclosures as specified below:
- D. Provide the following Enclosure style(s):
 - a. Leviton 2 U Opt-X Ultra Style fiber enclosure
 - b. Leviton 4 U Opt-X Ultra Style
 - c. 1 U fiber enclosure supporting 36 fiber Leviton Part# 5R1UH-
 - d. Fiber enclosure locking covers Leviton Part# 5D000-*UL
- E. Provide the following Adapter Plate(s):
 - a. 6-Pack LC MM (12-fiber), zirconia ceramic sleeve.
 - b. 6-Pack LC SM (12-fiber), zirconia ceramic sleeve.
 - c. 6-Pack LC MM (12 fiber) laser optimized adapter plates, aqua, zirconia ceramic sleeve.
- F. Provide Leviton Cable Clamp for each cable installed in enclosure (s)

3-2.06 Fiber Optic Connectors

- A. Fiber Optic Connectors FastCAM Pre-Polished Style
 - 1) Acceptable Manufacturer: Leviton Mfg. Co., 201 North Service Rd., Melville, NY 11747. Provide the Leviton FastCAM type connectors.
 - 2) Provide the following FastCAM Connectors:
 - a. FastCAM LC, Single-mode Connector, blue Leviton
 - b. FastCAM LC, 62.5/125 Multi-mode Connector, beige Leviton
 - c. FastCAM LC 50 micron L/O Multi-mode Connector, Aqua Leviton

3-2.07 Fiber Patch Cables

- 1) Acceptable Manufacturer: Leviton Mfg. Co., 201 North Service Rd., Melville, NY 11747.
- Must be made in the USA.
- 3) LC-LC 62.5 micron multimode Patch Cord Leviton with uniboot
- 4) LC-LC 50 micron L/O multimode Patch Cord Leviton with uniboot
- 5) LC-LC Single mode Patch Cord Leviton with uniboot

3-2.08 Standard Relay Racks & Accessories

- A. Acceptable Manufacturer: CHATSWORTH PRODUCTS. Shall have the following features:
 - 1) Universal hole pattern on the front and rear flanges, and threaded mounting holes on both sides of rack assembly for management

- 2) Brackets with an eight inch mounting floor plate on the front and rear.
- 3) Racks will be black in color.
- 4) Racks will have 12-24 threaded equipment mounting holes.
- 5) Mounting holes that require supplemental threaded clips are specifically prohibited. Provide 12-24 screws for all equipment mounting holes plus 32 spare screws per rack.
- 6) Horizontal cable support bar on rear of each patch panel/cross connect block panel to support hook and loop (Velcro) strain reliefs. Cables will not rely on terminations for cable support.
- 7) Leviton hook and loop (Velcro) cable strain relief system on rear of rack to support horizontal and backbone cables. Tie-wraps are specifically prohibited.
- 8) Hook and loop (Velcro) horizontal and vertical cable management on front of rack for dressing patch cable and cross connect wiring. Tie-wraps are specifically prohibited.
- 9) Hook and loop (Velcro) cable management system independent of cable management to properly dress the electronic equipment power cords through the rack maintaining as much clearances between the two as possible. Tie-wraps are specifically prohibited.
- 10) Bonding and grounding cables for all equipment not directly bolted to equipment rack (i.e. shelf mounted electronic equipment, etc.).
- 11) Surge protected power strip as described in this specification.
- 12) All hardware, supplementary steel, channel and supports as required properly assembling the rack and supporting it to the building structure.
- 13) All equipment racks and their hardware will match in appearance and will be provided by a single manufacturer.
- B. Furnish and install vertical wire management channels on both side of racks.
- C. Furnish and install horizontal wire management units, quantity and type as indicated on the drawings.
- D. Furnish and install ground terminal block/lug for each rack and appropriately sized ground wire to room ground Bus-Bar based on the 607 standard.
- E. Grounding Bus-Bar CHATSWORTH PRODUCTS
- F. Vertical Rack Bus-Bar CHATSWORTH PRODUCTS

3-2.09 Vertical Cable Managers

- A. The vertical cable managers shall be designed for copper and fiber cabling systems. The management system shall be UL listed, PCI rated for 94V-O, ABS rated for UL94HB, and compliant with ANSI/TIA/EIA 568 standards. Mounting hardware shall be included to insure the proper installation to infrastructure. It shall mount onto a standard TIA/EIA recognized equipment rack. The management system shall offer an assortment of accessories, including a bend radius slack loop organizer and cable retainers.
- B. Manufacturer Chatsworth Products Inc. Provide vertical cable mgt. as specified below:
 - 1) Provide Evolution vertical cable manager 8" Channel Vertical Cable Management for each side of rack

3-2.10 Port Replicators

A. Port Replicators are needed to give maximum flexibility to the Telecommunication Rooms (TRs). With the sizes of the TRs being smaller than needed in a lot of cases the Port Replicators give the flexibility needed and maintains an organized TR. The port-replicator provides one-to-one logical port management replication of high-density switch inputs. This allows moves, adds, and changes to

occur at the main distribution on the replicator panel, rather than at the switch. The Port Replicator also reduces Patch Cord clutter and the length of Patch Cords.

- B. Parts Required for Port Replicators
 - 1) Leviton angled 48 port 1U patch panel with custom numbering (1-47 ODD on top and 2-48 EVEN on bottom).
 - 2) Leviton Trunk Cables
 - 3) Leviton High-Density Cable Management Bar 1U to be used to manage bundles in the rear of the angled patch panels.

3-2.11 Environmental Monitoring

Environmental Monitoring (RIM-600 Remote Infrastructure Management System)

- A. [Temperature Sensors] Each installed rack/cabinet shall be equipped with a temperature sensor that connects to an environmental monitoring appliance. The temperature sensor shall be located at the front of the rack/cabinet near the top of the rack/cabinet centered in the rack-mount space (or rack-mounted on the equipment mounting rails) to provide air temperature readings for monitoring equipment inlet air temperatures. The temperature sensor shall have a digital display and shall take temperature readings in degrees <u>Fahrenheit</u>.
- B. [Environmental Monitoring Appliance (Host or Node)] The environmental monitoring appliance shall provide continuous automated monitoring of the environmental sensors, shall allow a low and high range to be set for each sensor, and shall notify technicians with an alarm when sensor readings exceed set limits. The environmental monitoring appliance shall have eight connections for external sensors and separate network and voice connections. The environmental monitoring appliance shall send alarms by email or direct voice call to technicians according to specific user contact schedules. The environmental monitoring appliance shall have an internal backup battery that shall allow the appliance to continue monitoring for up to three hours on a full battery charge if main power to the unit is interrupted. The environmental monitoring appliance shall record sensor readings, alarms and alarm acknowledgements and shall include monitoring software that allows sensor/alarm history to be reviewed for analysis and archived for record keeping. The environmental monitoring appliance and software shall allow individual sensors to have specific operating schedules and shall allow individual users to have multiple contact points and specific contact schedules. The environmental monitoring appliance shall be expandable with up to 31 additional nodes that provide eight additional external sensor connections each. Each expansion unit shall have a separate network connection, but will be supervised by the primary unit. The included software shall allow the environmental monitoring appliance, all expansion units and all attached sensors to be accessed and controlled from a single software interface. Each appliance or expansion unit shall be rack-mount, 19" EIA x 1 RMU, and shall have separate power connections.

C. Design Make shall be:

Chatsworth Products, Inc. (CPI),

Remote Infrastructure Management (RIM-600) System:

Every TR shall consist of the following.

RIM-600 Node Module, 100-250 Vac, 50-60 Hz, 1 network connection, 1 voice connection, 8 external sensor connections, 19"W x 1 RMU x 9.6" (244 mm) Deep, Black.

Miniature Temperature Sensor, 5°F to 140°F Range, No Display, Black.

Room Humidity Sensor, Wall Mount, 0-100% RH Range of Measurement

Water Detection Sensor with 10' L or Rope

PANASONIC KX-HCM8 CAMERA

Water Detection Rope, 10 Ft.

3-2.12 UPS

- A. Provide and install one UPS with network card
- B. Manufacturer Cyber Power
 - 1) The UPS will need to provide a minimum of 5kVA for 30 minutes. Rack –based PDUs are used for taking high voltage and current and reducing it to more common and useful levels, for example from 240 V 30 A single phase to multiple 120 V15 A or 120 V 20 A plugs. The PDU requirement may be met by the outlets on the UPS, but if the UPS does not provide for both 110VAC and 208VAC, then a separate "0 U" rack mount PDU needs to be provided so that both 110VAC and 208VAC equipment can be installed in the rack. If a separate PDU is provided, the UPS would need to have an appropriate outlet for the PDU to connect so that the equipment plugged into the PDU would be run through the UPS.

8KVA ONLINE UPS WITH TRANSFORMER REMOTE MANAGEMENT CARD EXTENDED RUNTIME BATTERY PACK

Part 3 - Execution

3-3.01 Additional Information

A. Refer to Chapter 1 for the following Part 1 General information

3-3.02 Underground Entrance Pathway

A. Install underground entrance pathway complying with Division 26 Section "Raceway and Boxes for Electrical Systems."

- B. Comply with NECA 1.
- C. Comply with BICSI TDMM for layout and installation of communications equipment rooms.
- D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

3-3.03 Fiber Optic Patch Panels

A. ALL APPLICABLE LASER SAFETY LABELING pursuant to ANSI Z136.2 and IEC 825 Part 2 must be affixed to a visible surface on the front of the panel. Provide large bold label indicating information similar to the following:

CAUTION! SEVERE EYE DAMAGE! DO NOT LOOK INTO FIBER OPTIC CONNECTOR WHILE ENERGIZED

3-3.04 Free Standing Racks

A. Securely mount equipment cabinet and racks to the building structure. Proper supports such as 3/8" lag screws and expansion anchors will be used. Proper quantity of supports will be utilized. Dry wall screws and other types of supports not specifically approved to support equipment are specifically prohibited. Submit mounting supports for approval before installation.

- B. Equipment cabinet mounted on or against walls will have 3-foot clearance in front of deepest component.
- C. Patch Panels: Mount patch panels into the cabinet/rack in top-to-bottom fashion with the first patch panel (Fiber) mounted at the top of the "Active" equipment rack. Uniquely label each patch panel according to the numbering convention outlined in Chapter 1, Part 3.05 on labeling. Each port will also have color-coded identifiers. Refer to details on the Drawings.
- D. Cable Management: Secure the cable bundle(s) to the rack strain relief and cable management behind the patch panels and cross connect block panels. Install horizontal cable management panels and brackets for routing and management of patch cables. Maintain TIA/EIA and BICSI standards on bundling, supporting and bend radii.
- E. Surge Protected Outlet Strips: Mount surge protected outlet strips per Manufacturer's directions. Refer to details on the Drawings for mounting location.
- F. Assemble 4 post free standing racks according to manufacturer's instructions. Verify that equipment mounting rails are sized properly for rack-mount equipment before attaching the rack to the floor.
- E. All racks must be 4 post and attached to the floor in four places using appropriate floor mounting anchors.
- F. Racks shall be grounded to the telecommunications Bus-Bar using CHATSWORTH PRODUCTS with an appropriately sized green insulated solid copper wire (and any necessary attachment hardware provided by the Communications Contractor.
- G. The equipment load should be evenly distributed and uniform on the rack. Place large and heavy equipment towards the bottom of the rack. Secure all equipment to the rack with equipment mounting screws.
- H. Mount rack mount power strips within 6" of where active equipment will be placed.

3-3.05 Bonding and Grounding

- A. Refer to Chapter 2 for Bonding & Grounding requirements.
- B. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- C. Comply with ANSI-J-STD-607.
- D. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- F. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.
- G. Retain subparagraph below if screened twisted-pair cables and coaxial cables are in communications equipment rooms.
 - 1) Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

3-3.06 Ladder Racking

A. 12" Ladder Rack shall be attached to the top of the rack to deliver cables to the rack. The rack should not be drilled to attach ladder rack. Use appropriate hardware from the ladder to allow a 4" standoff CHATSWORTH PRODUCTS

- B. Ladder racking shall be supported every 5' with 3/8" threaded rod anchored and secured to permanent ceiling structure when spanning greater than 5' without support of wall or floor mounted rack.
- C. Loading of cable rack shall not exceed 6" depth and should have retainers every 12" to prevent cables from spilling over the sides.
- D. Where ladder racking butts up against wall the appropriately sized wall mount bracket shall be utilized.
- E. Ladder racking shall utilize all appropriate radius drop stringers corner bends and other devices to maintain cable bend radius when entering and exiting racks and cabinets.
- F. Mating pieces of ladder racking together shall utilize appropriate butt splice and junction splice kits.
- G. All cut and exposed sharp ends shall utilize a plastic end cap to prevent injury.

3-3.07 Cable Management

- A. Vertical cable manager shall be installed on both sides of rack.
- B. All cables shall sweep in and out of any cable management product without a deformation of cable jacket.
- C. Ensure cables are properly supported when using cable management to ensure cables do not sag.
- D. Utilize Leviton Velcro every 12" to bundle and secure cables to cable management, ladder rack, and basket tray system.

3-3.08 Copper Patch Panels

- A. Mount patch panels using supplied screws and ensure panels are at a straight 180 degree orientation.
- B. Machine labels all termination ports on panels. Labeling scheme will be provided by the VA Hospital.
- C. Route all cables to backside of termination panels in an asymmetrical orientation to ensure cable bundles are split evenly.
- D. Utilize rear wire management bars for supporting cables into point of termination.
- E. Secure all cables on all panels using Leviton Velcro to prevent cables from pulling away.
- F. All patch panels shall be labeled as call out in Chapter 1, Part 3, section 3.5.1 part D of this document.
- G. Leviton 2 U 48-Port 110 Style Flat Composite Panels.

End of Section

Chapter 4

Communications Backbone Cabling

Part 1 – General

- 4-1.01 Products Installed but not Supplied under This Section
- 4-1.02 Backbone Cabling Description
- 4-1.03 Work Included
- 4-1.04 Submittals
- 4-1.05 Coordination

Part 2 - Products

- 4-2.01 Attributes and Performance for Optical Fiber
- 4-2.02 Optical Fiber Requirements

Part 3 - Execution

- 4-3.01 Additional Information
- 4-3.02 Installation
- 4-4.03 Fiber Optic Cable Testing

Chapter 4

Communications Backbone Cabling

Part 1 – General

4-1.01 Products Installed but not Supplied under This Section

- A. All conduit and EMT required for Communications cabling pathway in/out of cross connect closets and in/out of wall cavities at the work area. EMT or Conduit for pathways shall have no more than two 90 degree bends and no continuous section over 100'.
- B. All core holes and poke through devices in the floor for the installation of Communications cabling.
- C. All core holes and EMT sleeves between floors for the routing of Communications cabling.
- D. Basket tray or ladder racking to support main pathway cable bundles.

4-1.02 Backbone Cabling Description

- A. Backbone cabling system will provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.
- B. Backbone cabling cross-connects may be located in telecommunication rooms or at the entrance facilities.
- C. Copper backbone cabling system is a Berk-Tek Leviton Technologies solution consisting of parts from Leviton and Berk-Tek. Each TR closet shall have single feed consisting of multipair copper trunk cable and 110 style frames. The type of Multimode and Single mode is as follows:
- D. From each TR, XXX pairs are used to connect back to LOCATION.
- E. Optical fiber backbone cabling system is a Berk-Tek Leviton Technologies solution consisting of parts from Leviton and Berk-Tek. Each TR closet shall have redundant feeds of Singlemode and Multimode cable. The type of Multimode and Single mode is as follows:
- F. From each TR, 96 fiber strands reach the MCR: a 48-strand trunk for OIT, and a 48-strand trunk for FMS. The fibers will be single-mode (12 strands), multi-mode (12 strands), and laser optimized multi-mode (24 strands), as defined in the Division 27 Master Construction Specifications. Each 48-strand trunk will terminate on one Fiber Distribution Unit (FDU), which will occupy two Rack Units (2U). One FDU contains four connector housings, each of which can terminate 12 strands of fiber. The backbone cabling system shall be labeled as called out in Chapter 1 of this document. Whenever possible redundant cables should take a different path when exiting telecommunications rooms and in pathways going to their separate locations. (VA Office of Construction & Facilities Management Design Guide for Ol&T Feb 2011 Page 2-18)

To determine the type of optical fiber cable that shall be used on a project the VA Project Engineer must contact and obtain information from one of the below listed OI&T contacts and/or see Attachment A though G of this specification.

Scott Gibson (314) 652-4100 ext. 66407 Scott.Gibson@va.gov

Steve Warren (314) 652-4100 ext. 53859 Steven.Warren@va.gov

Lance McCosh (314)652-4100 ext. 57000 Lance.McCosh@va.gov Telephone

G. Optical Fiber:

- Optical fiber cable provides for the transport of high bandwidth and high speed networking communications between equipment closets or connection points using short wavelengths of light.
- Optical fiber cable is to be plenum rated and have an interlocking armor for protection and security. For any runs that go outdoors or on a slab on grade should use a plastic plenum rated interlocking armor jacket.
- 3) Optical fiber cable is terminated using Leviton LC for multimode and MTP for single mode connectors as the system interface to network equipment.

4.1.03 Work Included

- A. The Work of this Section shall consist of the labor, materials and equipment required for furnishing and installing backbone cabling as part of a complete and operating telecommunications cabling system.
- B. All items specified or included in this section shall be furnished and installed by Telecommunications Contractor, wired and connected by Telecommunications Contractor and tested by Telecommunications Contractor, unless noted otherwise. "Contractor" as used herein shall mean Telecommunications Contractor or Telecommunications Contractor.
- C. All items specified or included in this section shall be furnished and installed by Electrical Contractor, wired and connected by Electrical Contractor and tested by Electrical Contractor, unless noted otherwise. "Contractor" as used herein shall mean Electrical Contractor or Electrical Contractor's subcontractor.
- D. Provide and Install redundant paths of Berk-Tek 12 Strand 62.5/50 and 24 Bend-Insensitive OM3 Multimode Plenum Interlocked armored optical fiber cable.
- E. Provide and Install redundant paths of Berk-Tek 12 Strands Single mode Plenum Interlocked armored optical fiber cable.
- F. For fiber installed in the John Cochran Building on Grand Avenue the redundant fiber runs going to closets shall terminate in rooms C218 and in A01.
- G. For fiber installed in the Jefferson Barracks Hospital the redundant fiber runs going to closets shall terminate in Building 1 room GC12 and Building 51 in room 1A183.

4-1.04 Submittals

- A. Submit for approval in accordance with specified submittal procedures:
- B. Components of the telecommunications system, as specified herein.

4-1.05 Coordination

- A. Contractor shall furnish and install the following:
 - 1) Inside plant copper backbone cables.
 - 2) Inside plant fiber optic backbone cables.
 - 3) Outside plant copper backbone cables
 - 4) Outside plant fiber optic backbone cables
- B. Electrical Contractor shall furnish and install the following:
 - 1) Telecommunications raceways within the building.
 - 2) Telecommunications duct banks, hand holes and manholes.

Part 2 – Products Refer to Appendix A for Approved Parts List

4-2.01 Attributes and Performance for Optical Fiber

- A. Provide products in quantities as listed below in the performance based specification.
 - 1) Optical cable is a multimode 62.5/50 Laser Optimized micron and single mode optical fiber system.
 - 2) Optical cable is capable of supporting baseband signaling for high bandwidth for data or video applications using 850 nm, 1300nm, 1310nm, and 1550 nm wavelength.
 - 3) Optical fiber cable is used as part of a cabling system in an enclosure to enclosure approach utilizing Leviton Opt-X Ultra 1 U,2 U, and 4U, loaded with the needed amount of Leviton coupler panels listed below:
 - 1. 62.5MM LC- Connections 12F
 - 2. 50MM LOMM LC- Connections 12F
 - 3. 50MM LOMM LC- Connections 24F
 - 4. 8.3SM LC- Connections 12F
 - 5. MTP Connections
 - 4) One Cable clamp kit shall be installed per fiber cable entering the enclosure. Contractor must verify with VA Hospital which enclosure, adapter plates, and connectors should be utilized. The same enclosure shall be utilized for SM and MM networks. Fiber optic enclosures and individual fibers shall be labeled IAW VA fiber optic labeling standards.
 - 62.5 micron Multimode Optical fiber shall have all strands terminated with LC FastCAM connectors
 - 50 micron Laser Optimized Multimode Optical fiber shall have all strands terminated with Leviton LC FastCAM connectors
 - 7) 62.5/50 and 50/125 Laser Optimized Multimode Optical fiber cable shall be a tight buffered distribution plenum fiber with pull strength members with an Orange/Aqua jacket or Black for Indoor/Outdoor
 - 8) Singlemode Optical fiber shall have all strands terminated with Leviton LC FastCAM connectors
 - 9) Singlemode Optical fiber cable shall be a tight buffered distribution plenum fiber with pull strength members with a Yellow jacket or Black for indoor/outdoor.

4-2.02 Optical Fiber Requirements

- A. Provide products in quantities as listed below in the performance based specification. Note that there are many combinations of optical fibers, which could be installed at the VA, so please see Attachment XX for the optical fiber to be installed for this project. All optical fiber shall be Berk-Tek.
 - 1) 62.5 micron optical fiber cable <u>12 strands</u> shall be plenum or indoor/outdoor plenum or OSP interlocking armored optical fiber cable with an outside diameter not to exceed .570 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable.
 - 2) MM 50 micron laser optimized OM3 10G/300 optical fiber <u>24 strands</u> shall be indoor plenum or indoor/outdoor plenum or OSP interlocking armor.
 - Singlemode optical fiber cable <u>12 strands</u> shall be indoor plenum or indoor/outdoor plenum or OSP interlocking armored with an outside diameter not to exceed .570 and compliant with NFPA 262.
 - 4) Second choice (hybrid cable): Hybrid cable with a mix of optical fiber (MM 62.5 micron, MM 50 micron L/O OM3 10G300 and SM) in an indoor plenum or indoor outdoor plenum or OSP interlocking armor.
 - 5) Optical fiber cable shall use industry standard color coding for the jacket and the optical fiber strands.

- 6) Optical fiber cable shall have 900 um jacketing of the individual strands.
- 7) 62.5 micron optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
- 8) All Optical fiber cable shall be labeled as called out in Chapter 1, Part 3, Section 1-3.05of this document.
- 9) 50 micron Bend-Insensitive OM3 fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
- 10) Singlemode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.

Please see Attachments A through G for the optical fiber packages. OI&T will determine which one to use.

Part 3 - Execution

4-3.01 Additional Information

A. Refer to Chapter 1 for the following Part 3 - Execution information

4-3.02 Installation

B. General

- 1) All cable and associated hardware shall be placed so as to make efficient use of available space in coordination with other uses. All cable and associated hardware shall be placed so as to not impair the use or capacity of other building systems, equipment, or hardware placed by others (or existing).
- 2) Where cable is placed in ceiling areas or other non-exposed areas, cables shall be installed in cable trays or in non-continuous cable support system. Non-continuous cable supports shall be placed at random intervals no greater than 48 inches. Cables in non-continuous support systems shall be bundled using hook and loop type fasteners. Cable sag between supports shall not exceed 3 inches. Attaching wire to pipes or other mechanical items is not permitted. Cables shall not be bundled or tied in conduits, and in cable trays above ceilings.
- 3) All cabling shall be routed so as to avoid interference with any other service or system, operation, or maintenance purposes such as access boxes, network equipment, mechanical equipment access doors and covers, switches or electrical panels, and lighting fixtures. Avoid crossing areas horizontally just above or below any riser conduit. Lay and dress cables to allow other cables to enter the conduit/riser at a later time by maintaining a working distance from these openings. All cable shall be installed to allow for simple installation and removal of cables in the future.
- 4) Unless noted, all interior wiring shall be installed in raceways, Raceway Specification No. 2, one inch minimum. Wiring above accessible ceilings may be installed in cable tray and exposed on "J" hooks.
- 5) All cables shall be riser or plenum rated based on location and installation needs
- 6) All cables running outside the building shall be rated for outside plant installation.
- 7) Backbone cables shall be grouped separately from horizontal distribution cables. Cable for other systems shall be grouped separately.
- 8) All inside cable shall be installed neatly above accessible ceilings using cable tray and "J" hooks supported from building structure. Do not attach to pipes, conduits, ducts, etc. Do not allow cable to rest on pipes, conduits, ducts, ceiling tiles, etc. Do not attach to wires used for supporting suspended ceilings. Do not use tie wires or bridle rings.
- 9) All wires shall be marked at all junction boxes, pull boxes, cabinets, boxes and terminations. Each cable run between terminating locations shall be one continuous cable (no splices or connections).
- 10) The Contractor shall install cable in such a manner as to prevent stretching, kinking or sharp bends. Cable damaged during installation or not passing required testing shall be removed and replaced at no additional cost to the VA.

- 11) The Contractor shall replace or rework cables showing evidence of improper handling including stretches, kinks, short radius bends, over tightened bindings, loosely twisted and over twisted pairs at terminations, and too much jacket removed.
- 12) Minimum bend radius and maximum pulling tension for all cables shall be maintained during and after installation. Install cable in accordance with manufacturer's ratings and instructions.
- 13) Cables shall not be installed near power sources or other items where interference could develop. Cables shall not be placed within 18 inches of light fixtures and within 3 feet of motors, transformers, copy machines, or solid state motor starters unless cable is installed in conduit. Contractor shall furnish and install a grounding conduit system where these minimum clearances cannot be maintained.
- 14) In telecommunications spaces, cables shall be routed as close as possible to the ceiling, floor, or corners to insure that adequate wall or backboard space is available for current and future equipment and for cable terminations. Cables shall not be tie-wrapped to existing electrical conduit or other equipment. Minimum bend radius shall be observed.
- 15) Dress and attach cables to the backboard along the shortest possible route run square (horizontal and vertical) to the backboard. Bundle similarly routed cables together and attach by means of clamps or distribution rings. Cable dress and attachment shall minimize obstruction to future installations of equipment, backboard, or other cables.
- 16) Cables shall be neatly bundled with hook and loop type fasteners. Nylon tire wraps are not acceptable. Cables must be neatly bundled in the telecommunications spaces and at the cable service loop.
- 17) Cable service loops shall be provided at both ends of backbone cable runs.
 - a. At the telecommunications room, provide a minimum 8 foot service loop stored in a figure eight pattern in the cable tray above the racks/cabinets.
 - b. At the telecommunications room, provide sufficient slack to properly dress and terminate cables at the racks and cabinets.
 - i Provide sufficient slack so that swing gate type racks and cabinets can open fully
 - ii Provide sufficient slack so that cables do not catch or bind at swing gate type rack or cabinet hinge and the cables do not pull taught across the hinge or edge.
 - c. A minimum 25 foot service loop shall be maintained at each building entrance and exit.
- 18) All exterior fiber optic cables shall be installed in innerduct.
- 19) All Interlocked armor must be bonded on both ends.
- 20) A break-away link shall be used for installation of cables with a cable-puller or winch. The break-away link shall be designed to separate at or below the recommended maximum tension of the cable being installed.
- 21) Any damage to VA existing cabling or existing cable owned by others, caused as a result of work performed under this scope, shall be brought to the VA Facility Project Manager attention and repaired or replaced within 24 hours.
- 22) Contractor shall use only cable lubricants recommended by the manufacturer for use with the specific cable construction.
- 23) Should a cable become kinked, skinned or stretched during installation, the cable shall be removed and replaced at no additional cost to the VA. Splicing at points other than those specified will not be acceptable.

See Attachment G for OSP Optical Fiber Installation (if needed for this project).

4-3.03 Fiber Optic Cable Testing

- A. Fiber Optic Cable Test Equipment:
 - 1) Cable tester will be NRTL certified for TIA/EIA TSB95.

- Cable testers will be Optical Power Meter and High Resolution Optical Time Domain Reflectometer (OTDR). The cable tester will be NRTL certified for compliance to latest TIA/EIA Standard 568B performance requirements at 850, 1300 and 1550 nm.
- Testers will have been calibrated at least one year prior to use on this project. Contractor to provide proof to VA if requested.
- 4) All testing equipment (OTDR, Light Loss, Splicer etc.) will be owned by the Contractor. Contractor must prove ownership of equipment if requested.
- B. Cable segments and links will be tested from both ends of the cable for each of the construction phases. (Verify that cable labeling matches at both ends).
- C. The system will not be considered certified until the tester has acknowledged that the performance of the physical layer of the system has been fully tested and is operational at the completion of the installation phase.

D. Testing Procedures:

- Perform each visual and mechanical inspection and electrical test, including optional procedures, stated in NETA ATS, Section 7.25. Certify compliance with test parameters and manufacturer's written recommendations. Test optical performance with optical power meter capable of generating light at all appropriate wavelengths.
- 2) Prior to testing, all connectors will be properly cleaned with an approved product manufactured specifically for this purpose.
- 3) Prior to beginning testing, confirm that all testing equipment is fully charged or operating on building power. If the test equipment power levels drop below 50%, recharge unit or continue testing with a different (fully charged) tester.
- 4) Initially test optical cable with a light source and power meter utilizing procedures as stated in TIA TSB-140, ANSI/TIA/EIA-526-7, ANSI/TIA/EIA-526-14A, OFSTP-14A Optical Power Loss Measurements of Installed Multi-mode Fiber Cable Plant and ANSI/TIA/EIA-526-7 Measurement of Optical Power Loss in installed Single-Mode Fiber cable plant.
- 5) Measured results will be plus/minus 1 dB of submitted loss budget calculations. If loss figures are outside this range, test cable with Optical Time Domain Reflectometer (OTDR) to determine cause of variation. Correct improper splices and replace damaged cables at no charge to the Owner.

E. Multi-Mode Fiber Optic Cables:

- 1) Will be tested bi-directionally for length and attenuation at both the short and long wavelengths for Multi-Mode (850 and 1300 nm). This is Tier 1 testing as specified in TIA TSB-140. Test all Multi-Mode strands to ensure they are capable of transmitting 10 Gigabit Ethernet speeds.
- 2) The maximum insertion loss measured at 23 degrees C. will be 3.75dB/km @ 850 nm and 1.5 dB/km @ 1300 nm.

F. Single-Mode Fiber Optic Cables:

- 1) Will be tested bi-directionally for length and attenuation at both the short and long wavelengths for Single-Mode fiber (1310 and 1550 nm). This Tier 1 testing as specified in TIA TSB-140.
- 2) Single-mode fibers will be dual wave length and provide attenuated wavelength of the 1310 nm and 1550 nm. 850 nm for single-mode fiber will not be acceptable under any circumstances.
- G. All cables will be tested after termination using a cable certification tester that contains the test equipment manufacturer's most current version of firmware.
- H. Test all fiber optic cable segments end-to-end from the fiber optic backbone patch panel in the Equipment Room to each fiber optic backbone patch panel in each Telecommunications Room.
- I. Broken or faulty strands will not be accepted. Any cable not fully functional with all strands usable will be replaced at no cost to the VA.
- J. Upon completion of testing, all connectors will be capped with a product made for that specific function by the connecting hardware manufacturer to prevent the contamination of the fiber from construction debris or other foreign objects.

K. Test Results:

- The test results information for each link will be recorded in the memory of the field tester upon completion of the test. The tester will be capable of storing test data in either internal or external memory. The external media used will be left to the discretion of the user.
- 2) Test results saved by the tester will be transferred into a Windows based database utility that allows for maintenance, inspection and archiving of these test records. A guarantee must be made that the measurement results are transferred to the PC unaltered as well as any printed reports generated from the software application.
- 3) The test results information for each link will be recorded in the memory of the field tester upon completion of the test. The tester will be capable of storing test data in either internal or external memory. The external media used will be left to the discretion of the user.
- 4) Optional formats of data reporting are: comma separated variable (.csv), Portable Document File (.pdf) or compatible, plain text (.txt), or hypertext markup language (.html/.htm).
- 5) Test results will include the following:
 - a. Telecommunications Room number
 - b. Location of fiber pull i.e. (Equipment Room # to Telecom Room #)
 - c. Patch panel # and location
 - d. Connector type
 - e. Distance
 - f. Wavelength tested
 - g. Technician who performed the testing

L. The VA reserves the right to observe testing and/or randomly sample completed links for conformance to project specifications.

Chapter 5 Horizontal Structured Cabling

Part 1 - General

- 5-1.01 Products Installed but not Supplied under This Section
- 5-1.02 Systems Description
- 5-1.03 Manufacturer Qualifications
- 5-1.04 Testing Agency Qualifications
- 5-1.04 Warranty

Part 2 - Products

- 5-2.01 General
- 5-2.02 Manufacturer
- 5-2.03 UTP Pin/Pair Termination Assignment
- 5-2.04 System Performance
- 5-2.05 Source Quality Control
- 5-2.06 Wall Plates
- 5-2.07 Jacks
- 5-2.08 UTP Cable

Part 3 - Execution

- 5-3.01 Additional Information
- 5-3.02 Installation
- 5-3.03 Testing Procedures

Chapter 5

Horizontal Structured Cabling

Part 1 – General

5-1.01 Products Installed but not Supplied under This Section

- A. All conduit and EMT required for Communications cabling pathway in/out of cross connect closets and in/out of wall cavities at the work area. EMT or Conduit for pathways shall have no more than two 90 degree bends and no continuous section over 100'.
- B. All core holes and poke through devices in the floor for the installation of Communications cabling.
- C. All core holes and EMT sleeves between floors for the routing of Communications cabling.
- D. Back boxes for the mounting of NEMA rated faceplates.
- E. Drag line or pull string at the backboxes fished through EMT or conduit to the other end for installing 4 pair and multi-pair cables.
- F. Minimum of 2 walls covered in ¾" AC grade plywood painted white with fire retardant paint in each cross connect closet or connection point. Plywood walls shall be covered 4' H x 8' W whenever possible.
- G. Basket tray or ladder racking to support main pathway cable bundles.

5-1.02 Systems Description

- A. Horizontal copper cabling system consists of Category 6 and/or Category 6A cables with four unshielded twisted pairs of solid annealed copper wrapped in plenum rated insulation with an overall plenum rated jacket, Green or Yellow in color, with a wire thickness of 23 AWG. Each four pair cable is terminated onto 8 position 8 conductor Category 6 and/or Category 6A connectors using 110 style IDCs. Connectors are placed into NEMA rated faceplates at the work area and placed into rack mounted patching panels in the equipment / networking rooms.
- B. Labeling of Horizontal Cabling System shall be done per called out in Chapter 1 of this document.
- C. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called "permanent link," a term that is used in the testing protocols.
 - 1) ANSI/TIA-568 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
 - 2) Horizontal cabling will contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 - 3) Bridged taps and splices will not be installed in the horizontal cabling.
- D. A work area is approximately 100 sq. ft. (9.3 sq. m), and includes the components that extend from the telecommunications outlet/connectors to the station equipment.
- E. The maximum allowable horizontal cable length is 246 feet (76 m). This maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) to the workstation equipment. The maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) in the horizontal cross-connect.

5-1.03 Manufacturer Qualifications

- A. Manufacturer shall be a telecommunications product manufacturer with at least 20 years experience.
- B. Manufacturer shall be ISO 9001 and TL9000 certified manufacturer and shall employ Six Sigma methodology in its manufacturing process.

5-1.04 Testing Agency Qualifications

- A. Independent testing agencies shall be nationally recognized as having the expertise to independently verify copper and optical fiber cabling systems and components.
- B. Testing Agency Qualifications: An NRTL.
 - 1) Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise onsite testing.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Telecommunications Pathways and Spaces: Comply with ANSI/TIA-569
- E. Grounding: Comply with ANSI-J-STD-607.

5-1.05 Warranty

- A. Contractor shall provide a 1 year parts and labor warranty against defective workmanship and/or system component failure.
- B. Contractor shall execute a Lifetime Applications Assurance Warranty for parts and labor to support stated applications from the connectivity Manufacturer.
- C. As further described below, Berk-Tek and Leviton ("Supplier") warrant to the customer ("Buyer") that Berk-Tek Leviton Technologies certified network installations will exceed the defined TIA 568 series industry specifications in force at the time of product purchase. Furthermore, the products that comprise the certified Berk-Tek Leviton Technologies Cabling System will meet or exceed the applicable Berk-Tek Leviton Technologies performance specifications in effect at the time of manufacture.
- D. This warranty covers the copper and fiber optic permanent links of the network as defined by TIA-568 which includes the cable and connecting hardware. This warranty will be extended to include the entire channel provided that the applicable Leviton patch cords and Leviton equipment cords are utilized, and all products are installed within areas protected from outside elements.
- E. Supplier will honor claims on this warranty for Life (which is defined as the usable life of the building and is referred to as the "Warranty Period"). If system performance or material fails to meet the appropriate industry specification, the owner must notify Supplier, in writing, within ten 10 days of defect discovery date. If a warranty claim is determined by Supplier in its sole discretion to be valid, Supplier will, at its option, replace or repair the defective components of the permanent link. Supplier may reimburse the claimant for necessary and reasonable labor costs, provided prior approval is obtained from Supplier. The liability of Supplier for the above remedies shall not exceed \$300 per each network permanent link or end-user drop.
- F. The electrical performance provided by the combination of the different components of the permanent link will be certified by Supplier to meet the applicable Berk-Tek Leviton Technologies performance specifications in effect at the time of manufacture as long as each condition listed below is met:
 - 1) The network cabling infrastructure must be designed in accordance with TIA 568 Series Standards, and installed by Leviton Certified or Supplier approved designers and installers. Supplier is not liable for design errors or improper construction.

- 2) Each permanent link or channel in the network must be field tested in accordance with the TIA 568 series industry standard in force at the time of purchase AND the installed permanent links and channels must have passed all applicable TIA and Berk-Tek Leviton Technologies performance requirements. Minimum testing for copper systems includes Wire Map, Length, Attenuation, Near End Crosstalk, Far End Crosstalk, Return Loss, PS NEXT, ELFEXT, and PS ELFEXT.
- 3) Appropriate Warranty Application form must be properly completed and submitted to Supplier prior to initiating the installation. The Warranty Submittal Form must be submitted within 10 days of installation completion. Copies of all certification test reports must be submitted as part of the Warranty Submittal Form, and be kept on file by the registrant to be re-submitted when requested by Supplier. Data must be saved in raw data and summary formats. Submitting the data via online upload, e-mail or on disc are the preferred methods for providing test data.
- G. This Lifetime warranty will be void unless the system is maintained in accordance with industry standards and no changes are made after warranty issuance and acceptance date, unless Supplier grants written consent.
- H. A claim will be reviewed and held as valid only if all of the following are satisfied:
 - 1) Reported within ten (10) days of date of defect discovery.
 - 2) ALL installation records are provided (original network installation design prints, test results, warranty submittal form).
 - 3) Copies of all original receipts for materials and labor from the date of initial installation.
 - 4) Supplier has full and open access to inspect and evaluate the installation site.
- I. Supplier warrants to Buyer that at the time of delivery the goods sold hereunder will be free from defects in design, material, and manufacture and will conform substantially to the Supplier's applicable specifications as stated herein. Supplier's liability and Buyer's remedy under this warranty are strictly limited to the repair or replacement specified above.

Part 2 – Products Refer to Appendix A for Approved Parts List

5-2.01 General

- A. The Electrical Code referred to in these specifications is the National Electrical Code as currently adopted by the State of Missouri. All work will be provided in strict compliance with the Electrical Code and all regulations that may apply.
- B. Where standards exist, for a particular category, products used on this project will be listed by an OSHA approved Nationally Recognized Testing Laboratory (NRTL), and be approved or listed for the intended service and application.
- C. These specifications do not undertake to repeat the requirements of codes, regulations or NRTL listing or labeling instructions. The Specifications or Drawings may require items or work beyond the requirements of applicable codes or regulations. The stricter, higher quality, greater quantity or higher cost will be provided. It is incumbent on the Installer, material and equipment suppliers to meet these specifications, applicable codes, regulations, and NRTL listing agency restrictions.

5-2.02 Manufacturer

- A. The copper cabling system and optical fiber cabling system design uses Leviton connectivity and Berk-Tek cables.
- B. The word "Manufacturer" will include the Manufacturer, the Manufacturer's Representative, the Distributor, the Fabricator, and the Supplier of the particular classification of equipment, system, product, and material.

- C. All work, equipment, and systems will be manufactured, provided, repaired, installed, and tested in accordance with the latest edition and all current amendments of the applicable publications and standards of the organizations listed below as of the date of the Contract Documents. When the Specification requirements exceed the requirements of these publications and standards the Specifications will govern:
 - 1) State Building Code (SBC)
 - 2) Building Department Inspectional Services
 - 3) American Society for Testing and Materials (ASTM)
 - 4) Underwriter's Laboratories, Inc. (UL)
 - 5) Insulated Cable Engineers Association (ICEA)
 - 6) National Electrical Manufacturers Association (NEMA)
 - 7) Institute of Electrical and Electronics Engineers, Inc. (IEEE)
 - 8) American National Standards Institute, Inc. (ANSI)
 - 9) National Fire Protection Association (NFPA)
 - 10) Local Electric Code
 - 11) Department of Public Safety (DPS)
 - 12) Building Officials and Code Administrators International, Inc. (BOCA)
 - 13) Department of Labor USA. Safety and Health Regulations for Construction (OSHA)
 - 14) Energy Codes
 - 15) National Electrical Contractors Association (NECA)
 - 16) National Bureau of Standards (NBS)
 - 17) Federal Communications Commission (FCC)
 - 18) Utilities Serving Project.
 - 19) Fire Department.
 - 20) Americans with Disabilities Act Applications Guidelines (ADAAG).
 - 21) Accessibility Guidelines for Buildings and Facilities.
 - 22) Any and all Federal, State and Local Standards, Codes and Authorities having Jurisdiction.
 - 23) In addition, all phases of the Structured Cabling System installation will adhere to applicable Local Area Network (LAN) Specifications of the Institute of Electrical and Electronics Engineers (IEEE), Electronics Industry Association/Telecommunications Industry Association (TIA/EIA), and Building Industry Consulting Service International (BICSI). The entire system and all components will be NRTL certified to appropriate TIA/EIA performance rating Category, Latest TIA/EIA Standards 455-A, 492AAAA, 568-A (latest revision) and (SP-4195-B and SP-4195-B-1), 569-A, 570, 606, 607 and 758, TIA/EIA TSB 67, TSB 72, TSB 75, TSB 95 and other standards as applicable.
- D. The Installer will have available at the job site at all times one copy of the latest edition of the Electrical Code, TIA and BICSI Standards applicable to the work as specified within this document.
- E. The above requirements will not in any way limit responsibility or requirements to comply with all other codes, standards and laws.
- F. Material, equipment, enclosures, and systems will be designed for use as required to suit the conditions, exterior or interior operation, dust tight, water tight, explosion-proof, or other special types.

5-2.03 UTP Pin/pair Termination Assignment

A. The UTP cabling systems will have TIA/EIA T568B pin/pair termination assignment. All conductors provided will be properly and consistently terminated at both ends throughout the entire systems. Maintain proper untwist of pairs and removal of jacket per TIA and BICSI.

5-2.04 System Performance

- A. Horizontal four pair Category 6 copper cabling system shall be capable of supporting 1000 Base-T applications for a total distance of 100 meters with equipment cords. System shall provide "future proof" channel performance and guaranteed margins as noted in this document and is guaranteed to exceed ANSI/TIA/EIA-568-B.2 Category 6 specifications for Insertion Loss, NEXT, PSNEXT, ACR, PSACR, ELFEXT, PSELFEXT and Return Loss to 250 MHz.
- B. Telephone Cable will terminate at wall in a Category 6 compliant, eight-position RJ-45 connector and attached to wall mounted faceplate.
- C. Wire map of connector will be 568 B-pin configurations per EIA/TIA standards.
- D. Preferable product for connectors and faceplates is Leviton, or equivalent providing product meets standard.
- E. The contractor shall provide 2 each triplex outlets for each room (two data/one voice), except where site drawings specify otherwise. Locations and number of drops will be determined by the site service drawing provided by the VA.
- F. An inspection is necessary with VA Engineer, Contractor and Telecom Manager prior to installation of cabling.

5-2.05 Source Quality Control

A. All materials shall be purchased from Distributors authorized by system Manufacturers to sell new and unused components.

5-2.06 Wall plates

- A. Manufacturer Leviton Mfg. Co., 201 North Service Rd., Melville, NY 11747. Provide wall plates as specified below:
 - 1) Quickport Single Gang 4-Port wall plates with ID Windows
 - 2) For all faceplates with opening that do not have jacks installed the contractor must provide and install blanks.

5-2.07 Jacks

- A. Manufacturer Leviton Mfg. Co., 201 North Service Rd., Melville, NY 11747 (800)-824-3005. Provide wall plates as specified below:
 - 1) Leviton extreme Cat 5E Connetor with / RFT
 - a. Leviton Cat 5E Connector BLUE for re-termination of existing Cat 5E infrastructure
 - 2) Leviton extreme® 6+ CAT 6 Connector with / RFT
 - a. Leviton Cat 6 Connector GREEN for Data Jacks
 - b. Leviton Cat 6 Connector YELLOW for Wireless Jacks
 - c. Leviton Part# 41084-BIB Blank Quick Port Inserts
- B. Leviton extreme® CAT 6A Component Rated Connector with / RFT
 - a. Leviton Cat 6A Component Connector Green for Data Jacks
 - b. Leviton Cat 6A Component Connector Yellow for Wireless Jacks

C. UTP Cable

A. Manufacturer – Berk-Tek, Provide UTP Cable as specified below:

- D. Berk-Tek LANmark 1000 Category 6 Cable
 - a. Plenum rated cable Berk-Tek LANmark 1000 for Data (Green)
 - b. Plenum rated cable Berk-Tek LANmark 1000 for Wireless (Yellow)
- E. Berk-Tek LANmark 10G2 Category 6A Cable
 - a. Plenum rated cable Berk-Tek LANmark 10G2 for Data (Green)
 - b. Plenum rated cable Berk-Tek LANMark 10G2 for Wireless (Yellow)
- B. Manufacturer Leviton. Provide Made in the USA UTP Slimline Patch Cables as specified below:
 - 01) Cat 6 3' Yellow Patch Cords
 - 02) Cat 6 5' Orange Patch Cords
 - 03) Cat 6 7' Black Patch Cords
 - 04) Cat 6 10' Gray Patch Cords
 - 05) Cat 6 14' Blue Patch Cords
 - 06) Cat 6 25' Red Patch Cords
 - 07) Cat 6 50' Green Patch Cords
 - 08) Cat 6A 3' Yellow Patch Cords
 - 09) Cat 6A 5' Orange Patch Cords
 - 10) Cat 6A 7' Black Patch Cords
 - 11) Cat 6A 10' Gray Patch Cords
 - 12) Cat 6A 14' Blue Patch Cords
 - 13) Cat 6A 25' Red Patch Cords
 - 14) Cat 6A 50' Green Patch Cords

5-3.01 Additional Information

F. Refer to Chapter 1 for the following Part 3 – Execution information

5-3.02 Installation

- G. All Category 6 and/or 6A cable conductors shall be terminated onto 8 position 8 conductor Category 6 and/or 6A connectors using 110 styles IDC.
- H. All connectors shall be placed into standard density QuickPort faceplates 4 port Ivory faceplates with ID windows.
- I. 4 port faceplates shall be place on every wall of a four sided room
- J. Data cable system shall have two Leviton Category 6 and/or 6A green jacks terminated at every faceplate.
- K. Appearance of cable system faceplates shall match the décor and mounting height of electrical outlet faceplates.
- L. Telecommunications back boxes shall be installed for the mounting of NEMA rated faceplates.
- M. All faceplates shall have a station identification window for a machine label protected behind transparent plastic.
- N. Copper cable will be routed back to TC via cable tray or J-hooks.

5-3.03 Testing Procedures

- A. Test results will be submitted to Telecommunications Management at job completion.
- B. Cabling systems shall meet or exceed the electrical and transmission characteristics of the systems specified.
- C. Cable segments and links shall be tested from both ends of the cable for each of the construction phases. (Verify that cable labeling matches at both ends).
- D. The system shall not be considered certified until the tester has acknowledged that the performance of the physical layer of the system has been fully tested and is operational at the completion of the installation phase.
- F. After the installation is complete, in addition to any other required testing as described herein, and at such times as the VA directs, the Contractor shall be present while the VA conducts an operating test for approval. The installation shall be demonstrated to be in accordance with the requirements of this specification. Any defects revealed shall be corrected promptly at the Contractor's expense and the tests performed again.
- G. After review of the completed test results, the VA reserves the right to retest the installed cables, utilizing the Contractor's tester and the Contractor's labor.
- H. Equipment Manufacturer's Factory Test
 - 1) Each cable and equipment Manufacturer shall factory test their respective products being installed on this project and provide test reports at time of delivery. Provide separate

- respective test reports indicating that they meet or exceed the latest applicable TIA/EIA Standards and technical bulletins.
- 2) All other products relative to this specification shall be tested to its respective industry strictest standards.
- 3) Each Manufacturer shall factory test their respective cable or equipment provided to this project at several lower frequency levels, including the minimum and maximum frequency level indicated herein. The test reports shall indicate test results for at least five equal incremental frequency levels including the maximum required.
- O. Field Testing Equipment: Submit during shop drawing review on the testing equipment to be utilized on this project. The installer shall test all cables installed under this Section.
- 1) Unshielded Twisted Pair Testing Equipment:
 - a. The cable tester shall have a wide variety of preprogrammed cable types as an integral part of its testing system and have the ability to test cables less than 6 feet (6ft.) from the test point.
 - b. Testing shall be accomplished using level III or higher field tester that is loaded with the most current version of test software by the manufacturer of the test equipment.
 - c. Provide factory calibration report of field test equipment.

P. Testing Procedures:

- 1) Testing shall conform to TIA-568 standard.
- 2) Testing will be to the Permanent Link Test Parameters.
- 3) Test each pair and shield of each cable for opens, shorts, grounds, and pair reversal. Correct grounded and reversed pairs. Examine open and shorted pairs to determine if problem is caused by improper termination. If termination is proper, tag bad pairs at both ends and note on termination sheets.
- 4) Test each UTP cable and passive components. Provide certification that entire installation of UTP cabling, equipment and jacks are NRTL certified meeting or exceeding a minimum of category performance specified on all four pairs of conductors.
- 5) Tests shall be based on each pair of conductors and not the aggregate multiple pair results.
- 6) Test all installed cable segments end-to-end, from the telecommunications room horizontal patch panel/cross connect block panel to each work area outlet and from each telecommunications room backbone patch panel/cross-connect block panel to respective main cross connect, and from the work area outlet to the main cross-connect (through patch cables or cross- connect wiring) with a Signal Injector, Graphical Link Testing Meter and Time Domain Reflectometer (TDR) for compliance to latest TIA performance requirements, as well as NEXT, ELFEXT, structural return loss, alternating power sum, opens, shorts, continuity, cable length, and characteristic impedance.
- 7) Provide report indicating failures and what actions were taken to ensure a passing horizontal cable and its terminations. Any cable failing the certification test (Fail, Fail* or, Pass*) must have remedial work done to provide a full pass test result; Remediation may include retermination or replacement of the cable, which fails. No cables passing within tolerance only (Conditional Pass*) will be accepted.

Q. Test results:

- The test results information for each link shall be recorded in the memory of the field tester upon completion of the test. The tester shall be capable of storing test data in either internal or external memory. The external media used shall be left to the discretion of the user.
- 2) Test results saved by the tester shall be transferred into a Windows based database utility that allows for maintenance, inspection and archiving of these test records. A guarantee must be made that the measurement results are transferred to the PC unaltered as well as any printed reports generated from the software application.

- 3) Optional formats of data reporting are: comma separated variable (.csv), Portable Document File (.pdf) or compatible, plain text (.txt), or hypertext markup language (.html/.htm).
- 4) Test Results shall include the following:
 - a. Applicable room number of jack location (room number per Contract Documents)
 - b. Applicable Telecommunications Room number
 - c. Circuit I.D. number with corresponding jack identifier
 - d. Wire Map shall include the following:
 - 1. Continuity to the remote end
 - 2. Shorts between any two or more conductors
 - 3. Crossed pairs
 - 4. Reversed pairs
 - 5. Split pairs
 - 6. Any other miswiring
 - e. Length
 - f. Insertion Loss
 - g. Near-end Crosstalk (NEXT) Loss
 - h. PS-NEXT (Power Sum Near End Cross Talk)
 - i. ELFEXT (Equal Level Far End Cross Talk)
 - j. PS-ELFEXT (Power Sum Equal Level Far End Cross Talk)
 - k. Propagation Delay
 - I. Delay Skew
 - m. Return loss

Attachment A – Approved Parts List

Manufacturer	Part #	Description	Special Instructions
Dymo Rhino	1734519	6000 Printer	Instructions
Dymo Rhino	1734521	6500 Printer	
Dymo Rhino	1738636	Connect Software	
Rhino	1734524	Flex Nylon Label 1" – White	
Rhino	18482	Perm Poly Label 3/8" – White	
Rhino	18508	Perm Poly Label 3/8" – Clear	
Rhino	18483	Perm Poly Label ½" – White	
Rhino	1734523	Perm Poly Label 1" – White	
Rhino	18443	Vinyl Label 3/8" – White	
Rhino	18444	Label ½" – White	
Rhino	18445	Label 3/4" – White	
Rhino	18111	Non-adhesive Label ¼" – White	
Rhino	1734525	1" Flexible Nylon adhesive labels	shall be used for all
Rhino	1734523	Perm Poly adhesive labels	shall be used for all Telecommunications Space Labels
Rhino	1734525	1" Labels-Flexible Nylon adhesive labels	Shall be used for all communications cable labels
Chatsworth	40158-020	Telecommunications Main Grounding Bus-Bar (TMGB)	
Chatsworth	40156-012	Telecommunications Grounding Bus-Bar (TGB)	
Chatsworth	40161-072	Rack Bus-Bar	
Chatsworth	10250-012	12" Ladder Rack	
Chatsworth	50120-703	4-Post Rack	
Chatsworth	35522-703	Evolution Vertical Cable Manager 8" Channel	
Chatsworth	10506-706	Rack to Rail Transition Kit	
Chatsworth	60100-001	RIM-750 Node Module,	
Chatsworth	60111-001	Miniature Temperature Sensor,	
Chatsworth	60111-003	Room Humidity Sensor, Wall Mount,	
Chatsworth	60109-001	Water Detection Sensor	
Axis iP Camera	M1019	Axis iP Camera	
Chatsworth	60109-003	Water Detection Rope, 10 Ft	
Cyber Power	OL8000RT3UTF	8KVA Online UPS with Transformer	
Cyber Power	RMCARD302	Remote Management Card	
Cyber Power	BP240V30ART3U	Extended Runtime Battery Pack	
Leviton	5R2UH-S06	2 U Opt-X Ultra fiber enclosure	
Leviton	5R4UH-S12	4 U Opt-X Ultra fiber enclosure	
Leviton	5R1UH-S03	1 U Opt-X Ultra fiber enclosure	
Leviton	5D000-*UL	Fiber enclosure locking covers	
Leviton	5RCMP-KIT	Fiber Cable Clamp	
Leviton	49991-SLC	. FastCAM LC, Single-mode	
LOVILOIT	-3331 GEO	Connector, blue	
Leviton	49991-MLC	FastCAM LC, 62.5/125 Multi-	
		mode Connector, beige	
Leviton	49991-LLC	FastCAM LC 50 micron L/O Multi- mode Connector, Aqua	
Leviton	5F100-2IL	6-Pack LC 62.5 micron MM (12- fiber), zirconia ceramic sleeve	
Leviton	5F100-2LL	6-Pack LC SM (12-fiber), zirconia ceramic sleeve	

Leviton	5F100-2QL	6-Pack LC MM (12 fiber) laser optimized adapter plates, aqua, zirconia ceramic sleeve	
Leviton	5F100-4QL	6-Pack LC MM (24 fiber) laser optimized adapter plates, aqua, zirconia ceramic sleeve	
Leviton	FPC- M1RR3VVXXXFAB	LC-LC 62.5 micron multimode Patch Cord	XXX – determines length in feet
Leviton	FPC- M3RR3VVXXXFAB	LC-LC 50 micron L/O multimode Patch Cord	XXX – determines length in feet
Leviton	FPC- S2RR3VVXXXFAB	LC-LC Single mode Patch Cord	XXX – determines length in feet
Leviton	C1255-H48	2RU 48Port QuickPort Flat Composite Panel	With two integrated patch cord managers and two rear cable management bars
Leviton	5G110-RL5	Extreme Cat 5E Blue Jacks	To be used for re- termination of existing 5E cables only
Leviton	61110-RV6	Extreme® 6+ CAT 6 Green Data Jacks	
Leviton	61110-RY6	Extreme® 6+ CAT 6 Yellow Wireless Jacks	
Leviton	41084-BIB	Blank Quick Port Inserts	
Leviton	6A10G-RV6	Cat 6A Green Data Jacks	
Leviton	6A10G-RY6	Cat 6A Yellow Wireless Jacks	
Leviton	6D560-03Y	Cat 6 3' Yellow Patch Cords	
Leviton	905-6D560-05O	Cat 6 5' Orange Patch Cords	
Leviton	6D560-07E	Cat 6 7' Black Patch Cords	
Leviton	6D560-10S	Cat 6 10' Gray Patch Cords	
Leviton	6D560-14L	Cat 6 14' Blue Patch Cords	
Leviton	6D560-25R	Cat 6 25' Red Patch Cords	
Leviton	6D560-50G	Cat 6 50' Green Patch Cords	
Leviton	6AS10-03Y	Cat 6A 3' Yellow Patch Cords	
Leviton	6AS10-05O	Cat 6A 5' Orange Patch Cords	
Leviton	6AS10-07E	Cat 6A 7' Black Patch Cords	
Leviton	6AS10-10S	Cat 6A 10' Gray Patch Cords	
Leviton	6AS10-14L	Cat 6A 14' Blue Patch Cords	
Leviton	6AS10-25R	Cat 6A 25' Red Patch Cords	
Leviton	6AS10-50G	Cat 6A 50' Green Patch Cords	
Leviton	43115-075	Hook and loop (Velcro) cable	
		strain relief	
Leviton	42081-4IS	Quickport Single Gang 4-Port wall plates with ID Windows, Ivory	
Leviton	49256-A15	angled 48 port 1U patch panel with custom numbering (1-47 ODD on top and 2-48 EVEN on bottom)	Port Replicator
Leviton	CT- U6R12L015FJVA30N- PNF30Y-SB03B Left	MTO ITEM]: Copper Trunk; Cat 6 UTP CMR cable assembly; 12 Blue bundled cables, White Braid 15 feet length; 1st End Jack Connector, Green jacks with a 30 inch breakout, Even cut; 2nd End Plug Connector with Slimline clear boot, Plugs with a 30 inch breakout, Staggered to Cable 1&2 shortest (Cisco);	Port Replicator

		Standard labeling with pulling eye on 2nd end; TIA/EIA Wiring T568B, Tested to TIA 568-C.2; Berk-Tek - LANmark-1000 branded cable used	
Leviton	CT- U6R12L015FJVA30N- PND30Y-SB03B Right	MTO ITEM]: Copper Trunk; Cat 6 UTP CMR cable assembly; 12 Blue bundled cables, Black Braid 15 feet length; 1st End Jack Connector, Green jacks with a 30 inch breakout, Even cut; 2nd End Plug Connector with Slimline clear boot, Plugs with a 30 inch breakout, Staggered to Cable 1&2 longest (Cisco); Standard labeling with pulling eye on 2nd end; TIA/EIA Wiring T568B, Tested to TIA 568-C.2; Berk-Tek - LANmark-1000 branded cable used	Port Replicator
Berk-Tek	49005-DMB	High-Density Cable Management Bar 1U to be used to manage bundles in the rear of the angled patch panels	Port Replicator
Berk-Tek	10032097 or 10032096	Berk-Tek LANmark 1000 Category 6 Cable, Plenum rated, Green for Data	
Berk-Tek	10032090 or 10032089	Berk-Tek LANmark 1000 Category 6 Cable, Plenum rated, Yellow for Wireless	
Berk-Tek	10137694	Berk-Tek LANmark 10G2 Category 6A Cable, Plenum rated, Green for Data	
Berk-Tek	10137385	Berk-Tek LANmark 10G2 Category 6A Cable, Plenum rated, Yellow for Wireless	
Berk-Tek	FIBER: Indoor Interlocking Armor Plenum	Please see attachment B or C for approved part#'s and descriptions	The approved attachment will be specified by engineering.
Berk-Tek	FIBER: Indoor/Outdoor Interlocking Armor Plenum	Please see attachments D or E for approved part#'s and descriptions	The approved attachment will be specified by engineering.
Berk-Tek	FIBER: OSP Single Jacket, Single Armor	Please see attachments F or G for approved part#s and descriptions	The approved attachment will be specified by engineering.
Chatsworth	35521-703	Evolution Double-Sided Vertical Cable Manager 6" Channel	
Chatsworth	35523-703	Evolution Double-Sided Vertical Cable Manager 10" Channel	
Chatsworth Chatsworth	35441-702 P3-1P0L4	2 U Horizontal Cable Manager Rack Mount PDU – Vertical (0U) PDU, Monitored, L21-30 Plug, Three Phase WYE, 120/208V, 30A, (24) C13 (9) C19 (3) 5-20R Outlets,120/208V,3 x 2P 20A Hydraulic Magnetic Breakers, No Surge Protection, Graphical Local Display, Ethernet, IP and Serial	

	Monitoring, USB, PDU Linking (IP Consolidation) and Environmental Sensor Ports, Tool less Mounting Buttons, No Additional Brackets	

Attachment B – Indoor Interlocking Armor Plenum (12/12/24configuration)

- A. Provide products in quantities as listed below in the performance based specification.
 - 62.5 micron multimode 12-strand optical fiber cable shall be plenum rated interlocking armored fiber cable with an outside diameter not to exceed .550" and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part # PDPK012CB3510/25.
 - 2) 50 micron Bend-Insensitive OM3 10G/300 24-strand optical fiber indoor plenum interlocking armored fiber cable with an outside diameter not to exceed .590" and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK024EB3010/25.
 - 3) 12-strand singlemode optical fiber cable shall be plenum rated interlocking armored fiber cable with an outside diameter not to exceed .550 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK012AB0707.
 - 4) Second choice is a plenum rated hybrid optical fiber with 48 total fibers (24-strand MM 50 micron L/O OM3 10G300, 12-strand MM 62.5 micron and 12-strand SM) in an indoor plenum interlock armored fiber with an outside diameter not to exceed 1.0" and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK12B048-012CB3510/25-024EB3010/25-012AB0707.
 - Optical fiber cable shall use TIA industry standard color coding for the jacket and optical fiber strands.
 - 6) Optical fiber cable shall have 900 um jacketing of the individual strands.
 - 7) 62.5 micron multimode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 8) All optical fiber cable shall be labeled as called out in Chapter 1, Part 3, Section 1-3.05 of this document.
 - 9) 50 micron Bend-Insensitive OM3 optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 10) Singlemode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.

Attachment C – Indoor Interlocking Armor Plenum (6/6/12 configuration)

- A. Provide products in quantities as listed below in the performance based specification.
 - 62.5 micron multimode 6-strand optical fiber cable shall be plenum rated interlocking armored fiber cable with an outside diameter not to exceed .500 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK006CB3510/25.
 - 2) 50 micron Bend-Insensitive OM3 10G/300 12-strand optical fiber indoor plenum interlock armored fiber cable with an outside diameter not to exceed .550 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. : Berk-Tek part #PDPK012EB3010/25
 - 3) 6-strand singlemode optical fiber cable shall be plenum rated interlocking armored fiber cable with an outside diameter not to exceed .500 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK006AB0707.
 - 4) Second choice is a plenum rated hybrid optical fiber with 24 total fibers (12-strand MM 50 micron L/O OM3 10G300, 6-strand MM 62.5 micron and 6-strand SM) in an indoor plenum interlock armored fiber cable with an outside diameter not to exceed .590 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. : Berk-Tek part #PDPK024-006CB3510/25-012EB3010/25-006AB0707
 - Optical fiber cable shall use TIA industry standard color coding for the jacket and optical fiber strands.
 - 6) Optical fiber cable shall have 900 um jacketing of the individual strands.
 - 7) 62.5 micron multimode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 8) All optical fiber cable shall be labeled as called out in Chapter 1, Part 3, Section 1-3.05 of this document.
 - 50 micron Bend-Insensitive OM3 optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 10) Singlemode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.

Attachment D – Indoor/Outdoor Interlocking Armor Plenum (12/12/24 configuration)

- A. Provide products in quantities as listed below in the performance based specification.
 - 62.5 micron multimode 12-strand optical fiber cable shall be indoor/outdoor plenum rated interlocking armored fiber cable with an outside diameter not to exceed .550 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part#PDPK012CB3510/25-HE
 - 2) 50 micron multimode 24-strand optical fiber shall be Bend-Insensitive OM3 10G/300 indoor/outdoor plenum rated interlocking armored fiber cable with an outside diameter not to exceed .900 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK024EB3010/25-HE
 - 3) Singlemode 12-strand optical fiber cable shall be indoor/outdoor plenum rated interlocking armor with an outside diameter not to exceed .550 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK012AB0707-HE.
 - 4) Second choice is a hybrid optical fiber with 48 total optical fibers (12-strand 62.5 micron MM, 24-strand 50 micron L/O OM3 10G300 and 12-strand SM) in an indoor/outdoor plenum rated interlock armored fiber cable with an outside diameter not to exceed 1.02 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK12B048-012CB3510-024EB3010/25-012AB0707-HE
 - Optical fiber cable shall use TIA industry standard color coding for the jacket and optical fiber strands.
 - 6) Optical fiber cable shall have 900 um jacketing of the individual strands.
 - 7) 62.5 micron multimode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - All optical fiber cable shall be labeled as called out in Chapter 1, Part 3, Section 1-3.05 of this document.
 - 9) 50 micron Bend-Insensitive OM3 optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 10) Singlemode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.

Attachment E – Indoor/Outdoor Interlocking Armor Plenum (6/6/12 configuration)

- A. Provide products in quantities as listed below in the performance based specification.
 - 62.5 micron multimode 6-strand optical fiber cable shall be indoor/outdoor plenum rated interlocking armored fiber cable with an outside diameter not to exceed .500 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part# PDPK006CB3510/25-HE.
 - 2) 50 micron multimode 12-strand optical fiber shall be Bend-Insensitive OM3 10G/300 indoor/outdoor plenum rated interlocking armored fiber cable with an outside diameter not to exceed .550 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part # PDPK012EB3010/25
 - 3) Singlemode 6-strand optical fiber cable shall be indoor/outdoor plenum rated interlocking armor with an outside diameter not to exceed .500 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part # PDPK006AB0707.
 - 4) Second choice is a hybrid optical fiber with 24 total optical fibers (6-strand 62.5 micron MM, 12-strand 50 micron L/O OM3 10G300 and 6-strand SM) in an indoor/outdoor plenum rated interlock armored fiber cable with an outside diameter not to exceed .59 and compliant with NFPA 262. The interlocking material shall be heavy duty that is flexible aluminum tape helically applied over the inner cable. Berk-Tek part #PDPK024-006CB3510/25-012EB3010/25-006AB0707
 - Optical fiber cable shall use TIA industry standard color coding for the jacket and optical fiber strands.
 - 6) Optical fiber cable shall have 900 um jacketing of the individual strands.
 - 7) 62.5 micron multimode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - All optical fiber cable shall be labeled as called out in Chapter 1, Part 3, Section 1-3.05 of this document.
 - 9) 50 micron Bend-Insensitive OM3 optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 10) Singlemode optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.

Attachment F – OSP Single Jacket, Single Armor (12/12/24 configuration)

- A. Provide products in quantities as listed below in the performance based specification.
 - 1) 62.5 micron multimode 12-strand optical fiber cable shall be OSP rated armored fiber cable with an outside diameter not to exceed .480. Berk-Tek part #OPAD12B012CB3510/25-1A1J.
 - 50 micron multimode Bend-Insensitive OM3 10G/300 24-strand fiber OSP rated armored fiber cable with an outside diameter not to exceed .480. Berk-Tek part # OPAD12B024EB3010/25-1A1J.
 - 3) 12-strand singlemode optical fiber cable shall be OSP rated armored with an outside diameter not to exceed .480. Berk-Tek part # OPAD12B012AB0403-1A1J.
 - 4) Second choice is a hybrid OSP rated optical fiber with 48 total fiber strands (12-strand 62.5 micron MM, 24-strand 50 micron L/O OM3 10G300 and 12-strand SM) in an OSP rated armored fiber with an outside diameter not to exceed .480. Berk-Tek part #12048H1J1.
 - Optical fiber cable shall have 12 strands using industry standard color coding.
 - 6) Optical fiber cable shall have 250 um coating of the individual strands.
 - 7) 62.5 Multimode Optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 8) All Optical fiber cable shall be labeled as called out in Chapter 1, Part 3, Section 1-3.05 of this document.
 - 9) 50micron laser optimized fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 10) Singlemode Optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.

Attachment G – OSP Single Jacket, Single Armor (6/6/12 configuration)

- A. Provide products in quantities as listed below in the performance based specification.
 - 1) 62.5 micron multimode 6-strand optical fiber cable shall be OSP rated armored fiber cable with an outside diameter not to exceed .480. Berk-Tek part # OPAD12B006CB3510/25-1A1J.
 - 2) 50 micron multimode Bend-Insensitive OM3 10G/300 12-strand fiber OSP rated armored fiber with an outside diameter not to exceed .480. Berk-Tek part #OPAD12B012EB3010/25-1A1J.
 - 6-strand singlemode optical fiber cable shall be OSP rated armored fiber with an outside diameter not to exceed .480 and compliant with NFPA 262. Berk-Tek part #OPAD12B006AB0403-1A1J.
 - 4) Second choice is a hybrid optical fiber with 24 total fiber strands (6-strand 62.5 micron MM, 12-strand 50 micron L/O OM3 10G300 and 6-strand SM) in an OSP rated armored fiber with an outside diameter not to exceed .480. Berk-Tek part #OPAD12B024-006CB3510/25-012EB3010/25-006AB0403-1A1J.
 - 5) Optical fiber cable shall have 12 strands using industry standard color coding.
 - 6) Optical fiber cable shall have 250 um coating of the individual strands.
 - 7) 62.5 Multimode Optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 8) All Optical fiber cable shall be labeled as called out in Chapter 1, Part 3, Section 1-3.05 of this document.
 - 9) 50micron laser optimized fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.
 - 10) Singlemode Optical fiber cable must meet all distance requirements for all technologies utilizing this fiber for the life of the system.

Attachment H – Outside Plant Optical Fiber

- A. Provide products in quantities as listed below in the performance based specification.
 - 1) Cable service loops shall be included in each manhole to allow for proper cable dressing, splicing the cable outside the manhole in a controlled space and for repairing damaged cable.
 - 2) Cable service loops shall be provided as indicated herein, and as otherwise indicated elsewhere in the contract documents and on the Drawings.
 - Install sufficient cable slack to remove cable from the manhole for splicing in a splice van or tent.
 - 4) In addition to the cable slack required for proper termination/splicing in a splice enclosure, the Contractor shall install sufficient cable slack to form at least one loop of cable along the inner perimeter of the manhole.
 - 5) Where no cable splice is planned for a manhole, the contractor shall leave sufficient slack to form at least two loops of cable along the inner perimeter of the manhole.
 - 6) Cable service loop lengths shall be adjusted based on manhole size, manhole depth and existing conditions.
 - 7) Cables slack shall be securely fastened to all four walls of the manhole. Furnish and install bracket arms for securing and mounting of all cables where built-in racking exists.
 - 8) If racking is not furnished in a manhole, furnish and install a cable sling of weather, water, oil and solvent resistant material to support the cable(s) on those walls without built in racking.
 - 9) Cable splice enclosures shall be security fastened to mounting arm brackets attached to manhole racking. Furnish and install racking and mounting arm brackets to support splice cases. Cable splice enclosures shall be attached to at least two racks in the manhole.
 - 10) All cables shall be secured to bracket arms using cable ties and straps resistant to weather, water, oil, fuel and solvents. Plastic or stainless steel ties/straps rated for this application shall be acceptable for use.
 - 11) All cable dressing in manholes shall be performed so that the minimum bend radius of cables is not exceeded.
 - 12) All cable splice enclosures shall be mounted either on the long wall of the manhole or on the wall parallel with the main cable run entry and exit conduits.
 - 13) Wherever possible in existing manholes, and as a standard for manholes furnished and installed under this or an associated project, optical cable splice enclosures shall be mounted on one long wall (or parallel wall as previously defined) and copper cable splice enclosures shall be mounted on the opposite wall.
 - 14) Wherever possible, large pair count copper cable enclosures shall be mounted at the vertical mid-line of the manhole and fiber cable splice enclosures shall be mounted at or above the vertical mid-line.
 - 15) All cables shall be spliced in splice enclosures as specified herein.
 - a. Furnish and install the maximum slack in each enclosure as recommended by the cable, splice system and enclosure manufacturer.
 - b. Furnish and install all splice trays, splice holders, splice tray holders, mounting brackets, frames, grounding and other ancillary hardware and materials as required by

- the cable manufacturer, splice system manufacturer, splice enclosure manufacturer and standard industry practices.
- c. Only technicians trained in the proper assembly of enclosures, splices and splicing procedures shall be permitted to splice cables.

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, intrusion detection, duress alarms, elevator control interface, video assessment and surveillance, video recording and storage, delayed egress, personal protection system, intercommunication system, fire alarm interface, equipment cabinetry, dedicated photo badging system and associated live camera, report printer, photo badge printer, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing

- of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.
- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.

F. Section Includes:

- 1. Description of Work for Electronic Security Systems,
- 2. Electronic security equipment coordination with relating Divisions,
- 3. Submittal Requirements for Electronic Security,
- 4. Miscellaneous Supporting equipment and materials for Electronic Security,
- 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- C. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- D. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- E. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.

J. Section 28 16 00 - INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to

- perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.

- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- XX. UTP: Unshielded Twisted Pair
- YY. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Contractor Qualification:

1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past

three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- 2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual

site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with

- equipment or piping so that the proposed installation can be properly reviewed.
- 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section.

 Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 2. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 3. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.
 - 4. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.

- 5. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - 1) Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Cross-referencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - 2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered.

 Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
 - e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
 - f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- 1) Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
- 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
- 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer

- to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the

text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.

- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 6. Contractor Review: Review submittals prior to transmittal.

 Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return non-conforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- 7. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 8. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization.

 Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCADTM drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.

- c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
- d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - 2) The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.

- 2) Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- 6) Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation.

 Equipment room the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the

door schedule shall be coordinated with Division 08 work and include the following information:

- 1) Item Number
- 2) Door Number (Derived from A/E Drawings)
- 3) Floor Plan Sheet Number
- 4) Standard Detail Number
- 5) Door Description (Derived from Loading Sheets)
- 6) Data Gathering Panel Input Number
- 7) Door Position or Monitoring Device Type & Model Number
- 8) Lock Type, Model Number & Power Input/Draw (standby/active)
- 9) Card Reader Type & Model Number
- 10) Shunting Device Type & Model Number
- 11) Sounder Type & Model Number
- 12) Manufacturer
- 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device
- 14) Remarks column indicating special notes or door configurations
- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal.

At a minimum, the camera schedule shall include the following information:

- a. Item Number
- b. Camera Number
- c. Naming Conventions
- d. Description of Camera Coverage
- e. Camera Location
- f. Floor Plan Sheet Number
- g. Camera Type
- h. Mounting Type
- i. Standard Detail Reference
- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera

- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package.

 The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
 - d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
 - e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number
 - 4) First Relay Number
 - 5) DGP, input or output Location
 - 6) DGP Chain Number
 - 7) DGP Cabinet Tamper Input Number
 - 8) DGP Power Fail Input Number
 - 9) Number of Monitor Points Reserved For Expansion Boards
 - 10) Number of Control Points (Relays) Reserved For Expansion Boards
 - f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs

- 3) System Numbers for Control Points (Relays)
- 4) Next DGP or input module First Monitor Point Number
- 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 7) DGP or input module Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type

- 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section III Construction Mock-up: In areas with exposed EMT/Conduit Raceways, contractor shall conceal raceway as much as practical and unobtrusively. In addition, historic significance must be considered to determine installation means and methods for approval by the owner.
- 5. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 6. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
 - b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
 - c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.

- 7. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the COR documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COR.
 - 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- H. Group III Technical Data Package
 - 1. Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the COR for approval at least 60 calendar days prior to the requested test date.
- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the COR for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and

endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.

2. Training Documentation

a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.

b. New Unit Control Room:

- 1) Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the COR. Instruction is not to begin until the system is operational as designed.
- 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware

- and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.
- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, and network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,
 - 5) All other security subsystems shown in the contract documents.
 - b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
 - c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system

operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the COR as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - 1. Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
 - 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.

- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.

- d. Performance curves.
- e. Engineering data and test.
- f. Complete nomenclature and number of replacement parts.
- g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
- h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
- i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the COR or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the

installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at anytime.

- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:
 - a. Certificates received instead of labels on bulk products.
 - b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
 - c. Documented qualification of installation firms.
 - d. Load and performance testing.
 - e. Inspections and certifications.
 - f. Final inspection and correction procedures.
 - q. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a

- thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.
- b. The Contractor shall provide the COR a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COR. If, in the opinion of the COR, any redlined notation is not legible, it shall be returned to the Contractor for resubmission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COR. The Contractor shall organize into bound and labeled sets for the COR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

K. FIPS 201 Compliance Certificates

- 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Fingerprint Capture Station
 - b. Card Readers
 - c. Facial Image Capturing Camera
 - d. PIV Middelware

- e. Template Matcher
- f. Electromagnetically Opaque Sleeve
- g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- h. t devices and software>
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
- N. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC):
 - Al17.1.....Standard on Accessible and Usable Buildings and Facilities
- C. American National Standards Institute (ANSI) / Security Industry
 Association (SIA):
 - AC-03.....Access Control: Access Control Guideline Dye
 Sublimation Printing Practices for PVC Access
 Control Cards
 - CP-01-00......Control Panel Standard-Features for False Alarm Reduction

	PIR-01-00
	Features for Enhancing False Alarm Immunity
	TVAC-01CCTV to Access Control Standard - Message Set
	for System Integration
D.	American National Standards Institute (ANSI)/Electronic Industries
	Alliance (EIA):
	330-09Electrical Performance Standards for CCTV
	Cameras
	375A-76Electrical Performance Standards for CCTV
	Monitors
Ε.	American National Standards Institute (ANSI):
	ANSI S3.2-99Method for measuring the Intelligibility of
	Speech over Communications Systems
F.	American Society for Testing and Materials (ASTM)
- •	B1-07Standard Specification for Hard-Drawn Copper
	Wire
	B3-07Standard Specification for Soft or Annealed
	Copper Wire
	B8-04Standard Specification for Concentric-Lay-
	Stranded Copper Conductors, Hard, Medium-Hard,
	or Soft
	C1238-97 (R03)Standard Guide for Installation of Walk-Through
	Metal Detectors
	D2301-04Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical Insulating
	Tape
G.	Architectural Barriers Act (ABA), 1968
Н.	Department of Justice: American Disability Act (ADA)
	28 CFR Part 36-2010 ADA Standards for Accessible Design
I.	Department of Veterans Affairs:
	VHA National CAD Standard Application Guide, 2006
	VA BIM Guide, V1.0 10
J.	Federal Communications Commission (FCC):
	(47 CFR 15) Part 15 Limitations on the Use of Wireless
	Equipment/Systems
К.	Federal Information Processing Standards (FIPS):
	FIPS-201-1Personal Identity Verification (PIV) of Federal
	Employees and Contractors
L.	Federal Specifications (Fed. Spec.):
	A-A-59544-08Cable and Wire, Electrical (Power, Fixed
	Installation)

Μ.	Government Accountabili	ty Office (GAO):
	GAO-03-8-02	.Security Responsibilities for Federally Owned
		and Leased Facilities
N.	Homeland Security President	dential Directive (HSPD):
	HSPD-12	.Policy for a Common Identification Standard for
		Federal Employees and Contractors
Ο.	Institute of Electrical	and Electronics Engineers (IEEE):
	81-1983	.IEEE Guide for Measuring Earth Resistivity,
		Ground Impedance, and Earth Surface Potentials
		of a Ground System
	802.3af-08	.Power over Ethernet Standard
		.Power over Ethernet (PoE) Plus Standard
		.National Electrical Safety Code
		.IEEE Recommended Practice on Surge Voltages in
		Low-Voltage AC Power Circuits
	C95.1-05	Standards for Safety Levels with Respect to
		Human Exposure in Radio Frequency
		Electromagnetic Fields
Р.	International Organizat	ion for Standardization (ISO):
		.Identification cards - Physical characteristics
		Physical Characteristics for Magnetic Stripe
		Cards
	7816-1	.Identification cards - Integrated circuit(s)
		cards with contacts - Part 1: Physical
		characteristics
	7816-2	.Identification cards - Integrated circuit cards
		- Part 2: Cards with contacts -Dimensions and
		location of the contacts
	7816-3	.Identification cards - Integrated circuit cards
		- Part 3: Cards with contacts - Electrical
		interface and transmission protocols
	7816-4	.Identification cards - Integrated circuit cards
		- Part 11: Personal verification through
		biometric methods
	7816-10	.Identification cards - Integrated circuit cards
		- Part 4: Organization, security and commands
		for interchange
	14443	.Identification cards - Contactless integrated
		circuit cards; Contactless Proximity Cards
		Operating at 13.56 MHz in up to 5 inches
		distance
		-

	15693Identification cards Contactless integrated
	circuit cards - Vicinity cards; Contactless
	Vicinity Cards Operating at 13.56 MHz in up to
	50 inches distance
	19794Information technology - Biometric data
	interchange formats
Ο.	National Electrical Contractors Association
~	303-2005Installing Closed Circuit Television (CCTV)
	Systems Systems
R.	National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
	TC-3-04PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
	FB1-07Fittings, Cast Metal Boxes and Conduit Bodies
	for Conduit, Electrical Metallic Tubing and
	Cable
S.	National Fire Protection Association (NFPA):
	70-11 National Electrical Code (NEC)
	731-08Standards for the Installation of Electric
	Premises Security Systems
	99-2005Health Care Facilities
т	National Institute of Justice (NIJ)
± •	0601.02-03Standards for Walk-Through Metal Detectors for
	use in Weapons Detection
	0602.02-03Hand-Held Metal Detectors for Use in Concealed
	Weapon and Contraband Detection
υ.	National Institute of Standards and Technology (NIST):
	IR 6887 V2.1Government Smart Card Interoperability
	Specification (GSC-IS)
	Special Pub 800-37Guide for Applying the Risk Management Framework
	to Federal Information Systems
	Special Pub 800-63Electronic Authentication Guideline
	Special Pub 800-73-3Interfaces for Personal Identity Verification (4
	Parts)
	Pt. 1- End Point PIV Card Application Namespace,
	Data Model & Representation
	Pt. 2- PIV Card Application Card Command
	Interface
	Pt. 3- PIV Client Application Programming
	Interface

	Pt. 4- The PIV Transitional Interfaces & Data
	Model Specification
	Special Pub 800-76-1Biometric Data Specification for Personal
	Identity Verification
	Special Pub 800-78-2Cryptographic Algorithms and Key Sizes for
	Personal Identity Verification
	Special Pub 800-79-1Guidelines for the Accreditation of Personal
	Identity Verification Card Issuers
	Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
	Special Pub 800-85A-2PIV Card Application and Middleware Interface
	Test Guidelines (SP 800-73-3 compliance)
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-104AScheme for PIV Visual Card Topography
V.	Occupational and Safety Health Administration (OSHA):
	29 CFR 1910.97Nonionizing radiation
W.	Section 508 of the Rehabilitation Act of 1973
	Security Industry Association (SIA):
21.	AG-01Security CAD Symbols Standards
V	
Υ.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04Surface Metal Raceway and Fittings
	6-07Rigid Metal Conduit
	44-05Thermoset-Insulated Wires and Cables
	50-07Enclosures for Electrical Equipment
	83-08Thermoplastic-Insulated Wires and Cables
	294-99The Standard of Safety for Access Control System
	Units
	305-08Standard for Panic Hardware
	360-09Liquid-Tight Flexible Steel Conduit
	444-08Safety Communications Cables
	464-09Audible Signal Appliances
	467-07Electrical Grounding and Bonding Equipment
	486A-03Wire Connectors and Soldering Lugs for Use with
	Copper Conductors
	486C-04Splicing Wire Connectors
	486D-05Insulated Wire Connector Systems for Underground
	Use or in Damp or Wet Locations
	486E-00Equipment Wiring Terminals for Use with Aluminum
	and/or Copper Conductors
	493-07Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable

514A-04	Metallic Outlet Boxes
514B-04	Fittings for Cable and Conduit
51-05	Schedule 40 and 80 Rigid PVC Conduit
609-96	Local Burglar Alarm Units and Systems
634-07	Standards for Connectors with Burglar-Alarm
	Systems
636-01	Standard for Holdup Alarm Units and Systems
639-97	Standard for Intrusion-Detection Units
651-05	Schedule 40 and 80 Rigid PVC Conduit
651A-07	Type EB and A Rigid PVC Conduit and HDPE Conduit
752-05	Standard for Bullet-Resisting Equipment
797-07	Electrical Metallic Tubing
827-08	Central Station Alarm Services
1037-09	Standard for Anti-theft Alarms and Devices
1635-10	Digital Alarm Communicator System Units
1076-95	Standards for Proprietary Burglar Alarm Units
	and Systems
1242-06	Intermediate Metal Conduit
1479-03	Fire Tests of Through-Penetration Fire Stops
1981-03	Central Station Automation System
2058-05	High Security Electronic Locks
60950	Safety of Information Technology Equipment
60950-1	Information Technology Equipment - Safety - Part
	1: General Requirements
	1.1.1.

- Z. Uniform Federal Accessibility Standards (UFAS) 1984
- AA. United States Department of Commerce:

Special Pub 500-101Care and Handling of Computer Magnetic Storage Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

A. General Requirements

1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

C. Personnel

1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.

D. Schedule of Work

1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.

E. System Inspections

- 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two
 - (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - 1) Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local

- processors, sensors, electrical and mechanical controls, and adjustments on printers.
- 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.

F. Emergency Service

- 1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and non-catastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

G. Operation

1. Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.

H. Records & Logs

1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.

I. Work Request

1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

J. System Modifications

1. The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

K. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - 1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - 2. Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
 - 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - 1. Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - 3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
 - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - 1. Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - 2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to

- 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 4X enclosures.
- 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
- 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.
- 5. Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:

- 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
- 2. Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
- 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.
- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for [8] hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Emergency Generator
 - a. Report Printers: Unit Control Room
 - b. Video Monitors: Unit Control Room
 - c. Intercom Stations
 - d. Radio System
 - e. Lights: Unit Control Room, Equipment Rooms, & Security Offices
 - f. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
 - g. Security Device Power Supplies (DGP, VASS, Card Access, Lock Power, etc.) powered from the security closets or remotely: various locations
 - h. Telephone/Radio Recording Equipment: Unit Control Room.
 - i. VASS Camera Power Supplies: Security Closets

- j. VASS Pan/Tilt Units: Various Locations
- k. VASS Outdoor Housing Heaters and Blowers: Various Sites
- 1. Intercom Master Control System
- m. Fiber Optic Receivers/Transmitters
- n. Security office Weapons Storage
- o. Outlets that charge handheld radios
- 2. Uninterruptible Power Supply (UPS) on Emergency Power
 - a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room
 - 3) Communications equipment: Control Equipment Room and various sites.
 - 4) VASS Matrix Switcher: Control Equipment Room
 - 5) VASS: Control Equipment Room
 - 6) Digital Video Recorders, encoders & decoders: Control Room
 - 7) All equipment Room racked equipment.
 - 8) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

- A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.
 - 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - 2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - 3. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
 - 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.

B. Grounding and Surge Suppression

- The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground fault conditions.
- 2. Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
- 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
- 4. Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor
- 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
- 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

A. Construction of Enclosures

- Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
- 2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
- 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
- 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal

- enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.
 - 1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.
 - b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
 - c. d. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.

2. Console racks:

- a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
- b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.

C. Tamper Provisions and Tamper Switches:

- Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
- 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall

- take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.
- 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.
- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and current-carrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The COR shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the COR stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - 1. Identity of the material or devices specified for which there is a proposed substitution.
 - 2. Description of the segment of the specification where the material or devices are referenced.
 - 3. Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
 - 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-by-feature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-by-point statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by

number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a point-bypoint statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.

All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written quarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated

corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of its failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - 1. Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the

- electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
- 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.
- 3. Controlling devices shall be utilized to interface the SMS with all field devices.
- 4. The Security control room and security console will be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.
- 5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:
 - a. Security Console Bays and Equipment Racks
 - b. Security Network Server and Workstation
 - c. CCTV Monitoring, Controlling, and Recording Equipment
 - d. PACS Monitoring and Controlling Equipment
 - e. IDS Monitoring and Controlling Equipment
 - f. Security Access Detection Monitoring Equipment
 - g. EPPS Monitoring and Controlling Equipment
 - h. Main Panels for all Security Systems
 - i. Power Supply Units (PSU) for all field devices
 - j. Life safety and power monitoring equipment
 - k. All other building systems deemed necessary by the VA to include, but not limited to, heating, ventilation and air conditioning (HVAC), elevator control, portable radio, fire alarm monitoring, and other potential systems.
 - 1. Police two-way radio control consoles/units.
- B. Security Console Bays shall be EIA 310D compliant and:
 - 1. Utilize stand-up, sit-down, and vertical equipment racks in any combination to monitor and control the security subsystems.
 - 2. Shall be wide enough for equipment that requires a minimum 19 inch (47.5 cm) mounting area.
 - 3. Shall be made of metal, furnished with wire ways, a power strip, a thermostatic controlled bottom or top mounted fan units, a hinge mounted rear door, a hinge mounted front door made of Plexiglas, and a louvered top. When possible, pre-fabricated (standard off-the-

- shelf) security console equipment shall be used in place of customized designed consoles.
- 4. A wire management system shall be designed and installed so that all cables are mounted in a manner that they do not interfere with day-to-day operations, are labeled for quick identification, and so that high voltage power cables do not cause signal interference with low voltage and data carrying cables.
- 5. Shall be mounted on lockable casters.
- 6. Shall be ergonomically designed so that all devices requiring repetitive interaction with by the operator can be easily accessed, observed, and accomplished.
- 7. Controls and displays shall be located so that they are not obscured during normal operation. Control and display units installed with a work bench shall be a minimum of 3 in. (7.5 cm) from all edges of the work bench area.
- 8. All security subsystem controls shall be installed within the same operating console bay of their associated equipment.
- 9. Video monitors shall be mounted above all controls within a console bay and positioned in a manner that minimum strain is placed on the operator viewing them at the console.
- 10. At least one workbench for every three (3) console bays shall be provided free of control equipment to allow for appropriate operator workspace.
- 11. All console devices shall be labeled and marked with a minimum of quarter inch bold print.
- 12. All non-security related equipment that is required to be monitored shall be installed in a console bay separate from the security subsystem equipment and clearing be identified as such.
- 13. Console bays and related equipment shall be arranged in priority order and sequenced based upon their pre-defined security subsystem operations criticality established by the Contracting Officer.
- 14. The following minimum console technical characteristics shall be taken into consideration when designing for and installing the security console and equipment racks:

	Stand-Up	Sit-Down	Vertical Equipment Rack
Workstation Height	No Greater than 84 in. (210 cm)	No greater than 72 in. (150 cm)	No greater than 96 in. (240 cm)
Bench board Slope	21 in. (52.5 cm)	25 in. (62.5 cm)	N/A
Bench board Angle	15 degrees	15 degrees	N/A

Depth of Console	24 in. (60 cm)	24 in. (60 cm)	N/A
Leg and Feet Clearance	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front
Distance Between Console Rows	96 in. (240 cm)	96 in. (240 cm)	96 in. (240 cm)
Distance Between Console and Wall	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack

C. Security Console Configuration:

- 1. The size shall be defined by the number of console bays required to house and operate the security subsystems, as well as any other factors that may influence the overall design of the space. A small Access Control System and Database Management shall contain no more than four (4) security console bays. A large Access Control System and Database Management shall contain no less than five (5) and no more than eight (8) security console bays.
- 2. Shall meet the following minimum spacing requirements to ensure that a Access Control System and Database Management is provided to house existing and future security subsystems and other equipment listed in paragraph 2.3.C:
 - a. 500 square feet for a large Access Control System and Database Management.
 - b. 300 square feet for a small Access Control System and Database Management.
 - c. If office, training room and conference space, is a processing area as well as holding cell space is to be located adjacent to the Access Control System and Database Management, these space requirements also need to be considered.
- 3. Shall be located in an area within, at a minimum, the first level/line of security defense defined by the VA. If the Access Control System and Database Management is to be located outside the first level of security, then the area shall be constructed or retrofit to meet or exceed those requirements outlined in associated VA Master Specifications.
- 4. Shall not be located within or near an area with little to no blast mitigation standoff space protection, adjacent to an outside wall

exposed to vehicle parking and traffic, within a basement or potential flood zone area, in close approximately to major utility areas, or near an exposed air intake(s).

- 5. Access shall meet UFAS and ADA accessibility requirements.
- 6. Construction shall be slab to slab and free of windows, with the exception of a service window. All penetrations into the room shall be sealed with fire stopping materials. This material shall apply in accordance with Section 07 84 00, FIRESTOPPING.
- 7. A service window shall be installed in the wall next to the main entrance of the Access Control System and Database Management or where it best can be monitored and accessed by the security console operator. The window shall meet all requirements set forth in UL 752, to include at a minimum, Class III ballistic level protection. The windows shall be set in a minimum or four (4) inches (100 mm) solid concrete units to ceiling height with either masonry or gypsum wall board to the underside of the slab above. It shall also contain a service tray constructed in a manner that only objects no larger than 3 inches (7.5 cm) in width may pass through it.
- 8. The walls making up or surrounding the Access Control System and Database Management shall be made of materials that at a minimum offer Class III ballistic level protection for the security console operator(s).
- 9. There will be a main power cut-off button/switch located inside the Access Control System and Database Management in the event of an electrical fire or related event occurs.
- 10. Shall have a fire alarm detection unit that is tied into the main building fire alarm system and have at least two fire extinguishers located within it.
- 11. Shall utilize a fire suppression system similar to that used by the VA's computer and telecommunications room operating areas.
- 12. The floor shall be raised a minimum of 4 inches (10 cm) from the concrete floor base. Wire ways shall be utilized under the raised floor for separation of signal and power wires and cables.
- 13. Access shall be monitored and controlled by the PACS via card reader and fixed camera that utilizes a wide angle lens. A 1 in. (2.5 cm) deadbolt shall be utilized as a mechanical override for the door in the event of electrical failure of the PACS, card reader, or locking mechanism.
- 14. There shall only be one point of ingress and egress to and from the Security Control Room. The door shall be made of solid core wood or

- better. If a window is required for the door, then the window shall be ballistic resistant with a Millar covering.
- 15. A two-way intercom shall be placed at the point of entry into the Security Control Room for access-communication control purposes.
- 16. A remote push-button door unlocking device shall not be installed for the electronic PACS locking mechanism providing access control into the Security Control Room.
- 17. All controlling equipment and power supplies that must be wall mounted shall be mounted in a manner that maximizes usability of the Security Control Room wall space. All equipment shall be mounted to three quarter inch fire retardant plywood. The plywood shall be fastened to the wall from slab to slab and fixed to the existing walls supports.
- D. Security Control Room Ventilation
 - Shall meet or exceed all requirements laid out in VA Master Specification listed in Division 23, HEATING, VENTILATION, AND AIR CONDITIONING.
 - 2. Controls shall be via a separate air handling system that provides an isolated supply and return system. The Security Control Room shall have a dedicated thermostat control unit and cut-off switch to be able to shut off ventilation to the control room in the event of a chemical, biological, or radiological (CBR) event or other related emergency.
 - 3. There shall be a louver installed in the control room door to assist with ventilation of the room. The louver shall be exactly 12×12 inches $(30 \times 30 \text{ cm})$ and closeable.
- E. Security Control Room and Security Console Lighting:
 - 1. The following factors shall be taken into consideration for lighting of the Security Control Room and console area:
 - a. Shadows: To reduce eye strain and fatigue, shadows shall be avoided.
 - b. Glare: The readability of all display panels, labels, and equipment shall not be interfered with or create visibility problems.
 - 2. The following table shall provide guidance on the amount of footcandles required per work area and type of task performed:

Work Area	/Type of Task	Footcandles	
Main Oper	50		
Secondary	50		
Seated Wo	Seated Workstations		
Reading Handwriting		100	
	Typed Documents	50	

Visual Display Units	10
Logbook Recording	100
Maintenance Area	50
Emergency/Back-up Lighting	10

- F. Remote security console access: For facilities that have a remote, secondary back-up control console or workstation shall apply the following requirements:
 - 1. The secondary stations shall the requirements outlined in Sections 2.2.A-G.
 - 2. Installation of an intercom station or telephone line shall be installed and provide direct one touch call-up for communications between the primary Security Control Console and secondary Security Control Console.
 - 3. Secondary stations shall not have priority over a primary Security Control Console.
 - 4. The primary Access Control System and Database Management shall have the ability to shut off power and a signal to a secondary control station in the event the area has been compromised.

G. Wires and Cables:

- 1. Shall meet or exceed the manufactures recommendation for power and signals.
- 2. Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
- 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
- 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
- 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage

for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.

9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 FIBER OPTIC EQUIPMENT

- A. 8 Channel Fiber Optic Transceivers (Video&PTZ Control)
 - The field-located and central-located fiber optic transceivers shall utilize wave division multiplexing to transmit and receive video and data pan-tilt-zoom control signals over two standard 62.5/125 multimode fibers.
 - 2. The units shall be capable of operating over a range of 2 km.
 - 3. The units shall be NTSC color compatible.
 - 4. The units shall support data rates up to 64 Kbps.
 - 5. The units shall be surface or rack mountable.
 - 6. The units shall be UL listed.
 - 7. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Input/Output: 1 volt pk-pk (75 ohms)
 - 2) Input/Output Channels: 8
 - 3) Bandwidth: 10 Hz 6.5 MHZ per channel
 - 4) Differential Gain: <2%
 - 5) Differential Phase: <0.7°
 - 6) Tilt: <1%
 - 7) Signal to Noise Ratio: 60 dB
 - b. Data (Control)
 - 1) Data Channels: 2
 - 2) Data Format: RS-232, RS-422, 2 wire or 4 wire RS-485 with Tri-State Manchester Bi-Phase and Sensornet
 - 3) Data Rate: DC 100 kbps (NRZ)
 - 4) Bit Error Rate: < 1 in 10-9 @ Maximum Optical Loss Budget
 - 5) Operating Mode: Simplex or Full-Duplex
 - 6) Wavelength: 1310/1550 nm, Multimode or Singlemode
 - 7) Optical Emitter: Laser Diode
 - 8) Number of Fibers: 1
 - c. Connectors
 - 1) Optical: ST

- 2) Power and Data: Terminal Block with Screw Clamps
- 3) Video: BNC (Gold Plated Center-Pin)
- d. Electrical and Mechanical
 - 1) Power: 12 VDC @ 500 mA (stand-alone)
 - 3) Current Protection: Automatic Resettable Solid-State Current Limiters
- e. Environmental
 - 1) MTBF: > 100,000 hours
 - 2) Operating Temp: -40 to 74 deg C (-40 to 165 deg F)
 - 3) Storage Temp: -40 to 85 deg C (-40 to 185 deg F)
 - 4) Relative Humidity: 0% to 95% (non-condensing)
- B. Fiber Optic Transmitters: The central-located fiber optic transmitters shall utilize wave division multiplexing to transmit video and signals over standard 62.5/125 multimode fibers.
 - 1. The units shall be capable of operating over a range of $4.8~\mathrm{km}$.
 - 2. The units shall be NTSC color compatible.
 - 3. The units shall support data rates up to 64 Kbps.
 - 4. The units shall be surface or rack mountable.
 - 5. The units shall be UL listed.
 - 6. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Input: 1 volt pk-pk (75 ohms)
 - 2) Bandwidth: 5H2 10 MHZ
 - 3) Differential Gain: <5%
 - 4) Tilt: <1%
 - 5) Signal-Noise: 60db
 - 6) Wavelength: 850nm
 - 7) Number of Fibers: 1
 - 8) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
 - 9) Connectors:
 - a) Power: Female plug with screw clamps
 - b) Video: BNC
 - c) Optical: ST
 - 10) Power: 12 VDC
- C. Fiber Optic Receivers: The field-located fiber optic receivers shall utilize wave division multiplexing to receive video signals over standard 62.5/125 multimode fiber.
 - 1. The units shall be capable of operating over a range of 4.8 km.
 - 2. The units shall be NTSC color compatible.
 - 3. The units shall support data rates up to 64 Kbps.
 - 4. The units shall be surface or rack mountable.

- 5. The units shall be UL listed.
- 6. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Output: 1 volt pk-pk (75 ohms)
 - 2) Bandwidth: 5H2 10 MHZ
 - 3) Differential Gain: <5%
 - 4) Tilt: <1%
 - 5) Signal-Noise: 60dB
 - 6) Wavelength: 850nm
 - 7) Number of Fibers: 1
 - 8) Surface Mount: $106.7 \times 88.9 \times 25.4 \text{ mm}$ (4.2 x 3.5 x 1 in)
 - 9) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
 - 10) Connectors:
 - 11) Power: Female plug block with screw clamps
 - 12) Video: BNC
 - 13) Optical: ST
 - 14) Power: 12 VAC8 Channel Fiber Optic Transceivers (Video&PTZ Control)
- D. Fiber Optic Sub Rack with Power Supply
 - 1. The Card Cage Rack shall provide high-density racking for fiber-optic modules. The unit shall be designed to mount in standard 483 mm (19 in) instrument racks and to accommodate the equivalent of 15 1-inch
 - a. Specifications

modules.

- 1) Card Orientation: Vertical
- 2) Construction: Aluminum
- 3) Current Consumption: 0.99 A
- 4) Humidity: 95.0 % RH
- 5) Input Power: 100-240 VAC, 60/50 Hz
- 6) Mounting: Mounts in standard 483 mm (19 in) rack using four (4) screws (optional wall brackets purchased separately)
- 7) Number of Outputs: 1.0
- 8) Number of Slots 15.0
- 9) Operating Temperature: -40 to +75 deg C (-40.0 to 167.0 deg F)
- 10) Ouput Voltage: 13.5 V
- 11) Output Current 6.0 A
- 12) Power Dissipation: 28.0 W
- 13) Power Factor: 48.0
- 14) Power Supply: (built-in)
- 15) Rack Units: 3RU

16) Redundant Capability: Yes

17) Weight: 2.43 kg (5.35 lb)

18) Width: 483 mm (19.0 in)

2.4 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION

- A. Transient Voltage Surge Suppression
 - 1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:
 - a. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
 - d. Operating Temperature and Humidity: -40 to +85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, non-condensing.
- B. Physical Access Control Systems
 - 1. Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:
 - a. UL1449 2nd Edition, 2007, listed
 - b. UL1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Light(s)
 - d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 µsec)
 - e. Maximum Continuous Current: 15 Amps
 - f. MCOV: 125 VAC
 - g. Service Voltage: 110-120 VAC
 - 2. Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:

- a. UL 497B
- b. Minimum Surge Current Capacity: 2,000 Amps per pair
- c. Maximum Continuous Current: 5 Amps
- d. MCOV: 33 Volts
- e. Service Voltage: 24Volts
- 3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. Conforms with UL497B standards (where applicable)
 - b. Clamp level for 12 and 24V power: 18VDC / 38VDC
 - c. Clamp level for Data/LED: 6.8VDC
 - d. Service Voltage for Power: 12VDC/24VDC
 - e. Service Voltage for Data/LED: <5VDC
 - f. Clamp level PoE Access Power: 72V
 - g. Clamp level PoE Access Data: 7.9V
 - h. Service Voltage PoE Access: 48VAC 54VAC
 - i. Service Voltage PoE Data: <5VDC

C. Intercom Systems

- 1. Suppressors shall be installed on the AC power at the point of service and shall meet the following criteria:
 - a. UL 1449 Listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Diagnostic Indicator Light(s)
 - d. Integrated ground terminating post (where case/chassis ground exists)
 - e. Minimum Surge Current Capacity of 13,000 Amps (8 x 20 μSec)
- 2. Suppressors shall be installed on incoming central office lines and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Auto-reset current protection not to exceed 2 Amps per pair
 - d. Minimum Surge Current of 500 Amps per pair (8 x 20 $\mu Sec)$
- 3. Suppressors shall be installed on all telephone/intercom circuits that enter or leave separate buildings and shall meet the following criteria:
 - a. UL 497A Listed (where applicable)
 - b. UL 497B Listed (horns, strobes, speakers or communication circuits over 300 feet)
 - c. Multi Stage protection design
 - d. Auto-reset over-current protection not to exceed 5 Amps per pair
 - e. Minimum Surge Current of 1000 Amps per pair (8 x 20 μSec)

- D. Intrusion Detection Systems
 - 1. Suppressors shall be installed on AC at the point of service and shall meet the following criteria:
 - a. UL 1449, 2nd Edition 2007, listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Lights
 - d. Center screw for terminating Class II transformers
 - e. Minimum Surge Current Capacity of 32,000 Amps (8 x 20 μ Sec)
 - 2. Suppressors shall be installed on all Telephone Communication Interface circuits and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Surge Current Capacity: 9,000 Amps (8x20 µSec)
 - d. Clamp Voltage: 130Vrms
 - e. Auto reset current protection not to exceed 150 milliAmps
 - 3. Suppressors shall be installed on all burglar alarm initiating and signaling loops and addressable circuits which enter or leave separate buildings. The following criteria shall be met:
 - a. UL 497B for data communications or annunciation (powered loops)
 - b. Fail-short/fail-safe mode.
 - c. Surge Current Capacity: 9,000 Amps (8x20 µSec)
 - d. Clamp Voltage: 15 Vrms
 - e. Joule Rating: 76 Joules per pair (10x1000 μSec)
 - f. Auto-reset current protection not to exceed 150 milliAmps for UL 497A devices.

E. Video Surveillance System

- 1. Protectors shall be installed on coaxial cable systems on points of entry and exit from separate buildings. Suppressors shall be installed at each exterior camera location and include protection for 12 and/or 24 volt power, data signal and motor controls (for Pan, Tilt and Zoom systems). SPDs shall protect all modes herein mentioned and contain all modes in a single unit system. Protection for all systems mentioned above shall be incorporated at the head end equipment. Additionally a minimum 450VA battery backup shall be used to protect the DVR or VCR and monitor. Protectors shall meet the following criteria:
 - a. Head-End Power
 - 1) UL 1778, cUL (Battery Back Up)
 - 2) Minimum Surge Current Capacity: 65,000 Amps (8x20usec)

- 3) Minimum of two (2) NEMA 5-15R Receptacles (one (1) AC power only, one (1) with UPS)
- 4) All modes protected (L-N, L-G, N-G)
- 5) EMI/RFI Filtering
- 6) Maximum Continuous Current: 12 Amps
- b. Camera Power
 - 1) Minimum Surge Current Capacity: 1,000 Amps (8X20µsec); 240 Amps for IP Video/PoE cameras
 - 2) Screw Terminal Connection
 - 3) All protection modes L-G (all Lines)
 - 4) MCOV <40VAC
- c. Video And Data
 - 1) Surge Current Capacity 1,000 Amps per conductor
 - 2) "BNC" Connection (Coax)
 - 3) Protection modes: L-G (Data), Center Pin-G, Shield-G (Coax)
 - 4) Band Pass 0-2GHz
 - 5) Insertion Loss < 0.3dB
- F. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground-fault conditions.
 - 2. The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
 - 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- G. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G

- 4. Warranty: Ten Year Limited Warranty
- 5. Dimension: $73.7 \times 41.1 \times 52.1 \text{ mm}$ (2.90 x 1.62 x 2.05 in)
- 6. Weight: 2.88 g (0.18 lbs)
- 7. Housing: ABS

2.5 INSTALLATION KIT

A. General:

1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:

2. System Grounding:

- a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
- b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
- 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire

- wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance,

- the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
- 2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly.

3.3 COMMISIONING (NOT APPLICABLE)

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System

(SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.

B. Level of Effort for Programming

- 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the COR on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the COR has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:
 - a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with COR for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with COR to ensure data uploading is performed without incident of loss of function or data loss.
 - b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of COR to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.

- 2. The Contractor shall identify and request from the COR, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and COR coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

			Descr	iption of	Tasks		
Descr iptio n of Syste ms	Develop System Loading Sheets	Coordinat ion	Initial Set-up Configura tion	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)
SMS Setup & Confi gurat ion	e.g., program monitorin g stations, programmi ng networks, interconn ections between CCTV, intercoms , time synchroni zation	e.g., retrieve IP addresses , naming conventio ns, standard event descripti ons, programmi ng templates , coordinat e special system needs	e.g., Load system Operating System and Applicati on software, general system configura tions	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. , prog ram moni tori ng stat ions , prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s, time sync hron izat ion	e.g., check all system diagno stics (e.g., client s, panels)	Load and set-up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration

		_	,			
						e.g., creating
				0 0		a door, door
				e.g.		configuration,
			0.00	, setu	0 0	adding request
		e.g.,	e.g.,		e.g.,	to exit, door
		confirmi	enter	p of	perfor	monitors and
	e.g.,	ng	data	devi	ming	relays, door
	setup of	device	from	ce,	entry	timers, door
_	device,	configur	loading	door	testin	related events
Elect	door	ations,	sheets;	grou	g to	
Entry	groups &	naming	configur	ps &	confir	(e.g., access,
Contr	schedule	conventi	е	sche	m	access denied,
ol Syste	s, REX,	ons,	componen	dule	correc	forced open,
ms	Locks,	event	ts, link	S,	t set-	held open),
	link		'	·		linkages,
		descript	events,	REX,	up and	controlled
	graphics	ion and	cameras,	Lock	config	areas,
		narrativ	and	s,	uratio	advanced door
		es	graphics	link	n	monitoring,
				grap		J .
				hics		time zones,
						sequence of
						operations

Intru sion Detec tion Syste ms	e.g., enter door groups & schedule s, link devices - REX, lock, & graphics	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics		e.g. , ente r door grou ps & sche dule s, link devi ces - REX, lock , & grap hics	e.g., walk test, device positi on, and maskin g	e.g., setting up monitoring and control points (e.g., motion sensors, glassbreaks, vibration sensor, strobes, sounders) creating intrusion zones, creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
---	--	---	--	--	---	---	---

CCTV Syste ms	e.g., programm ing call-ups recordin g	e.g., confirmi ng device configur ations, naming conventi ons	e.g., enter data from loading sheets; camera naming conventi on, sequence s, configur e componen ts)		e.g. , prog ramm ing call -ups reco rdin g	e.g., confir m area of covera ge, call- up per event genera ted and record ing rates	e.g., setting up cameras points, recording ratios (e.g., normal, alarm event) timed recording, linkages, maps placements, call-ups
Inter coms Syste ms	e.g., programm ing events & call-ups	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics		e.g. , prog ramm ing even ts & call -ups	e.g., confir m operat ion, SMS event genera tion and camera call- up	e.g., setup linkages, events for activations, device troubles, land devices on graphic maps
Conso le Monit oring Compo nents	N/A	per monitor	per monitor	per graphic map	N/A	per monito r	N/A
		development	sks are supp t of the Tec bmittals.				

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

A. Performance Requirements

1. General:

- a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the COR at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
- b. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the conclusion of each phase of testing and prior to COR approval of the test.
- 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.

B. Pre-Delivery Testing

1. The purpose of the pre-delivery test is to establish that a system is suitable for installation. As such, pre-delivery test shall be a mock-up of the system as planned in the contract documents. The Contractor shall assemble the Security Test System at the Contractors local project within 50-miles of the project site, and perform tests to demonstrate the performance of the system complies with the contract requirements in accordance with the approved pre-delivery test procedures. The tests shall take place during regular daytime working hours on weekdays. Model numbers of equipment tested shall be identical to those to be delivered to the site. Original copies of all data produced during pre-delivery testing, including results of each test procedure, shall be documented and delivered to the COR at the conclusion of pre-delivery testing and prior to COR's approval of the test. The test report shall be arranged so all commands, stimuli, and responses are correlated to allow logical interpretation. For Existing System modifications, the contractor

shall provide their own server with loaded applicable software to support PDT.

- 2. Test Setup: The pre-delivery test setup shall include the following: a. All console equipment.
 - 1) At least one of each type of data transmission media (DTM) and associated equipment to provide a fully integrated PACS.
 - 2) The number of local processors shall equal the amount required by the site design.
 - 3) Enough sensor simulators to provide alarm signal inputs to the system equal to the number of sensors required by the design.

 The alarm signals shall be manually or software generated.
 - 4) Contractor to prove to owner all systems are appropriately sized and configured as sized.
 - 5) Integration of VASS, intercom systems, other subsystems.
- 3. During the bidding process the contractor shall submit a request for information to the Owner to determine if a pre-delivery test will be required. If a pre-delivery test is not required, the contractor shall provide a written notification that the Pre-delivery Test is not required in their shop drawings submission.
- C. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the COR (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.
- D. Contractor's Field Testing (CFT)
 - 1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to COR approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the COR's acceptance testing procedures. The Contractor shall provide the COR with a written listing of all equipment and software indicating all equipment and components have

been tested and passed. The Contractor shall deliver a written report to the COR stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

E. Performance Verification Test (PVT)

1. Test team:

- a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test to date and give the COR written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the COR. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for out-of-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.
- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the COR or

Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.

- 4. Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the COR prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for CORs approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.
- 6. Partial PVT At the discretion of COR, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.

F. Endurance Test

1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the COR notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The COR may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase

- II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the COR prior to acceptance of the system.
- 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the COR.

3. Phase II (Assessment):

- a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
- b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after the COR receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase I be repeated.
- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR.

5. Phase IV (Assessment):

1. After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.

2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the COR receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the COR may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

G. Exclusions

- 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- G. Section 31 20 00 EARTHWORK. For excavation and backfill for cables that are installed in conduit.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - 2. Certificates: Two weeks prior to final inspection, deliver to the COR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - 4. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.

В.	. American Society of Testing	Material (ASTM):
	D2301-04Stan	dard Specification for Vinyl Chloride
	Plas	tic Pressure Sensitive Electrical Insulating
	Tape	
С.	. Federal Specifications (Fed.	Spec.):
	A-A-59544-08	e and Wire, Electrical (Power, Fixed
	Inst	allation)
D.	. National Fire Protection Ass	ociation (NFPA):
	70-11Nati	onal Electrical Code (NEC)
Ε.	. Underwriters Laboratories, I	nc. (UL):
	44-05Ther	moset-Insulated Wires and Cables
	83-08Ther	moplastic-Insulated Wires and Cables
	467-07Elec	trical Grounding and Bonding Equipment
	486A-03Wire	Connectors and Soldering Lugs for Use with
	Copp	er Conductors
	486C-04Spli	cing Wire Connectors
	486D-05Insu	lated Wire Connector Systems for Underground
	Use	or in Damp or Wet Locations
	486E-00Equi	pment Wiring Terminals for Use with Aluminum
	and/	or Copper Conductors
	493-07Ther	moplastic-Insulated Underground Feeder and
	Bran	ch Circuit Cable
	514B-04Fitt	ings for Cable and Conduit
	1479-03Fire	Tests of Through-Penetration Fire Stops

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use [optical-fiber flashlight] [or] [optical loss test set].
 - 2. Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.
- B. Support of Open Cabling: NRTL labeled for support of [Category 5e] [Category 6] cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars, spools, J-hooks, and D-rings.
 - 3. Straps and other devices.

C. Cable Trays:

- 1. Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by [electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick] [hot-dip galvanizing, complying with ASTM A 123/A 123M Grade 0.55, not less than 0.002165 inch (0.055 mm) thick].
- 2. Basket Cable Trays: [6 inches (150 mm) wide and 2 inches (50 mm) deep]. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
- 3. Trough Cable Trays: [Nominally 6 inches (150 mm)] wide.
- 4. Ladder Cable Trays: [Nominally 18 inches (455 mm)] wide, and a rung spacing of [12 inches (305 mm)].
- 5. Channel Cable Trays: One-piece construction, [nominally 4 inches (100 mm)] wide. Slot spacing shall not exceed 4-1/2 inches (115 mm) o.c.
- 6. Solid-Bottom Cable Trays: One-piece construction, [nominally 12 inches (305 mm)] wide. Provide [with] [without] solid covers.
- D. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems."[Flexible metal conduit shall not be used.]
 - 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, [fire-retardant treated,] 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, [Category 5e] [Category 6].
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG [; or MPP, CMP, MPR, CMR, MP, or MPG].
 - b. Communications, Plenum Rated: Type CMP [; or MPP], complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR [; or MPP, CMP, or MPR], complying with UL 1666.

 - e. Multipurpose: Type MP or MPG [; or MPP or MPR].
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR [or MPP], complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: [110-style for Category 5e] [110-style for Category 6] [66-style for Category 5e]. Provide blocks for the number of cables terminated on the block, plus [25] percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

- A. Description: Multimode, [50/125] [62.5/125]-micrometer, [24] -fiber, [nonconductive,] tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with [TIA/EIA-492AAAA-B] [TIA/EIA-492AAAA-A] for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:

- b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
- c. Riser Rated, Nonconductive: Type OFNR [or OFNP], complying with UL 1666.
- d. General Purpose, Conductive: Type OFC or OFCG [; or OFNG, OFN, OFCR, OFNR, OFCP, or OFNP].
- e. Plenum Rated, Conductive: Type OFCP [or OFNP], complying with NFPA 262.
- f. Riser Rated, Conductive: Type OFCR [; or OFNR, OFCP, or OFNP], complying with UL 1666.
- 5. Conductive cable shall be [steel] [aluminum] armored type.
- 6. Maximum Attenuation: [3.50] dB/km at 850 nm; [1.5] dB/km at 1300 nm.
- 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

B. Jacket:

- 1. Jacket Color: [Aqua for 50/125-micrometer cable] [Orange for 62.5/125-micrometer cable].
- 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Cable Connecting Hardware: Meet the Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - Quick-connect, simplex and duplex, [Type SC] [Type ST] [Type LC] [Type MT-RJ] connectors. Insertion loss shall be not more than 0.75 dB.
 - 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 COAXIAL CABLE

- A. General Coaxial Cable Requirements: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- B. RG-11/U: NFPA 70, Type CATV.
 - 1. No. [14] AWG, solid, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 - 4. Jacketed with sunlight-resistant, black PVC or PE.

- 5. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
- C. RG59/U: NFPA 70, Type CATVR.
 - 1. No. [20] AWG, solid, silver-plated, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 - 4. Color-coded PVC jacket.
- D. RG-6/U: NFPA 70, Type CATV or CM.
 - 1. No. [16] AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 - 3. Jacketed with black PVC or PE.
 - 4. Suitable for indoor installations.
- E. RG59/U: NFPA 70, Type CATV.
 - 1. No. [20] AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 - 3. PVC jacket.
- F. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 - 1. No. [20] AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 - 3. Copolymer jacket.
- G. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655, and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 - 1. CATV Cable: Type CATV[, or CATVP or CATVR].
 - 2. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 - 3. CATV Riser Rated: Type CATVR[; or CATVP, CATVR, or CATV], complying with UL 1666.
 - 4. CATV Limited Rating: Type CATVX.

2.8 COAXIAL CABLE HARDWARE

A. Coaxial-Cable Connectors: Type BNC, 75 ohms.

2.9 RS-232 CABLE

A. Standard Cable: NFPA 70, Type CM.

- 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
- 2. Polypropylene insulation.
- 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
- 4. PVC jacket.
- 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
- 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.10 RS-485 CABLE

- A. Standard Cable: NFPA 70, Type CM[or CMG].
 - 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.11 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.

- 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.12 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, [Type THHN-THWN, in raceway] [power-limited cable, concealed in building finishes] [power-limited tray cable, in cable tray] complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.13 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, [not less than] [No. 18 AWG] [size as recommended by system manufacturer].
 - 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.

- 1. Low-Voltage Circuits: No. 16 AWG, minimum.
- 2. Line-Voltage Circuits: No. 12 AWG, minimum.
- 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.14 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.15 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.16 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.17 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - 7. Do not install bruised, kinked, scored, deformed, or abraded cable.

 Do not splice cable between termination, tap, or junction points.

 Remove and discard cable if damaged during installation and replace it with new cable.
 - 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - 1. Splices and terminations shall be mechanically and electrically secure.

- 2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- M. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.

- 2. Install cabling after the flooring system has been installed in raised floor areas.
- 3. Coil cable [72 inches (1830 mm)] long shall be neatly coiled not less than [12 inches (300 mm)] in diameter below each feed point.
- N. Outdoor Coaxial Cable Installation:
 - Install outdoor connections in enclosures complying with NEMA 250,
 Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 - 2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).
- O. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
 - 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

- 5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 6. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system.

 This system shall not be used for any other wire or cable.

C. Wiring Method:

- 1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
- 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is[not] permitted.
- 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.
- D. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.
- E. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.

- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

4. Optical Fiber Cable Tests:

- a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- b. Link End-to-End Attenuation Tests:
 - Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- 5. Coaxial Cable Tests: Comply with requirements in Division 27 Section "Master Antenna Television System."

- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - 2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 - 1. Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the

extent referenced. Publications are referenced in the text by designation only.

	В.	American	Society	for	Testing	and	Materials	(ASTM)	:
--	----	----------	---------	-----	---------	-----	-----------	--------	---

B1-07Standard	Specification	for	Hard-Drawn	Copper
Wire				

вз-07	Standard	Specification	for	Soft	or	Annealed
Copper Wire						

B8-04	.Standard	Specif	ication	for	Concen	tric-Lay-
	Stranded	Copper	Conduct	cors,	Hard,	Medium-Hard,
	or Soft					

С.	Institute of Electrical as	nd Electronics Engineers, Inc. (IEEE):	
	81-1983	EEE Guide for Measuring Earth Resistivity	· ,
	G	round Impedance, and Earth Surface Potent	ials
	0	f a Ground System	

C2-07	.National	Electrical	Safety	Code
-------	-----------	------------	--------	------

D. 1	National	Fire	Protection	Association	(NFPA)	:
------	----------	------	------------	-------------	--------	---

70-11	.National	Electrical	Code	(NEC)
99-2005	.Health Ca	are Facilit	Les	

E. Underwriters Laboratories, Inc. (UL):

44-05	Thermoset-Insulated Wires and Cables
83-08	Thermoplastic-Insulated Wires and Cables
467-07	Grounding and Bonding Equipment
486A-486B-03	Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 $\,\mathrm{mm^2}$ (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 GROUND RODS

- A. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance.

2.3 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 - 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - 6. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch x } \frac{3}{4} \text{ inch})$.

2.5 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.6 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

2.7 COMPUTER ROOM GROUND

A. Provide $50\,\mathrm{mm2}$ (1/0 AWG) bare copper grounding conductors bolted at mesh intersections to form an equipotential grounding grid. The

equipotential grounding grid shall form a 600mm (24 inch) mesh pattern. The grid shall be bonded to each of the access floor pedestals.

2.8 SECURITY CONTROL ROOM GROUND

- A. Provide 50mm2 (1/0 AWG) stranded copper grounding conductor(s) color coded with a green jacket, bolted at the Room's Communications System Grounding Electrode Cooper Plate and circulate to each equipment rack ground buss bar through the wire management system. Connect each equipment rack, wire management system's cable tray, ladder, etc. to the circulating ground wire with a minimum 25mm2 (4AWG) stranded Cooper Wire, color coded with a green jacket.
 - 1. Connect each equipment rack ground buss bar to the circulating ground wire a indicated in 2.9.A, and
 - 2. Connect each additional room item to the circulating ground wire as indicated in 2.9.A.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 COMPUTER ROOM/SECURITY EQUIPMENT ROOM GROUNDING

- A. Conduit: Ground and bond metallic conduit systems as follows:
 - 1. Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm² (6AWG) bonding jumpers.
 - 2. Bond at all intermediate metallic enclosures and across all joints using $16~\mathrm{mm}^2$ (6 AWG) bonding jumpers.

3.6 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - 1. Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - 2. Install insulated 16 mm 2 (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 - 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 - 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.7 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to earth ground externally to the building. Under no condition shall the electrical system's third of fourth ground electrode system, or the telecommunications system circulating ground system be connected to the lightning protection system. The Facility's structural steel may be used to connected the lightning protection system at the direction of the COR certified by an independent certified grounding contractor.

3.8 EXTERIOR LIGHT/CAMERA POLES

A. Provide 20 ft [6.1 M] of No. 4 bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

3.9 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the COR prior to backfilling. The contractor shall notify the COR 24 hours before the connections are ready for inspection.

3.10 GROUND ROD INSTALLATION

- A. Drive each rod vertically in the earth, not less than 3000 mm (10 feet) in depth.
- B. Where permanently concealed ground connections are required, make the connections by the exothermic process to form solid metal joints. Make accessible ground connections with mechanical pressure type ground connectors.
- C. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

3.11 GROUNDING FOR RF/EMI CONTROL

A. Install bonding jumpers to bond all conduit, cable trays, sleeves and equipment for low voltage signaling and data communications circuits.

Bonding jumpers shall consist of 100 mm (4 inches) wide copper strip or

two 6 mm 2 (10 AWG) copper conductors spaced minimum 100 mm (4 inches) apart. Use 16 mm 2 (6 AWG) copper where exposed and subject to damage.

- B. Comply with the following when shielded cable is used for data circuits.
 - 1. Shields shall be continuous throughout each circuit.
 - 2. Connect shield drain wires together at each circuit connection point and insulate from ground. Do not ground the shield.
 - 3. Do not connect shields from different circuits together.
 - 4. Shield shall be connected at one end only. Connect shield to signal reference at the origin of the circuit. Consult with equipment manufacturer to determine signal reference.

3.12 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer.
 - 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.13 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.

- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
 - 2. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- D. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- E. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 31 20 00 EARTHWORK. For bedding of conduits.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the COR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
 - 2. Handholes and boxes for underground wiring, including the following:
 - a. Duct entry provisions, including locations and duct sizes.
 - b. Frame and cover design.
 - c. Grounding details.
 - d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
 - e. Joint details.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

- H. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 16 Section "Electrical Supports and Seismic Restraints."

 Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified [and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic eventl."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- I. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

1-05.....Flexible Metal Conduit

D. Underwriters Laboratories, Inc. (UL):

5-04Surfac	ce Metal Raceway and Fittings
6-07Rigid	Metal Conduit
50-07Enclos	sures for Electrical Equipment
360-09Liquid	d-Tight Flexible Steel Conduit
467-07Grounding and Bonding Equipment	
514A-04Metallic Outlet Boxes	
514B-04Fittings for Cable and Conduit	
514C-02Nonmet	callic Outlet Boxes, Flush-Device Boxes and

Covers

	651-05	Schedule 40 and 80 Rigid PVC Conduit	
	651A-07	Type EB and A Rigid PVC Conduit and HDPE Conduit	
797-07Electrical Metallic Tubing			
	1242-06Intermediate Metal Conduit		

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3.

 Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - 3. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - 4. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.

- 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows:
 Malleable iron, steel or aluminum alloy materials; Zinc or cadmium
 plate iron or steel fittings. Aluminum fittings containing more than
 0.4 percent copper are prohibited.
 - 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - 3. Set screw fittings: Not permitted for use with aluminum conduit.
- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - 5. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- F. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 2. As recommended by the conduit manufacturer.
- G. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- H. Expansion and deflection couplings:

- 1. Conform to UL 467 and UL 514B.
- 2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
- 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
- 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall.

 Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

2.10 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. Description: Comply with SCTE 77.
 - 1. Color of Frame and Cover: Gray.
 - 2. Configuration: Units shall be designed for flush burial and have closed bottom, unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 6. Handholes 300 mm wide by 600 mm long (2 inches wide by 24 inches long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover:

 Molded of sand and aggregate, bound together with polymer resin, and
 reinforced with steel or fiberglass or a combination of the two.
- C. Fiberglass Handholes and Boxes with Polymer-Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester-resin enclosure joined to polymer-concrete top ring or frame.
- D. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with covers of [polymer concrete] [reinforced concrete] [cast iron] [hot-dip galvanized-steel diamond plate] [fiberglass].

2.11 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.

2.12 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Pressure Plates: [Plastic] [Carbon steel] [Stainless steel].
 Include two for each sealing element.

2. Connecting Bolts and Nuts: [Carbon steel with corrosion-resistant coating] [Stainless steel] of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.13 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases, with approved fire caulk. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - 7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.

- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.

B. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

C. Layout and Homeruns:

- 1. Install conduit with wiring, including homeruns, as shown.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.

D. Fire Alarm:

1. Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.

- 4. Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".

2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper green ground bonding jumper installed.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.

- b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
- c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings. Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.

K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS.
- B. This Section includes a Physical Access Control System consisting of a system server, [one or more networked workstation computers,] operating system and application software, and field-installed Controllers connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors [, gates] [, traffic-control bollards]
 - b. Anti-passback
 - c. Visitor assignment
 - d. Surge and tamper protection
 - e. Secondary alarm annunciator
 - f. Credential cards and readers
 - q. Biometric identity verification equipment
 - h. Push-button switches
 - i. RS-232 ASCII interface
 - j. Credential creation and credential holder database and management
 - k. Monitoring of field-installed devices
 - 1. Interface with [paging] [HVAC] [elevator control] <Insert other>
 systems.
 - m. Reporting

2. Security:

- a. Real-time guard tour.
- b. Time and attendance.
- c. Key tracking.
- d. Video and camera control.
- e. Time and attendance

C. System Architecture:

1. Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server

and workstation configurations with all necessary connectors, interfaces and accessories as shown.

- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Head-End equipment server,
 - 2. One or more networked PC-based workstations,
 - 3. Physical Access Control System and Database Management Software,
 - 4. Credential validation software/hardware,
 - 5. Field installed controllers,
 - 6. PIV Middelware,
 - 7. Card readers,
 - 8. Biometric identification devices,
 - 9. PIV <PIV-I>, <Legacy CAC>, <CAC NG>, <CAC EP>, <TWIC>, <FRAC> cards,
 - 10. Supportive information system,
 - 11. Door locks and sensors,
 - 12. Power supplies,
 - 13. Interfaces with:
 - a. Video Surveillance and Assessment System,
 - b. Gate, turnstile, and traffic arm controls,
 - c. Automatic door operators,
 - d. Intrusion Detection System,
 - e. Intercommunication System
 - f. Fire Protection System,
 - q. HVAC,
 - h. Building Management System,
 - i. Elevator Controls,
- F. Head-End equipment server, workstations and controllers shall be connected by a high-speed electronic data transmission network.
- G. Information system supporting PACS, Head-End equipment server, workstations, network switches, routers and controllers shall comply with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems).
- H. PACS system shall support:
 - 1. Multiple credential authentication modes,
 - 2. Bidirectional communication with the reader,

- 3. Incident response policy implementation capability; system shall have capability to automatically change access privileges for certain user groups to high security areas in case of incident/emergency.
- 4. Visitor management,
- I. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- J. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.
- K. System Software: Based on <Insert name of operating system> centralstation, workstation operating system, server operating system, and application software.
- L. Software and controllers shall be capable of matching full 56 bit FASC-N plus minimum of 32 bits of public key certificate data.
- M. Software shall have the following capabilities:
 - 1. Multiuser multitasking to allow for independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Support authentication and enrolment;
 - a. PIV verification,
 - b. Expiration date check,
 - c. Biometric check,
 - d. Digital photo display/check,
 - e. Validate digital signatures of data objects (Objects are signed by the Trusted Authority
 - f. Private key challenge (CAK & PAK to verify private key public key pairs exist and card is not a clone)
 - 3. Support CRL validation via OCSP or SCVP on a scheduled basis and automatically deny access to any revoked credential in the system.
 - 4. Graphical user interface to show pull-down menus and a menu tree format that complies with interface guidelines of Microsoft Windows operating system.

- 5. System license shall be for the entire system and shall include capability for future additions that are within the indicated system size limits specified in this Section.
- 6. System shall have open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with <insert operating system> operating system.
- 7. Operator login and access shall be utilized via integrated smart card reader and password protection.

N. Systems Networks:

1. A standalone system network shall interconnect all components of the system. This network shall include communications between a central station and any peer or subordinate workstations, enrollment stations, local annunciation stations, portal control stations or redundant central stations.

O. Security Management System Server Redundancy:

- 1. The SMS shall support multiple levels of fault tolerance and SMS redundancy listed and described below:
 - a. Hot Standby Servers
 - b. Clustering
 - c. Disk Mirroring
 - d. RAID Level 10
 - e. Distributed Intelligence

P. Number of points:

- 1. PACS shall support multiple autonomous regional servers that can connect to a master command and controller server.
- Unlimited number of access control readers, unlimited number of inputs or outputs, unlimited number of client workstations, unlimited number of cardholders.
- 3. Total system solution to enable enterprise-wide, networked, multiuser access to all system resources via a wide range of options for connectivity with the customer's existing LAN and WAN.

Q. Console Network:

1. Console network, if required, shall provide communication between a central station and any subordinate or separate stations of the system. Where redundant central or parallel stations are required, the console network shall allow the configuration of stations as master and slave. The console network may be a part of the field

device network or may be separate depending upon the manufacturer's system configuration.

- R. Network(s) connecting PCs and Controllers shall comply with NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems) and consist of one or more of the following:
 - 1. Local area, IEEE 802.3 Fast Ethernet [10 BASE-T] [100 BASE-TX], star topology network based on TCP/IP.
 - 2. Direct-connected, RS-232 cable from the COM port of the Central Station to the first Controller, then RS-485 to interconnect the remainder of the Controllers at that Location.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

 Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- H. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- J. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- K. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- L. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

A. The Contractor shall be responsible for providing, installing, and the operation of the PACS as shown. The Contractor shall also provide certification as required.

- B. The security system will be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.

D. Product Qualifications:

- 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
- 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

E. Contractor Qualifications:

1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians

shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- a. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- b. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- F. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, Section 02 41 00, DEMOLITION, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a complete and thorough pre-installation and as-built design package in both electronic format and on paper, minimum size 48×48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.

- b. Provide a complete list of all security abbreviations and symbols.
- c. Reference all general notes that are utilized within the design package.
- d. Specification and scope of work pages for all individual security systems that are applicable to the design package that will:
 - 1) Outline all general and job specific work required within the design package.
 - 2) Provide a detailed device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
- 2. Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Clearly define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A detailed riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A detailed system drawing for each applicable security system shall:

- a. Clearly identify how all equipment within the system, from main panel to device, shall be laid out and connected.
- b. Provide full detail of all system components wiring from pointto-point.
- c. Identify wire types utilized for connection, interconnection with associate security subsystems.
- d. Show device locations that correspond to the floor plans.
- e. All general and drawing specific notes shall be included with the system drawings.
- 5. A detailed schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the PACS, provide the door ID, door type (e.g. wood or metal), locking mechanism (e.g. strike or electromagnetic lock) and control device (e.g. card reader or biometrics).
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall go through a full review process conducted by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc.
 (UL) listing as specified. Provide all maintenance and operating

- manuals per Section 01 00 00, GENERAL REQUIREMENTS, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- H. General: Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. Additional general provisions are as follows:
 - 1. The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 DESIGN SUBMITTAL PROCEDURES, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.
 - 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.

- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - 1) Where two (2) or more binders are necessary to accommodate data, correlate data in each binder into related groupings according to the Project Manual table of contents. Cross-referencing other binders where necessary to provide essential information for communication of proper operation and or maintenance of the component or system.
 - 2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
 - e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.

- f. Manual Content: In each manual include information specified in the individual Specification section, and the following information for each major component of building equipment and controls:
 - 1) General system or equipment description.
 - 2) Design factors and assumptions.
 - 3) Copies of applicable Shop Drawings and Product Data.
 - 4) System or equipment identification including: manufacturer, model and serial numbers of each component, operating instructions, emergency instructions, wiring diagrams, inspection and test procedures, maintenance procedures and schedules, precautions against improper use and maintenance, repair instructions, sources of required maintenance materials and related services, and a manual index.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name.

- Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information.

 Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal.

 Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return non-

conforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.

- 8. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- I. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA Special Conditions and CAD Standards Documents. All text associated with security details shall be 1/8'' tall and meet VA text standard for AutoCADTM drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following: 1) security devices by symbol,

- 2) the associated device point number (derived from the loading sheets),
- 3) wire & cable types and counts
- 4) conduit sizing and routing
- 5) conduit riser systems
- 6) device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for doors with physical access control, reader pedestals and mounts, security panel and power supply details).
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the physical access control system throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., physical access control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.

i. Security Details:

- Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
- 2) Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling

- configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- 6) Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation.

 Equipment room the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)

- 3) Floor Plan Sheet Number
- 4) Standard Detail Number
- 5) Door Description (Derived from Loading Sheets)
- 6) Data Gathering Panel Input Number
- 7) Door Position or Monitoring Device Type & Model Number
- 8) Lock Type, Model Number & Power Input/Draw (standby/active)
- 9) Card Reader Type & Model Number
- 10) Shunting Device Type & Model Number
- 11) Sounder Type & Model Number
- 12) Manufacturer
- 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device
- 14) Remarks column indicating special notes or door configurations
- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage
 - e. Camera Location
 - f. Floor Plan Sheet Number
 - g. Camera Type
 - h. Mounting Type
 - i. Standard Detail Reference
 - j. Power Input & Draw
 - k. Power Panel Location
 - 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package

- a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
- b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
- c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
- d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
- e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number
 - 4) First Relay Number
 - 5) DGP, input or output Location
 - 6) DGP Chain Number
 - 7) DGP Cabinet Tamper Input Number
 - 8) DGP Power Fail Input Number
 - 9) Number of Monitor Points Reserved For Expansion Boards
 - 10) Number of Control Points (Relays) Reserved For Expansion Boards

- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 6) DGP or input module Input Location
 - 7) Date Test
 - 8) Date Passed
 - 9) Cable Type
 - 10) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number

- 2) System (Control Point) Number
- 3) Cable ID Number
- 4) Description Field (Room Number)
- 5) Description Field (Device: Lock Control, Local Sounder, etc.)
- 6) Description Field
- 7) DGP or OUTPUT MODULE Output Location
- 8) Date Test
- 9) Date Passed Cable Type
- 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section III Construction Mock-up: In areas with exposed EMT/Conduit Raceways, contractor shall conceal raceway as much as practical and unobtrusively. In addition, historic significance must be considered to determine installation means and methods for approval by the owner.
- 5. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 6. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and

- configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 7. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- J. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the COR documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.
 - 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- K. Group III Technical Data Package
 - Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and

be customized to the contract requirements. The Contractor will deliver the test procedures to the COR for approval at least 60 calendar days prior to the requested test date.

L. Group IV Technical Data Package

- 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the COR for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.

2. Training Documentation

a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.

b. New Unit Control Room:

1) Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the COR. Instruction is not to begin until the system is operational as designed.

- 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.

3. System Configuration and Data Entry:

a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor

shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:

- 1) Physical Access control system components,
- 2) All intrusion detection system components,
- 3) Video surveillance, control and recording systems,
- 4) Intercom systems components,
- 5) All other security subsystems shown in the contract documents.
- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.
- M. Group V Technical Data Package: Final copies of the manuals shall be delivered to the COR as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or

systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.

- 1. Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
- 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:

- a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.

- i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the COR or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and

- record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes.

 The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes.

 Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include, a minimum of the following:
 - a. Certificates received instead of labels on bulk products.
 - b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
 - c. Documented qualification of installation firms.
 - d. Load and performance testing.
 - e. Inspections and certifications.
 - f. Final inspection and correction procedures.
 - g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a thirty (30) day review period to determine the adequacy of the

- master redlines. If the master redlines are found suitable by the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.
- b. The Contractor shall provide the COR a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact infield conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

N. FIPS 201 Compliance Certificates

- 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Fingerprint Capture Station

- b. Card Readers
- c. Facial Image Capturing Camera
- d. PIV Middelware
- e. Template Matcher
- f. Electromagnetically Opaque Sleeve
- g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- h. <list devices and software>
- O. Approvals will be based on complete submission of manuals together with shop drawings.
- P. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / Security Industry Association (SIA):
 - AC-03......Access Control: Access Control Guideline Dye

 Sublimation Printing Practices for PVC Access

 Control Cards
 - TVAC-01......CCTV to Access Control Standard Message Set for System Integration
- C. American National Standards Institute (ANSI) / International Code
 Council (ICC):
 - Al17.1......Standard on Accessible and Usable Buildings and Facilities
- D. Department of Justice American Disability Act (ADA)
 28 CFR Part 36......ADA Standards for Accessible Design 2010
- E. Department of Veterans Affairs (VA):

PACS-R: Physical Access Control System (PACS) Requirements

VA	Handbook 0730 Security and Law Enforcement
F.	Government Accountability Office (GAO):
	GAO-03-8-02 Security Responsibilities for Federally Owned and Leased
	Facilities
G.	National Electrical Contractors Association
	303-2005Installing Closed Circuit Television (CCTV)
	Systems
Н.	National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
I.	National Fire Protection Association (NFPA):
	70-11 National Electrical Code
J.	Underwriters Laboratories, Inc. (UL):
	294-99The Standard of Safety for Access Control
	System Units
	305-08Standard for Panic Hardware
	639-97Standard for Intrusion-Detection Units
	752-05Standard for Bullet-Resisting Equipment
	827-08Central Station Alarm Services
	1076-95Standards for Proprietary Burglar Alarm Units
	and Systems
	1981-03Central Station Automation System
	2058-05High Security Electronic Locks
К.	Homeland Security Presidential Directive (HSPD):
	HSPD-12Policy for a Common Identification Standard for
	Federal Employees and Contractors
L.	Federal Communications Commission (FCC):
(4	7 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems
Μ.	Federal Information Processing Standards (FIPS):
	FIPS-201-1Personal Identity Verification (PIV) of Federal
	Employees and Contractors
N.	National Institute of Standards and Technology (NIST):
	IR 6887 V2.1Government Smart Card Interoperability
	Specification (GSC-IS)
	Special Pub 800-63Electronic Authentication Guideline
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-73-3Interfaces for Personal Identity Verification
	(4 Parts)

	Pt. 1- End Point PIV Card Application
	Namespace, Data Model & Representation
	Pt. 2- PIV Card Application Card Command
	Interface
	Pt. 3- PIV Client Application Programming
	Interface
	Pt. 4- The PIV Transitional Interfaces & Data
	Model Specification
	Special Pub 800-76-1Biometric Data Specification for Personal
	Identity Verification
	Special Pub 800-78-2Cryptographic Algorithms and Key Sizes for
	Personal Identity Verification
	Special Pub 800-79-1Guidelines for the Accreditation of Personal
	Identity Verification Card Issuers
	Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
	Special Pub 800-85A-2PIV Card Application and Middleware Interface
	Test Guidelines (SP 800-73-3 compliance)
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-37Guide for Applying the Risk Management
	Framework to Federal Information Systems
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-104AScheme for PIV Visual Card Topography
	Special Pub 800-116Recommendation for the Use of PIV Credentials
	in Physical Access Control Systems (PACS)
Ο.	Institute of Electrical and Electronics Engineers (IEEE):
	C62.41IEEE Recommended Practice on Surge Voltages in
	Low-Voltage AC Power Circuits
P.	International Organization for Standardization (ISO):
	7810Identification cards - Physical characteristics
	7811Physical Characteristics for Magnetic Stripe
	Cards
	7816-1Identification cards - Integrated circuit(s)
	cards with contacts - Part 1: Physical
	characteristics
	7816-2Identification cards - Integrated circuit cards
	- Part 2: Cards with contacts -Dimensions and
	location of the contacts

7816-3	Identification cards - Integrated circuit cards
	- Part 3: Cards with contacts - Electrical
	interface and transmission protocols
7816-4	Identification cards - Integrated circuit cards
	- Part 11: Personal verification through
	biometric methods
7816-10	Identification cards - Integrated circuit cards
	- Part 4: Organization, security and commands
	for interchange
14443	Identification cards - Contactless integrated
	circuit cards; Contactless Proximity Cards
	Operating at 13.56 MHz in up to 5 inches
	distance
15693	Identification cards Contactless integrated
	circuit cards - Vicinity cards; Contactless
	Vicinity Cards Operating at 13.56 MHz in up to
	50 inches distance
19794	Information technology - Biometric data
	interchange formats

- Q. Uniform Federal Accessibility Standards (UFAS) 1984
- R. ADA Standards for Accessible Design 2010
- S. Section 508 of the Rehabilitation Act of 1973

1.6 DEFINITIONS

- A. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16-character set.
- B. Access Control List: A list of (identifier, permissions) pairs associated with a resource or an asset. As an expression of security policy, a person may perform an operation on a resource or asset if and only if the person's identifier is present in the access control list (explicitly or implicitly), and the permissions in the (identifier, permissions) pair include the permission to perform the requested operation.
- C. Access Control: A function or a system that restricts access to authorized persons only.
- D. API Application Programming Interface
- E. Assurance Level (or E-Authentication Assurance Level): A measure of trust or confidence in an authentication mechanism defined in OMB

Memorandum M-04-04 and NIST Special Publication (SP) 800-63, in terms of four levels: [M-04-04]

- 1. Level 1: LITTLE OR NO confidence
- 2. Level 2: SOME confidence
- 3. Level 3: HIGH confidence
- 4. Level 4: VERY HIGH confidence
- F. Authentication: A process that establishes the origin of information, or determines an entity's identity. In this publication, authentication often means the performance of a PIV authentication mechanism.
- G. Authenticator: A memory, possession, or quality of a person that can serve as proof of identity, when presented to a verifier of the appropriate kind. For example, passwords, cryptographic keys, and fingerprints are authenticators.
- H. Authorization: A process that associates permission to access a resource or asset with a person and the person's identifier(s).
- I. BIO or BIO-A: A FIPS 201 authentication mechanism that is implemented by using a Fingerprint data object sent from the PIV Card to the PACS. Note that the short-hand "BIO (-A)" is used throughout the document to represent both BIO and BIO-A authentication mechanisms.
- J. Biometric: An authenticator produced from measurable qualities of a living person.
- K. CAC EP CAC End Point with end point PIV applet
- L. CAC NG CAC Next Generation with transitional PIV applet
- M. Card Authentication Key (CAK): A PIV authentication mechanism (or the PIV Card key of the same name) that is implemented by an asymmetric or symmetric key challenge/response protocol. The CAK is an optional mechanism defined in NIST SP 800-73. [SP800-73] NIST strongly recommends that every PIV Card contain an asymmetric CAK and corresponding certificate, and that agencies use the asymmetric CAK protocol, rather than a symmetric CAK protocol, whenever the CAK authentication mechanism is used with PACS.
- N. CCTV: Closed-circuit television.
- O. Central Station: A PC with software designated as the main controlling PC of the PACS. Where this term is presented with initial capital letters, this definition applies.
- P. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.

- Q. CPU: Central processing unit.
- R. Credential: Data assigned to an entity and used to identify that entity.
- S. File Server: A PC in a network that stores the programs and data files shared by users.
- T. FIPS Federal Information Processing Standards
- U. FRAC First Responder Authentication Credential
- V. HSPD Homeland Security Presidential Directive
- W. I/O: Input/Output.
- X. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- Y. IEC International Electrotechnical Commission
- Z. ISO International Organization for Standardization
- AA. KB Kilobyte
- BB. kbit/s Kilobits / second
- CC. LAN: Local area network.
- DD. LED: Light-emitting diode.
- EE. Legacy CAC Contact only Common Access Card with v1 and v2 applets
- FF. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- GG. NIST: National Institute of Standards and Technology
- HH. PACS: Physical Access Control System
- II. PC/SC: Personal Computer / Smart Card
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. PIV: Personal Identification Verification
- NN. PIV-I PIV Interoperable credential

- OO. PPS: Protocol and Parameters Selection
- PP. RF: Radio frequency.
- QQ. ROM: Read-only memory. ROM data are maintained through losses of power.
- RR. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- SS. RS-485: An TIA/EIA standard for multipoint communications.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. TPDU: Transport Protocol Data Unit
- VV. TWIC Transportation Worker Identification Credential
- WW. UPS: Uninterruptible power supply.
- XX. Vcc: Voltage at the Common Collector
- YY. WAN: Wide area network.
- ZZ. WAV: The digital audio format used in Microsoft Windows.
- AAA. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.
- BBB. Windows: Operating system by Microsoft Corporation.
- CCC. Workstation: A PC with software that is configured for specific limited security system functions.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 MAINTENANCE & SERVICE

A. General Requirements

1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

C. Personnel

1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.

D. Schedule of Work

- 1. The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a) The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.

- Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
- 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.

E. Emergency Service

- 1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and non-catastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

F. Operation

 Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.

G. Records & Logs

 The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.

H. Work Request

1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

I. System Modifications

1. The Contractor shall make any recommendations for system modification in writing to the COTR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COTR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

J. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual

performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door
- C. Physical Access Control System shall provide access to following Security Areas:
 - 1. Controlled
 - 2. Limited
 - 3. Exclusion
- D. PACS shall provide:
 - 1. One authentication factor for access to Controlled security areas
 - 2. Two authentication factors for access to Limited security areas
 - 3. Three authentication factors for access to Exclusion security areas
- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - 4. Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.
- G. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for physical access control. If communications to Central Station are lost, all Controllers shall

- automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.
- H. Number of Locations: Support unlimited number of separate Locations using a single PC with combinations of direct-connect, dial-up, or TCP/IP LAN connections to each Location.
 - 1. Each Location shall have its own database and history in the Central Station. Locations may be combined to share a common database.

I. Data Capacity:

- 1. [130] different card-reader formats.
- 2. [999] comments.
- 3. [16] graphic file types for importing maps.

J. Location Capacity:

- 1. [128] reader-controlled doors.
- 2. [50,000] total access credentials.
- 3. [2048] supervised alarm inputs.
- 4. [2048] programmable outputs.
- 5. [32,000] custom action messages per Location to instruct operator on action required when alarm is received.

K. System Network Requirements:

- 1. Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
- 2. Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.
- 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.
- 4. Communications Controller may be used as an interface between the Central Station display systems and the field device network.

 Communications Controller shall provide functions required to attain the specified network communications performance.
- L. Central Station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central Station shall control system networks to interconnect all system components, including workstations and field-installed Controllers.

- M. Field equipment shall include Controllers, sensors, and controls.

 Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records.

 Controllers are classified as alarm-annunciation or entry-control type.
- N. System Response to Alarms: Field device network shall provide a system end-to-end response time of [1] second(s) or less for every device connected to the system. Alarms shall be annunciated at the Central Station within 1 second of the alarm occurring at a Controller or device controlled by a local Controller, and within 100 ms if the alarm occurs at the Central Station. Alarm and status changes shall be displayed within 100 ms after receipt of data by the Central Station. All graphics shall be displayed, including graphics-generated map displays, on the console monitor within 5 seconds of alarm receipt at the security console.[This response time shall be maintained during system heavy load.]
- O. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- P. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect single-and double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multibit and burst error conditions.

 Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.
- Q. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.

- R. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- S. References to industry and trade association standards and codes are minimum installation requirement standards.
- T. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.10 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests.

 The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.

3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Physical Access Control System
 - 2. Application Software
 - 3. System Database
 - 4. Surge and Tamper Protection
 - 5. Standard Workstation Hardware
 - 6. Communications Workstation

- 7. Controllers (Data Gathering Panel)
- 8. Secondary Alarm Annunciator
- 9. Keypads
- 10. Card Readers
- 11. Credential Cards
- 12. Biometric Identity Verification Equipment
- 13. Enrolment Center (To be provided in accordance with the VA PIV enrollment and issuance system.)
- 14. System Sensors and Related Equipment
- 15. Push Button Switches
- 16. Interfaces
- 17. Door and Gate Hardware interface
- 18. RS-232 ASCII Interface
- 19. Floor Select Elevator Control
- 20. After-Hours HVAC Control
- 21. Real Time Guard Tour
- 22. Video and Camera Control
- 23. Cables
- 24. Transformers

2.2 SECURITY MANAGEMENT SYSTEM (SMS)

- A. Shall allow the configuration of an enrollment and badging, alarm monitoring, administrative, asset management, digital video management, intrusion detection, visitor enrollment, remote access level management, and integrated client workstations or any combination of all or some.
- B. Shall be expandable to support an unlimited number of individual module or integrated client workstations. All access control field hardware, including Data Gathering Panels(DGP), shall be connected to all physical access control system workstation on the network.
- C. Shall have the ability to compose, file, maintain, update, and print reports for either individuals or the system as follows.
 - Individual reports that consist of an employee's name, office location, phone number or direct extension, and normal hours of operation. The report shall provide a detail listing of the employee's daily events in relation to accessing points within a facility.

- 2. System reports shall be able to produce information on a daily/weekly/monthly basis for all events, alarms, and any other activity associated with a system user.
- D. All reports shall be in a date/time format and all information shall be clearly presented. Shall be designed to allow it to work with any industry standard network protocol and topology listed below:
 - 1. Transmission Control Protocol (TCP)/IP
 - 2. Novell Netware (IPX/SPX)
 - 3. Banyan VINES
 - 4. IBM LAN Server (NetBEUI)
 - 5. Microsoft LAN Manager (NetBEUI)
 - 6. Network File System (NFS) Networks
 - 7. Remote Access Service (RAS) via ISDN, x.25, and standard phone lines.
- E. Shall provide full interface and control of the PACS to include the following subsystems within the PACS:
 - 1. Public Key Infrastructure
 - 2. Card Management
 - 3. Identity and Access Management
 - 4. Personal Identity Verification
- F. Shall have the following features or compatibilities:
 - 1. The ability to be operated locally or remotely via a LAN, WAN, internet, or intranet.
 - 2. Event and Alarm Monitoring
 - 3. Database Partitioning
 - 4. Ability to fully integrate with all other security subsystems
 - 5. Enhanced Monitoring Station with Split Screen Views
 - 6. Alternate and Extended Shunt by Door
 - 7. Escort Management
 - 8. Enhanced IT-based Password Protection
 - 10. N-man Rule and Occupancy Restrictions
 - 11. Open Journal Data Format for Enhanced Reporting
 - 12. Automated Personnel Import
 - 13. ODBC Support
 - 14. Windows 2000 Professional, Windows Server 2003, Windows XP Professionals for Servers, Windows 7
 - 15. Field-Level Audit Trail
 - 16. Cardholder Access Events

2.3 APPLICATION SOFTWARE

- A. System Software: Based on [32]-bit, [Microsoft Windows] <Insert name of operating system> central-station and workstation operating system and application software. Software shall have the following features:
 - Multiuser multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Graphical user interface to show pull-down menus and a menu tree format.
 - 3. Capability for future additions within the indicated system size limits.
 - 4. Open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with operating system.
 - 5. Password-protected operator and smart card login and access.
- B. Peer Computer Control Software: Shall detect a failure of a central computer, and shall cause the other central computer to assume control of all system functions without interruption of operation. Drivers shall be provided in both central computers to support this mode of operation.
- C. Application Software: Interface between the alarm annunciation and entry-control Controllers, to monitor sensors[and DTS links], operate displays, report alarms, generate reports, and help train system operators. Software shall have the following functions:
 - 1. Resides at the Central Station, workstations, and Controllers as required to perform specified functions.
 - 2. Operate and manage peripheral devices.
 - 3. Manage files for disk I/O, including creating, deleting, and copying files; and automatically maintain a directory of all files, including size and location of each sequential and random-ordered record.
 - 4. Import custom icons into graphics views to represent alarms and I/O devices.
 - 5. Globally link I/O so that any I/O can link to any other I/O within the same Location, without requiring interaction with the host PC. This operation shall be at the Controller.
 - 6. Globally code I/O links so that any access-granted event can link to any I/O with the same Location without requiring interaction with the host PC. This operation shall be at the Controller.

- 7. Messages from PC to Controllers and Controllers to Controllers shall be on a polled network that utilizes check summing and acknowledgment of each message. Communication shall be automatically verified, buffered, and retransmitted if message is not acknowledged.
- 8. Selectable poll frequency and message time-out settings shall handle bandwidth and latency issues for TCP/IP, RF, and other PC-to-Controller communications methods by changing the polling frequency and the amount of time the system waits for a response.
- 9. Automatic and encrypted backups for database and history backups shall be automatically stored at [the central control PC] [a selected workstation] and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
- 10. Operator audit trail for recording and reporting all changes made to database and system software.

D. Workstation Software:

- Password levels shall be individually customized at each workstation to allow or disallow operator access to program functions for each Location.
- 2. Workstation event filtering shall allow user to define events and alarms that will be displayed at each workstation. If an alarm is unacknowledged (not handled by another workstation) for a preset amount of time, the alarm will automatically appear on the filtered workstation.

E. Controller Software:

- 1. Controllers shall operate as an autonomous intelligent processing unit. Controllers shall make decisions about physical access control, alarm monitoring, linking functions, and door locking schedules for its operation, independent of other system components. Controllers shall be part of a fully distributed processing control network. The portion of the database associated with a Controller and consisting of parameters, constraints, and the latest value or status of points connected to that Controller, shall be maintained in the Controller.
- 2. Functions: The following functions shall be fully implemented and operational within each Controller:
 - a. Monitoring inputs.

- b. Controlling outputs.
- c. Automatically reporting alarms to the Central Station.
- d. Reporting of sensor and output status to Central Station on request.
- e. Maintaining real time, automatically updated by the Central Station at least once a day.
- f. Communicating with the Central Station.
- g. Executing Controller resident programs.
- h. Diagnosing.
- i. Downloading and uploading data to and from the Central Station.
- 3. Controller Operations at a Location:
 - a. Location: Up to [64] Controllers connected to RS-485 communications loop. Globally operating I/O linking and antipassback functions between Controllers within the same Location without central-station or workstation intervention. Linking and anti-passback shall remain fully functional within the same Location even when the Central Station or workstations are off line.
 - b. In the event of communications failure between the Central Station and a Location, there shall be no degradation in operations at the Controllers at that Location. The Controllers at each Location shall be connected to a memory buffer with a capacity to store up to 10,000 events; there shall be no loss of transactions in system history files until the buffer overflows.
 - c. Buffered events shall be handled in a first-in-first-out mode of operation.

4. Individual Controller Operation:

- a. Controllers shall transmit alarms, status changes, and other data to the Central Station when communications circuits are operable. If communications are not available, Controllers shall function in a stand-alone mode and operational data, including the status and alarm data normally transmitted to the Central Station, shall be stored for later transmission to the Central Station. Storage capacity for the latest 1024 events shall be provided at each Controller.
- b. Card-reader ports of a Controller shall be custom configurable for at least [120] different card-reader or keypad formats.

- Multiple reader or keypad formats may be used simultaneously at different Controllers or within the same Controller.
- c. Controllers shall provide a response to card-readers or keypad entries in less than 0.25 seconds, regardless of system size.
- d. Controllers that are reset, or powered up from a nonpowered state, shall automatically request a parameter download and reboot to its proper working state. This shall happen without any operator intervention.
- e. Initial Startup: When Controllers are brought on-line, database parameters shall be automatically downloaded to them. After initial download is completed, only database changes shall be downloaded to each Controller.
- f. Failure Mode: On failure for any reason, Controllers shall perform an orderly shutdown and force Controller outputs to a predetermined failure mode state, consistent with the failure modes shown and the associated control device.
- g. Startup After Power Failure: After power is restored, startup software shall initiate self-test diagnostic routines, after which Controllers shall resume normal operation.
- h. Startup After Controller Failure: On failure, if the database and application software are no longer resident, Controllers shall not restart, but shall remain in the failure mode until repaired. If database and application programs are resident, Controllers shall immediately resume operation. If not, software shall be restored automatically from the Central Station.

5. Communications Monitoring:

- a. System shall monitor and report status of RS-485 communications loop [TCP/IP communication status] of each Location.
- b. Communication status window shall display which Controllers are currently communicating, a total count of missed polls since midnight, and which Controller last missed a poll.
- c. Communication status window shall show the type of CPU, the type of I/O board, and the amount of RAM memory for each Controller.
- 6. Operating systems shall include a real-time clock function that maintains seconds, minutes, hours, day, date, and month. The real-time clock shall be automatically synchronized with the Central Station at least once a day to plus or minus 10 seconds. The time

synchronization shall be automatic, without operator action and without requiring system shutdown.

- F. PC-to-Controller Communications:
 - Central-station or workstation communications shall use the following:
 - a. Direct connection using serial ports of the PC.
 - b. TCP/IP LAN network interface cards.
 - c. Dial-up modems for connections to Locations.
 - 2. Serial Port Configuration: Each serial port used for communications shall be individually configurable for "direct communications," "modem communications incoming and outgoing," or "modem communications incoming only"; or as an ASCII output port.
 - 3. Multiport Communications Board: Use if more than two serial ports are needed.
 - a. Expandable and modular design. Use a 4-, 8-, or 16-serial port configuration that is expandable to 32 or 64 serial ports.
 - b. Connect the first board to an internal PCI bus adapter card.
 - 4. Direct serial, TCP/IP, and dial-up communications shall be alike in the monitoring or control of system, except for the connection that must first be made to a dial-up Location.
 - 5. TCP/IP network interface card shall have an option to set the poll frequency and message response time-out settings.
 - 6. PC-to-Controller and Controller-to-Controller communications (direct, dial-up, or TCP/IP) shall use a polled-communication protocol that checks sum and acknowledges each message. All communications shall be verified and buffered and retransmitted if not acknowledged.
- G. Direct Serial or TCP/IP PC-to-Controller Communications:
 - 1. Communication software on the PC shall supervise the PC-to-Controller communications link.
 - 2. Loss of communications to any Controller shall result in an alarm at all PCs running the communications software.
 - 3. When communications are restored, all buffered events shall automatically upload to the PC, and any database changes shall be automatically sent to the Controller.
- H. Dial-up Modem PC-to-Controller Communications:
 - 1. Communication software on the PC shall supervise the PC-to-Controller communications link during dial-up modem connect times.

- 2. Communication software shall be programmable to routinely poll each of the remote dial-up modem Locations, collecting event logs and verifying phone lines at time intervals that are operator selectable for each Location.
- 3. System shall be programmable for dialing and connecting to all dialup modem Locations and for retrieving the accrued history transactions on an automatic basis as often as once every [10] minutes and up to once every [9999] minutes.
- 4. Failure to communicate to a dial-up Location three times in a row shall result in an alarm at the PC.
- 5. Time offset capabilities shall be present so that Locations in a different geographical time zone than the host PC will be set to, and maintained at, the proper local time. This feature shall allow for geographical time zones that are ahead of or behind the host PC.
- 6. The Controller connected to a dial-up modem shall automatically buffer all normal transactions until its buffer reaches 80 percent of capacity. When the transaction buffer reaches 80 percent, the Controller shall automatically initiate a call to the Central Station and upload all transactions.
- 7. Alarms shall be reported immediately.
- 8. Dial-up modems shall be provided by manufacturer of the system.

 Modems used at the Controller shall be powered by the Controller.

 Power to the modem shall include battery backup if the Controller is so equipped.

I. Controller-to-Controller Communications:

- 1. Controller-to-Controller Communications: RS-485, 4-wire, point-to-point, regenerative (repeater) communications network methodology.
- 2. RS-485 communications signal shall be regenerated at each Controller.

J. Database Downloads:

- 1. All data transmissions from PCs to a Location, and between Controllers at a Location, shall include a complete database checksum to check the integrity of the transmission. If the data checksum does not match, a full data download shall be automatically retransmitted.
- 2. If a Controller is reset for any reason, it shall automatically request and receive a database download from the PC. The download

- shall restore data stored at the Controller to their normal working state and shall take place with no operator intervention.
- 3. Software shall provide for setting downloads via dial-up connection to once per 24-hour period, with time selected by the operator.
- 4. Software shall provide for setting delays of database downloads for dial-up connections. Delays change the download from immediately to a delay ranging from 1 to 999 minutes.

K. Operator Interface:

- 1. Inputs in system shall have two icon representations, one for the normal state and one for the abnormal state.
- 2. When viewing and controlling inputs, displayed icons shall automatically change to the proper icon to display the current system state in real time. Icons shall also display the input's state, whether armed or bypassed, and if the input is in the armed or bypassed state due to a time zone or a manual command.
- 3. Outputs in system shall have two icon representations, one for the secure (locked) state and one for the open (unlocked) state.
- 4. Icons displaying status of the I/O points shall be constantly updated to show their current real-time condition without prompting by the operator.
- 5. The operator shall be able to scroll the list of I/Os and press the appropriate toolbar button, or right click, to command the system to perform the desired function.
- 6. Graphic maps or drawings containing inputs, outputs, and override groups shall include the following:
 - a. Database to import and store full-color maps or drawings and allow for input, output, and override group icons to be placed on maps.
 - b. Maps to provide real-time display animation and allow for control of points assigned to them.
 - c. System to allow inputs, outputs, and override groups to be placed on different maps.
 - d. Software to allow changing the order or priority in which maps will be displayed.

7. Override Groups Containing I/Os:

a. System shall incorporate override groups that provide the operator with the status and control over user-defined "sets" of I/Os with a single icon.

- b. Icon shall change automatically to show the live summary status of points in that group.
- c. Override group icon shall provide a method to manually control or set to time zone points in the group.
- d. Override group icon shall allow the expanding of the group to show icons representing the live status for each point in the group, individual control over each point, and the ability to compress the individual icons back into one summary icon.

8. Schedule Overrides of I/Os and Override Groups:

- a. To accommodate temporary schedule changes that do not fall within the holiday parameters, the operator shall have the ability to override schedules individually for each input, output, or override group.
- b. Each schedule shall be composed of a minimum of two dates with separate times for each date.
- c. The first time and date shall be assigned the override state that the point shall advance to, when the time and date become current.
- d. The second time and date shall be assigned the state that the point shall return to, when the time and date become current.
- 9. Copy command in database shall allow for like data to be copied and then edited for specific requirements, to reduce redundant data entry.

L. Operator Access Control:

- Control operator access to system controls through [three] passwordprotected operator levels. System operators and managers with appropriate password clearances shall be able to change operator levels for operators.
- 2. Three successive attempts by an operator to execute functions beyond their defined level during a 24-hour period shall initiate a software tamper alarm.
- 3. A minimum of [32] passwords shall be available with the system software. System shall display the operator's name or initials in the console's first field. System shall print the operator's name or initials, action, date, and time on the system printer at login and logoff.
- 4. The password shall not be displayed or printed.
- 5. Each password shall be definable and assignable for the following:

- a. Commands usable.
- b. Access to system software.
- c. Access to application software.
- d. Individual zones that are to be accessed.
- e. Access to database.

M. Operator Commands:

- Command Input: Plain-language words and acronyms shall allow operators to use the system without extensive training or dataprocessing backgrounds. System prompts shall be a word, a phrase, or an acronym.
- 2. Command inputs shall be acknowledged and processing shall start in not less than [1] second(s).
- 3. Tasks that are executed by operator's commands shall include the following:
 - a. Acknowledge Alarms: Used to acknowledge that the operator has observed the alarm message.
 - b. Place Zone in Access: Used to remotely disable intrusion alarm circuits emanating from a specific zone. System shall be structured so that console operator cannot disable tamper circuits.
 - c. Place Zone in Secure: Used to remotely activate intrusion alarm circuits emanating from a specific zone.
 - d. System Test: Allows the operator to initiate a system-wide operational test.
 - e. Zone Test: Allows the operator to initiate an operational test for a specific zone.
 - f. Print reports.
 - g. Change Operator: Used for changing operators.
 - h. Security Lighting Controls: Allows the operator to remotely turn on/off security lights.
 - i. Display Graphics: Used to display any graphic displays implemented in the system. Graphic displays shall be completed within 20 seconds from time of operator command.
 - j. Run system tests.
 - k. Generate and format reports.
 - 1. Request help with the system operation.
 - 1) Include in main menus.

- 2) Provide unique, descriptive, context-sensitive help for selections and functions with the press of one function key.
- 3) Provide navigation to specific topic from within the first help window.
- 4) Help shall be accessible outside the applications program.

m. Entry-Control Commands:

- 1) Lock (secure) or unlock (open) each controlled entry and exit up to four times a day through time-zone programming.
- 2) Arm or disarm each monitored input up to four times a day through time-zone programming.
- 3) Enable or disable readers or keypads up to twice a day through time-zone programming.
- 4) Enable or disable cards or codes up to four times per day per entry point through access-level programming.
- 4. Command Input Errors: Show operator input assistance when a command cannot be executed because of operator input errors. Assistance screen shall use plain-language words and phrases to explain why the command cannot be executed. Error responses that require an operator to look up a code in a manual or other document are not acceptable. Conditions causing operator assistance messages include the following:
 - a. Command entered is incorrect or incomplete.
 - b. Operator is restricted from using that command.
 - c. Command addresses a point that is disabled or out of service.
 - d. Command addresses a point that does not exist.
 - e. Command is outside the system's capacity.

N. Alarms:

1. System Setup:

- a. Assign manual and automatic responses to incoming point status change or alarms.
- b. Automatically respond to input with a link to other inputs, outputs, operator-response plans, unique sound with use of WAV files, and maps or images that graphically represent the point location.
- c. 60-character message field for each alarm.
- d. Operator-response-action messages shall allow message length of at least 65,000 characters, with database storage capacity of up

- to 32,000 messages. Setup shall assign messages to [access point] [zone] [sensor] < other alarm originating device>.
- e. Secondary messages shall be assignable by the operator for printing to provide further information and shall be editable by the operator.
- f. Allow 25 secondary messages with a field of 4 lines of 60 characters each.
- g. Store the most recent 1000 alarms for recall by the operator using the report generator.

2. Software Tamper:

- a. Annunciate a tamper alarm when unauthorized changes to system database files are attempted. Three consecutive unsuccessful attempts to log onto system shall generate a software tamper alarm.
- b. Annunciate a software tamper alarm when an operator or other individual makes three consecutive unsuccessful attempts to invoke functions beyond their authorization level.
- c. Maintain a transcript file of the last 5000 commands entered at the each Central Station to serve as an audit trail. System shall not allow write access to system transcript files by any person, regardless of their authorization level.
- d. Allow only acknowledgment of software tamper alarms.
- Read access to system transcript files shall be reserved for operators with the highest password authorization level available in system.
- 4. Animated Response Graphics: Highlight alarms with flashing icons on graphic maps; display and constantly update the current status of alarm inputs and outputs in real time through animated icons.
- 5. Multimedia Alarm Annunciation: WAV files to be associated with alarm events for audio annunciation or instructions.
- 6. Alarm Handling: Each input may be configured so that an alarm cannot be cleared unless it has returned to normal, with options of requiring the operator to enter a comment about disposition of alarm. Allow operator to silence alarm sound when alarm is acknowledged.
- 7. Alarm Automation Interface: High-level interface to Central Station alarm automation software systems. Allows input alarms to be passed

- to and handled by automation systems in same manner as burglar alarms, using an RS-232 ASCII interface.
- 8. CCTV Alarm Interface: Allow commands to be sent to CCTV systems during alarms (or input change of state) through serial ports.
- 9. Camera Control: Provides operator ability to select and control cameras from graphic maps.
- O. Alarm Monitoring: Monitor sensors, Controllers, and DTS circuits and notify operators of an alarm condition. Display higher-priority alarms first and, within alarm priorities, display the oldest unacknowledged alarm first. Operator acknowledgment of one alarm shall not be considered acknowledgment of other alarms nor shall it inhibit reporting of subsequent alarms.
 - 1. Displayed alarm data shall include type of alarm, location of alarm, and secondary alarm messages.
 - Printed alarm data shall include type of alarm, location of alarm, date and time (to nearest second) of occurrence, and operator responses.
 - 3. Maps shall automatically display the alarm condition for each input assigned to that map, if that option is selected for that input location.
 - 4. Alarms initiate a status of "pending" and require the following two handling steps by operators:
 - a. First Operator Step: "Acknowledged." This action shall silence sounds associated with the alarm. The alarm remains in the system "Acknowledged" but "Un-Resolved."
 - b. Second Operator Step: Operators enter the resolution or operator comment, giving the disposition of the alarm event. The alarm shall then clear.
 - 5. Each workstation shall display the total pending alarms and total unresolved alarms.
 - 6. Each alarm point shall be programmable to disallow the resolution of alarms until the alarm point has returned to its normal state.
 - 7. Alarms shall transmit to Central Station in real time, except for allowing connection time for dial-up locations.
 - 8. Alarms shall be displayed and managed from a minimum of four different windows.
 - a. Input Status Window: Overlay status icon with a large red blinking icon. Selecting the icon will acknowledge the alarm.

- b. History Log Transaction Window: Display name, time, and date in red text. Selecting red text will acknowledge the alarm.
- c. Alarm Log Transaction Window: Display name, time, and date in red. Selecting red text will acknowledge the alarm.
- d. Graphic Map Display: Display a steady colored icon representing each alarm input location. Change icon to flashing red when the alarm occurs. Change icon from flashing red to steady red when the alarm is acknowledged.
- 9. Once an alarm is acknowledged, the operator shall be prompted to enter comments about the nature of the alarm and actions taken. Operator's comments may be manually entered or selected from a programmed predefined list, or a combination of both.
- 10. For locations where there are regular alarm occurrences, provide programmed comments. Selecting that comment shall clear the alarm.
- 11. The time and name of the operator who acknowledged and resolved the alarm shall be recorded in the database.
- 12. Identical alarms from same alarm point shall be acknowledged at same time the operator acknowledges the first alarm. Identical alarms shall be resolved when the first alarm is resolved.
- 13. Alarm functions shall have priority over downloading, retrieving, and updating database from workstations and Controllers.
- 14. When a reader-controlled output (relay) is opened, the corresponding alarm point shall be automatically bypassed.
- P. Monitor Display: Display text and graphic maps that include zone status integrated into the display. Colors are used for the various components and current data. Colors shall be uniform throughout the system.

1. Color Code:

- a. FLASHING RED: Alerts operator that a zone has gone into an alarm or that primary power has failed.
- b. STEADY RED: Alerts operator that a zone is in alarm and alarm has been acknowledged.
- c. YELLOW: Advises operator that a zone is in access.
- d. GREEN: Indicates that a zone is secure and that power is on.

2. Graphics:

a. Support 32,000 graphic display maps and allow import of maps from a minimum of 16 standard formats from another drawing or graphics program.

- b. Allow I/O to be placed on graphic maps by the drag-and-drop method.
- c. Operators shall be able to view the inputs, outputs, and the point's name by moving the mouse cursor over the point on graphic map.
- d. Inputs or outputs may be placed on multiple graphic maps. The operator shall be able to toggle to view graphic map associated with inputs or outputs.
- e. Each graphic map shall have a display-order sequence number associated with it to provide a predetermined order when toggled to different views.
- f. Camera icons shall have the ability to be placed on graphic maps that, when selected by an operator, will open a video window, display the camera associated with that icon, and provide pantilt-zoom control.
- g. Input, output, or camera placed on a map shall allow the ability to arm or bypass an input, open or secure an output, or control the pan-tilt-zoom function of the selected camera.
- Q. System test software enables operators to initiate a test of the entire system or of a particular portion of the system.
 - 1. Test Report: The results of each test shall be stored for future display or printout. The report shall document the operational status of system components.
- R. Report Generator Software: Include commands to generate reports for displaying, printing, and storing on disk and tape. Reports shall be stored by type, date, and time. Report printing shall be the lowest priority activity. Report generation mode shall be operator selectable but set up initially as periodic, automatic, or on request. Include time and date printed and the name of operator generating the report. Report formats may be configured by operators.
 - Automatic Printing: Setup shall specify, modify, or inhibit the report to be generated; the time the initial report is to be generated; the time interval between reports; the end of period; and the default printer.
 - 2. Printing on Requests: An operator may request a printout of any report.
 - 3. Alarm Reports: Reporting shall be automatic as initially set up.

 Include alarms recorded by system over the selected time and

- information about the type of alarm [(such as door alarm, intrusion alarm, tamper alarm, etc.)] <Insert alarm types>, the type of sensor, the location, the time, and the action taken.
- 4. Access and Secure Reports: Document zones placed in access, the time placed in access, and the time placed in secure mode.
- 5. Custom Reports: Reports tailored to exact requirements of who, what, when, and where. As an option, custom report formats may be stored for future printing.
- 6. Automatic History Reports: Named, saved, and scheduled for automatic generation.
- 7. Cardholder Reports: Include data, or selected parts of the data, as well as the ability to be sorted by name, card number, imprinted number, or by any of the user-defined fields.
- 8. Cardholder by Reader Reports: Based on who has access to a specific reader or group of readers by selecting the readers from a list.
- 9. Cardholder by Access-Level Reports: Display everyone that has been assigned to the specified access level.
- 10. Who Is In (Muster) Report:
 - a. Emergency Muster Report: One click operation on toolbar launches report.
 - b. Cardholder Report. Contain a count of persons that are "In" at a selected Location and a count with detailed listing of name, date, and time of last use, sorted by the last reader used or by the group assignment.
- 11. Panel Labels Reports: Printout of control-panel field documentation including the actual location of equipment, programming parameters, and wiring identification. Maintain system installation data within system database so that they are available on-site at all times.
- 12. Activity and Alarm On-Line Printing: Activity printers for use at workstations; prints all events or alarms only.
- 13. History Reports: Custom reports that allows the operator to select any date, time, event type, device, output, input, operator, Location, name, or cardholder to be included or excluded from the report.
 - a. Initially store history on the hard disk of the host PC.
 - b. Permit viewing of the history on workstations or print history to any system printer.

- c. The report shall be definable by a range of dates and times with the ability to have a daily start and stop time over a given date range.
- d. Each report shall depict the date, time, event type, event description, device, or I/O name, cardholder group assignment, and cardholder name or code number.
- e. Each line of a printed report shall be numbered to ensure that the integrity of the report has not been compromised.
- f. Total number of lines of the report shall be given at the end of the report. If the report is run for a single event such as "Alarms," the total shall reflect how many alarms occurred during that period.
- 14. Reports shall have the following four options:
 - a. View on screen.
 - b. Print to system printer. Include automatic print spooling and "Print To" options if more than one printer is connected to system.
 - c. "Save to File" with full path statement.
 - d. System shall have the ability to produce a report indicating status of system inputs and outputs or of inputs and outputs that are abnormal, out of time zone, manually overridden, not reporting, or in alarm.
- 15. Custom Code List Subroutine: Allow the access codes of system to be sorted and printed according to the following criteria:
 - a. Active, inactive, or future activate or deactivate.
 - b. Code number, name, or imprinted card number.
 - c. Group, Location, access levels.
 - d. Start and stop code range.
 - e. Codes that have not been used since a selectable number of days.
 - f. In, out, or either status.
 - g. Codes with trace designation.
- 16. The reports of system database shall allow options so that every data field may be printed.
- 17. The reports of system database shall be constructed so that the actual position of the printed data shall closely match the position of the data on the data-entry windows.
- S. Anti-Passback:

- System shall have global and local anti-passback features, selectable by Location. System shall support hard and soft antipassback.
- 2. Hard Anti-Passback: Once a credential holder is granted access through a reader with one type of designation (IN or OUT), the credential holder may not pass through that type of reader designation until the credential holder passes though a reader of opposite designation.
- 3. Soft Anti-Passback: Should a violation of the proper IN or OUT sequence occur, access shall be granted, but a unique alarm shall be transmitted to the control station, reporting the credential holder and the door involved in the violation. A separate report may be run on this event.
- 4. Timed Anti-Passback: A Controller capability that prevents an access code from being used twice at the same device (door) within a user-defined amount of time.
- 5. Provide four separate zones per Location that can operate without requiring interaction with the host PC (done at Controller). Each reader shall be assignable to one or all four anti-passback zones. In addition, each anti-passback reader can be further designated as "Hard," "Soft," or "Timed" in each of the four anti-passback zones. The four anti-passback zones shall operate independently.
- 6. The anti-passback schemes shall be definable for each individual door.
- 7. The Master Access Level shall override anti-passback.
- 8. System shall have the ability to forgive (or reset) an individual credential holder or the entire credential holder population antipassback status to a neutral status.

T. Visitor Assignment:

- Provide for and allow an operator to be restricted to only working with visitors. The visitor badging subsystem shall assign credentials and enroll visitors. Allow only access levels that have been designated as approved for visitors.
- 2. Provide an automated log of visitor name, time and doors accessed, and whom visitor contacted.
- 3. Allow a visitor designation to be assigned to a credential holder.
- 4. PACS shall be able to restrict the access levels that may be assigned to credentials that are issued to visitors.

- 5. Allow operator to recall visitors' credential holder file, once a visitor is enrolled in the system.
- 6. The operator may designate any reader as one that deactivates the credential after use at that reader. The history log shall show the return of the credential.
- 7. System shall have the ability to use the visitor designation in searches and reports. Reports shall be able to print all or any visitor activity.

U. Time and Attendance:

- Time and attendance reporting shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length of the report.
- 2. Shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length of the report.
- 3. System software setup shall allow designation of selected accesscontrol readers as time and attendance hardware to gather the clockin and clock-out times of the users at these readers.
 - a. Reports shall show in and out times for each day, total in time for each day, and a total in time for period specified by the
 - b. Allow the operator to view and print the reports, or save the report to a file.
 - c. Alphabetically sort reports on the person's last name, by Location or location group. Include all credential holders or optionally select individual credential holders for the report.
- V. Training Software: Enables operators to practice system operation including alarm acknowledgment, alarm assessment, response force deployment, and response force communications. System shall continue normal operation during training exercises and shall terminate exercises when an alarm signal is received at the console.
- W. Entry-Control Enrollment Software: Database management functions that allow operators to add, delete, and modify access data as needed.
 - 1. The enrollment station shall not have alarm response or acknowledgment functions.
 - 2. Provide multiple, password-protected access levels. Database management and modification functions shall require a higher operator access level than personnel enrollment functions.

- 3. The program shall provide means to disable the enrollment station when it is unattended to prevent unauthorized use.
- 4. The program shall provide a method to enter personnel identifying information into the entry-control database files through enrollment stations. In the case of personnel identity verification subsystems, this shall include biometric data. Allow entry of personnel identifying information into the system database using menu selections and data fields. The data field names shall be customized during setup to suit user and site needs. Personnel identity verification subsystems selected for use with the system shall fully support the enrollment function and shall be compatible with the entry-control database files.
- 5. Cardholder Data: Provide 99 user-defined fields. System shall have the ability to run searches and reports using any combination of these fields. Each user-defined field shall be configurable, using any combination of the following features:
 - a. MASK: Determines a specific format that data must comply with.
 - b. REQUIRED: Operator is required to enter data into field before saving.
 - c. UNIQUE: Data entered must be unique.
 - d. DEACTIVATE DATE: Data entered will be evaluated as an additional deactivate date for all cards assigned to this cardholder.
 - e. NAME ID: Data entered will be considered a unique ID for the cardholder.
- 6. Personnel Search Engine: A report generator with capabilities such as search by last name, first name, group, or any predetermined user-defined data field; by codes not used in definable number of days; by skills; or by seven other methods.
- 7. Multiple Deactivate Dates for Cards: User-defined fields to be configured as additional stop dates to deactivate any cards assigned to the cardholder.
- 8. Batch card printing.
- 9. Default card data can be programmed to speed data entry for sites where most card data are similar.
- 10. Enhanced ACSII File Import Utility: Allows the importing of cardholder data and images.
- 11. Card Expire Function: Allows readers to be configured to deactivate cards when a card is used at selected devices.

- X. System Redundancy & High Availability: The system shall provide multiple levels of communications redundancy and failover for all PACS hosted controllers, digital video recorders, and client workstations. The PACS shall be capable of automatically re-routing communications to alternate computers across the system without operator intervention.
 - 1. PACS system configuration with a single application/ database server shall provide at a minimum the following redundancy and failover capability:
 - a. The PACS shall provide communications redundancy and failover for network-attached devices. Each network attached device shall have one or more alternative communication sever(s) that can provide hosting in case of primary communications server failure.
 - b. In case of primary communications server failure, the system shall automatically re-route network-attached devices to their designated backup communications servers to allow continuous system operations without loss of alarm and event transaction processing during failover.
 - c. Network-attached devices which transition to backup communications servers, shall be able to be redirected back to their default primary servers, once the primary communications servers have been restored.
 - 2. PACS system configuration with multiple regional application/ database servers shall provide at a minimum the following redundancy and failover capability:
 - a) The PACS shall support the same level of communications redundancy and failover for network-attached devices per regional application/database server, allowable to span across regional application/database servers in the event of a regional application/database server failure.
 - b) In case of a regional application/database server failure, client workstations shall be able to failover to their designated backup regional application/database server to allow continuous system operations.
 - c) In case of a regional application/database server failure, upon server restoration, the ISMS shall automatically update and synchronize the regional application/database server.
 - d) Client workstations which transition to a backup regional application/database server, shall be able to be redirected back

to their default regional application/database server, once the regional application/database server functions have been restored.

2.4 SURGE AND TAMPER PROTECTION

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor-entry connection to components.
 - 1. Minimum Protection for Power Connections 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits."
 - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Connections: Comply with requirements in Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits" as recommended by manufacturer for type of line being protected.
- B. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station control-unit alarm display shall identify tamper alarms and indicate locations.

2.5 PACS SERVER HARDWARE

- A. SMS Server Computer: Standard unmodified PC of modular design. The CPU word size shall be [64] bytes or larger; the CPU operating speed shall be at least [3.4] [GHz].
 - 1. Processor family: [Intel® Xeon® E5640 (4 core, 2.66 GHz, 12MB L3, 80W)] <Insert text>.
 - 2. Number of processors: 2
 - 3. Memory: [12] GB RAM , expandable to a minimum of [192] GB without additional chassis or power supplies. Memory protection [Mirrored Memory, Online Spare, Advanced ECC, Memory Lock Step Mode] <Insert text>.
 - 4. Input/Output: 2 expansions slots, Network Controller (2) 1GbE NC382i Multifunction 4 Ports.
 - 5. Power Supply: Dual minimum capacity of [460] W hot plug.
 - 6. Real-Time Clock:

- a. Accuracy: Plus or minus 1 minute per month.
- b. Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
- c. Clock shall function for 1 year without power.
- d. Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
- 7. Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- 8. Parallel Port: An enhanced parallel port.
- 9. The server shall have a 1 GB NIC or greater network card, rated at $100/1000 \, \mathrm{MB/sec.}$
- 10. The server shall have dual [100] GB hard disk drives at [7200]] RPM.
- 11. The server shall have a CD / DVD combo drive.
- 12. The Web Server shall be [IIS 7.0] < Insert text> or better.
- 13. The Database shall be [SQL Server 2005 (Express, Standard, Data Center, or Enterprise)] <Insert text>.
- 14. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.
- 15. Color Monitor: [17"] or larger SVGA (1024 x 768) monitor with true color support.. The server shall have a dedicated 256 MB SVGA accelerated video card with at least 64 MB onboard RAM.
- 16. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
- 17. Mouse: Standard, compatible with the installed software.
- 18. Special function keyboard attachments or special function keys to facilitate data input of the following operator tasks:
 - a. Help.
 - b. Alarm Acknowledge.
 - c. Place Zone in Access.
 - d. Place Zone in Secure.
 - e. System Test.
 - f. Print Reports.
 - g. Change Operator.
 - h. <Insert operator tasks.>
- 19. CD-ROM Drive:

- a. Nominal storage capacity of [650] MB.
- b. Data Transfer Rate: [1.2] Mbps.
- c. Average Access Time: [150] ms.
- d. Cache Memory: [256] KB.
- e. Data Throughput: [1] MB/second, minimum.
- 20. Dot Matrix Alarm Printer:
 - a. Connected to the Central Station.
 - b. Minimum of 96 characters, standard ASCII character set based on ANSI X3.154, and with graphics capability and programmable control of top-of-form.
 - c. Prints in both red and black without ribbon change.
 - d. Adjustable sprockets for paper width up to 11 inches.
 - e. 80 columns per line, minimum speed of 200 characters per second.
 - f. Character Spacing: Selectable at 10, 12, or 17 characters per inch.
 - g. Paper: Sprocket-fed fan fold paper.
- 21. Report Printer:
 - a. Connected to the Central Station and designated workstations.
 - b. Laser printer with minimum resolution of [1200] dpi.
 - c. RAM: [2] MB, minimum.
 - d. Printing Speed: Minimum [12] pages per minute.
 - e. Paper Handling: Automatic sheet feeder with [250] <Insert number>-sheet paper cassette and with automatic feed.
 - f. Interface: Bidirectional parallel and universal serial bus.
- B. Redundant Central Computer: One identical redundant central computer, connected in a hot standby, peer configuration. This computer shall automatically maintain its own copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant computer in near real-time. If central computer fails, redundant computer shall assume control immediately and automatically.
- C. PACS controllers clustering shall support the following features:
 - 1. Assignment of Master and alternate master controllers for cluster communication to the SMS server
 - 2. Primary and backup communication paths to the SMS server
 - 3. Encrypted communications
 - 4. Up to [16] controllers per cluster

- 5. Logical event linking between controllers in a cluster independent of SMS server communication
- 6. Asynchronous communication via TCP/IP (Polled devices shall not be acceptable)
- D. UPS: Self-contained; complying with requirements in Division 26 Section "Static Uninterruptible Power Supply."
 - 1. Size: Provide a minimum of [15] hours of operation of the central-station equipment, including 2 hours of alarm printer operation.
 - 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.
 - k. Remote battery monitoring.

2.6 STANDARD WORKSTATION HARDWARE

- A. Workstation shall consist of a standard unmodified PC, with accessories and peripherals that configure the workstation for a specific duty.
- B. Workstation Computer: Standard unmodified PC of modular design. The CPU word size shall be [32] bytes or larger; the CPU operating speed shall be at least [66] [MHz] [GHz].
 - 1. Memory: [256] MB of usable installed memory, expandable to a minimum of [1024] MB without additional chassis or power supplies.
 - 2. Power Supply: Minimum capacity of [250] W.
 - 3. Real-Time Clock:
 - a. Accuracy: Plus or minus 1 minute per month.
 - b. Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
 - c. Provide automatic time correction once every [24 hours] <Insert number of hours or minutes> by synchronizing clock with the Central Station.

- 4. Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- 5. Parallel Port: An enhanced parallel port.
- 6. LAN Adapter Card: [10/100] Mbps PCI bus, internal network interface card.
- 7. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.
- 8. Color Monitor: Not less than [17 inches (430 mm)] <Insert inches (mm)>, with a minimum resolution of [1280 by 1024] <Insert numbers> pixels, noninterlaced, and a maximum dot pitch of [0.28] mm. The video card shall support at least [256] colors at a resolution of [1280 by 1024] at a minimum refresh rate of [70]Hz.
- 9. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
- 10. Mouse: Standard, compatible with the installed software.
- 11. Disk storage shall include the following, each with appropriate controller:
 - a. Minimum [10] GB hard disk, maximum average access time of [10] ms.
 - b. Floppy Disk Drive: High density, 3-1/2-inch (90-mm) size.
 - c. <Insert disk drives.>

12. CD-ROM Drive:

- a. Nominal storage capacity of [650] MB.
- b. Data Transfer Rate: [1.2] Mbps.
- c. Average Access Time: [150] ms.
- d. Cache Memory: [256] KB.
- e. Data Throughput: [1] MB/second, minimum.

13. Printer:

- a. Connected to the Central Station and designated workstations.
- b. Laser printer with minimum resolution of [600] dpi.
- c. RAM: [2] MB, minimum.
- d. Printing Speed: Minimum [12] pages per minute.
- e. Paper Handling: Automatic sheet feeder with [250] <Insert number>-sheet paper cassette and with automatic feed.
- 14. Interface: Bidirectional parallel, and universal serial bus.
- 15. LAN Adapter Card: [10/100] Mbps internal network interface card.

- C. Redundant Workstation: One identical redundant workstation, connected in a hot standby, peer configuration. This workstation shall automatically maintain its own copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant workstation in near real time. If its associated workstation fails, redundant workstation shall assume control immediately and automatically.
- D. UPS: Self-contained, complying with requirements in Division 26 Section "Static Uninterruptible Power Supply."
 - 1. Size: Provide a minimum of [6] hours of operation of the central-station equipment, including 2 hours of alarm printer operation.
 - 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.
 - k. Remote battery monitoring.

2.7 COMMUNICATIONS WORKSTATION

- A. Standard workstation, modified as follows:
 - 1. additional RS-232-F serial ports. The CPU word size shall be [32] bytes or larger; the CPU operating speed shall be at least [66] MHz. Multiplexed serial ports shall be expandable with [8] character transmit and receive buffers for each port. Total buffer size shall be a minimum of [1] MB.
 - 2. Redundant workstation is [not] required.
 - 3. Printer is [not] required.

2.8 CONTROLLERS

A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar

data downloaded from the Central Station or workstation for controlling its operation.

- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - 1. The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network[with dc line supervision on each of its alarm inputs].
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal[, and for conditions as described in UL 1076 for line security equipment] [by monitoring for abnormal open, grounded, or shorted conditions] using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of [5] [10] percent or more for longer than 500 ms.
 - 2) Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
 - c. Outputs: Managed by Central Station software.
 - 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.
- E. Entry-Control Controller:
 - Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.

- b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - 2) Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
- c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.

2. Inputs:

- a. Data from entry-control devices; use this input to change modes between access and secure.
- b. Database downloads and updates from the Central Station that include enrollment and privilege information.

3. Outputs:

- a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
- b. Grant or deny entry by sending control signals to portal-control devices[and mask intrusion alarm annunciation from sensors stimulated by authorized entries].
- c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.
- d. Door Prop Alarm: If a portal is held open for longer than [20 seconds] [time listed in a schedule], alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making

authentication decisions, checking privileges, and controlling portal-control devices.

- a. Store up to [1000] transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Premium, valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full 1-year warranty and a pro rata 19-year warranty. With single-stage, constant-voltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltagecurrent, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - c. Backup Power Supply Capacity: [5] [90] minutes of battery supply. Submit battery and charger calculations.
 - d. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:
 - 1) Trouble Alarm: Normal power off load assumed by battery.
 - 2) Trouble Alarm: Low battery.
 - 3) Alarm: Power off.

2.9 PIV MIDDLEWARE

A. PIV Middleware shall provide three-factor authentication, including biometric matching using a fingerprint capture device capable of single fingerprint capture. Unit shall enable digital certificates can to be verified by security personnel using the issuer's certificate authority, SCVP, OCSP responder/repeater, orthe TSA hot list for TWIC cardholders. All cards shall be validated using FIPS-201 challenge-

response protocol in order to identify forged or cloned cards. PIV Middleware solution shall validate all PIV, TWIC, NG CAC, and FRAC cards. TWIC card FASC-Ns shall also be verified against a live or cached TSA hot list.

- B. PIV Middleware shall have ability to :
 - 1. Verify cardholder identity and validates FIPS 201-compliant PIV-II, next-generation (NG) CAC, TWIC, or FRAC credentials in real-time
 - Perform three-factor authentication of cardholder using PIN, biometrics, and certificate (or serial numbers) detecting forged or cloned cards
 - 3. Enroll FASC-N, photo, and pertinent cardholder information into PACS software
 - 4. Automatically suspend a cardholder's badge if his or her PIV, TWIC, or CAC card certificate serial number is on the Certificate Revocation List (CRL)
 - 5. Upload a cardholder transaction audit trail to central database or exports it to a .csv file for centralized transaction management
 - 6. Be compatible with biometric mobile terminal for off-site verification and enrollment
 - 7. Re-validate imported cardholder certificates on a periodic basis via the Internet
 - 8. Operate with commercial, off-the-shelf (COTS) FIPS 201 PIV-II and ANSI INCITS 378-compliant fingerprint capture devices
 - 9. Revalidate imported cardholder certificates at regular intervals, ensuring that the credentials used in PACS system are backed by a valid set of digital certificates. Digital certificates are verified against local OCSP repeater/validation authority using the issuer's validation authority, or Microsoft Crypto Application Programming Interface (API) on Windows XP SP3 or Vista.
 - 10. Certificate Manager shall fully support SCVP and OCSP for fast, online validation.
 - 11. Provide verification of TWIC credentials against a live TSA hot list.
 - 12. Support uploading local transactions to a central database for consolidated activity reporting. This application shall support a variety of ODBC- or ADO-compliant databases, including Oracle, SQL Server 2005, Informix, DB2, and Firebird.

- 13. Provide user with ability to produce canned transaction log queries as well as creating queries directly from the SQL database.
- C. PIV Middleware PC requirements:
 - 1. PIV Middleware software shall operate on Intel-based PC with minimum 1.8 GHz CPU, 1 GB RAM, 40 GB hard disk, and Microsoft Windows XP SP2 with Microsoft .NET Framework 2.0
 - 2. Unit shall fingerprint capture devices and smart card reader.
- D. PIV Middleware shall be FIPS 201 approved product.

2.10 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be [800]<insert number>ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
 - 3. Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- D. Display: LED or other type of visual indicator display shall provide visual[and audible] status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)

- 3. The ADA Standards for Accessible Design
- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, card and/or PIN, card and/or biometrics, card and/or pin and/or biometrics, supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.
- J. Shall be housed in an aluminum bezel with a wide lead-in for easy card entry.
- K. Shall contain read head electronics, and a sender to encode digital door control signals.
- L. LED's shall be utilized to indicate card reader status and access status.
- M. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- N. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.
- O. Shall have a minimum of two programmable inputs and two programmable outputs.
- P. All card readers that utilize keypad controls along with a reader and shall meet the following specifications:
 - 1. Entry control keypads shall use a unique combination of alphanumeric and other symbols as an identifier. Keypads shall contain an integral alphanumeric/special symbols keyboard with symbols arranged in ascending ASCII code ordinal sequence. Communications protocol shall be compatible with the local processor.
- Q. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected. The design of the keypad display or keypad enclosure shall limit the maximum horizontal and vertical viewing angles of the keypad. The maximum horizontal viewing angle shall be plus and minus five (5)

degrees or less off a vertical plane perpendicular to the plane of the face of the keypad display. The maximum vertical viewing angle shall be plus and minus 15 degrees or less off a horizontal plane perpendicular to the plane of the face of the keypad display.

- Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
- 2. Shall be powered from the source as designed and shall not dissipate more than 150 Watts.
- 3. Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
- 4. Shall provide a means for users to indicate a duress situation by entering a special code.

R. PIV Contact Card Reader

- 1. Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
- 2. Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.
- 3. Programming Voltage: PIV Readers shall not generate a Programming Voltage.
- 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
- 5. Retrieval Time: Retrieval time¹ for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
- 6. Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.

- 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read character TA1 of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.
- S. Contactless Smart Cards and Readers
 - Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
 - 2. The readers shall have "flash" download capability to accommodate card format changes.
 - 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
 - 4. The card reader shall be contactless and meet or exceed the following technical characteristics:
 - a. Data Output Formats: FIPS 201 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 200 bits. FIPS 201 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 232 bits. All Wiegand formats or the upgradeability from Low to Medium Levels can be field configured with the use of a command card.
 - b. FIPS 201 readers shall be able to read, but not be limited to, DESfire and iCLASS cards.
 - c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1'' to 2'' (2.5 5 cm).
 - d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
 - f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.
 - g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B

- communication signal interfaces as defined in ISO/IEC 14443-2:2001.
- h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
- i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.
- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.
- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (\sim 106 kbits/s), fc/64(\sim 212 kbits/s), and configurable to allow activation/deactivation.
- 1. Readibility Range: The reader shall not be able to read PIV card more than $10\,\mathrm{cm}\,(4\,\mathrm{inch})$ from the reader

2.11 BIOMETRIC IDENTITY VERIFICATION EQUIPMENT

- A. Shall be FIPS 201 and NIST SP 800-76 compliant.
- B. Shall utilize hand/palm, fingerprint, retinal, facial image, or voice verification and could be utilized as secondary authentication in conjunction with card readers in high security area as defined by the VA. (Note: VA policy requires that the use of biometric measurements is limited to secondary authentication in high or medium security applications).
- C. Shall be programmable, addressable, and hardwired directly to the main control panel and individually home run to the main control panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design $\,$
- E. Shall include a means to construct individual templates or profiles based upon measurements taken from the person to be enrolled. This template shall be stored as part of the System Reference Database Files. The stored template shall be used as a comparative base by the personnel identity verification equipment to generate appropriate signals to the associated local processors.
- F. Shall interface with PACS and SMS and provide the employee's name, contact information, and point of access.

- G. Shall allow for surface, flush, or pedestal mounting.
- H. Shall have communications protocol in place that shall allow for communications with the SMS.
- I. Shall determine when multiple attempts were made for verification, and shall automatically prompt the user for additional attempts up to a maximum of three tries. After a third failed attempt the unit shall generate an entry control alarm. This alarm will report to the SMS and the CCTV system. The camera viewpoint for where the alarm was generated shall automatically be called up onto a monitor and be recorded via the recording equipment. An alarm within the SMS shall also be generated recording, at a minimum, the date, time, and attempted point of entry.
- J. Hand/Palm Geometry Verification:
 - 1. Shall utilize unique human hand measurements to identify authorized, enrolled personnel.
 - 2. During the scan process the hand geometry device, which shall allow the user's hand to remain in full view during the scanning process, shall a three (3) dimensional measurement of the user's hand identifying its size and shape.
 - 3. This scan process shall start automatically once the user's hand is positioned. The hand geometry device shall be able to use either left or right hands for enrollment and verification.
 - 4. Shall include an LED or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
 - 5. Shall only be updated at the unit itself and automatic updates via the SMS shall not be allowed.
 - 6. Any significant change to the user's hand, scars, loss of digit, or any other change that will alter the three dimension view of the hand shall require an update to the unit and SMS.
 - 7. Shall provide an enrollment, recognition, and code/credential verification mode. The enrollment mode shall create a hand template for new personnel and enter the template into the entry control database file created for that person. Template information shall be compatible with the system application software. The operating mode shall be selectable by the system manager/operator from the central processor. When operating in recognition mode, the hand geometry device shall allow passage when the hand scan data from the

verification attempt matches a hand geometry template stored in the database files. When operating in code/credential verification mode, the hand geometry device shall allow passage when the hand scan data from the verification attempt matches the hand geometry template associated with the identification code entered into a keypad; or matches the hand geometry template associated with credential card data read by a card reader.

K. Fingerprint Verification:

- 1. Shall use a unique human fingerprint pattern to identify authorized, enrolled personnel.
- 2. Shall allow the user's hand to remain in full view during the scanning process, shall incorporate positive measures to establish that the hand or fingers being scanned by the device belong to a living human being.
- 3. Shall provide an optical or other type of scan of the user's fingers. The fingerprint verification scanner shall automatically initiate the scan process provided the user's fingers are positioned.
- 4. LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
- 5. Any significant change to the user's finger such as scars, loss of digit, or any other change that will alter the finger print shall require an update to the unit and SMS.
- 6. Shall provide an adjustable acceptance tolerance or template match criteria under system manager/operator control.
- 7. Shall respond to passage requests by generating signals to the local processor. The verification time shall be 2.0 seconds or less from the moment the finger print analysis scanner initiates the scan process until the fingerprint analysis scanner generates a response signal.

8. Shall:

a. Provide an enrollment mode, recognition mode, and code/credential verification mode. The enrollment mode shall create a fingerprint template for new personnel and enter the template into the system database file created for that person.

- b. Template information shall be compatible with the system application software.
- c. The operating mode shall be selectable by the system manager/operator from the central station.
- 9. When operating in recognition mode, the fingerprint analysis scanner shall allow passage when the fingerprint data from the verification attempt matches a fingerprint template stored in the database files.
- 10. When operating in code/credential verification mode, the fingerprint analysis scanner shall allow passage when the fingerprint data from the verification attempt matches a fingerprint template associated with the identification code. When entered into a keypad or it matches the fingerprint template associated with credential, the card data will then be recognized by the card reader.
- 11. Shall store template transactions involving fingerprint scans. The template match scores shall be stored in the matching personnel data file in a format compatible with the system application software, and shall be used for report generation.
- 12. Shall be unit listed as FIPS 201 Approved product.

L. Iris Verification:

- 1. Shall utilize unique patterns within the human eye to identify authorized, enrolled personnel.
- 2. Shall use ambient light to capture an image of the iris of the person presenting themselves for identification. The resulting video image shall be compared against a stored template that was captured during the enrollment process.
- 3. Shall utilize a threshold for identification. The efficiency and accuracy of the device shall not be adversely affected by enrollees who wear contact lenses or eye glasses.
- 4. Shall provide a means for enrollees to align their eye for identification that does not require facial contact with the device.
- 5. Initiation for the scan should be automatic, but push-button could be provided to initiate the scan process. The device shall include adjustments to accommodate differences in enrollee height and mounting height shall be UFAS compliant.
- 6. The LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.

- 7. Verification time for the retinal verification unit shall be no greater that 1.5 seconds from the moment the action is initiated until a response signal has been generated.
- 8. Shall provide an enrollment mode, recognition mode, and code/credential verification mode:
 - a. The enrollment mode shall create an iris template for new personnel and enter the template into the system database file created for that person. Template information shall be compatible with the system application software.
 - b. When operating in recognition mode, the retinal verification unit shall allow passage when the retinal verification data from the verification attempt matches an iris template stored in the database files.
 - c. When operating in code/credential verification mode, the iris scanner shall allow passage when the retinal verification data from the verification attempt matches the retinal verification template. This will occur when the associated information matches the identification code entered into a keypad or matches the retinal verification template associated with the credential card data when recognized by a card reader.
- 9. Shall store template transactions involving retinal verifications. The template match scores shall be stored in the matching personnel data file in a file format compatible with the system application software, and shall be used for report generation.

M. Voice Verification:

- 1. Shall utilize unique patterns within the human speech pattern to identify authorized, enrolled personnel.
- 2. Shall digitize a profile of a person's speech to produce a stored model voice print, or template. Users shall record their full names utilizing their natural voice tendencies. This process shall be initiated by a push to talk button on the voice verification device.
- 3. Shall utilize a threshold for identification. The efficiency and accuracy of the device shall not be adversely affected by enrollees who have a speech impediment.
- 4. Shall provide a means for enrollees to align their voice for identification that does not require contact with the device.
- 5. The LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts.

- The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
- 6. Verification time for the voice verification unit shall be no greater that 1.5 seconds from the moment the action is initiated until a response signal has been generated.
- 7. Shall provide an enrollment mode, recognition mode, and code/credential verification mode:
 - a. The enrollment mode shall create a voice template for new personnel and enter the template into the system database file created for that person. Template information shall be compatible with the system application software.
 - b. When operating in recognition mode, the voice verification unit shall allow passage when the voice verification data from the verification attempt matches a voice template stored in the database files.
 - c. When operating in code/credential verification mode, the voice verifier shall allow passage when the voice verification data from the verification attempt matches the voice verification template. This will occur when the associated information of the identification code entered into a keypad matches the voice verification template associated with a credential card data is recognized by a card reader.
- 8. Shall store template transactions involving voice verifications. The template match scores shall be stored in the matching personnel data file in a file format compatible with the system application software, MPEG or equivalent, and shall be used for report generation.

2.11 KEYPADS

- A. Designed for use with unique combinations of alphanumeric and other symbols as an Identifier. Keys of keypads shall contain an integral alphanumeric/special symbol keyboard with symbols arranged in [ascending ASCII-code ordinal sequence] [random scrambled order]. Communications protocol shall be compatible with Controller.
 - 1. Keypad display or enclosure shall limit viewing angles of the keypad as follows:
 - a. Maximum Horizontal Viewing Angle: 5 degrees or less off in either direction of a vertical plane perpendicular to the plane of the face of the keypad display.

- b. Maximum Vertical Viewing Angle: 15 degrees or less off in either direction of a horizontal plane perpendicular to the plane of the face of the keypad display.
- 2. Duress Codes: Provide duress situation indication by entering a special code.

2.12 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201.
- B. Visual Card Topography shall be compliant with NIST 800-104.
- C. PIV logical credentials shall contain multiple data elements for the purpose of verifying the cardholder's identity at graduated assurance levels. These mandatory data elements shall collectively comprise the data model for PIV logical credentials, and include the following:
 - 1. CHUID
 - 2. PIN
 - 3. PIV authentication data (one asymmetric key pair and corresponding certificate)
- D. The credential card (PIV) shall be an ISO 14443 type smart card with contactless interface that operates at 13.56 MHZ.
- E. The credential card (PIV) shall be an ISO 7816 type smart card.

2.13 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - 1. Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (± 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The

motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

C. Guard tour stations:

 The guard tour station shall be single gang brushed steel plate flush mounted in a single gang box. The switch shall be a normally open momentary keyed switch.

D. Delayed Egress (DE)

1. General:

- a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.
- 2. The delay-locking device shall include all of the following features:

a. Delay Egress Mode

1) The delayed egress device shall be a SDC 101V Series Exit

Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle

the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

- 2) Delayed egress doors will have bond sensors.
- 3) Delayed egress activation shall also trigger CCTV call -up.

b. Fire Alarm Mode

1) Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.

c. Reset Mode

- The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
- 2) The delay egress device shall automatically reset upon fire alarm system reset.
- 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.
- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.

f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.

g. Signs

1) The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read:

EMERGENCY EXIT.

PUSH UNTIL

ALARM SOUNDS

DOOR CAN BE OPENED,

IN 30 SECONDS.

- 2) Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- 4) In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.

3. Physical Access Control Interface

- a. The delay egress device shall be capable of interface with card access control systems.
- b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control interface shall support extended periods of automated and/or manual lock and unlock cycles.

E. Crash Bar:

- 1. Emergency Exit with Alarm (Panic):
 - a. Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one (1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
 - e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
 - f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.

g. Normal Exit:

- 1) Entry control portals shall include panic bar non-emergency exit hardware as designed.
- 2) Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
- 3) Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
- 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
- 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a

forced entry to the system in the event the door is left open or accessed without the identification credentials.

F. Key Bypass:

- 1. Shall be utilized for all doors that have a mortise or rim mounted door hardware.
- 2. Each door shall be individually keyed with one master key per secured area.
- 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
- 4. All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
- 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.

G. Automatic Door Opener and Closer:

- 1. Shall be low energy operators.
- 2. Door closing force shall be adjustable to ensure adequate closing control.
- 3. Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
- 4. Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
- 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
- 6. Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.
- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.

- d. Have push button controls for setting door close and door open positions.
- e. Have open obstruction detection and close obstruction detection built into the unit.
- f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
- g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
- h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.

H. Door Status Indicators:

- 1. Shall monitor and report door status to the SMS.
- 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.
 - d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
 - e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.14 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:

- a. Minimum continuous current rating of [10] A at 120 V ac or [5] A at 240-V ac.
- b. Contacts that will make 720 VA at $\left[60\right]$ A and that will break at 720 VA at $\left[10\right]$ A.
- 2. Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
- 3. Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
 - b. Indoors, uncontrolled environment.
 - c. Outdoors.
- 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.15 PORTAL CONTROL DEVICES

- A. Shall be used to assist the PACS.
- B. Such devices shall:
 - 1. Provide a means of monitoring the doors status.
 - 2. Allow for exiting a space via either a push button, request to exit, or panic/crash bar.
 - 3. Provide a means of override to the PACS via a keypad or key bypass.
 - 4. Assist door operations utilizing automatic openers and closures.
 - 5. Provide a secondary means of access to a space via a keypad.
- C. Shall be connected to and monitored by the main PACS panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall provide a secondary means of physical access control within a secure area.
- F. Push-Button Switches:
 - 1. Shall be momentary contact, back lighted push buttons, and stainless steel switch enclosures for each push button as shown. Buttons are to be utilized for secondary means of releasing a locking mechanism.
 - a. In an area where a push button is being utilized for remote access of the locking device then no more than two (2) buttons shall operate one door from within one secure space. Buttons will not be wired in series with one other.

- b. In an area where locally stationed guards control entry to multiple secure points via remote switches. An interface board shall be designed and constructed for only the amount of buttons it shall house. These buttons shall be flush mounted and clearly labeled for ease of use. All buttons shall be connected to the PACS and SMS system for monitoring purposes.
- c. Shall have double-break silver contacts that will make 720 VA at 60 amperes and break 720 VA at 10 amperes.

G. Entry Control Devices:

- 1. Shall be hardwired to the PACS main control panel and operated by either a card reader or a biometric device via a relay on the main control panel.
- 2. Shall be fail-safe in the event of power failure to the PACS system.
- 3. Shall operate at 24 VCD, with the exception of turnstiles and be powered by a separate power supply dedicated to the door control system. Each power supply shall be rated to operate a minimum of two doors simultaneously without error to the system or overload the power supply unit.
- 4. Shall have a diode or metal-oxide veristor (MOV) to protect the controller and power supply from reverse current surges or back-check
- 5. Electric Strikes/Bolts: Shall be:
 - a. Made of heavy-duty construction and tamper resistant design.
 - b. Tested to over one million cycles.
 - c. Rated for a minimum of 1000 lbs. holding strength.
 - d. Utilize an actuating solenoid for the strike/bolt. The solenoid shall move from fully open to fully closed position and back in not more than 500 milliseconds and be rated for continuous duty.
 - e. Utilize a signal switch that will indicate to the system if the strike/bolt is not engaged or is unlocked when it should be secured.
 - f. Flush mounted within the door frame.
- 6. Electric Mortise Locks: Shall be installed within the door and an electric transfer hinge shall be utilized to allow the wires to be transferred from the door frame to the lock. If utilized with a double door then the lock shall be installed inside the active leaf. Electric Mortise Locks shall:

- a. These locks shall be provided and installed by the Division 8 "DOOR HARDWARE" Contractor.
- b. Have integrated Request to Exit switch for new doors receiving physical access control devices.
- b. Provide integration of the Electric Mortise Locks with the PACS for:
 - 1) Lock Power

7. Electromagnetic Locks:

- a. These locks shall be without mechanical linkage utilizing no moving parts, and securing the door to its frame solely on electromagnetic force.
- b. Shall be comprised of two pieces, the mag-lock and the door plate. The electromagnetic locks shall be surface mounted to the door frame and the door plate shall be surface mounted to the door.
- c. Ensure a diode is installed in line with the DC voltage supplying power to the unit in order to prevent back-check on the system when the electromagnetic lock is powered.
- d. Shall utilize a magnetic bonding sensor (MBS) to monitor the door status and report that status to the SMS.
- e. Electromagnetic locks shall meet the following minimum technical characteristics:

Operating Voltage		24 VDC
Current Draw		.5A
Holding Force	Swing Doors	675 kg (1500 lbs)
	Sliding Doors	225 kg (500 lbs)

8. Turnstiles:

- a. Shall operate at 110 VAC, 60 Hz or 220 VAC, 50 Hz supplied from a dedicated circuit breaker on a security power panel. This device does not require a back-up power source.
- b. Shall be utilized as a means of monitoring and controlling access in a lobby.
- c. Shall meet the following minimum requirements:
 - 1) Be UFAS compliant.
 - 2) Provide either an audible or visual confirmation that access has been granted to a cleared individual.
 - 3) Provide an audible alarm in the event a non-cleared individual is attempting to gain access.

- 4) Interface with the SMS and utilize a card reader for accessing and exiting a facility, and provide a recorded event of personnel accessing these points.
- 5) Have a built-in step-down transformer to provide power to a card reader unit.
- 6) Have built-in signal wiring chassis to allow for plug and play capabilities with the PACS.
- 7) Have the ability to detect tailgating within one quarter on an inch to prevent unauthorized access to a facility.
- 9. Vehicle Gate Operator: Interface electrical operation of gate with controls of this Section. Vehicle gate operators shall be connected, monitored, and controlled, by the security access Controllers. Vehicle gate and accessories are specified in Division 32 Section "Chain Link Fences and Gates."

2.16 SECONDARY ALARM ANNUNCIATOR

A. Secondary Alarm Annunciation Site: A workstation with limited I/O capacity, consisting of a secondary alarm annunciation workstation [to allow the operator to duplicate functions of the main operator interface, and to show system status changes] [to display alarms or system status changes only].

2.17 INTERFACES

- A. CCTV System Interface
 - 1. An RS232 [Ethernet] interface associated driver, and controller shall be provided for connection of the SMS Central Computer to the CCTV Alarm interface and switcher. The interface shall provide alarm data to the CCTV Alarm interface for automatic camera call-up. If required the Security Contractor shall be responsible for programming the command strings into the SMS Server.
- B. Intercom System Interface
 - 1. The CCTV call-up from intercom stations shall be through the intercom unit via RS232 [Ethernet] communications interface to the SMS system, then through the matrix switcher.
 - a. Application Software

- 1) Provides the interface between the Alarm Annunciation System and Operator; all sensors, local processors and data links, drive displays, report alarms, and report generation.
- 2) Software is categorized as System Software and Application Software. System Software must consist of software to support set-up, operation, hard drive back-ups and maintenance processor. Application Software must consist of software to provide the completion of Physical Access Control System.

C. Power Supplies:

- 1. Shall be UL rated and able to adequately power (enter number) entry control devices on a continuous base without failure.
- 2. Shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ (enter amperage)A	
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)	
	24 VDC Nominal (27.6 VDC)	
	Filtered and Regulated	
BATTERY	Dependant on Output Voltage shall provide up to <> Ah	
OUTPUT CURRENT	[10] amp max. [@ 13.8] VDC	
	[5] amp max. [@ 27.6] VDC	
PRIMARY FUSE SIZE	6.3 amp (non-removable)	
BATTERY FUSE SIZE	12 amp, 3AG	
CHARGING CIRCUIT	Built-in standard	

2.18 FLOOR SELECT ELEVATOR CONTROL

- A. Elevator access control shall be integral to security access.
 - 1. System shall be capable of providing full elevator security and control through dedicated Controllers without relying on the control-station host PC for elevator control decisions.
 - 2. Access-control system shall enable and disable car calls on each floor and floor select buttons in each elevator car, restricting passengers' access to the floors where they have been given access.
 - 3. System setup shall, through programming, automatically secure and unsecure each floor select button of a car individually by time and day. Each floor select button within a car shall be separately controlled so that some floors may be secure while others remain unsecure.

- 4. When a floor select button is secure, it shall require the passenger to use his/her access code and have access to that floor before the floor select button will operate. The passenger's credential shall determine which car call and floor select buttons are to be enabled, restricting access to floors unless authorized by system's access code database. Floor select button shall be enabled only in the car where the credential holder is the passenger.
- B. PACS shall record which call button is pressed, along with credential and time information.
 - 1. System Controller shall record elevator access data.
 - 2. The Controller shall reset all additional call buttons that may have been enabled by the user's credential.
 - 3. The floor select elevator control shall allow for manual override either individually by floor or by cab as a group from a workstation PC.

2.19 AFTER-HOURS HVAC CONTROL

- A. After-Hours HVAC Control: Provide for any credential read to activate or control individual HVAC zones based on access level. This control module shall control and record the after-hours use of the heating and cooling system in zones or tenant space.
 - This control shall give the administrator the ability to determine how much extra energy consumption each tenant is responsible for. This information can be used in billing tenants for the extra after-hour usage.
 - 2. At the specified time every day, the HVAC shall automatically go into its after-hours mode. It shall then revert into its normal business hours mode by a tenant using an access code or card at a designated keypad or reader.
 - 3. Once enabled, the tenant's HVAC zone shall be under thermostat control for a preset amount of time. When the preset amount of time elapses, the HVAC for that zone shall revert back to after-hours mode unless a tenant uses his/her code or card again. This shall continue until the unit automatically returns to its normal business hours operation.
- B. Control module activates the HVAC system after a valid access by any of three methods; however, the HVAC control shall always allow for manual override from the PC.

- 1. By time expiration after access of an adjustable period from 1 second to 546 minutes (9.1 hours).
- 2. By use of the card or code again at the same or different reader or keypad.
- 3. By system returning to its normal business hours operation.
- C. After-hours HVAC control shall operate with all other features running simultaneously and use the central-station PC that controls access for the building but shall not rely on the host PC for any HVAC control decisions.

2.20 REAL TIME GUARD TOUR

- A. Guard tour module shall provide the ability to plan, track, and route tours. Module shall input an alarm during tour if guard fails to make a station. Tours can be programmed for sequential or random tourstation order.
 - 1. Guard tour setup shall define specific routes or tours for the guard to take, with time restrictions in which to reach every predefined tour station.
 - 2. Guard tour activity shall be automatically logged to the central-station PC's hard drive.
 - 3. If the guard is early or late to a tour station, a unique alarm per station shall appear at the Central Station to indicate the time and station.
 - 4. Guard tour setup shall allow the tours to be executed sequentially or in a random order with an overall time limit set for the entire tour instead of individual times for each tour station.
 - 5. Setup shall allow recording of predefined responses that will display for the operator at the control station should a "Failed to Check-in" alarm occur.
- B. A tour station is a physical location a guard shall reach and perform an action indicating that the guard has arrived. This action, performed at the tour station, shall be 1 of 13 different events with any combination of station types within the same tour. A tour station shall be one of the following event types:
 - 1. Access Granted.
 - 2. Access Denied Code.
 - 3. Access Denied Card plus PIN.
 - 4. Access Denied Time Zone.
 - 5. Access Denied Level.

- 6. Access Denied Facility.
- 7. Access Denied Code Timer.
- 8. Access Denied Anti-Passback.
- 9. Access Granted Passback Violation.
- 10. Alarm.
- 11. Restored.
- 12. Input Normal.
- 13. Input Abnormal.
- C. Guard tour and other system features shall operate simultaneously with no interference.
- D. Guard Tour Module Capacity: 999 possible guard tour definitions with each tour having up to 99 tour stations. System shall allow all 999 tours to be running at same time.

2.21 VIDEO AND CAMERA CONTROL

- A. Control station or designated workstation displays live video from a CCTV source.
 - 1. Control Buttons: On the display window, with separate control buttons to represent Left, Right, Up, Down, Zoom In, Zoom Out, Scan, and a minimum of two custom command auxiliary controls.
 - Provide at least seven icons to represent different types of cameras, with ability to import custom icons. Provide option for display of icons on graphic maps to represent their physical location.
 - 3. Provide the alarm-handling window with a command button that will display the camera associated with the alarm point.
- B. Display mouse-selectable icons representing each camera source, to select source to be displayed. For CCTV sources that are connected to a video switcher, control station shall automatically send control commands through a COM port to display the requested camera when the camera icon is selected.
- C. Allow cameras with preset positioning to be defined by displaying a different icon for each of the presets. Provide control with Next and Previous buttons to allow operator to cycle quickly through the preset positions.

2.22 WIRES AND CABLES

A. Comply with Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."

- B. PVC-Jacketed, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; PVC jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- C. Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- D. RS-485 communications require 2 twisted pairs, with a distance limitation of 4000 feet (1220 m).
- E. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
- F. Plenum-Type, RS-485 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- G. Multiconductor, Readers and Wiegand Keypads Cables: No. 22 AWG, paired and twisted multiple conductors, stranded (7x30) tinned copper conductors, semirigid PVC insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage, plus tinned copper braid shield with 65 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
 - 3. For TIA/EIA-RS-232 applications.
- H. Paired Readers and Wiegand Keypads Cables: Paired, 3 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.

- 2. Flame Resistance: UL 1581 Vertical Tray.
- I. Paired Readers and Wiegand Keypads Cable: Paired, 3 pairs, twisted, No. 20 AWG, stranded (7x28) tinned copper conductors, polyethylene (polyolefin) insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded (19x34) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- J. Plenum-Type, Paired, Readers and Wiegand Keypads Cable: Paired, 3 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, individual aluminum foil-polypropylene tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- K. Plenum-Type, Multiconductor, Readers and Keypads Cable: 6 conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinatedethylene-propylene insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage plus tinned copper braid shield with 85 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- L. Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- M. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- N. Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.

- O. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- P. Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, overall aluminum foil-polyester tape shield with No. 22 AWG, stranded (7x30) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CMR.
 - 2. Flame Resistance: UL 1666 Riser Flame Test.
- Q. Plenum-Type, Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, aluminum foil-polyester tape shield (foil side out), with No. 22 AWG drain wire, 100 percent shield coverage, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- R. Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (7x26) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
- S. Plenum-Type, Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- T. Elevator Travel Cable: Steel center core, with shielded, twisted pairs, No. 20 AWG conductor size.
 - 1. Steel Center Core Support: Preformed, flexible, low-torsion, zinc-coated, steel wire rope; insulated with 60 deg C flame-resistant PVC and covered with a nylon or cotton braid.
 - 2. Shielded Pairs: Insulated copper conductors; color-coded, insulated with 60 deg C flame-resistant PVC; each pair shielded with bare copper braid for 85 percent coverage.
 - 3. Jute Filler: Electrical grade, dry.
 - 4. Binder: Helically wound synthetic fiber.
 - 5. Braid: Rayon or cotton braid applied with 95 percent coverage.

- 6. Jacket: 60 deg C PVC specifically compounded for flexibility and abrasion resistance. UL VW-1 and CSA FT1 flame rated.
- U. LAN (Ethernet) Cabling: Comply with Division 28 Section "Conductors and Cables for Electronic Safety and Security."

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.

- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - 4. Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.
 - 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 - 7. Prepare and install alarm graphic maps.
 - 8. Develop user-defined fields.
 - 9. Develop screen layout formats.
 - 10. Propose setups for guard tours and key control.
 - 11. Discuss badge layout options; design badges.
 - 12. Complete system diagnostics and operation verification.
 - 13. Prepare a specific plan for system testing, startup, and demonstration.
 - 14. Develop acceptance test concept and, on approval, develop specifics of the test.
 - 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.

D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- D. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- E. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- F. Install cables without damaging conductors, shield, or jacket.
- G. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- H. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:

- 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
- 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
- 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
- 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed [250 feet (75 m)] [500 feet (150 m)] <Insert distance>.
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of [25 feet (8 m)] <Insert distance>.

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - 1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the

manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.

- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems:

1. CCTV:

- a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings. As well as all emergency exits utilizing a fixed color camera.
- b. Be able to monitor, control and record cameras on a 24 hours basis.
- c. Be programmed automatically call up a camera when an access point is but into an alarm state.
- d. For additional PACS system requirements as they relate to the CCTV, refer to Section 28 23 00, VIDEO SURVEILLANCE.

2. IDS:

- a. Be able monitor door control sensors.
- b. Be able to monitor and control the IDS on a 24 hours basis.
- c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the operator via an audible alarm.
- d. For additional PACS system requirements as they relate to the IDS, refer to Section 28 16 11, INTRUSION DETECTION SYSTEM.

3. Security Access Detection:

- a. Be able to monitor all objects that have been screened with an xray machine and be able to monitor all data acquired by the bomb
 detection unit.
- b. For additional PACS system requirements as they relate to the Security Access Detection, refer to Section 28 13 53, SECURITY ACCESS DETECTION.

4. EPPS:

a. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the

Physical Access Control System and Database Management of an alarm event.

- b. For additional PACS requirements as they relate to the EPPS, refer to Section 28 26 00, ELECTRONIC PERSONAL PROTECTION SYSTEM.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.

J. Existing Equipment:

- 1. The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
- 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating

equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.

- 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.

M. Control Panels:

- 1. Connect power and signal lines to the controller.
- 2. Program the panel as outlined by the design and per the manufacturer's programming guidelines.

N. SMS:

- Coordinate with the VA agency's IT personnel to place the computer on the local LAN or Intranet and provide the security system protection levels required to insure only authorized VA personnel have access to the system.
- 2. Program and set-up the SMS to ensure it is in fully operation.

O. Card Readers:

- 1. Connect all signal inputs and outputs as shown and specified.
- 2. Terminate input signals as required.
- 3. Program and address the reader as per the design package.
- 4. Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.

P. Biometrics:

- Connect all signal input and output cables along with all power cables.
- 2. Program and ensure the device is in operating order.

Q. Portal Control Devices:

- 1. Install all signal input and output cables as well as all power cables.
- 2. Devices shall be surface or flush mounted as per the design package.
- 3. Program all devices and ensure they are working.

R. Door Status Indicators:

- Install all signal input and output cables as well as all power cables.
- 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
- 3. Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2'' (5 cm).

S. Entry Control Devices:

- 1. Install all signal input and power cables.
- 2. Strikes and bolts shall be mounted within the door frame.
- 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
- 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.

T. System Start-Up:

1. The Contractor shall not apply power to the PACS until the following items have been completed:

- a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
- b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
- c. System wiring has been tested and verified as correctly connected as indicated.
- d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
- e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
- 2. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.
- U. Supplemental Contractor Quality Control:
 - 1. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
 - 2. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
 - 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
 - 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD OUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect[, test, and adjust] field-assembled components and equipment installation, including connections[, and to assist in field testing]. Report results in writing.
- B. Testing Agency: [Owner will engage] [Engage] a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - 1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
 - 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements.

 Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.
- D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 16 00 INTRUSION DETECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Intrusion Detection System, hereinafter referred to as IDS, as specified in this section.
- B. This Section includes the following:
 - Intrusion detection with [hard-wired] [multiplexed], modular, microprocessor-based controls, intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions.
 - 2. Responsibility for integrating electronic and electrical systems and equipment is specified in the following Sections, with Work specified in this Section:
 - a. Division 08 Section "DOOR HARDWARE".
 - b. Division 14 Section "ELECTRIC TRACTION ELEVATORS".
 - c. Division 27 Section "INTERCOMMUNICATIONS AND PROGRAM SYSTEMS".
 - d. Division 28 Section "PHYSICAL ACCESS CONTROL".
 - e. Division 28 Section "FIRE DETECTION AND ALARM".
 - f. Division 28 Section "VIDEO SURVEILLANCE".
- C. Related Sections include the following:
 - 1. Division 28 Section "VIDEO SURVEILLANCE" for closed-circuit television cameras that are used as devices for video motion detection.
 - 2. Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY" for cabling between central-station control units and field-mounted devices and controllers.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- C. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- D. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.

- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.
- J. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the IDS as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.

1.4 DEFINITIONS

- A. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- B. I/O: Input/Output.
- C. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- D. LED: Light-emitting diode.
- E. NEC: National Electric Code
- F. NEMA: National Electrical Manufacturers Association
- G. NFPA: National Fire Protection Association
- H. NRTL: Nationally Recognized Testing Laboratory.
- I. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion

detection, closed circuit television, intercom) into a single platform and graphical user interface.

- J. PIR: Passive infrared.
- K. RF: Radio frequency.
- L. Standard Intruder: A person who weighs 45 kg (100 lb.) or less and whose height is 1525 mm (60 in) or less; dressed in a long-sleeved shirt, slacks, and shoes.
- M. Standard-Intruder Movement: Any movement, such as walking, running, crawling, rolling, or jumping, of a "standard intruder" in a protected zone.
- N. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- O. UPS: Uninterruptible Power Supply
- P. UTP: Unshielded Twisted Pair

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a shop drawing and as-built design package in both electronic format and on paper, minimum size 1220×1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - 1) Outline all general and job specific work required within the design package.
 - 2) Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.

- 2. Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.

- b. Device Location (e.g. site, building, floor, room number, location, and description).
- c. Mounting type (e.g. flush, wall, surface, etc.).
- d. Power supply or circuit breaker and power panel number.
- e. In addition, for the IDS, provide the sensor ID, sensor type and housing model number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Shop drawing packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Security Industry Association (SIA):

	PIR-01-00Passive Infrared Motion Detector Standard -
	Features for Enhancing False Alarm Immunity
	CP-01-00Control Panel Standard-Features for False Alarm
	Reduction
С.	Department of Justice American Disability Act (ADA)
	28 CFR Part 362010 ADA Standards for Accessible Design
D.	Federal Communications Commission (FCC):
	(47 CFR 15) Part 15Limitations on the Use of Wireless
	Equipment/Systems
Ε.	National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
F.	National Fire Protection Association (NFPA):
	70-11National Electrical Code
	731-08Standards for the Installation of Electric
	Premises Security Systems
G.	Underwriters Laboratories, Inc. (UL):
	464-09Audible Signal Appliances
	609-96Local Burglar Alarm Units and Systems
	634-07Standards for Connectors with Burglar-Alarm
	Systems
	639-07Standards for Intrusion Detection Units
	1037-09Standard for Anti-theft Alarms and Devices
	1635-10Digital Alarm Communicator System Units
Н.	Uniform Federal Accessibility Standards (UFAS), 19841.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of intrusion detection system equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 EQUIPMENT AND MATERIALS

A. General

- 1. All equipment associated within the IDS shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- 2. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 96 hours of run time in the event of a loss of primary power to the facility.
- 3. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- 4. All IDS components located in designated "HAZARDOUS ENVIRONMENT" areas where fire or explosion could occur due to the presence of natural gases or vapors, flammable liquids, combustible residue, or ignitable fibers or debris, shall be rated Class II, Division I, Group F, and installed in accordance with National Fire Protection Association (NFPA) 70 National Electric Code, Chapter 5.
- 5. All equipment and materials for the system will be compatible to ensure functional operation in accordance with requirements.

1.9 WARRANTY OF CONSTRUCTION.

- A. Warrant IDS work subject to the Article "Warranty of Construction" of FAR 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 FUNCTIONAL DESCRIPTION OF SYSTEM

- A. Supervision: System components shall be continuously monitored for normal, alarm, supervisory, and trouble conditions. Indicate deviations from normal conditions at any location in system.

 Indication includes identification of device or circuit in which deviation has occurred and whether deviation is an alarm or malfunction.
 - 1. Alarm Signal: Display at central-station control unit and actuate audible and visual alarm devices.
 - 2. Trouble Condition Signal: Distinct from other signals, indicating that system is not fully functional. Trouble signal shall indicate system problems such as battery failure, open or shorted transmission line conductors, or controller failure.
 - 3. Supervisory Condition Signal: Distinct from other signals, indicating an abnormal condition as specified for the particular device or controller.
- B. System Control: Central-station control unit shall directly monitor intrusion detection units and connecting wiring.
- C. System Control: Central-station control unit shall directly monitor intrusion detection devices /, perimeter detection units,/ /, controllers associated with perimeter detection units,/ and connecting wiring in a multiplexed distributed control system or as part of a network.
- D. System shall automatically reboot program without error or loss of status or alarm data after any system disturbance.

E. Operator Commands:

- Help with System Operation: Display all commands available to operator. Help command, followed by a specific command, shall produce a short explanation of the purpose, use, and system reaction to that command.
- 2. Acknowledge Alarm: To indicate that alarm message has been observed by operator.
- 3. Place Protected Zone in Access: Disable all intrusion-alarm circuits of a specific protected zone. Tamper circuits may not be disabled by operator.
- 4. Place Protected Zone in Secure: Activate all intrusion-alarm circuits of a protected zone.

- 5. Protected Zone Test: Initiate operational test of a specific protected zone.
- 6. System Test: Initiate system-wide operational test.
- 7. Print Reports.
- F. Timed Control at Central-Station Control Unit: Allow automatically timed "secure" and "access" functions of selected protected zones.
- G. Automatic Control of Related Systems: Alarm or supervisory signals from certain intrusion detection devices control the following functions in related systems:
 - 1. Switch selected lights.
 - 2. Shift elevator control to a different mode.
 - 3. Open a signal path between certain intercommunication stations.
 - 4. Shift sound system to "listening mode" and open a signal path to certain system speakers.
 - 5. Switch signal to selected monitor from closed-circuit television camera in vicinity of sensor signaling an alarm.
- H. Printed Record of Events: Print a record of alarm, supervisory, and trouble events on system printer. Sort and report by protected zone, device, and function. When central-station control unit receives a signal, print a report of alarm, supervisory, or trouble condition. Report type of signal (alarm, supervisory, or trouble), protected zone description, date, and time of occurrence. Differentiate alarm signals from other indications. When system is reset, report reset event with the same information concerning device, location, date, and time. Commands shall initiate the reporting of a list of current alarm, supervisory, and trouble conditions in system or a log of past events.
- I. Response Time: 2 seconds between actuation of any alarm and its indication at central-station control unit.
- J. Circuit Supervision: Supervise all signal and data transmission lines, links with other systems, and sensors from central-station control unit. Indicate circuit and detection device faults with both protected zone and trouble signals, sound a distinctive audible tone, and illuminate an LED. Maximum permissible elapsed time between occurrence of a trouble condition and indication at central-station control unit is 20 seconds. Initiate an alarm in response to opening, closing, shorting, or grounding of a signal or data transmission line.
- K. Programmed Secure-Access Control: System shall be programmable to automatically change status of various combinations of protected zones

between secure and access conditions at scheduled times. Status changes may be preset for repetitive, daily, and weekly; specially scheduled operations may be preset up to a year in advance. Manual secure-access control stations shall override programmed settings.

L. Manual Secure-Access Control: Coded entries at manual stations shall change status of associated protected zone between secure and access conditions.

2.2 SYSTEM COMPONENT REQUIREMENTS

- A. Compatibility: Detection devices and their communication features, connecting wiring, and central-station control unit shall be selected and configured with accessories for full compatibility with the following equipment:
 - 1. Data Gathering Panel, Output Module, Input Module, 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
 - 1. Minimum Protection for Power Lines 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS.
 - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Lines: Comply with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS as recommended by manufacturer for type of line being protected.
- C. Interference Protection: Components shall be unaffected by radiated RFI and electrical induction of 15 V/m over a frequency range of 10 to 10,000 MHz and conducted interference signals up to 0.25-V RMS injected into power supply lines at 10 to 10,000 MHz.
- D. Tamper Protection: Tamper switches on detection devices, controllers, annunciators, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled and when entering conductors are cut or disconnected. Central-station control-unit alarm display shall identify tamper alarms and indicate locations.

- E. Self-Testing Devices: Automatically test themselves periodically, but not less than once per hour, to verify normal device functioning and alarm initiation capability. Devices transmit test failure to central-station control unit.
- F. Antimasking Devices: Automatically check operation continuously or at intervals of a minute or less, and use signal-processing logic to detect blocking, masking, jamming, tampering, or other operational dysfunction. Devices transmit detection of operational dysfunction to central-station control unit as an alarm signal.
- G. Addressable Devices: Transmitter and receivers shall communicate unique device identification and status reports to central-station control unit.
- H. Remote-Controlled Devices: Individually and remotely adjustable for sensitivity and individually monitored at central-station control unit for calibration, sensitivity, and alarm condition.

2.3 ENCLOSURES

- A. Interior Sensors: Enclosures that protect against dust, falling dirt, and dripping noncorrosive liquids.
- B. Interior Electronics: NEMA 250, Type 12.
- C. Exterior Electronics: NEMA 250, Type 4X [fiberglass] [stainless steel].
- D. Corrosion Resistant: NEMA 250, Type 4X [PVC] [stainless steel].
- E. Screw Covers: Where enclosures are accessible to inmates, secure with security fasteners of type appropriate for enclosure.

2.5 EQUIPMENT ITEMS

A. General:

- 1. All requirements listed below are the minimum specifications that need to be met in order to comply with the IDS.
- 2. All IDS sensors shall conform to UL 639, Intrusion Detection Standard.
- 3. Ensure that IDS is fully integrated with other security subsystems as required to include, but not limited to, the CCTV, PACS, EPPS, and Physical Access Control System and Database Management. The IDS provided shall not limit the expansion and growth capability to a single manufacturer and shall allow modular expansion with minimal equipment modifications.
- B. IDS Components: The IDS shall consist of, but not be limited to, the following components:

- 1. Control Panel
- 2. Exterior Detection Devices (Sensors)
- 3. Interior Detection Devices (Sensors)
- 4. Power Supply
- 5. Enclosures

2.6 CONTROL PANEL

- A. The Control panel shall be the main point of programming, monitoring, accessing, securing, and troubleshooting the IDS. Refer to American National Standards Institute (ANSI) CP-01 Control Panel Standard-Features for False Alarm Reduction.
- B. The Control Panel shall provide a means of reporting alarms to an Physical Access Control System and Database Management via a computer interface or direct connection to an alarm control monitoring panel.
- C. The Control panel shall utilize a Multifunctional Keypad, Input and Output Modules for expansion of alarm zones, interfacing with additional security subsystems, programming, monitoring and controlling the IDS.
- D. The Control panel shall meet or exceed the following minimum functional requirements for programming outputs, system response, and user interface:
 - 1. Programming Outputs:
 - a. 2 Amps alarm power at 12 VDC
 - b. 1.4 Amps auxiliary power at 12 VDC
 - c. Four alarm output patterns
 - d. Programmable bell test
 - e. Programmable bell shut-off timer
 - 2. System Response:
 - a. Selectable point response time
 - b. Cross point capability
 - c. Alarm verification
 - d. Watch mode
 - e. Scheduled events arm, disarm, bypass and un-bypass points, control relays, and control authority levels
 - 3. User Interface:
 - a. Supervises up to eight command points (e.g. Up to 16 unsupervised keypads can be used)
 - b. Provides custom keypad text
 - c. Addresses full function command menu including custom functions

- d. Allows user authority by defined area and 16-character name
- e. Provides for 14 custom authority control levels allowing user's authority to change, add, delete pass codes, disarm, bypass points, and start system tests.
- 4. The Control panel shall meet or exceed the following technical characteristics:

Input Voltage via 110 VAC or 220 VAC Step-down Transformer	16 or 18 VAC
Operating Voltage	12 VDC
Output Voltage	12 VDC @ 2 A max
Direct Hardwire Zones	7
Partitions	8
Multifunctional Keypads	16 (2 per partition)
Communications Port	RJ-11

- E. A multifunctional keypad shall be utilized as a user interface for arming, disarming, monitoring, troubleshooting, and programming the alarm control panel.
- F. Keypads shall have the following features:
 - Multiple function keypads suitable for remote mounting, no greater than 1333 m (4000 ft), shall be provided from the control panel and have a light emitting diode (LED) readout of alarm and trouble conditions by zone.
 - 2. An alphanumeric English language display, with keypad programmability, and EE-PROM memory, shall also be provided.
 - 3. Trouble alarm indicators shall be distinguishable from intrusion alarms.
 - 4. A minimum of four (4) zones selectable as entry and exit with programmable time delay.
 - 5. Complete system test activated capability at the keypad.
 - 6. Capability for opening and closing reports to a remote monitoring location.
 - 7. Adjustable entry and exit delay times.
 - 8. Capability for a minimum of two (2) multiple function keypads.
 - 9. Capability to shunt or bypass selected interior zones while arming perimeter protection and remaining interior zones.
 - 10. Capability for a minimum of seven assignable pass-codes that are keypad programmable from a suppressed master code.

- 11. The control panel shall have a communications port that will allow for communications with a computer for programming, monitoring, and troubleshooting purposes. The communications port will be, at a minimum, and RJ-11 or better.
- 12. The control panel will have a systems success probability of 95% or better, and shall include the following success considerations:
 - a. False Alarm: Shall not exceed one (1) false alarm per 30 days per sensor zone.
 - b. Nuisance Alarm: Shall not exceed a rate of one (1) alarm per seven (7) days per zone within the first 60 days after installation and acceptance. Sensor adjustments will be made and then shall not exceed one (1) alarm per 30 days.
- 13. The Control Panel will be able to detect either a line fault or power loss for all supervised data cables.
 - a. Line Fault Detection: Communication links of the IDS shall have an active mode for line fault detection. Fault isolation at the systems level shall have the same geographic resolutions as provided for intrusion detection. The line fault alarm shall be clearly distinguishable from other alarms.
 - b. Power Loss Detection: Provide the capability to detect when critical components experience temporary or permanent loss of power and annunciate to clearly identify the component experiencing power loss.

2.7 KEYPADS

A. Keypads shall meet or exceed the following technical characteristics:

Connections	4-wire flying lead for data and power
Operating Temperature	0°C to +50°C (+32°F to +122°F)
Display Window	8-point LED
Indicators: Illuminated keys	Armed Status-LED
	Point Status-LED
	Command Mode-LED
	Power-LED
Voltage	Nominal 12 VDC

2.8 INPUT MODULE

A. An input module shall be utilized to connect additional detection devices to the control panel. This module will meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Zone Inputs	Style A (Class B) Supervised
Operating Temperature	0 to 40 degrees C (32 to 140 degrees F)

2.9 OUTPUT MODULE

A. An output module shall be utilized to interface the control panel with other security subsystems. The output module shall meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Output Relays	"Form C" Dry Relay Contracts
Relay Contact Rating	4A @ 24 VDC
	4A @ 24 VAC
	1A @ 70 VAC
Operating Temperature	0 to 40 degrees C F (32 to 140 degrees)

2.10 EXTERIOR DETECTION DEVICES (SENSORS)

- A. The IDS shall consist of interior, exterior, and other detection devices that are capable of:
 - 1. Locating intrusions at individually protected asset areas or at an individual portal;
 - 2. Locating intrusions within a specific area of coverage;
 - 3. Locating failures or tampering of individual sensors or components.
- B. Audible annunciation shall meet UL 464 Audible Signal Appliance requirements as well as other stated within this specification. IDS shall provide and adjust for devices so that coverage is maximized in the space or area it is installed in. For large areas where multiple devices are required, ensure exterior device coverage is overlapping.
- C. Detection sensitivity shall be set up to ensure maximum coverage of the secure area is obtained while at the same time limiting excessive false alarms due to the environment and impact of small animals. All detection devices shall be anti-masking with exception of video motion detection.

- D. Dual sensor technology shall be used when possible. Sensor technology shall not be of the same type that is easily defeated by a single method. This will reduce the amount of false alarms.
- E. Exterior sensors described in this section are intended for outdoor use for perimeter and fence control monitoring purposes. Some sensors described in the interior sensor section may be utilized that can provide both outdoor and indoor protection.
- F. External Sensors Environmental Characteristics:

Temperature	-25°F - 140°F (-32°C - 60°C)
Pressure	Sea Level to 15,000 ft. (4573m) above sea level
Solar Radiation	Six (6) hrs. exposure at dry bulb temp. 120°F (60°C)
Rain	Two (2) in. (50 mm) per hour
Humidity	5% - 95%
Fungus	Components of non-fungus nutrient materials
Salt/fog	Atmosphere 5% salinity
Snow loading	48 lbs per sq. ft. (234 kg per sq. meter)
Ice accumulation	Up to ½ in. (12.7 mm) radial ice
Wind limitations	50 mph (80 km/h) Gusts to 66 mph (106 km/h)
Acoustical Noise Suitability	> 110 decibels (dB)

G. Electromechanical Fence Sensors

- 1. Electromechanical Fence Sensors: Shall sense mechanical vibrations or motion associated with scaling, cutting, or attempting to lift standard security chain link fence as follows: Note: Dead zones shall not exist from a monitoring and alarm coverage perspective.
- 2. The sensor zone control unit shall alarm when a sufficient number of sensing unit activations surface within a specified time period.
- 3. Individual sensing units and the alarm thresholds shall be field adjustable (i.e., performed by an authorized technician or trained maintenance personnel). Midrange sensitivity settings shall alarm a sensor when an intruder attempts to scale or climb the fence in areas of reduced sensitivity (e.g. around poles and rigid supports, etc.) and attempted lifting or scaling of a fence, including using assisted methods (e.g. items leaned against the fence, etc.)occur. Sensors shall allow gradual changes in fence positioning due to

- expansion, settling, and aging, without increased numbers of nuisance alarms taking place.
- 4. Exterior sensor components shall be housed in rugged, corrosion-resistant enclosures, protected from environmental impact and degradation.
- 5. Fence cable support hardware shall be weather-resistant. Interfacing between sensor zones and alarm enunciators, require they be installed in underground conduit and cables.
- 6. Fencing Cable Technical Characteristics:

Input voltage	12-30 V DC
Current requirement	4 mA quiescent 25 mA (max) in alarm
Transient suppression	On data, power input lines and on relay output
Enclosure	Weatherproof
Sensor type	Inertial band-pass-filter
Transponder	4 zone controller Output relays for dry contacts, or RS-485 communication Inputs for weather sensor
Sensor spacing	2.5 to 3 m (8.2 to 9.9 ft.)
Data I/O	RS 485 communications
Data output	Vibration alarm (in either line) Line alarm (in either line) End of line action Wind situation Weather sensor line failure Enclosure tamper switch Program fail A dry contact output with end of line resistor per each of 4 vibration inputs

H. Strain Sensitive Cable Sensors

1. Strain-Sensitive Cable Sensors: These devices shall detect movement on a standard security chain link fence associated with an intruder scaling, cutting through, or attempting to lift the fence fabric. The entire sensor system shall be mounted directly on the fence and able to withstand the same environmental condition exposures. Note: The length of the fence shall also maintain no sensor monitoring dead zones.

- a. Individual sensing units and the alarm threshold shall be field adjustable (i.e. by authorized technicians or trained maintenance personnel) for compensation of winds up to 40km/h (25 mph) or by zone without increased nuisance alarms while maintaining specified sensor performance as under ambient conditions.
- b. Sensor zone control units shall provide an analog audio output for interface to an external audio amplifier to permit remote audio assessment regardless of sensor alarm status. The sensor zone control unit alarm output interface shall be a separately supervised relay contact normally open or normally closed.
- c. The length of the fence shall be divided into 100m (300 ft) zones.
- d. The sensing unit shall consist of transducer cable capable of achieving specified performance either by attachment directly to the fence fabric by plastic cable every 300 to 455 mm (12 to 18 inches) or by installation inside electrical metallic tubing conduit mounted on the fence.
- e. The sensing unit shall have equal adjustable sensitivity throughout the entire fence length. Only conventional waterproof coaxial cable connectors shall be used for connections of the sensing unit to avoid electrical magnetic interference.
- f. The entire sensor system shall be tamper resistant and capable of detecting tampering within each portion of the system by sensor zone.
- g. Magnetic Sensor Cable Technical Characteristics:

Magnetic Sensor Cable	
Type cable	Four (4) conductor magnetically loaded, aluminum foil shield and ground wire
Maximum zone length	300 m (1000 ft.)
Life expectancy	10 years
Sensitivity	Uniform over length of cable
Audio Bandwidth	Five (5) kHz
Outer Cover	Black Polyurethane, Ultraviolet resistant
Insensitive Cable (remote processing)	
Type cable	2 twisted pair, individually sealed

Outer Cover	Black Polyurethane, Ultraviolet resistant
Dual Channel Signal Processor	
Input Power	10.2 - 13.8 VDC 65 mA
Alarm Output	Alarm contacts SPNC 0.75 mA, 200 VDC
Indicators	Three (3):Alarm, tamper, events
Cut processor	Sensitivity - 10 settings Time window - 0.5 - 4.5 min Event Counter - nine (9)
Climb processor	Sensitivity - 10 settings

I. Buried Electromagnetic Cable Sensor

- 1. The system shall be able to function as a standalone system or as an integral component of a centralized security control system.
- 2. The detection field shall be formed by radio-frequency (RF) signals carried by sensor cables that are buried along the perimeter.
- 3. The RF signals shall form an invisible electromagnetic detection field around the sensor cables that can detect the presence of an intruder passing through the field.
- 4. The system shall detect moving intruders that have a significant electromagnetic field (e.g. humans, vehicles, and other large conductive objects) while rejecting other environmental stimuli such as birds, small animals, weather elements.
- 5. A sensor module shall contain the electronics required to:
 - a. Transmit and receive the RF signal without the use of an external antenna.
 - b. Monitor the detection fields of two (2) zones and produce an alarm when an intruder enters the zones.
- 6. Field power modules shall be available for standalone systems and networked systems.
- 7. As a standalone system, the primary operator interface shall be a local interface module that is connected directly to the sensor module.
- 8. As part of a network configuration, the primary operator interface shall be a personal computer (PC) based central controller. The central controller shall monitor the performance of the entire buried coaxial cable outdoor intrusion detection system and any auxiliary sensors. The central controller shall have the capability

- of acknowledging, processing and reporting alarms. A customized color site map that is displayed on the PC monitor shall be an available option for the system to monitor sensor locations.
- 9. Transmission and reception shall be accomplished without the use of antennae. The RF signal shall be monitored and analyzed by the sensor module for any changes in the detection field properties that would indicate the presence of an intruder.
- 10. Alarms generated by internal electronic processes (cables excluded) shall not exceed one (1) per zone per month. System generated alarms are averaged based on the total number of zones in the system.
- 11. When the system is calibrated in accordance with the manufacturers' recommendations, the detection field shall be continuous and uniform over the protected site perimeter.
- 12. When system sensitivity is calibrated according to manufacturers' recommendations, the detection field shall not detect a valid target that is a minimum of 2 m. (6.5 ft) from the nearest sensor cable.
- 13. Buried Electromagnetic Cable Sensor Technical Characteristics:

Burial Medium	Clay, sand, soil, asphalt, concrete
Snow limitation	Up to 30c. (1 foot) deep
Degradation Guaranty	Minimum 10 yr.
Detection Medium	Radio Frequency (RF)
Detection Coverage	Maximum 200m (656 ft.) per zone
Detection Capability	Human: >34 kg. (75 lbs)
Detection Speed	Human walk, crawl, run, roll, jump 2.5 cm/sec (1 in./sec.) -15 m/sec (50 ft./sec.) regardless of direction across field
Velocity Response	Programmable
Detection Probability	Human: 99% with 95% confidence factor Animal: Less than 10 kg. (22 lbs.) Less than 5% with 90% confidence factor
Terrain Detection Capabilities	Even to uneven ground with maximum (max) grade 4 m (13 ft.) Corner bend radius 6.5m (22 ft.)
Detection Field Cross Section	Upright walking; Heightlm: (3.2 ft.) above ground Width: 2m (6.5 ft.) single cable 3m. (9.75 ft) double cable

Sensing Element	Ported (leaky) coaxial cables
Cable Construction	Abrasion and chemical resistant, high density polyethylene, with flooding compound
Cable Requirements	Two (2):Transmit cable, receive cable
Configurations Available	Two (2):Single cable, double cable
Cable Lengths	50 m (164 ft.), 100 m (328 ft.), 150 m (492 ft.), 200 m (656 ft.)
Zone Length Minimum	10 m (33 ft.)
Antenna Requirements	None
False alarm rate	Less than one (1) per day

- 14. Sensor Module: Each sensor module shall transmit, receive and process the electromagnetic detection fields independently from other sensor modules. Failure of one (1) sensor module shall not affect the remainder of the perimeter. The sensor module shall operate as either a standalone unit, or in a network configuration in conjunction with a central controller. The sensor module shall be mounted in a weatherproof enclosure when installed outdoors as follows.
 - a. The sensor module shall use an adaptive filter to analyze the detection signal and adjust the signal processing to reduce nuisance alarms caused by environmental factors such as rainfall or slow-running water.
 - b. The sensor module shall identify, by type, sensor, tamper, and failure alarms either locally at the sensor module, or centrally at a central controller. The sensor cables shall provide the data paths between the sensor modules, for the transmission, reception and display of alarm conditions.
 - c. Each sensor module shall include an internal interface for the collection of auxiliary sensor data.
 - d. It shall be possible to supply power directly to each unit for applications that require either a single sensor module or multiple sensor modules with independent power sources.
 - e. The sensor module's response shall be demonstrated by an analog output signal that can be displayed on a voltmeter or on an analog voltage-recording device. The output signal shall be encoded to indicate the alarm trip-point, thereby showing the

sensor module's degree of detection above or below the level required to cause an alarm.

f. Sensor Module Technical Characteristics:

Sensor Module Power Output	12 VDC at 150 milliampere (mA)
Sensor Module Power Requirements	Stand-alone: 12 VDC 500 mA max Network: 48 VDC 175 mA max
Sensor capability	Two (2) zones independent of other sensor modules
Sensor coverage	400 m. (1,312 ft)
Calibration	Locally and remotely from Central Controller
Self Test	Via 4 relay drive points
Detection coverage	Unlimited expansion using multiple modules
Nuisance avoidance	Adaptive filtering
Connectivity	RS-485 twisted pair cable
Sensor Support	Dual redundant data paths
Transmission capability	Eight (8) contact-closure signals

- g. The field power module shall be capable of supplying power to sensor modules as follows:
 - In a network configuration where power is supplied redundantly via the sensor cables, the sensor modules shall operate within specifications when power is removed from either of the two
 (2) sensor cables.
 - 2) Each cable zone shall be capable of being calibrated either locally at the sensor module, or remotely from a central controller. Additional signal processing parameters, including high speed and low speed response, shall be capable of being set from a central controller.
 - 3) Detection sensitivity for each zone shall be adjusted either locally at the sensor module with a local interface module, or from a central controller. Access to the local calibration controls shall require the removal of the enclosure's cover and shall cause a tamper alarm to be generated.
 - 4) Power Module Technical Characteristics:

Output support	Nine (9) sensor modules max
_ = = = = = = = = = = = = = = = = = = =	1

	2,800 m (3,063 yards)
System block configuration	1,400 m (1,531 yds.)
Power Output	Stand-alone: 12 VDC 500 mA max Network: 48 VDC 175 mA max

J. Microwave Sensors

- 1. The system shall be a modular microwave outdoor intrusion detection sensor based on microwave radar technology. The detection field shall be formed by radio frequency (RF) signals, in the X-band, carried between a transmitter and a receiver. The RF signals shall form an invisible electromagnetic detection field that can detect the presence of an intruder who walks, crawls, rolls, jumps, or runs through a detection field as follows.
 - a. Transmitter shall create the RF signals that form the detection field. A receiver shall house the necessary electronics to monitor the detection field and to raise an alarm when an intruder enters the field. The transmitter and receiver shall be powered individually, as a standalone unit.
 - b. An electromagnetic wave is emitted by the antenna of the transmitter and received by the antenna of the receiver. The receiver shall detect changes that are caused by the presence of an intruder.
 - c. The system shall detect moving intruders having a significant electromagnetic cross-section (e.g. humans, vehicles, and other large conductive objects) rejecting other environmental stimuli.
 - d. The system shall be capable of detecting human intruders moving through the detection field regardless of the direction of motion.
 - e. Processor description: The receiver shall contain the necessary electronics to perform the signal processing for the detection zone. The transmitter and receiver shall be operated as a standalone unit with independent power and data. Both the transmitter and receiver shall be installed in weatherproof enclosures
 - f. Distributed processing: Transmitter-receiver pairs distributed along a perimeter shall provide extended range and fail-safe

- operation. The failure of one (1) pair shall not affect the coverage of the remainder of the perimeter.
- g. Alarms: The signal processor shall identify intrusion and tamper/fail alarms locally, at the transmitter or receiver.
 - 1) An alarm caused by opening the outer enclosure of the transmitter or receiver shall be identified as a tamper alarm. Tamper alarms shall be distinctive from intrusion alarms.
 - 2) Alarms caused by power failure or internal electronic failure are fail alarms, distinctive from intrusion alarms.
- h. Microwave Sensor System Technical Characteristics:

Operating voltage Transmitter	11 - 15 VDC 70mA max. current
Operating voltage Receiver	11 - 15 VDC 30mA max. current
Operating Environment	-30°C (-22F) and 60°C (140 F)
LEDs	POWER ON, WRONG CHANNEL, ALARM
Maximum zone length	10 m (33 ft.) and a maximum of 457 m (1500 ft.) per zone.
Detection Success Probability	34 kg (75 lbs.) 99% with a 95% confidence factor
Operating frequency	X Band 10.525 \pm 0.025 gigahertz (GHz)
Type modulation	Class A2 with one (1) of six (6) selectable crystal-controlled frequencies.
Detection movement speed	5 cm/sec. (2.0 in. sec.) to 8 m/sec. (26 ft. sec.)
Audio assessment	Via 1/8 in. phone jack on receiver
Alarms	Tamper, failure, intrusion
Tamper/fail alarm	Via sealed relay rated one (1) ampere 28 VDC
Intrusion field alarm	Via sealed relay rated two (2) ampere 28 VDC.
Intrusion alarm latch time	Adjustable: 0.5 sec and 10 sec
Processing	Distributed: receiver/transmitter pairs
Perimeter Length	Single Receiver/transmitter pair: 457 m (1500 ft.)
	Multiple pairs: Unlimited

K. Taut-Wire Sensors

1. These sensors shall consist of a perimeter intrusion detection sensor incorporated into a wire security fence. Intrusion detection

shall be achieved by sensing the cutting of any single wire or deflection of the fence, such as by climbing.

- a. Sensor zone: Includes one (1) or more 61 m (200 ft.) maximum sections of 2.3 m (seven (7) ft.) high parallel fence. Each sector shall consist of 13 horizontal barbed wires attached to the taut-wire fence posts, and three (3) strands as outriggers, and an "anti-ladder" trip wire supported by rods extending from the outriggers for a total vertical height of approximately 2.6 m (eight (8) ft.).
- b. Displacement switches for each horizontal wire shall be mounted 2within a pre-wired channel fastened to the fabric fence post at the midpoint of each section. Outrigger barbed wire and tripwire may share the same switch in these locations.
- c. Abnormal displacement of a switch lever resulting from cutting or deflecting its attached wire, as by climbing on or through fence strands, shall initiate an alarm condition. A damping mechanism within the sensor shall reduce alarm thresholds due to slowly changing environmental phenomena such as the ground shifting, daily and seasonal temperature variations, winds changes, etc.
- d. Sensor switches shall be provided with electrical contact closures as a means for initiating an alarm condition.
- e. The system shall provide relay outputs to interface alarm outputs with the overall IDS.
- f. Taut-wire Sensor Technical Characteristics:

Power requirements	Input: 120 - 208 VAC
Sensor zone control unit capability	Up to 10 zones
Sensitivity	19 mm (0.75 in.)
Environment Limits	Winds up to 56 km/h (35 mph)

L. Electrostatic Field Sensors

- These sensors generate an electrostatic field around one (1) or more horizontal wires and detect intrusion of the electrostatic field as follows.
 - a. Sensors shall initiate an alarm when an intruder attempts to approach or scale a fence or physical barrier. Electrostatic field sensors shall detect human presence by generating an

- electric field around one (1) or more horizontal wires that detects the induced signal in parallel sensing wires.
- b. Sensors shall monitor the induced signal for changes that result from the presence of a human body, which distorts coupling between transmitting and sensor wires.
- c. Sensor components shall consist of one (1) or more signal generator field wires and mounting hardware, sensing wires, an amplifier/signal processors, power supplies, and necessary circuitry hardware. Mounting and support hardware shall be provided by the equipment manufacturer.
- d. Wires shall be spring tension-mounted and provided with end-ofline terminators to detect cutting, shorting, or breaking of the wires.
- e. Sensor configuration shall be able to detect an intruder that may crawl under the bottom wire, through the wires, or over the top wire by divided sensor zones.
- f. Signal processing circuitry shall provide filtering to distinguish nuisance alarms.
- g. Sensor configuration shall incorporate balanced, opposed field construction to eliminate distant field noise.
- h. Sensor sensitivity shall be adjustable. Adjustment controls shall be inaccessible to operating personnel and system sensitivity controls shall be set at approximately midrange.
- i. Sensors shall provide some means of indicating an alarm condition at the protected perimeter to facilitate installation and calibration.
- j. The sensor system shall include an indicator disabling device within a tamperproof enclosure.

2. Electrostatic Field Sensor Technical Characteristics:

Power	115 -120 VAC transformer
Operating Power Requirements	16-22 VAC, 225 mA single zone 275 dual zone
Detection Sensitivity	77 lbs within 915 mm (3 ft.)- midrange setting
Detection Velocity	30 m (0.1 ft.) - 300 m (10 ft.) per sec
Supervision	AC Monitoring of fence and field wires - open, short, and grounded circuits

Tamper Switch	One (1)-pole, two (2) position
Lightening arrestor	Transistors on all relay output and power inputs
Battery Charger	Built-in
Processor Enclosure	Base plate, steel NEMA enclosure Weather resistant

M. Gate Sensors

- They shall be provided in accordance with specific fence sensor manufacturer's recommendations to ensure continuous fence sensor zone protection for the entire protected perimeter.
 - a. When gate units are not provided by the fence sensor manufacturer, provide separately zoned Balanced Magnetic Switch (BMS) gate sensors.
 - b. Sensors shall perform as specified in Section 2.3-E.6 entitled
 "Balanced Magnetic Switches (BMS)."

2.11 INTERIOR DETECTION DEVICES (SENSORS)

- A. The IDS shall consist of interior, exterior, and other detection devices that are capable of:
 - 1. Locating intrusions at individually protected asset areas or at an individual portal;
 - 2. Locating intrusions within a specific area of coverage;
 - 3. Locating failures or tampering of individual sensors or components.
- B. Provide and adjust for devices so that coverage is maximized in the space or area it is installed in. For large rooms where multiple devices are required, ensure device coverage is overlapping.
- C. Detection sensitivity shall be set up to ensure maximum coverage of the secure area is obtained while at the same time limiting excessive false alarms due to the environment and impact of small animals. All detection devices shall be anti-masking with exception of video motion detection.
- D. Dual sensor technology shall be used when possible. Sensor technology shall not be of the same type that is easily defeated by a single method. This will reduce the amount of false alarms.
- E. Interior Environmental Conditions: Systems shall be able to operate in environmentally protected interior areas and shall meet operational performance requirements for the following ambient conditions:

- 1. If components are installed in unheated areas they shall be able to operate in temperatures as low as -17 C (0 F);
- 2. Interior Sensor Environmental Characteristics:

Temperatures	0 to 50 C (32F to 120 F)
Pressure	Sea Level to 4573m (15,000 ft.) above sea level
Humidity	5% - 95%
Fungus	Components of non-fungus nutrient materials
Acoustical Noise	Suitable for high noise environments above 100db

F. Balanced Magnetic Switches (BMS)

- 1. BMS switches shall be surface or recessed mounted according to manufacturer's instructions. Recessed mounted is the preferred method to reduce tampering or defeating of the system. Switches shall activate when a disturbance in the balanced magnetic field occurs.
- 2. Switches shall have a minimum of two (2) encapsulated reed switches.
- 3. Contractor shall provide each BMS with a current protective device, rated to limit current to 80% of the switch capacity.
- 4. Surface Mounted BMS: For exterior application, components shall be housed in weatherproof enclosures.
- 5. BMS field adjustments in the fixed space between magnet and switch housing shall not be possible. Attempts to adjust or disturb the magnetic field shall cause a tamper alarm.
- 6. BMS Technical Characteristics:

Maximum current	.25 amperes
Maximum voltage	30 VDC
Maximum power	3.0 W (without internal terminating resistors). 1.0 W (with internal terminating resistors).
Components	Three (3) pre-adjusted reed switches Three (3) pre-adjusted magnets
Output contacts	Transfer type SPDT
Contact rating	0.5 amperes, 28 VDC
Switch mechanism	Internally adjustable
Wiring	Two (2) wires #22 American Wire Gauge

	(AWG), three (3) or 11 foot attached cable
Activation lifetime	1,000,000 activations
Enclosure	Nonferrous materials
Tamper alarm activation	Cover opened 3 mm (1/8 in.) and inaccessible until actuated

G. Window Intrusion Detection

- These IDS devices shall detect intrusions thru inertia (shock) or by sound, and shall utilize either a Breakwire Sensor or Acoustic and Seismic Sensor.
- 2. Break wire Sensors (wire trap):
 - a. Detect intrusion thru shock or breakage of window glazing. Also used for the protection of utility openings.
 - b. Sensors shall consist of fine wire embedded in or affixed to interior of glazing. Breakage of protected glazing shall result in wire breakage.
 - c. Wire shall be hard-drawn copper up to #26 AWG diameter.
 - d. If sensors are affixed to glazing the sensor shall be protected by a clear coating which shall not affect sensor functioning.
 - e. Sensor shall be terminated in insulated connectors which are concealed and tamper resistant.
 - f. Protection of inlet openings:
 - 1) Shall consist of up to 26 AWG hard-drawn copper wire with a tensile strength of $17.8\ N$ 4 pounds maximum.
 - 2) Wire shall be interlaced throughout the opening such that no opening between wires shall be larger than 100 mm (4 in.. on center.
 - 3) Sensors shall be terminated so that attempts to cut the wire or otherwise enlarge openings between wires shall cause an alarm.
 - 4) Sensors shall be terminated in insulated connectors which are concealed and tamper resistant.
- H. Acoustic and Seismic Glass Break Detectors
 - Detects intrusion thru the use of audible sound and vibration emitted from the breaking of glass using a tuned frequency range and sound pattern recognition. This initiates an alarm when glass they protect is broken or cracked.

- 2. Detectors shall be installed in strict conformance with manufacture's installation instructions.
- 3. The detector's power circuit shall be switched via an output relay on the control panel to provide latching alarm LED reset capability.
- 4. Sensors shall be contained in a fire-resistant ABS plastic housing and must be mounted in contact with a window.
- 5. Sensing shall be accomplished through the use of a mechanical filtered piezoelectric element.
- 6. Sensors shall have a sensitivity adjustment controlling output voltage from the piezoelectric element which triggers a solid-state latching device.
- 7. Sensors shall selectively filter input to minimize false alarms and not initiate alarm in response to ambient seismic vibrations or other ambient stimuli.
- 8. A manufacture's test unit will be used to validate the sensor by simulating glass breakage.
- 9. The Contractor shall provide sensors for adjusting sensitivity and two-sided polyurethane tape with acrylic adhesive for window attachment.
- 10. Sensor shall include exterior label to protect adhesive tape from direct sunlight.
- 11. Window Intrusion Detection Sensor Technical Specifications:

Power	Auxiliary power supply 12 VDC @ 25 mA (+/-) 10%
Power Input	10 - 15 VDC at 16mA protected against reverse polarity, 20 mA during relay closure
Relay Output Rating	Minimum of 25 VDC mA
Coverage Audio	6,000 Square ft.
Coverage Glass Break	7.5 m (25 ft.) wide by 7.5 m wide (25 ft.)
	Minimum: 7.62 m (25 feet) from the detector to the furthest point on protected glass.
Audio Output	300 - 12,000 HZ
Alarm Output	Relay NO or NC selectable
Interconnection	12 pin Panduit connector, 22 AWG
Radio Frequency Interface	No alarm or setup on between frequencies 26 - 100 MHz 50 v/m

	Immunity to mobile RF interference 100 watts 3 m @ (9.8 Ft.) in 27-100 MHz range
Alarm period	Two (2) to three (3)
Mounting	Ceiling, same wall, adjacent wall, opposite wall
Features	Test and alarm LEDs for acoustic seismic and alarm condition latching, Alarm LED and tamper switch on cover.
Alarm verification	Digital signal processing or dual acoustic processing technologies
Detection ability	Single and multi-pane glass, wired glass, tempered and laminated glass to 6 mm (¼ inch) or thickness

I. Screening

- 1. This material shall be used on windows to protect and detect intrusion as follows.
 - a. Security screens shall be constructed from a maximum of 26 AWG insulated hard-drawn copper.
 - b. Screens shall be connected to an alarm circuitry by means of flexible armored cords. Security screen circuitry shall provide end-of-line resistors in series or equivalent methods ensuring alarm activation if short-circuiting of the screen is attempted.
 - c. If unable to install a break wire sensor (wire traps), then tamper switches will be provided.
 - d. Contractor shall provide tamper switches in the frames as required with not less than one (1) switch on each side if dimensions are 610 mm two ((2) ft. square) or less, and two (2) switches if dimensions exceed 610 mm (2 ft. square). Tamper switches shall be corrosion-resistant, spring-operated, and shall initiate an alarm with a movement of 50 mm (two (2) in.) or less before access to the switch is possible.
 - e. Electrical characteristics of the switch shall match the alarm system requirements.

J. Vibration Sensors

 These sensors shall initiate alarms upon detecting drilling, cutting, or blasting through walls, or other methods of forced entry through a structure as follows.

- 2. Sensors shall detect and selectively amplify signals generated by forced penetration of a protective structure.
- Sensors shall be designed to give peak response to structurally conveyed vibrations associated with forcible attack on the protected surface
- 4. Sensors will initiate an alarm if attempts are made to remove them from the surface of the wall.
- 5. Sensors shall be enclosed in protective mountings.
- 6. Sensors shall include an adjustable alarm discriminator to prevent incidental vibrations which may occur from triggering the alarm circuit.
- 7. Sensors shall be provided with a tamper switch.
- 8. Sensor sensitivity shall be individually adjustable unless a sensor is designed to accommodate vibration ranges of specific surface type on which it will be mounted. Sensitivity adjustments shall not be accessible without removing the sensor cover. Also, a sensor shall not be responsive to airborne sound.
- 9. Vibration Sensor Technical Characteristics:

Power requirements	External DC power source Eight (8) - 14.5 VDC, two (2) volt max peak to peak ripple
Alarm output	Form C (NO/C/NC) solid state alarm relay, rated 100 mA, 28 VDC
Tamper Connection	Tamper switch and external magnetic
Current rating and alarm output	No alarm state 20mA SPDT relay contact rating (Form C)
Sensor range	Concrete (poured) 4 m (13.2 ft.) Concrete block 2 m (6.6 ft.) Brick block 1 m (3.3 ft.)
Frequency range	3kHz-20kHz (-15db) 7kHz-10kHz (-10db)
Adjustable	Sensitivity eight (8) steps Alarm response 0-30 sec

K. Passive Infrared Motion Sensors (PIR)

1. These sensors shall detect an intruder presence by monitoring the level of infrared energy emitted by objects within a protected zone and meet ANSI PIR-01 Passive Infrared Motion Detector Standards Features for Enhancing False Alarm Immunity. An alarm shall be

- initiated when motion and temperature changes within set patterns are detected as follows.
- 2. The detector shall provide multiple detection zones distributed at a variety of angles and distance.
- 3. Sensors shall be passive in nature; no transmitted energy shall be required for detection.
- 4. Sensors shall be sensitive to infrared energy emitted at wavelengths corresponding to human body and other objects at ambient temperatures.
- 5. Sensors shall not alarm in response to general area thermal variations and shall be immune to radio frequency interference.
- 6. Sensors shall not be susceptible to changes in temperature due to an air conditioner being turned on or off.
- 7. Sensors shall be housed in a tamper-alarmed enclosure.
- 8. Sensor detectors shall include motion analyzer processing, adjustable lens, and walk test LED's visible from any angle.
- 9. Sensors shall provide some means of indicating an alarm condition during installation and calibration. A means of disabling the indication shall be provided within the sensor enclosure.
- 10. Sensor detectors shall include a motion monitoring verification circuit that will signal trouble or alarm if the detector fails to detect motion for an extended period.
- 11. PIR Technical Characteristics:

Power	Six (6) - 12 VDC 25 mA continuous current draw 38 mA peaks
Alarm Velocity	1500 mm (Five (5) ft.) at a velocity of 30 mm (0.1 ft.) per second, and one (1) step per second, assuming 150 mm (6 in.) per step. Also, faster than 30 mm (1 foot) per second, up to 3000 mm (10 feet) per second
Maximum detection range	10.6 m (35 ft.)
Frequency range- non activation or setup use	26 to 950 MHz using a 50 watt transmitter located 1 ft. from the unit or attached wiring
Infrared detection	1 1/2°C (3°F) different from the background temperature
Detection Pattern	180 degrees for volumetric units, non

	PIR 360
PIR 360°Detection Pattern	Programmable 60 detection zones including one directly below
Mounting	Ceiling and walls
Ceiling heights	2.4 m (Eight (8) ft.) - 5.4 m (18 ft)
Sensitivity adjustments	Three (3) levels

L. Microwave-Passive Infrared Detector

- This sensor shall be designed to detect the motion of a human body within a protected area by means of a combination of microwave sensing technology and passive infrared (MPIR) sensing technology as follows.
- 2. The sensor shall require both technologies to sense intrusion before an alarm may occur.
- 3. The sensor shall be designed for wall mounting on swivel bracket. A high-security gimbaled bracket shall be provided.
- 4. The PIR fields of view shall be focused on the pyroelectric element by means of an internal multi-faceted mirror.
- 5. The sensor shall incorporate a look-down lens system that detects the passing of an intruder directly beneath the sensor.
- 6. The sensor shall incorporate a microwave supervision system which shall activate the trouble output if the device technology fails.
- 7. The sensor shall incorporate self-diagnostics which shall monitor the sensor systems and report a trouble to the control panel if any system device fails.
- 8. The sensor shall have compensation against loss of sensitivity as the ambient temperature nears human body temperature.

9. MPIR Technical Characteristics:

Technology	Microwave and Passive Infrared
Power	Nine (9) - 15 VDC max current consumption 22 mA at 12 VDC
Operating Temperature	0° C (32°F) - 49° C (120° F)
Detection Area	30 m (98 ft.) long by 3 m (9.8 ft.) wide or 21 m (69 ft.) long by 21m (69 ft.) wide
Electronics	Microcontroller based
Alarm Contact	Form-C rated 125 mA, 28 VDC
Tamper Contact	125 mA, 28 VDC

Trouble Contact	Form-B rated 25 mA, 30 VDC
Microwave Operating Frequency	10.525 GHz
Microwave Sensitivity	Adjustable on circuit board
Detection pattern adjustment	Changing of internal lens
Sensing element	Pyro-electric
LED Indicators	PIR, microwave, alarm
Bug and Dust protection	zero-clearance, gasket bug guard
Lens	Interchangeable: standard 18x24 m (60x80 ft.), corner mounting, ultrawide, pet alley, long range, room and corridor combo, room and ceiling combo, creep zone

M. Photoelectric Sensors

- 1. The sensor devices shall be able to detect an intruder presence by sending out a series of infrared or ultraviolet beams. Intrusion is based on disruption of the signal beams as follows.
 - a. Sensors shall consist of a modulating transmitter, focusing lenses, mirrors, demodulating receiver, power supply, and interconnecting lines.
 - b. Beam transmitters shall be designed to emit light. Beams may be reflected by one (1) or more mirrors before being received and amplified.
 - c. The photoelectric sensor shall initiate an alarm when the beam is interrupted with monitoring controls set at midrange.
 - d. Transmitted beams shall be uniquely modulated to prohibit defeat of the IDS system by shining another light source into the receiver.
 - e. Sensors shall provide a means of local alarm indication on the detector for use at the protected zone during installation and calibration.
 - f. Sensors shall include an indicator-disabling device within the sensor enclosure.
 - g. Sensors shall utilize automatic gain control or be provided with sensitivity adjustments to allow for various beam lengths.
 - h. Sensor controls shall be inaccessible to operating personnel.

- i. Sensors that use multiple beams shall be tested by attempting to crawl under and jump through and over beams. Each system sensor shall provide cutoffs of at least 90% to handle a high percentage of light cutoffs prior to initiating an alarm.
- j. Sensor components shall be housed in tamper-alarmed enclosure.
- 2. Photoelectric Sensor Technical Characteristics:

Power requirements	Nine (9)-16 VDC, protected against reverse polarity
Relay output	Normally closed. 18 ohm resister in series with contacts. 0.5 amperes resistance/24 VDC
Current	Transmitter 15 mA, Receiver 15 mA
LED	Alignment, walk-test alarm, off
Range	Indoor: 39 m (130 ft.) Outdoor19.5 m: (65 ft.)
Alarm relay contacts	Two (2) amperes at 120 VAC minimum
Enclosure	High impact acrylic
Туре	Dual beam
Mounting	Wall, corner, flush
Beam width	Six (6) degrees
Receiver field of view	Six (6) degrees horizontal and vertical
Adjustments	Vertical +10 - 20 degrees Horizontal 30 degrees
Alarm period	Two (2) - three (3) sec
Infrared source	Long-life Gallium Arsenide LED
Infrared sensor	PIN photodiode
Transmitter Frequency	One (1) kHz 10 microsecond pulse width
IR Wavelength	950 nm

N. CCTV Video Motion Detection Sensors: Refer to Section 28 23 00 VIDEO SURVEILLANCE that outlines related video motion detection requirements.

2.12 TAMPER ALARM SWITCHES

- A. The following IDS sensors shall be used to monitor and detect potential tampering of sensors, control panels and enclosures.
 - 1. Tamper Switches: All enclosures including cabinets, housings, boxes, raceways, and fittings with hinged doors or removable covers

- containing circuits and power supplies related to the IDS shall include corrosion-resistant tamper switches.
- 2. Tamper alarms shall be annunciated to be clearly distinguishable from IDS alarms.
- 3. Tamper switches will not be in a viewable from a direct line of sight perspective. The minimum amount of time the tamper switch becomes active and sends a signal after an enclosure is opened or panel removable is attempted, shall be one (1) second.
- 4. Tamper switches will initiate when enclosure doors or covers is removed as little as 6.35 mm (1/4 inch) from the closed position unless otherwise indicated. Tamper switches shall be:
 - a. Push/pull automatic reset type;
 - b. Inaccessible until switch is activated;
 - c. Spring-loaded and held in closed position by door or cover; and
 - d. Wired to break a circuit when door or cover is removed with each sensor annunciated individually at a central reporting processor.
- 5. Fail-Safe Mode: Shall provide the capability to detect and annunciate diminished functional capabilities and perform self-tests. Fail-safe alarms shall be annunciated to be clearly distinguishable from other types of alarms.

2.13 POWER SUPPLY

- A. A power supply shall only be utilized if the control panel is unable to support the load requirements of the IDS system.
- B. All power supplies shall be UL rated and able to adequately power two entry control devices on a continuous base without failure.
- C. Power supplies shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ 2 amp
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide up to [insert number]Ah, rechargeable
OUTPUT CURRENT	4 amp max. @ 13.8 VDC
	3 amp max. @ 27.6 VDC
BATTERY FUSE SIZE	3.5 A @ 250 VAC
CHARGING CIRCUIT	Built-in standard

2.14 AUDIBLE AND VISUAL ALARM DEVICES

- A. Bell: Central-station control unit 10 inches (254 mm) in diameter, rated to produce a minimum sound output of 84 dB at 10 feet (3 m) from central-station control unit.
 - 1. Enclosure: Weather-resistant steel box equipped with tamper switches on cover and on back of box.
- B. Weatherproof Motor-Driven Hooter: UL listed, rated to produce a minimum sound output of 120 dB at 3 feet (1 m), plus or minus 3 dB, at a frequency of 470 Hz. Rated for intermittent use: two minutes on and five minutes off.
 - 1. Designed for use in industrial areas and in high noise, severe weather marine environments.
- C. Siren: 30-W speaker with siren driver, rated to produce a minimum sound output of 103 dB at 10 feet (3 m) from central-station control unit.
 - 1. Enclosure: Weather-resistant steel box with tamper switches on cover and on back of box.
- D. Strobe: Xenon light complying with UL 1638, with a clear polycarbonate lens.
 - 1. Light Output: 115 cd, minimum.
 - 2. Flash Rate: 60 per minute.

2.15 SECURITY FASTENERS

- A. Security fasteners shall be operable only by tools produced for use on specific type of fastener by fastener manufacturer or other licensed fabricator. Drive system type, head style, material, and protective coating as required for assembly, installation, and strength.
- B. Drive System Types: Pinned Torx or pinned hex (Allen).
- C. Socket Flat Countersunk Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.
- D. Socket Button Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.
- E. Socket Head Cap Fasteners:
 - 1. Heat-treated alloy steel, ASTM A 574 (ASTM A 574M).
 - 2. Stainless steel, ASTM F 837 (ASTM F 837M), Group 1 CW.
- F. Protective Coatings for Heat-Treated Alloy Steel:

- 1. Zinc chromate, ASTM F 1135, Grade 3 or 4; for exterior applications and interior applications where indicated.
- 2. Zinc phosphate with oil, ASTM F 1137, Grade I, or black oxide.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. IDS installation shall be in accordance with Underwriters Laboratories (UL) 639 Standards for Intrusion Detection Units and UL 634 Standards for Connectors with Burglar Alarm Systems, and appropriate manufacture's installation manuals for each type of IDS.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including VA furnished equipment, and appurtenances in accordance with the manufacturer's instructions and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The IDS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or designed as a computer network.
- E. The IDS shall be able to be integrated with other security subsystems. Integration with these security subsystems shall be achieved by computer programming and the direct hardwiring of the systems. Determination for methodology shall be outlined when the system(s) is/are being designed and engineered. For installation purposes, the IDS shall utilize an output module for integration with other security subsystems. The Contractor will ensure all connections are per the OEM and that any and all software upgrades required to integrate the systems are installed prior to system start-up.
- F. For programming purposes, the Contractor shall refer to the manufacturer's requirements and Contracting Officer instructions for correct system operations. This includes ensuring computers being utilized for system integration meet or exceeds the minimum system requirements outlined in the IDS software packages.
- G. Lightening and power surges to the central alarm reporting and display unit shall be protected at both ends against excessive voltages. This

- requirement shall apply for circuits that are routed both in underground conduits and overhead runs.
- H. At a minimum, the Contractor shall install primary detection devices, such as three electrode gas-type surge arresters, and secondary protectors to reduce dangerous voltages to levels that will cause no damage. Fuses shall not be permitted as protection devices.
- I. The Contractor shall provide fail-safe gas tube type surge arresters on exposed IDS data circuits. In addition, transient protection shall protect against spikes up to 1000 volts peak voltage with a one-microsecond rise time and 100-microsecond decay time, without causing false alarms. The protective device shall be automatic and self-restoring. Also, circuits shall be designed or selected assuming a maximum of 25 ohms to ground.
- J. Product Delivery, Storage and Handling:
 - 1. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name, equipment model and serial identification numbers, and UL logo. The Contracting Officer may inventory the IDS equipment at the time of delivery and reject items that do not conform to this requirement.
 - 2. Storage and Handling: Store and protect equipment in a manner that will preclude damage as directed by the Contracting Officer.

K. Cleaning and Adjustments:

- 1. Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
- 2. Prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or synchronization. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.

L. Tamper Switches

- Install tamper switches to initiate an alarm signal when a panel, box, or component housing door or cover is moved as little as 6.35 mm (1/4 inch) from the normally closed position unless otherwise specified.
- 2. Locate tamper switches within enclosures, cabinets, housings, boxes, raceways, and fittings to prevent direct line of sight to any

internal components and to prevent tampering with switch or circuitry.

- 3. Conceal tamper switch mounting hardware so that the location of the switch within the enclosure cannot be determined from the exterior.
- M. Unique IDS Installation Components:
 - 1. BMS Surface Mounted:
 - a. Surface mounted BMS housing for the switch element shall have the capability to receive threaded conduit. Housing covers for surface mounted BMS, if made of cast aluminum, shall be secured by stainless steel screws. Magnet housing cover shall not be readily removable and BMS housings shall be protected from unauthorized access by a cover operated, corrosion-resistant tamper device.
 - b. Conductors running from a door to alarm circuits shall be contained within a flexible armored cord constructed from corrosion-resistant metal. Each end of the armored cord shall terminate in a junction box or other enclosure. Armored cord ends shall be mechanically secured to the junction boxes by clamps or bushings. Conductors within the armored cord shall be provided with lug terminals at each end. Conductors and the armored cord shall experience no mechanical strain as the door is removed from fully open to closed position. Switch circuits shall initiate an alarm if a short circuit is applied to the door cord.
 - c. For exterior application on double gates, both BMS elements must be mounted on the gate. Flexible armored cord constructed from corrosion-resistant metal shall be used to provide electrical connection.

2. BMS Recessed Mounted:

- a. Ball bearing door trips shall be mounted within vault door headers such that when the locking mechanism is secured, the door bolt engages an actuator, mechanically closing the switch.
- b. Door bolt locking mechanisms shall be fully engaged before the ball bearing door trip is activated. Also, circuit jumpers from the door shall be provided.

3. Vibration Sensors:

a. Mount vibration sensors directly contacting the surface to be protected.

- b. Provide at least one (1) sensor on each monolithic slab or wall section, even though spacing closer than that required for midrange sensitivity may result.
- c. House sensors in protective mountings and fasten to surface with concealed mounting screws or an epoxy.
- d. Adjust discriminator on the job to precise needs of application. Connect sensors to an electronic control unit by means of wiring or fiber optics cable run in rigid steel conduit or electrical metallic tubing (EMT).

4. Passive Infrared Detectors: (PIR)

- a. The protective beam shall be focused in a straight line.
- b. Installed beam distance from transmitter to receiver shall not exceed 80% of the manufacturer's maximum recommended rating.
- c. Mirrors may be used to extend the beam or to establish a network of beams. Each mirror used shall not lower the rated maximum system range by more than 50%.
- d. Mirrors and photoelectric sources used in outdoor applications shall have self-heating capability to eliminate condensation and shall be housed in weatherproof enclosures.

5. Taut-Wire:

- a. Housing for switch assembly shall be covered by a neoprene cap to retain the center bolt (lever arm), which functions as a lever to translate movement of the attached horizontal wire into contact closure. When the neoprene cap is firmly seated on the cup-shaped polycarbonate housing, it shall function as the fulcrum for the lever (bolt).
- b. Upper exposed end of the lever shall be threaded to accommodate clamping to the horizontal wire. The lower end of the lever, which is fashioned to serve as the movable electrical contact, shall be held suspended in a small cup-shaped contact that floats in a plastic putty material.
- c. Plastic putty used shall retain a degree of elasticity under varying temperature conditions and provide the sensor switch with a self-adjusting property. This provides the switch with a built-in compensating mechanism that ignores small, very slow changes in lever alignment (i.e. which may result from environmental changes such as extreme temperature variations and ground seepage

- due to weather conditions) and to react to fast changes only, as caused by manual deflection or cutting of the wires.
- d. Contractor shall provide metal slider strips having slots through which the barbed wires pass. Wires shall be prevented from leaving the slots by rivets. A slider strip shall be used to translate normal forces to the barbed wire and to the horizontal displacement of the sensor.
- e. Install one (1) slider strip pair, upper and lower, on every fence post except where sensor posts or anchor strips are installed.
- f. Separation between slider elements along the fence shall be 3000 $\,$ mm (10 feet).
- g. Attach wires of sensor to existing, specially installed fence posts, called anchor posts, located equidistant on both sides of sensor posts and at ends of sensor zone run.
- h. Anchor strip shall be a strip of steel plate on which fastening plates are installed. Weld or otherwise attach the strip to anchor post and ends of tensed barbed wires wrapped around the fastening plates. Attempts to climb on fastening plates or on the attached barbed wires shall cause plates to break off, creating an alarm and making it impossible to defeat the system by climbing at the anchor post.
- i. The use of barbed wire as part of the IDS system shall be suitable for installation under a preload tension of approximately 392 N 88 pounds and be flexible enough for convenient manipulation during tensioning. Double-strand 15 1/2gage barbed wire shall be the minimum acceptable.

6. Electromechanical Fence Sensors:

- a. The fence length shall be divided into 100m (300 ft). or zones.
- b. Sensors shall consist of individual electromechanical sensing units mounted every three-thousand and 3045mm (10 ft). on the fence fabric or posts and wired in series to a sensor zone control unit and associated power supply.

7. Electrostatic Field Sensors:

a. Sensors shall be capable of following irregular contours and barrier bends without degrading sensitivity below the specified detection level.

- b. In no case shall a single sensor zone exceed 100m (300 ft). or be long enough to significantly degrade sensitivity.
- c. Adjacent zones shall provide continuous coverage to avoid a dead zone. Adjacent zones shall be designed to prevent crosstalk interference
- d. Exterior components shall be housed in rugged corrosion-resistant enclosures, protected from environmental degradation and include tamper switches.
- e. Interfacing between exterior units shall be carried in underground cables.
- f. Exterior support hardware shall be stainless or galvanized to avoid tension degradation.
- g. Sensor and field wires shall be stainless steel. Wire spacing for various configurations shall be maintained constant throughout each zone and shall be uniform with respect to the ground and follow manufacturer's specifications.
- h. Signal processing equipment shall be separately mounted such that no desensitized zones are created within the zone of detection.
- 8. Microwave: Do not install microwave sensors where fluorescent lights may pose a problem due to radiated ionization from lights.

3.2 WIRING INSTALLATION

- A. Wiring Method: Install wiring in metal raceways according to Section 28 05 28.33 "CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY." Conceal raceway except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
- B. Wiring Method: Install wiring in raceways except in accessible indoor ceiling spaces and in interior hollow gypsum board partitions where cable may be used. Conceal raceways and wiring except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
- C. Wiring Method: Cable, concealed in accessible ceilings, walls, and floors when possible.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Use lacing bars and distribution spools. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer. Install conductors parallel with or at right

angles to sides and back of enclosure. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with intrusion system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Wires and Cables:

- 1. Conductors: Size as recommended in writing by system manufacturer, unless otherwise indicated.
- 2. 120-V Power Wiring: Install according to Division 26 Section "LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES," unless otherwise indicated.
- 3. Control and Signal Transmission Conductors: Install unshielded, twisted-pair cable, unless otherwise indicated or if manufacturer recommends shielded cable, according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- 4. Computer and Data-Processing Cables: Install according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- 5. Television Signal Transmission Cables: Install according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- F. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- G. Install power supplies and other auxiliary components for detection devices at controllers, unless otherwise indicated or required by manufacturer. Do not install such items near devices they serve.
- H. Identify components with engraved, laminated-plastic or metal nameplate for central-station control unit and each terminal cabinet, mounted with corrosion-resistant screws.

3.3 GROUNDING

- A. Ground system components and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Signal Ground Terminal: Locate at main equipment rack or cabinet.

 Isolate from power system and equipment grounding. Provide [5] <Insert selected maximum value>-ohm ground. Measure, record, and report ground resistance.

C. Install grounding electrodes of type, size, location, and quantity indicated. Comply with installation requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY SYSTEMS."

3.4 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.5 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.6 TESTS AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide services of manufacturer's technical representative for [insert number] hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COR or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.

C. Fire alarm signals:

- 1. Building(s) 6 and 6A shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
- 2. Building(s) 6 and 6A shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. A fully addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.

F. Basic Performance:

- 1. Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
- 2. Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
- 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
- 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.

- 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

 Requirements for procedures for submittals.
- B. Section 08 71 00 DOOR HARDWARE. For combination Closer-Holders.
- C. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.
- D. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- E. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- F. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- G. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- H. Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for integration with physical access control system.

1.4 SUBMITTALS

A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Drawings:

- 1. Prepare drawings using the newest version of AutoCAD software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
- 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes,

risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.

- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.

C. Manuals:

- Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.

- b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
- c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
- d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
- e. Complete listing of all digitized voice messages.
- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.

- b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
- c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
- d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
- e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.

D. Certifications:

- 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES - NOT APPLICABLE

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to

the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.

- B. National Fire Protection Association (NFPA):
 - NFPA 13Standard for the Installation of Sprinkler
 Systems, 2010 edition
 - NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2010 edition
 - NFPA 20 Standard for the Installation of Stationary

 Pumps for Fire Protection, 2010 edition
 - NFPA 70......National Electrical Code (NEC), 2010 edition
 - NFPA 72......National Fire Alarm Code, 2010 edition
 - NFPA 90A.....Standard for the Installation of Air

 Conditioning and Ventilating Systems, 2009

 edition
 - NFPA 101.....Life Safety Code, 2009 edition
- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI):
 - S3.41......Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.

- 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
- 3. All new conduits shall be 3/4 inch (19 mm) minimum.

B. Wire:

- 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
- 2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
- 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 FIRE ALARM CONTROL UNIT

A. General:

- Each building and/or building expansion shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.
- 2. Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.
- 4. Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control unit.

B. Enclosure:

- The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
- 2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.

C. Operator terminal at main control unit:

- Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
- 2. Display screen shall have a minimum 15-inch (380 mm) diagonal nonglare screen capable of displaying 24 lines of 80 characters each.
- 3. Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
- 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.

D. Power Supply:

- 1. The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
- 2. The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.

- 3. Power supply for smoke detectors shall be taken from the fire alarm control unit.
- 4. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
- 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - 1. Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - 2. Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.

- 4. Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
- 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
- 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
- 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
- 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
- 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.

I. Remote Transmissions:

- 1. Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
- Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
 - 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
 - 4. Batteries shall be sealed, gel cell type.
 - 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.

B. Batteries:

- 1. Battery shall be of the sealed, maintenance free type, 24-volt nominal.
- 2. Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
- 3. Battery racks shall be steel with an alkali-resistant finish.

 Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.

C. Battery Charger:

- Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
- 2. Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
- 3. Shall have protection to prevent discharge through the charger.
- 4. Shall have protection for overloads and short circuits on both AC and DC sides.
- 5. A trouble condition shall actuate the fire alarm trouble signal.
- 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - 1. Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
 - 2. Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
 - 3. The initial alarm received shall be indicated as such.
 - 4. A selector switch shall be provided for viewing subsequent alarm messages.
 - 5. The display shall be UL listed for fire alarm application.
 - 6. Annunciators shall display information for all buildings connected to the system. Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COR.

B. Printers:

- 1. System printers shall be high reliability digital input devices, UL approved, for fire alarm applications. The printers shall operate at a minimum speed of 30 characters per second. The printer shall be continually supervised.
- 2. Printers shall be programmable to either alarm only or event logging output.
 - a. Alarm printers shall provide a permanent (printed) record of all alarm information that occurs within the fire alarm system. Alarm information shall include the date, time, building number, floor, zone, device type, device address, and condition.
 - b. Event logging printers shall provide a permanent (printed) record of every change of status that occurs within the fire alarm system. Status information shall include date, time, building number, floor, zone, device type, device address and change of status (alarm, trouble, supervisory, reset/return to normal).
- 3. System printers shall provide tractor drive feed pins for conventional fan fold 8-1/2" x 11" (213 mm x 275 mm) paper.
- 4. The printers shall provide a printing and non-printing self test feature.
- 5. Power supply for printers shall be taken from and coordinated with the building emergency service.

- 6. Each printer shall be provided with a stand for the printer and paper.
- 7. NOT USED

2.6 VOICE COMMUNICATION SYSTEM (VCS)

A. General:

- 1. An emergency voice communication system shall be installed throughout Building 6 and 6A.
- 2. Upon receipt of an alarm signal from the building fire alarm system, the VCS shall automatically transmit a pre-recorded fire alarm message throughout the building.
- 3. A digitized voice module shall be used to store each prerecorded message.
- 4. The VCS shall be arranged as a dual channel system capable of transmitting 2 different messages simultaneously.
- 5. The VCS shall supervise all speaker circuits, control equipment, remote audio control equipment, and amplifiers.

B. Speaker Circuit Control Unit:

- The speaker circuit control unit shall include switches to manually activate or deactivate speaker circuits grouped by floor in the system.
- 2. Speaker circuit control switches shall provide on, off, and automatic positions and indications.
- 3. The speaker circuit control unit shall include visual indication of active or trouble status for each group of speaker circuits in the system.
- 4. A trouble indication shall be provided if a speaker circuit group is disabled.
- 5. A lamp test switch shall be provided to test all indicator lamps.
- 6. A single "all call" switch shall be provided to activate all speaker circuit groups simultaneously.
- 7. A push-to-talk microphone shall be provided for manual voice messages.
- 8. A voice message disconnect switch shall be provided to disconnect automatic digitized voice messages from the system. The system shall be arranged to allow manual voice messages and indicate a system trouble condition when activated.

C. Speaker Circuit Arrangement:

- 1. Speaker circuits shall be arranged such that there is one speaker circuit per smoke zone.
- 2. Audio amplifiers and control equipment shall be electrically supervised for normal and abnormal conditions.
- 3. Speaker circuits shall be either 25 VRMS or 70.7 VRMS with a minimum of 50 percent spare power available.
- 4. Speaker circuits and control equipment shall be arranged such that loss of any one speaker circuit will not cause the loss of any other speaker circuit in the system.

D. Digitized Voice Module (DVM):

- The Digitized Voice Module shall provide prerecorded digitized evacuation and instructional messages. The messages shall be professionally recorded and approved by the COR prior to programming.
- 2. The DVM shall be configured to automatically output to the desired circuits following a 10-second slow whoop alert tone.
- 3. Prerecorded magnetic taped messages and tape players are not permitted.
- 4. The digitized message capacity shall be no less than 15 second in length.
- 5. The digitized message shall be transmitted 3 times.
- 6. The DVM shall be supervised for operational status.
- 7. Failure of the DVM shall result in the transmission of a constant alarm tone.
- 8. The DVM memory shall have a minimum 50 percent spare capacity after those messages identified in this section are recorded. Multiple DVM's may be used to obtain the required capacity.

E. Audio Amplifiers:

- 1. Audio Amplifiers shall provide a minimum of 50 Watts at either 25 or 70.7 VRMS output voltage levels.
- 2. Amplifiers shall be continuously supervised for operational status.
- 3. Amplifiers shall be configured for either single or dual channel application.
- 4. Each audio output circuit connection shall be configurable for Style ${\tt X}$.
- 5. A minimum of 50 percent spare output capacity shall be available for each amplifier.

F. Tone Generator(s):

- 1. Tone Generator(s) shall be capable of providing a distinctive 3-pulse temporal pattern fire alarm signal as well as a slow whoop.
- 2. Tone Generator(s) shall be continuously supervised for operational status.

2.7 ALARM NOTIFICATION APPLIANCES

A. Bells:

- 1. Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
- 2. Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on outlet boxes.
- 4. Bells located outdoors shall be weatherproof type with metal housing and protective grille.
- 5. Each bell circuit shall have a minimum of 20 percent spare capacity.

B. Speakers:

- 1. Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
- 2. Frequency response shall be a minimum of $400~\mathrm{HZ}$ to $4,000~\mathrm{HZ}$.
- 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

C. Strobes:

- Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
- 2. Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
- 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.

D. Fire Alarm Horns:

- 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
- 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on conduit boxes.
- 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
- 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.8 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.
 - 2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
 - 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
 - 6. Stations identified as key operated only shall have a single standardized lock and key separate from the control equipment.

B. Smoke Detectors:

- 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
- 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.

- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

C. Heat Detectors:

- 1. Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
- 2. Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
- 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and/or elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
- 4. Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector Elevator P-______) for each elevator group. Locate key test station in plain view on elevator machine room wall.

D. Water Flow and Pressure Switches:

- 1. Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
- 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 12 00, FIRE-SUPPRESSION STANDPIPES and Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
- 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

E. Extinguishing System Connections:

1. Kitchen Range Hood and Duct Suppression Systems:

- a. Each suppression system shall be equipped with a micro-switch connected to the building fire alarm control unit. Discharge of a suppression system shall automatically send a alarm signal to the building fire detection and alarm system for annunciation.
- b. Operation of this suppression system shall also automatically shut off all sources of fuel and heat to all equipment requiring protection under the same hood.
- 2. Each gaseous suppression system shall be monitored for system alarm and system trouble conditions via addressable interface devices.

2.9 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - 1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - 1. Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.

- 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
- 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
- 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.
- 7. Fire supervisory signals required by NFPA 20 and monitored by the pump controller shall be provided and monitored by way of address reporting interface devices for the fire pump located.

2.10 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit.

 Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.

D. Smoke detectors shall not be incorporated as an integral part of door holders.

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COR.

2.13 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5
 - 2. Key operated manual pull stations 3
 - 3. Heat detectors 2 of each type
 - 4. Fire alarm strobes 5
 - 5. Fire alarm bells 5
 - 6. Fire alarm speakers 5
 - 7. Smoke detectors 20
 - 8. Duct smoke detectors with all appurtenances 1
 - 9. Sprinkler system water flow switch 1 of each size
 - 10. Sprinkler system water pressure switch 1 of each type
 - 11. Sprinkler valve tamper switch 1 of each type
 - 12. Control equipment utility locksets 5
 - 13. Control equipment keys 25
 - 14. Key operated manual pull station keys 50
 - 15. 2.5 oz containers aerosol smoke 12
 - 16. Printer paper 3 boxes
 - 17. Printer replacement ribbons 3
 - 18. Monitor modules 3
 - 19. Control modules 3
 - 20. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- B. Keys for key-operated manual pull stations shall be provided 30 days prior to actual installation.
- C. Spare and replacement parts shall be in original packaging and submitted to the COR.
- D. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device.

Padlock to be provided by the VA. Location of cabinet to be determined by the COR.

E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system on site. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.14 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COR before being posted.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. Existing non-addressable equipment may be reused only where indicated on the drawings. All addressable equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33, CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduit shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.

B. Wire:

1. Wiring shall be in accordance with NEC article 760, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as

recommended by the manufacturer of the addressable fire alarm system to extend an existing non-addressable system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.

- 2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically accepted by the fire alarm equipment manufacturer in writing.
- 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 FIRE ALARM CONTROL UNIT

A. General:

1. A fully addressable fire alarm system used as an extension of an existing non-addressable fire alarm system shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system. The addressable fire alarm control unit shall be interfaced with the existing non-addressable fire alarm control unit such that an alarm signal on one unit shall cause an alarm signal on the other unit. The addressable fire alarm control unit shall be located in the same room or space as the non-addressable fire alarm control unit.

- 2. Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.
- 4. Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.

B. Enclosure:

- 1. The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
- 2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
 - 2. Display screen shall have a minimum 15-inch diagonal non-glare screen capable of displaying 24 lines of 80 characters each.
 - 3. Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
 - 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.

D. Power Supply:

- 1. The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
- The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
- 3. Power supply for new smoke detectors shall be taken from the addressable fire alarm control unit.

- 4. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
- 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - 1. Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - 2. Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - 4. Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.

- 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
- 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
- 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
- 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
- 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.

I. Remote Transmissions:

- 1. Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
- Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.

- 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
- 4. Batteries shall be sealed, gel cell type.
- 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.

B. Batteries:

- 1. Battery shall be of the sealed, maintenance free type, 24-volt nominal.
- 2. Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
- 3. Battery racks shall be steel with an alkali-resistant finish.

 Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.

C. Battery Charger:

- Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
- 2. Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
- 3. Shall have protection to prevent discharge through the charger.
- 4. Shall have protection for overloads and short circuits on both AC and DC sides.
- 5. A trouble condition shall actuate the fire alarm trouble signal.
- 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - 1. Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
 - 2. Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.

- 3. Where the alarm originates on the non-addressable system, the addressable system shall indicate on the LCD display "SEE ______ FIRE ALARM CONTROL PANEL" where the blank is filled in with the make and model of the existing addressable fire alarm control panel.
- 4. The initial alarm received shall be indicated as such.
- 5. A selector switch shall be provided for viewing subsequent alarm messages.
- 6. The display shall be UL listed for fire alarm application.
- 7. Annunciators shall display information for all buildings connected to the system. Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COR.

2.6 ALARM NOTIFICATION APPLIANCES

A. Bells:

- 1. Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
- 2. Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on outlet boxes.
- 4. Bells located outdoors shall be weatherproof type with metal housing and protective grille.
- 5. Each bell circuit shall have a minimum of 20 percent spare capacity.

B. Strobes:

- 1. Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
- 2. Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
- 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.

C. Horns:

1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.

- 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on conduit boxes.
- 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
- 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.7 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.
 - 2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
 - 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.

B. Smoke Detectors:

- 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
- 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.

6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

C. Heat Detectors:

- 1. Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
- 2. Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
- 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
- 4. Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector Elevator P-______) for each elevator group. Locate key test station in plain view on elevator machine room wall.

D. Water Flow and Pressure Switches:

- 1. Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
- 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 12 00, FIRE-SUPPRESSION STANDPIPES and Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
- 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

E. Extinguishing System Connections:

- 1. Kitchen Range Hood and Duct Suppression Systems:
 - a. Each suppression system shall be equipped with a micro-switch connected to the building fire alarm control unit. Discharge of a suppression system shall automatically send a alarm signal to the building fire detection and alarm system for annunciation.

- b. Operation of this suppression system shall also automatically shut off all sources of fuel and heat to all equipment requiring protection under the same hood.
- 2. Each gaseous suppression system shall be monitored for system alarm and system trouble conditions via addressable interface devices.

2.8 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - 1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - 1. Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
 - 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.

- 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
- 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.
- 7. Fire supervisory signals required by NFPA 20 and monitored by the pump controller shall be provided and monitored by way of address reporting interface devices for the fire pump located.

2.9 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the addressable fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.10 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit.

 Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

2.11 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COR.

2.12 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5
 - 2. Key operated manual pull stations 3
 - 3. Heat detectors 2 of each type
 - 4. Fire alarm strobes 5
 - 5. Fire alarm bells 5
 - 6. Smoke detectors 20
 - 7. Duct smoke detectors with all appurtenances 1
 - 8. Sprinkler system water flow switch 1 of each size
 - 9. Sprinkler system water pressure switch 1 of each type
 - 10. Sprinkler valve tamper switch 1 of each type
 - 11. Control equipment utility locksets 5
 - 12. Control equipment keys 25
 - 13. Key operated manual pull station keys 50
 - 14. 2.5 oz containers aerosol smoke 12
 - 15. Monitor modules 3
 - 16. Control modules 3
 - 17. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- B. Keys for key-operated manual pull stations shall be provided 30 days prior to actual installation.
- C. Spare and replacement parts shall be in original packaging and submitted to the COR.
- D. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COR.
- E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system on site. The minimum level of modification includes addition and

deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.13 INSTRUCTION CHART:

Provide a typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COR before being posted.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

- A. Existing equipment may be reused only where indicated on the drawings.
- B. Except as indicated in paragraph A above, All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33, CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new and reused conduit shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.

B Wire

- 1. All existing wiring shall be removed and new wiring installed in a conduit or raceway.
- 2. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as

recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.

- 3. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically accepted by the fire alarm equipment manufacturer in writing.
- 4. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- 5. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All new and reused boxes shall be sized and installed in accordance with NFPA 70.
 - 3. New and existing covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 FIRE ALARM CONTROL UNIT

A. General:

- Each building and/or building expansion shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.
- 2. Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.

- 4. Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control

B. Enclosure:

- The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
- 2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.

C. Operator terminal at main control unit:

- Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
- 2. Display screen shall have a minimum 15-inch (380mm) diagonal nonglare screen capable of displaying 24 lines of 80 characters each.
- 3. Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
- 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.

D. Power Supply:

- 1. The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
- 2. The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
- 3. Power supply for smoke detectors shall be taken from the fire alarm
- 4. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
- 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised

- against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.

G. Trouble signals:

- 1. Arrange the trouble signals for automatic reset (non-latching).
- 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - 1. Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - 2. Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - 4. Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
 - 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.

- 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
- 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
- 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.

I. Remote Transmissions:

- 1. Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
- Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 ALARM NOTIFICATION APPLIANCES

A. Bells:

- 1. Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
- Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on outlet boxes.
- 4. Bells located outdoors shall be weatherproof type with metal housing and protective grille.

5. Each bell circuit shall have a minimum of 20 percent spare capacity.

B. Strobes:

- 1. Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
- 2. Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
- 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.

C. Fire Alarm Horns:

- 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
- 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on conduit boxes.
- 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
- 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.5 ALARM INITIATING DEVICES

A. Manual Fire Alarm Stations:

- 1. Shall be non-breakglass, address reporting type.
- 2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.

B. Smoke Detectors:

- 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
- 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.

- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

C. Heat Detectors:

- 1. Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
- 2. Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
- 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
- 4. Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector Elevator P-______) for each elevator group. Locate key test station in plain view on elevator machine room wall.

D. Water Flow and Pressure Switches:

- 1. Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
- 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
- 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

E. Extinguishing System Connections:

- 1. Kitchen Range Hood and Duct Suppression Systems:
 - a. Each suppression system shall be equipped with a micro-switch connected to the building fire alarm control unit. Discharge of a

- suppression system shall automatically send a alarm signal to the building fire detection and alarm system for annunciation.
- b. Operation of this suppression system shall also automatically shut off all sources of fuel and heat to all equipment requiring protection under the same hood.
- 2. Each gaseous suppression system shall be monitored for system alarm and system trouble conditions via addressable interface devices.

2.6 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - 1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION."
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - 1. Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
 - 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit

- entrance and incorporate the necessary facilities for attachment to the valves.
- 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
- 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.
- 7. Fire supervisory signals required by NFPA 20 and monitored by the pump controller shall be provided and monitored by way of address reporting interface devices for the fire pump located.

2.7 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit.

 Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.
- E. Where combination holder-closer units are required to match existing, these devices are furnished and installed as per Section 08 71 00, DOOR HARDWARE. Connection and wiring shall be as herein specified.

2.8 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COR.

2.9 SPARE AND REPLACEMENT PARTS

A. Provide spare and replacement parts as follows:

- 1. Manual pull stations 5
- 2. Key operated manual pull stations 3
- 3. Heat detectors 2 of each type
- 4. Fire alarm strobes 5
- 5. Fire alarm bells 5
- 6. Smoke detectors 20
- 7. Duct smoke detectors with all appurtenances 1
- 8. Sprinkler system water flow switch 1 of each size
- 9. Sprinkler system water pressure switch 1 of each type
- 10. Sprinkler valve tamper switch 1 of each type
- 11. Control equipment utility locksets 5
- 12. Control equipment keys 25
- 13. Key operated manual pull station keys 50
- 14. 2.5 oz containers aerosol smoke 12
- 15. Printer paper 3 boxes
- 16. Printer replacement ribbons 3
- 17. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- B. Keys for key-operated manual pull stations shall be provided 30 days prior to actual installation.
- C. Spare and replacement parts shall be in original packaging and submitted to the COR.
- D. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COR.
- E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system on site. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.10 INSTRUCTION CHART:

Provide a typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the

sequence of operation. The instructions shall be approved by the COR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- G. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- H. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in

finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.

- I. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- J. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- K. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- L. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- M. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.
- N. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - 1. Operate the emergency voice communication system in Buildings 6 and 6A. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - 2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Buildings 6 and 6A.
 - 3. Release only the magnetic door holders in the smoke zone on the floor from which alarm was initiated after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.

- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.
- D. Smoke detectors in the remaining elevator lobbies, elevator machine room, or top of hoistway shall, in addition to the above functions, return all elevators in the bank to the primary floor.
- E. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- F. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- G. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.

- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - 1. Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 2. Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily

determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.

C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 DIGITIZED VOICE MESSAGES:

A. Digitized voice messages shall be provided for each smoke zone of Buildings 6 and 6A. The messages shall be arranged with a 3 second alert tone, a "Dr. Red" message and a description of the fire alarm area (building number, floor, level and smoke zone). A sample of such a message is as follows:

Alert Tone

Dr. Red

Building 6, First Floor

Dr. Red

Building 6, Second Floor

4.2 LOCATION OF VOICE MESSAGES:

Upon receipt of an alarm signal from the building fire alarm system, the voice communication system shall automatically transmit a 3 second tone alert and a pre-recorded fire alarm message throughout the floor in alarm, the floor above and the floor below.

- - END - -

31 20 11 EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1:DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing sod.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - 1. Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
 - 2. Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
 - 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials are unsuitable contractor shall excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D698
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- B. Safety Requirements: 01 35 26 Safety Requirements.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed;

together with any type of materials regardless of character of material and obstructions encountered.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION: - NOT APPLICABLE

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION: NOT APPLICABLE

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- C. American Association of State Highway and Transportation Officials (AASHTO):

Rammer and a 457 mm (18 inch) Drop

- D. American Society for Testing and Materials (ASTM):
 - C33-03......Concrete Aggregate
 D698-e1.....Laboratory Compaction Characteristics of Soil
 - D1140-00......Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve

Using Standard Effort

- D1556-00......Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
- D1557-09.....Laboratory Compaction Characteristics of Soil
 Using Modified Effort
- D2167-94 (2001)......Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method
- D2487-06......Standard Classification of Soil for Engineering
 Purposes (Unified Soil Classification System)

D6938-10......Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

E. Standard Specifications of State Department of Transportation, latest revision.

PART 2 - PRODUCTS

2.1 MATERIALS:

- B. Granular Fill:
 - 1. Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to coarse aggregate Size 57.
- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 19 mm to 32 mm (3/4 inch to 1 1/4 inches) excluding top growth. There shall be no broken pads and torn or uneven ends
- G. Buried Warning and Identification Tape: Polyethylene plastic/warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red: Electric Yellow: Gas, Oil, Dangerous Materials

Orange: Telephone and Other Communications Blue: Water

Systems

Green: Sewer Systems
White: Steam Systems
Gray: Compressed Air

H. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing

- requirements specified above. Minimum thickness of tape shall be $0.076\,$ mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- I. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastictape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m(3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- J. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer/COR. Work includes, foundations, incidental structures, paving, debris, trash and any other obstructions.

- 2. Concrete Slabs: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

3.3 FILLING AND BACKFILLING:

A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Use excavated materials or borrow for fill and backfill, as applicable.

- C. Placing: Place material in horizontal layers not exceeding 200 mm (8 inches) in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without the prior approval of the Resident Engineer.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 150 mm (6 inches), unless otherwise indicated.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 100 mm (4 inches), new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before sodding operation begins.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 225 kg/m (150 pounds per foot) of the roller width to improve contact of sod with the soil.
- F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil,

immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -

SECTION 32 05 23 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Subbase for concrete pavements.
 - 2. Pedestrian Pavement: Walks, grade slabs, and wheelchair curb ramps.

1.2 RELATED REQUIREMENTS

- A. Field Testing: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation and Subbase Compaction: Section 31 20 00, EARTHWORK.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Association of State Highway and Transportation Officials (AASHTO):
 - 1. M147-65-UL-04 Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses.
 - 2. M233-86 Boiled Linseed Oil Mixture for Treatment of Portland Cement Concrete.
- C. American Concrete Institute (ACI):
 - 1. 305R-10 Guide to Hot Weather Concreting.
 - 2. 306R-10 Guide to Cold Weather Concreting.
- D. American National Standards Institute (ANSI):
 - 1. B101.3 Wet DOCF of Common Hard Surface Floor Materials (Including Action and Limit Thresholds for the Suitable Assessment of the Measured Values).
- E. ASTM International (ASTM):
 - 1. A615/A615M-16 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.
 - 2. A996/A996M-15 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
 - 3. A1064/A1064M-16 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
 - 4. C33/C33M-16 Concrete Aggregates.
 - 5. C94/C94M-16 Ready Mixed Concrete.
 - 6. C143/C143M-15a Slump of Hydraulic Cement Concrete.
 - 7. C150/C150M-16 Portland Cement.

- 8. C171-16 Sheet Materials for Curing Concrete.
- 9. C260/C260M-10a Air Entraining Admixtures for Concrete.
- 10. C309-11 Liquid Membrane Forming Compounds for Curing Concrete.
- 11. C494/C494M-15a Chemical Admixtures for Concrete.
- 12. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 13. C979/C979M-16 Pigments for Integrally Colored Concrete.
- 14. C989/C989M-14 Slag Cement for Use in Concrete and Mortars.
- 15. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 16. D1751-04(2013)el Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types).
- 17. D5893/D5893M-10 Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.
- 18. D6690-15 Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PREINSTALLATION MEETINGS - NOT APPLICABLE

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show reinforcing.
 - 3. Include jointing plan for concrete pavements.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.

1.7 DELIVERY

- A. Deliver steel reinforcement to prevent damage.
- B. Before installation, return or dispose of distorted or damaged steel reinforcement.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

- A. Cold Weather Concreting Procedures: ACI 306R.
 - 1. Use non-corrosive, non-chloride accelerator admixture.
 - 2. Do not use calcium chloride, thiocyanates or admixtures containing more than 0.05 percent chloride ions.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 CONCRETE MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Coarse Aggregate: ASTM C33/C33M; .
- C. Fine Aggregate: ASTM C33/C33M.
- D. Mixing Water: Fresh, clean, and potable.
- E. Air-Entraining Admixture: ASTM C260/C260M.
- F. Chemical Admixtures: ASTM C494/C494M.
- G. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M.

2.2 SELECT SUBBASE - NOT APPLICABLE

2.3 FORMS

- A. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative, of grade or type suitable to obtain type of finish specified.
 - 1. Plywood: Exterior grade, free of defects and patches on contact surface.
 - 2. Lumber: Sound, grade-marked, S4S stress graded softwood, minimum 50 mm (2 inches) thick, free from warp, twist, loose knots, splits, or other defects.
- B. Provide forms suitable in cross-section, depth, and strength to resist springing during depositing and consolidating concrete.
 - 1. Do not use forms varying from straight line more than 3 mm in 3000 mm (1/8 inch in 10 feet), horizontally and vertically.
- C. Provide flexible or curved forms for forming radii.

2.4 CONCRETE CURING MATERIALS

- A. Concrete curing materials, conform to one of the following:
 - 1. Sheet Materials for Curing Concrete: ASTM C171.

2.5 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Concrete Type: See Table I.

TABLE I - CONCRETE TYPES						
Concrete	Minimum 28 Day	Non-Air-Entrained		Air-Entrained		
Type	Compressive	Min. Cement	Max.	Min. Cement	Max.	
	Strength f'c	kg/cu. m	Water	kg/cu. m	Water	
	MPa (psi)	(lbs./cu. yd.)	Cement	(lbs./cu. yd.)	Cement	
			Ratio		Ratio	
С	25 (3000)1,3	280 (470)	0.65	290 (490)	0.55	

Footnotes:

- 1. If trial mixes are used, achieve compressive strength 8.3 MPa (1,200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve compressive strength 9.7 MPa (1,400 psi) in excess of f'c.
- 2. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.
- 3. Laboratory Determined according to ACI 211.1 for normal weight concrete.
 - C. Maximum Slump: ASTM C143/C143M. See Table II.

TABLE II - MAXIMUM SLUMP				
APPLICATION	MAXIMUM SLUMP			
Curb & Gutter	75 mm (3 inches)			
Pedestrian Pavement	75 mm (3 inches)			
Vehicular Pavement	50 mm (2 inches) Machine Finished			
	100 mm (4 inches) Hand Finished			
Equipment Pad	75 to 100 mm (3 to 4 inches)			

2.6 ACCESSORIES

- A. Equipment and Tools: Obtain Contracting Officer's Representative's, approval of equipment and tools needed for handling materials and performing work before work begins.
- B. Maintain equipment and tools in satisfactory working condition.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.

- C. Prepare, construct, and finish subgrade. See Section 31 20 00, EARTHWORK.
- D. Maintain subgrade in smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE - NOT APPLICABLE

3.3 SETTING FORMS

- A. Form Substrate:
 - 1. Compact form substrate to uniformly support forms along entire length.
 - Correct substrate imperfections and variations by cutting, filling, and compacting.

B. Form Setting:

- 1. Set forms to indicated line and grade with tight joints. Rigidly brace forms preventing movement.
- 2. Remove forms when removal will not damage concrete and when required for finishing.
- 3. Clean and oil forms before each use.
- 4. Correct forms, when required, immediately before placing concrete.

C. Form Tolerances:

- 1. Variation from Indicated Line: Maximum 6 mm (1/4 inch).
- 2. Variation from Indicated Grade: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

3.4 PLACING REINFORCEMENT

- A. Keep reinforcement clean from contamination preventing concrete bond.
- B. Install reinforcement shown on drawings.
- C. Support and securely tie reinforcing steel to prevent displacement during concrete placement.
- D. Obtain Contracting Officer's Representative's reinforcement placement approval before placing concrete.

3.5 JOINTS - GENERAL

- A. Place joints, where shown on approved submittal Drawings.
 - 1. Conform to details shown.
 - 2. Install joints perpendicular to finished concrete surface.
- B. Make joints straight and continuous from edge to edge of pavement.

3.6 CONSTRUCTION JOINTS

A. Locate longitudinal construction joints between slabs of vehicular pavement.

3.7 CONTRACTION JOINTS - NOT APPLICABLE

3.8 EXPANSION JOINTS - NOT APPLICABLE

3.9 PLACING CONCRETE - GENERAL

- A. Preparation before Placing Concrete:
 - 1. Obtain Contracting Officer's Representative approval.
 - 2. Remove debris and other foreign material.
 - 3. Uniformly moisten substrate, without standing water.
- B. Convey concrete from mixer to final location without segregation or loss of ingredients. Deposit concrete to minimize handling.
- C. During placement, consolidate concrete by spading or vibrating to minimize voids, honeycomb, and rock pockets.
 - 1. Vibrate concrete against forms and along joints.
 - 2. Avoid excess vibration and handling causing segregation.
- D. Place concrete continuously between joints without bulkheads.
- E. Install construction joint in concrete placement suspended for more than 30 minutes.
- F. Replace concrete with cracks, chips, bird baths, and other defects to nearest joints, approved by Contracting Officer's Representative.

3.10 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS

- A. Place concrete in one layer conforming to cross section shown on Drawings after consolidating and finishing.
- B. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- C. Strike concrete surface to proper section ready for consolidation.
- D. Consolidate concrete by tamping and spading.
- E. Finish concrete surface with wood or metal float.
- F. Construct concrete pads and pavements with sufficient slope to drain, preventing standing water.

3.11 PLACING CONCRETE FOR VEHICULAR PAVEMENT - NOT APPLICABLE

3.12 FORM REMOVAL

A. Keep forms in place minimum 12 hours after concrete placement. Remove forms without damaging concrete.

B. Do not use bars or heavy tools against concrete to remove forms. Repair damage concrete found after form removal.

3.13 CONCRETE FINISHING - GENERAL

- A. Follow operation sequence below.
 - 1. Consolidating, floating, striking, troweling, texturing, and joint edging.
- B. Use edging tool with 6 mm (1/4 inch) radius.
- C. Keep finishing equipment and tools clean and suitable for use.

3.14 CONCRETE FINISHING - PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs, Wheelchair Curb Ramps,:
 - 1. Finish concrete surfaces with metal float, troweled smooth, and finished with a broom moistened with clear water.
 - 2. Finish slab edges and formed transverse joints with edger.
 - 3. Broom surfaces transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1.5 mm (1/16 inch) deep profile.
 - 4. Provide surface uniform in color and free of surface blemishes, form marks, and tool marks.
 - 5. Paving Tolerances:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).
 - b. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
 - 6. Replace paving within joint boundary when paving exceeds specified tolerances.
- B. Step Treads, Risers and Sidewalls: Finish as specified for pedestrian pavement, except as follows:
 - 1. Remove riser forms sequentially, starting with top riser.
 - 2. Rub riser face with wood or concrete rubbing block and water. Remove blemishes, form marks, and tool marks. Use outside edger to round nosing; use inside edger to finish bottom of riser.
 - 3. Apply uniform brush finish to treads, risers, and sidewall.
 - a. Apply stiff brush finish to treads to provide slip resistant surface complying with ANSI B101.3.
 - 4. Step Tolerance:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).

- 657-17-105JC Restore Utility Systems, Building 6A
- 3.15 CONCRETE FINISHING VEHICULAR PAVEMENT NOT APPLICABLE 3.16 CONCRETE FINISHING - CURBS AND GUTTERS - NOT APPLICABLE
- 3.17 CONCRETE FINISHING EQUIPMENT PADS NOT APPLICABLE
- 3.18 SPECIAL FINISHES NOT APPLICABLE

3.19 CONCRETE CURING

- A. Concrete Protection:
 - 1. Protect unhardened concrete from rain and flowing water.
 - 2. Provide sufficient curing and protection materials available and ready for use before concrete placement begins.
 - 3. Protect concrete to prevent pavement cracking from ambient temperature changes during curing period.
 - a. Replace pavement damaged by curing method allowing concrete cracking.
 - b. Employ another curing method as directed by Contracting Officer's Representative.
- B. Cure concrete for minimum 7 days by one of the following methods appropriate to weather conditions preventing moisture loss and rapid temperature change:
 - 1. Sheet Materials:
 - a. Wet exposed concrete surface with fine water spray and cover with sheet materials.
 - b. Overlap sheets minimum 300 mm (12 inches).
 - c. Securely anchor sheet materials preventing displacement.

3.20 CONCRETE PROTECTIVE COATING - NOT APPLICABLE

3.21 FIELD QUALITY CONTROL - NOT APPLICABLE

3.22 CLEANING

- A. After completing curing:
 - 1. Remove burlap and sheet curing materials.
 - 2. Sweep concrete clean, removing foreign matter from the joints.
 - 3. Seal joints as specified.

3.23 PROTECTION

- A. Protect exterior improvements from traffic and construction operations.
 - 1. Prohibit traffic on paving for minimum seven days after placement, or longer as directed by Contracting Officer's Representative.
- B. Remove protective materials immediately before acceptance.

- C. Repair damage.
 - Replace concrete containing excessive cracking, fractures, spalling, and other defects within joint boundary, when directed by Contracting Officer's Representative, and at no additional cost to the Government.

- - - E N D - - -

SECTION 32 90 00 PLANTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sod, and landscape materials.

1.2 RELATED REQUIREMENTS

1.3 DEFINITIONS

A. Pesticide: Any substance or mixture of substances, including biological control agents, that may prevent, destroy, repel, or mitigate pests and is specifically labeled for use by U.S. Environmental Protection Agency (EPA). Also, any substance used as plant regulator, defoliant, disinfectant, or biocide.

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute (ANSI):
 - 1. Z60.1-2014 Nursery Stock.
- C. American Society for Testing And Materials (ASTM):
 - 1. B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 2. B221M-13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 3. C33/C33M-16-Concrete Aggregates.
 - 4. C136/C136M-14 Sieve Analysis of Fine and Coarse Aggregates.
 - 5. C602-13a Agricultural Liming Materials.
 - 6. D977-13e1 Emulsified Asphalt.
 - 7. D5268-13 Topsoil Used for Landscaping Purposes.
- D. Hortus Third: Concise Dictionary of Plants Cultivated in United States and Canada.
- E. Tree Care Industry Association (TCIA):
 - 1. A300P1-2008 Tree Care Operations Trees, Shrubs and Other Woody Plant Maintenance Standard Practices (Pruning).
 - 2. Z133.1-2012 Arboricultural Operations Safety Requirements.
- F. Turfgrass Producers International (TPI):
 - 1. 2006 Guideline Specifications to Turfgrass Sodding.
- G. United States Department of Agriculture (USDA):
 - 1. DOA SSIR 42-2014 Soil Survey Laboratory Methods Manual.

2. Handbook No. 60 - Diagnosis and Improvement of Saline and Alkali Soils.

1.5 PREINSTALLATION MEETINGS - NOT APPLICABLE

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.

1.8 DELIVERY

A. Deliver packaged products in manufacturer's original sealed packaging.

1.9 STORAGE AND HANDLING

- A. Topsoil: Before stockpiling topsoil, eradicate on site undesirable growing vegetation. Clear and grub existing vegetation three to four weeks before stockpiling existing topsoil.
- B. Root Control Barrier and Weed Control Fabric: Store materials in site in enclosures or under protective covering in dry location out of direct sunlight. Do not store materials directly on ground.

1.10 FIELD CONDITIONS - NOT APPLICABLE

1.11 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant plantings and against material defects.
 - 1. Warranty Period: Two years.
 - 2. Plant and Turf Warranty Periods will begin from date of planting completion.
 - 3. Contracting Officer's Representative will reinspect plants and turf at end of Warranty Period. Replace any dead, missing, or defective plant material and turf immediately. Warranty Period will end on date of this inspection provided Contractor has complied with warranty work required by this specification. Comply with following requirements:

- a. Replace any plants more than 25 percent dead, missing or defective plant material before final inspection.
- b. Only one replacement of each plant will be required except when losses or replacements are due to failure to comply with these requirements.
- c. Complete remedial measures directed by Contracting Officer's Representative to ensure plant and turf survival.
- d. Repair damage caused while making plant or turf replacements.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

A. Provide each product from one source or manufacturer.

2.2 PLANT MATERIALS - NOT APPLICABLE

2.3 SOD

- A. Sod: Nursery grown, certified and classified in TPI's "Guideline Specifications to Turfgrass Sodding" as GSS. Machine cut sod at uniform thickness of 19 mm (3/4 inch) within tolerance of 6 mm (1/4 inch), excluding top growth and thatch. Each individual sod piece to be strong enough to support its own weight when lifted by ends. Broken pads, irregularly shaped pieces, and torn or uneven ends will not be permitted.
- B. Sod Species: Genetically pure, free of weeds, pests, and disease.

- 2.4 SEED NOT APPLICABLE
- 2.5 TURF SELECTIONS NOT APPLICABLE
- 2.6 SPRIGS NOT APPLICABLE
- 2.7 PLUGS NOT APPLICABLE
- 2.8 PLANTING SOILS NOT APPLICABLE
- 2.9 INORGANIC SOIL AMENDMENTS NOT APPLICABLE
- 2.10 ORGANIC SOIL AMENDMENTS NOT APPLICABLE
- 2.11 PLANT FERTILIZERS NOT APPLICABLE
- 2.12 WEED CONTROL FABRIC NOT APPLICABLE
- 2.13 MULCH NOT APPLICABLE

2.14 EDGING

A. Natural Cut Edging: Edge plant beds with an excavated 'V' cut to provide clear division between plant bed and adjacent turf. Artificial or manufactured products to form plant bed edges will not be permitted.

2.15 ANTIDESICCANT

A. Antidesiccant: An emulsion specifically manufactured for agricultural use that will provide protective film over plant surfaces permeable enough to permit transpiration.

2.16 EROSION CONTROL

- A. Erosion Control Material Anchors: As recommended by erosion control material manufacturer.
- 2.17 ROOT CONTROL BARRIER NOT APPLICABLE
- 2.18 BIOSTIMULANTS NOT APPLICABLE
- 2.19 STAKING AND GUYING MATERIALS NOT APPLICABLE
- 2.20 TREE WRAP NOT APPLICABLE
- 2.21 TACKIFIERS AND ADHESIVES NOT APPLICABLE

2.22 WATER

A. Water: Source approved by Contracting Officer's Representative and suitable quality for irrigation, containing no elements toxic to plant life, including acids, alkalis, salts, chemical pollutants, and organic matter. Use collected storm water or graywater when available.

- 2.23 PESTICIDES NOT APPLICABLE
- 2.24 FINISHES NOT APPLICABLE

PART 3 - EXECUTION

- 3.1 EXAMINATION NOT APPLICABLE
- 3.2 PREPARATION NOT APPLICABLE
- 3.3 PLANT BED PREPARATION NOT APPLICABLE
- 3.4 GROUND COVER AND PLANT INSTALLATION NOT APPLICABLE
- 3.5 TREE, SHRUB, AND VINE PLANTING NOT APPLICABLE
- 3.6 MECHANIZED TREE SPADE PLANTING NOT APPLICABLE
- 3.7 TREE WRAP NOT APPLICABLE
- 3.8 TREE AND SHRUB PRUNING NOT APPLICABLE
- 3.9 STAKING AND GUYING NOT APPLICABLE
- 3.10 ROOT CONTROL BARRIER INSTALLATION NOT APPLICABLE
- 3.11 MULCH INSTALLATION NOT APPLICABLE
- 3.12 EDGING INSTALLATION NOT APPLICABLE

3.13 SODDING

- A. Place sod maximum 36 hours after initial harvesting according to TPI GSS, except as modified herein.
- B. For slopes 2 to 1 and greater, lay sod with long edge perpendicular to contour. For V-ditches and flat bottomed ditches, lay sod with long edge perpendicular to water flow. On sloped areas, start sodding at bottom of slope.
- C. Finishing: After sodding, blend edges of sodded area smoothly into surrounding area. Eliminate air pockets and provide true and even surface. Trim frayed areas and patch holes and missing areas with sod.
- D. Rolling: Immediately after sodding, firm entire area, except slopes in excess of 3: 1, with roller maximum 134 kg (90 lbs.) for each foot of roller width.
- E. Watering: Start watering sodded areas as required by daily temperature and wind conditions. Water at rate sufficient to ensure thorough wetting of soil to minimum 150 mm (6 inches) deep. Prevent run-off, puddling, and wilting. Do not drive watering trucks over turf areas,

- 657-17-104JC Restore Utility Systems, Building 6
- 657-17-105JC Restore Utility Systems, Building 6A

07-01-16

unless otherwise directed. Prevent watering of other adjacent areas or plant materials.

- 3.14 SPRIGGING NOT APPLICABLE
- 3.15 PLUGGING NOT APPLICABLE
- 3.16 SEEDING NOT APPLICABLE
- 3.17 HYDROSEEDING NOT APPLICABLE
- 3.18 TURF RENOVATION NOT APPLICABLE
- 3.19 PLANT MAINTENANCE NOT APPLICABLE
- 3.20 SLOPE EROSION CONTROL MAINTENANCE
 - A. Provide slope erosion control maintenance to prevent undermining of all slopes in newly landscaped areas.
- 3.21 REMOVAL OF DYING OR DEAD PLANTS NOT APPLICABLE
- 3.22 TURF MAINTENANCE NOT APPLICABLE
- 3.23 CLEANING
 - A. Remove and legally dispose of all excess soil and planting debris.
- 3.24 PROTECTION
 - A. Protect plants from traffic and construction operations.
 - B. Remove protective materials immediately before acceptance.
 - C. Repair damage.

- - - E N D - - -

SECTION 34 71 13 VEHICLE BARRIERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Stationary anti-ram rated vehicle barriers adjacent to perimeter security fence and at building entrances.

1.2 RELATED REQUIREMENTS

- A. Concrete Site Walls: Section 03 30 53, (SHORT FORM) CAST-IN-PLACE CONCRETE.
- B. Masonry Site Walls: Section 04 20 00, UNIT MASONRY.
- C. Concrete Driveway and Approach Paving: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. F2656/F2656M-15 Crash Testing of Vehicle Security Barriers.
- C. United States Department of State (DS):
 - 1. SD-STD02.01-Revision A Vehicle Crash Testing of Perimeter Barriers and Gates.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:

1.5 QUALITY ASSURANCE - NOT APPLICABLE

1.6 FIELD CONDITIONS - NOT APPLICABLE

 Coordinate field measurement and fabrication schedule to avoid delay.

1.7 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Structural Vehicle Barriers:

1. Site Walls: Concrete. See Section 03 30 53, (SHORT FORM)

CAST-IN-PLACE CONCRETE and/or Section 04 20 00, UNIT MASONRY.

2.2 SYSTEM PERFORMANCE

- A. Design stationary barriers complying with specified performance:
 - 1. Ram Resistance: ASTM F2656 or DS SD-STD02.01 rated to stop 1,800 kg (4,000 lb.) vehicle traveling 48 km/hr. (30 mph) on impact.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify foundation suitability for product installation.
- B. Coordinate delivery and installation of anchors, sleeves, and other items embedded in concrete foundations.
- C. Coordinate barrier system layout and installation with perimeter security system and vehicle control facilities.

3.2 INSTALLATION

1. Site Wall Installation: See Section 03 30 53, (SHORT FORM)

CAST-IN-PLACE CONCRETE and/or Section 04 20 00, UNIT MASONRY..

- - - E N D - - -